Technical Report CSTN-083

Detecting and Labelling Wireless Community Network
Structures from Eigen-spectra

K.A. Hawick
Institute of Information and Mathematical Sciences
Massey University — Albany, North Shore 102-904, Auckland, New Zealand
Email: k.a.hawick@massey.ac.nz

Tel: +64 9 414 0800

Abstract

Wireless and ad hoc networks often have local regions
of highly intra-connected modules or communities of
nodes against a backdrop of sparser longer-range inter-
community connectivities. ~We report on empirical
observations and a prototype algorithm for correctly
counting and labelling the number of dense community
structures or modules within a fully connected network.
We describe the eigen-spectral method applied to the
Laplacian characteristic matrix. We illustrate the ef-
fect of different network characteristics on the eigen-
spectrum and on properties of the eigenvectors corre-
sponding to the NN, smallest eigenvalues in networks
with N, such dense community modules.

Keywords: wireless networks; ad hoc networks;
community structure; modules; eigen-spectra; smallest
eigen-values.

1 Introduction

Wireless networks are often highly complex systems
[1,2] that are difficult to analyse for optimal design. Im-
portant considerations for the design of mobile, wireless
networks [3] include: maintaining connectivity when
nodes move; deploying resources only where required
[4]; and managing power consumption [5]. Many ad
hoc and mobile wireless device deployments give rise
to highly structured connectivity patterns based upon
localised regions or groups of units that are highly
intra-connected amongst nodes of the same group, but
where the groups themselves may be only sparsely inter-
connected. Such networks are fully connected in the
sense that there are path-ways from any node to any
other node, but have variations in connectivity strength
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Figure 1: Spatial deployment pattern of connected de-
vices on Massey’s Albany campus, divided into 15 mod-
ular communities.

such that nodes form tightly connected communities or
modules with sparser “trunk routes” connecting com-
munities.

This sort of community or modular structure within a
fully-connected graph [6] is common in a variety of ap-
plication contexts including: the Internet and World-
Wide-Web; social and battle deployment situations;
and also in gene-sequenced and neuronal biological net-
works. Mobile and wireless networks are particularly
interesting however as we can easily visualise a spatial
pattern [7] amongst the nodes of the network that is
separate from the actual links or edges connecting nodes
together. The actual bandwidth or number of packet
hops can therefore be embedded in a spatial coordinate
system but is completely separate from it in terms of its
connectivity properties. Figure 1 shows a possible spa-



tial deployment pattern of wireless-equipped “units” on
Massey University’s Albany campus. Units are tightly
clustered and have a high local connectivity but only
the group leaders of each group are directly connected.
The graph is therefore fully connected but highly mod-
ular.

Automatically detecting community or modular struc-
ture in networks is a non-trivial problem. In the case of
networks or graphs that are not fully connected, this
can be detected using graph colouring or node labelling
algorithms and the answers are unambiguous. In the
case of fully connected graphs but with a modular struc-
ture the identification of the modules or communities
can be a matter of judgement and is not necessarily
completely unambiguous. Generally community detec-
tion algorithms either follow a partitioning approach to
divide the graph into predefined sizes so as to minimize
the number of links between divisions, or alternatively
they employ a hierarchical clustering or spectral ap-
proach [8] to iteratively cut up the graph into a number
of “cut-sets.”

A number of authors have proposed algorithms based
on spectral detection [9] using various network proper-
ties and based on communities; anti-communities [10]
and other modular properties [11,12]. Spectral method
s make use of numerical properties of some characteris-
tic matrix that describes the network in question. Usu-
ally this entails computing the eigen-values and eigen-
vectors of this characteristic matrix and analysing the
resulting spectrum or density of values obtained [13].
This general approach gives rise to several useful re-
sults concerning network connectivity and bulk prop-
erties [14] and potential critical phenomena concerning
connectivity break-up in complex networks [15].

In this paper we report some empirical observations on
using spectral analysis of highly modular networks of
a type that might arise from deployment of wireless
devices or troops in a spatial pattern, especially when
the network connectivity is evolving [16] in time. Our
observations can be used to formulate a modular detec-
tion and labelling algorithm that is quite robust against
different network details and which can form the basis
for analysing modular structure in simulated wireless
networks [17-19] as well in real network patterns [20].

