
Parallel and pseudorandom discrete event system

specification vs. networks of spiking neurons:

Formalization and preliminary implementation

results

Alexandre Muzy

CNRS I3S UMR 7271

06903 Sophia-Antipolis Cedex, France.

Email: alexandre.muzy@cnrs.fr

Matthieu Lerasle, Franck Grammont

Univ. Nice Sophia Antipolis

CNRS LJAD UMR 7351

06100 Nice, France.

Van Toan Dao, David RC Hill

ISIMA/LIMOS UMR CNRS 6158

Blaise Pascal University

BP. 10125, 63173 AUBIERE Cedex, France.

Abstract—Usual Parallel Discrete Event System Specification
(P-DEVS) allows specifying systems from modeling to simulation.
However, the framework does not incorporate parallel and
stochastic simulations. This work intends to extend P-DEVS
to parallel simulations and pseudorandom number generators
in the context of a spiking neural network. The discrete event
specification presented here makes explicit and centralized the
parallel computation of events as well as their routing, making
further implementations more easy. It is then expected to dispose
of a well defined mathematical and computational framework to
deal with networks of spiking neurons.

Index Terms—Spiking neuron networks, discrete event sys-
tem specification, pseudorandomness, parallel simulation, mul-
tithreading.

I. INTRODUCTION

Discrete events allow faithfully implementing spike ex-

changes between biological neurons. Discrete event spiking

neurons have been widely implemented in several software

environments [3]. However, as far as we know, there is no

attempt to embed these works into a common mathematical

framework that would allow further theoretical and practical

developments between biology and computer science. To

achieve this goal the Parallel Discrete Event System Specifica-

tion (P-DEVS) [2], [6] is used here. This framework provides

well defined structures for the formal and computational

specifications of a general dynamic system structure. However,

using P-DEVS directly in the context of networks of spiking

neurons requires first the development of:

◦ New (general) formal structures to capture explicitly

and unambiguously the parallel and stochastic aspects of

spiking neural networks.

◦ New simple and abstract algorithms for the parallelization

of discrete event computations and exchanges.

This study aims at answering the following questions: What

are the main computational loops to be parallelized in a DEVS

simulator? How to manage rigorously the stochastic aspects

of these parallel simulations? What are the corresponding

mathematical structures? How these elements can be used to

simulate networks of spiking neurons?

More precisely, we propose here:

◦ A formalization of networks as parallel discrete event

system specifications using pseudorandom generators for

the generation of stochastic trajectories and network

structures,

◦ A simple parallelization technique of events in P-DEVS

simulators,

◦ An application of all these concepts to random networks

of spiking neurons.

The manuscript is organized as follows. In section 2, the for-

mal model, simulator and executor algorithms are presented.

In section 3, stochastic, parallel and pseudorandom generator

structures are defined. In section 4, a spiking neural network

model and its discrete event system specification are presented.

In section 5, simulation process and results are presented and

discussed. Finally, conclusion and perspectives are provided.

II. MODELING AND SIMULATION FRAMEWORK

In this section the main elements for modeling and simula-

tion are detailed in a parallel processing scope.

A. Architecture

Figure 1 presents an architecture for modeling, simula-

tion and execution. In part a), the use of a Middleware is

conceived as a communication interface between Software

and Hardware components. In part b), an extension of the

usual model/simulator separation [2] to hardware interfacing

is presented. The Model specifies the elements of a dynamic

system for digital computers. The Simulator generates the be-

havior of the Model. The added Executor runs the simulation

computations on each available Processor (or core).

Benefits from usual middleware (in software engineering)

and model/simulator separation (in modeling and simulation)

are well known in terms of model reusability. These concepts

are extended here to include hardware management.

More precisely, in part b):

◦ Between the Model and the Simulator: There is a

connection between the elements of the Model and the

corresponding elements of the Simulator, possibly using

different simulators for the same model and vice versa.

In the reverse direction, the behavior generation of the

Model is achieved by the Simulator;
◦ Between the Simulator and the Executor: There is a

submission of tasks (possibly using different executors

for the same simulator and vice versa). In the reverse

direction, a selection of the Simulator elements is

achieved by the Executor;
◦ Between the Executor and the Processor: There is

a supervision of the Processor (physical or logical)

attributing each task to an available Processor. In the

reverse direction, the result of each operation is sent

back from the Processor to the Executor.

Software

Middleware

Hardware

Model

Simulator

Executor

Processor

submission

supervision operation

selection

a) b)

communication

communication

generationconnection

Figure 1. Architecture for modeling, simulation and execution: a) Software
engineering, b) Extension of the usual model/simulator separation to hardware
interfacing.

In the next subsections each element and link of the archi-

tecture for modeling, simulation and execution is detailed.

B. Model

Definition 1. A basic Parallel Discrete Event System Specifi-

cation (P-DEVS) is a mathematical structure

P-DEVS = (X,Y, S, δext, δint, δcon, λ, ta)

Where, X is the set of input events, Y is the set of output

events, S is the set of partial states, δext : Q×Xb → S is the

external transition function with Q = {(s, e) | s ∈ S, 0 ≤ e ≤
ta(s)} the set of total states with e the elapsed time since the

last transition, δint : S → S is the internal transition function,

δcon : S×Xb → S is the confluent transition function, where

Xb is a bag of input events, λ : S → Y b is the output function,

where Y b is a bag of output events, and ta : S → R
0,+
∞ is the

time advance function.