In this paper we focus solely on undirected graphs,
where the nodes are connected with bidirectional edges,
rather than directed arcs [21]. This focus gives rise to
characteristic matrices that are symmetric and simpli-
fies the analysis considerably. Some work has been done
using the complex eigenvalues that arise from asymmet-
ric characteristic matrices [22] and this may be useful
for some application network contexts in biological and
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chemical systems particularly where oscillatory [23] and
network synchronisation phenomena [24] are involved.

We consider the Laplacian matrix of networks [25]
and investigate it using dense linear algebra methods
which give high precision for the relevant eigenvalues
but which are computationally intensive and this fea-
sible only for small- to medium-sized network systems.
Sparse matrix techniques are required to scale-up to
investigate very large networks [26].

We describe spectral methods for community structure
detection and labelling in Section 2 and give specifics
on: the Laplacian characteristic matrix in Section 2.1;
the detection and labelling algorithm in Section 2.2
and an illustrative example in Section 2.3. Some other
test networks with various properties are investigated
in Section 3 and a discussion and some general observa-
tions given in Section 4 with a summary and tentative
conclusions and areas for further work offered in Sec-
tion 5.

2 Eigen Spectral Methods

We want to find an appropriate cut-set or set of cut-sets
to partition the network up according to its communi-
ties. This requires a partition measure Rj; based on
some characteristic matrix M that defines the network
of N nodes, and their connectivities. Following New-
man and others [9, 10], we define an index vector s so
that s; is £1 depending upon whether node 7 of the
graph is in group 1 or group 2.

The partitioning measure on specification matrix M
can then be written in the form:

Ry =s"Ms (1)

using the usual transpose s7 notation to denote a row-
vector in contra-distinction to a column-vector s. We
need to maximise the partitioning measure subject to
the constraint on s so that s”s = N and can therefore
employ the Lagrange multiplier method [27]. This can
be formulated as:

A=sT"Ms— \sTs (2)
with js—/} = 0, from which we obtain:
(M—-Xs=0 (3)

and implying thats should be an eigenvector of M with
corresponding eigenvalue A

The eigenvalues A; and corresponding eigenvectors v;
for a matrix M are defined in the usual way by:

M.Vi = )\7;V7; (4)



For the real symmetric matrices we discuss, the eigen-
values and vectors are all real. The main property we
exploit in analysing a matrix that is associated with a
graph or network is that of orthogonality. If we find
the eigenvalues and their corresponding eigenvectors,
we hope to use these to indicate separate (orthogonal)
properties of different parts of the graph or network.

Generally the normalisation is such that the eigenvec-
tors are not necessarily equal to +1 and work reported
in the literature suggests taking s in terms of the ac-
tual eigenvectors as the signum function of the actual
eigenvectors s*.

Newman and Zarei et al. both suggest using the Lapla-
cian matrix L for M and looking at the eigenvector cor-
responding to the smallest eigenvalue. The argument
is that this eigenvector will be most parallel to the true
partition vector s. The general approach is to then use
the sign of the individual values to determine whether
node ¢ is in group 1 or group 2 of the graph cut-sets.
Various authors report some success with this method
but do point out that it is is susceptible to error if the
graph partition is not fully determinable and also that
it requires knowledge that there e are in fact two and
only two groups - of roughly the same size. In prin-
ciple if a group is known to contain further r possible
partitions, then it can be repeatedly applied to dimin-
ishing sub networks. It is not obvious how to terminate
the repetition however without a priori knowledge of
the number of groups resent. Other more complicated
matrix choices have been reported in the literature to
attempt to identify multiple groupings.

2.1 Laplacian Matrix of a Graph

Eigen spectral analysis of networks consists of studying
properties of a characteristic matrix M that captures
the essential properties of the graph or network. Com-
mon choices include the adjacency matrix A, the Lapla-
cian L = D — A or the sign-less Laplacian |L| = D+ A
based upon the diagonal degree matrix D.

The Laplacian or admittance matrix is defined for undi-
rected networks as:

Lij = kidij — Ai ()

where k; is the (edge) connectivity and A, ; the (sym-
metric) adjacency matrix.

In this work we use the Laplacian matrix for undirected
(edge based) networks so that L is wholly real and is
symmetric.

Figure 2 shows a small exemplar undirected network
of 24 vertices arranged in 3 closely coupled commu-
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Figure 2: Undirected Graph of 24 Vertices in 3 closely-
coupled communities.

nities. The corresponding Laplacian matrix is con-
structed from the diagonal degree matrix D and the
adjacency matrix A and is shown in Figure 3
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Figure 3: Laplacian matrix for the 24 vertex cluster
shown in Figure 2. The diagonal elements are the ver-
tices’ degree values and the off-diagonal elements come
from the negative of the adjacency matrix. This net-
work is undirected so the matrix is symmetric. The
block structure arising from the three communities or
modules can be seen since vertices have been deliber-
ately contiguously indexed.

The Laplacian matrix has zero column and row sums
— which fact is emphasised in Figure 3. This particu-
lar example has been arranged so that the three com-
munities of vertices present are arranged contiguously
in the matrix index space. The partitioning algorithm
works with arbitrary matrix indices however and thus
obviously does not require this arrangement to work
correctly.



2.2 A Practical Algorithm

We find empirically that in the case of graphs of the
form discussed in 1 above with very strong local con-
nectivity, we can in fact extend this idea to examine the
n smallest eigenvalues of the Laplacian matrix L = M
for which all elements are definitely positive and which
are mutually orthogonal. We find that the following al-
gorithm determines the number of unambiguous cut-set
groups and can specifically label nodes by their group.
In the cases of a mix of strongly defined and weakly de-
fined cut-set groups we can use this method to at least
count and label those groups and nodes that are un-
ambiguous and leave the remaining nodes aside. The
conventional method reported in the literature can then
still be applied to the n + 1’th smallest eigenvalue’s
eigenvector and may be able to roughly split the re-
maining graph nodes into two further groups.

This is pragmatically a very useful and powerful result
and appears to provide a robust algorithm as shown
from the results presented in section 3.

2.3 An Illustrative Example

We show a specific example for the graph shown in fig-
ure 2 and give the sorted eigenvectors of the graph’s
Laplacian matrix in figure 4. The orthogonality of the
three groupings is clearly seen and can be identified us-
ing the algorithm described above.
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0.0000
0.0000

0.0000
0.0000

0.3333
0.2981

0.0000
0.0000

-0.1609 -0.1853

-0.1694
-0.1147
-0.1187
-0.1202
0.9355
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-0.1951
-0.1321
0.9340
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.1469
-0.1469
-0.0845
-0.1783
-0.1184
-0.1253
0.9424
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.3855
0.3855
0.2218
0.4678
0.3107
0.3287
0.3114
0.3651

0.4262
0.4487
0.3037
0.3143
0.3184
0.3532
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.3376
0.3376
0.3898
0.4552
0.3066
0.2991
0.3186
0.3576
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Figure 4: The last 6 eigenvectors corresponding to the
6 smallest eigenvalues of the Laplacian matrix for the
24 vertex cluster shown above. Note the last three are
mutually orthogonal, non-overlapping and exclusive.

Figure 5 shows the sorted eigenvalues of the 24 vertex
graph. There is a very obvious gap between the values
of the three smallest eigenvalues that correspond to the
3 communities found in the graph and the remaining
eigenvalues. This gap can also be used to help identify
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the number of community structures to label which is
then an a priori unknown.
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Figure 5: Ranked Eigenvalues for the 24 Vertex Net-
work showing a gap before the last three smallest.

3 Results

Figure 6: 179 nodes in 10 separate differently sized
communities with trailing branches, correctly marked
by the community partitioning algorithm.

A larger test data set with 179 vertices connected in
a single cluster was used to investigate the scalabil-
ity and robustness of the partitioning algorithm. In
addition to deliberately muddling the located vertex
nodes in the data structure, a range of different sized
communities is used. A spatial structure was used to



include trailing branches amongst communities. The
algorithm correctly identifies ten communities of sizes:
25,16,16,12,23,17,16,21,17,16). A spatial all-all cir-
cular distance of 75 pixel units was used to generate this
test set with long distance arcs added manually. The
partitioning algorithm does not of course “see” the spa-
tial distances, this is solely to aid the eye in presenting
the test data set. Figure 6 shows the correctly marked
ten communities of vertices.

Figure 7: 50 nodes in a spoked-hub pattern of 5 sepa-
rate communities.

In order to investigate how robust the algorithm was
against multiple edges connecting communities an ad-
ditional test set arranged in a hub and spoke pat-
tern as shown in Figure 7. This data set was again
correctly marked as having five communities of sizes
(12,18,6,8,6). This pattern is not unlike a command
and control battlefield deployment pattern.
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Figure 8: The smallest eigenvalue’s eigenvectors, which
are mutually orthogonal and label their member nodes.

It is interesting to look more closely how the eigenvec-
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tors of the network’s Laplacian Matrix are partitioned.
Figure 8 shows the five eigenvectors corresponding to
the smallest eigenvalues in the spoked-hub network of
fifty vertices. The nodes have been conveniently ar-
ranged in contiguous index order to emphasise the mu-
tual orthogonally and lack of overlap amongst the eigen-
vectors. The plot symbols and annotations indicate
how each of the five eigenvectors neatly span the space
and this identify each community and its constituent
vertices.
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Figure 9: Eigenvalues for the three test networks, show-
ing characteristic gap structure.

The data sets we have employed all share the common
characteristic that they have densely-connected com-
munities that are relatively sparsely interconnected.
The network or graph is fully connected but the com-
munity or modular structure can still be unambiguously
identified and different modules differentiated. The cor-
responding eigenvalue spectrum for each of the three
test networks used is shown in Figure 9. Generally, in
each case the number of communities N, corresponds
strongly to the smallest IV, eigenvalues. Furthermore
there is a strong tendency for the eigen-spectrum to
have sharply delineated gaps between these N, eigen-
values and the rest of the spectrum.

4 Discussion

We have used a dense matrix formulation with double
precision implementation of the Jacobi rotation method
for obtaining the eigenvalues of a real symmetric ma-
trix [28]. This can be coded in a number of ways, but
we have used a C programming language implementa-
tion [29] alongwith a fast sorting method to identify
the smallest eigenvalues. The Jacobi rotation method



Algorithm 1 Summary of modular network commu-
nity detection and labelling algorithm.

1: load adjacency matrix A for given network
compute diagnonal degree matrix D
compute Laplacian matrix L =D — A
compute Eigenvalues \; and Eigenvectors s; of L
sort A; (and aassociated s;)
starting with ¢ for the smallest \; set N, =0
while Sij > 07VJ do

increment N,

if s;; >0 then

label vertices j by N,

end if

: end while

© P NPT

— = e
M B2

satisfactorily computes the orthogonality of the lowest
eigenvectors to sufficient precision for us to make sim-
ple comparison tests. Less precision would require use
of a more sophisticated and expensive test criteria us-
ing dot product comparisons for orthogonality instead
of direct comparisons tests against zero.

Algorithm 1 summarises the modular network commu-
nity detection and labelling algorithm and is satisfac-
tory providing the smallest eigenvalues of the Laplacian
matrix can be computed to good precision and accu-
racy.

The Jacobi rotation method has a relatively high ac-
curacy for the smallest eigenvalues but it is O(N?) in
computational complexity as well as being O(N?) in
memory usage. Other algorithms for computing eigen-
values of a sparse matrix such as the (iterated) Lanczos
method [30]might be expected to give better computa-
tional performance as well as meomory utilisation, but
may not yield sufficient accuracy for the small eigenval-
ues and individual elements of the corresponding eigen-
vectors. The test at line 7 of Algorithm 1 could be
replaced by test based on a dot product to ensure con-
tinued orthogonality of vectors s; as ¢ is rolled up from
the smallest eigenvalue indices.

5 Summary and Conclusions

We have described how an examination of the N, small-
est eigenvalues’ corresponding eigenvectors that are en-
tirely positive can be used to identify that there are N,
unambiguous cut-sets in a network and furthermore to
identify and label the nodes belonging to each cut-set.
We have shown that this algorithm is quite robust for
graphs of the sort discussed. The algorithm works well
for networks with highly dense community modules.
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This algorithm can be applied to nodes in a fully con-
nected ad hoc network in various contexts including
those of wireless-sensor deployment, troop or other as-
set movements and other situations where it is strongly
desirable or efficient resource management to designate
local groupings or hubs of control or management.

This algorithm can likely be used in conjunction with
others that have been reported in the literature to fur-
ther analyse networks with a mix of both unambiguous
(as reported here) and also more ambiguous groupings.
The work reported here used a simple dense matrix
method of determining the smallest eigenvalues. We are
further investigating sparse methods and their relative
accuracies to support use of this algorithm with very
large networks and their Laplacian matrices. Our algo-
rithm is not lengthy to implement and could likely be
embedded in a mobile management device dynamically
explore device deployments for small- to medium-sized
mobile networks.
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