The modeler controls/decides the behavior in case of event

collisions, when the basic system, at the same simulation time,

is concerned by both internal and external events. To do so,

the modeler defines the confluent transition function δcon.

Example 2. Simple P-DEVS dynamics

In Figure 2, it is considered that at time t2, there is no

collision between external event x0 and the internal event

scheduled at time ta(s1) = t′2, with t′2 > t2, thus leading to

an external transition function δext(s1, e1, x0) = s2. At time

ta(s3) = t4 where there is a collision between external event

x1, occurring at time t4, and the internal event scheduled at

the same time thus leading to a confluent transition function:

δcon(s3, x1) = s4.

X

t

S

t

Y

t
ta(s0)

s0

s1

s2

s3

s4

s5

y0

y1

y2
y3

y4

y5

t0 t2 t4

e1 ta(s2) ta(s3) ta(s4) ta(s5)

x1x0

Figure 2. Simple P-DEVS trajectories.

Definition 3. A P-DEVS network is a mathematical structure

N = (X,Y,D, {Md}, {Id}, {Zi,d})

Where, X is the set of input events, Y is the set of output

events, D is the set of component names, for each d ∈ D,

Md is a basic or network model, Id is the set of influencers

of d such that Id ⊆ D, d /∈ Id and, for each i ∈ Id, Zi,d

is the i−to−d output translation, defined for: (i) external

input couplings: Zself,d : Xself → Xd, with self the self

network name, (ii) internal couplings: Zi,j : Yi → Xj , and

(iii) external output couplings: Zd,self : Yd → Yself .

C. Simulator

Algorithm 1 describes the main simulation loop of a P-

DEVS model. The hierarchical structure (i.e., the compo-

sition of nested network models finally composed of basic

models) is made implicit here by manipulating the set of

component names (referring to all the components present

in the hierarchy). This is made possible because a P-DEVS

network is closed under coupling, i.e., the behavior of a P-

DEVS network is equivalent to the behavior of a P-DEVS

basic model resultant. In the main-loop algorithm, as in a

usual discrete event simulation, simulation time advance is

driven by the (last and next) times of occurrence of events.

Three component sets allow focusing concisely and efficiently

on active components at each time step of the simulation:

(i) the imminent set IMM(s) (the set of components that

achieve both an output computation and an internal function

transition), (ii) the sender set SEN(s) (the set of components

that actually send output events to the components they are

connected with), and (iii) the receiver set REC(s) (the set

of components that receive output events). The Executor is

in charge of the execution of: initialization, outputs, routing,

and confluent, external and internal transitions; as well as the

determination of the set of the next times of event occurrences

and the imminent set.

Algorithm 1 Main simulation loop of Root Coordinator.

Variables:

tl: Global time of last event

tn: Global time of next event

s = (. . . , (sd, ed), . . .): Global state

TNEXT (s) = {tn,d | d ∈ D}: set of times of next events

IMM(s) = {d ∈ D | tn,d = tn}: set of imminents

for next output/internal transition

SEN(s) = {d ∈ D |λd(sd) 6= ∅}: set of senders

REC(s) = {d ∈ D | i ∈ Id ∧ i ∈ IMM(s) ∧ xb
d 6= ∅

∧Zi,d(x
b
d) 6= ∅}: set of receivers

nLWP : number of lightweight processes

Begin

tl ← 0
Executor.self-init(nLWP)

Executor.initialize(D)
TNEXT (s)← Executor.get-TN(D)
tn ← min(TNEXT (s))
while tn < tend do

IMM(s)← Executor.getImminents(D, tn)
SEN(s)← Executor.computeOutputs(IMM(s), tn)
REC(s)← Executor.route(SEN(s))
ACTIV E(s)← IMM(s) ∪REC(s)
Executor.computeTransitions(ACTIV E(s), tn)
tl ← tn
TNEXT (s)← Executor.get-TN(D)
tn ← min(TNEXT (s))

end while

End

D. Executor

The executor acts as an interface between the simulation

and the hardware execution. As described in Algorithm 2,

the executor implements the execution of TASKS (i.e.,

functions over components) attributing each of them to an

available lightweight process lwp ∈ LWP (here a thread).

If the simulator deals with simulation time t, models and

simulator nodes, the executor deals with execution time texec,

lightweight processes and logical cores (or processors). At the

initialization of the executor if the number of lightweight pro-

cesses nLWP is greater than the number of logical cores, nLC ,

of the machine, then nLWP = nLC
1. The set TASKS imple-

ments functions/procedures init, get-TN, compute-outputs,

1Otherwise the parallelization will be inefficient. Also it is expected then
that the operating system assigns available cores to available lightweight
processes.

route and compute-transitions for each component d ∈ D.

The execution can be sequential (nLWP = 1) or parallel

(nLC ≥ nLWP > 1).

III. STOCHASTIC DISCRETE EVENT SYSTEM

SPECIFICATION

The formal structures reflecting the discreteness of the

computations achieved by digital computers are presented

here. First, a general generator definition based on sequential

machines is presented. Based on this definition, a structure

for pseudorandom number generators is proposed and linked

to the definition of pseudorandom variables. Using a pseu-

dorandom number generator, a pseudorandom variate genera-

tor is used for computing the realizations of pseudorandom

variables. A pseudorandom and parallel event execution is

specified in P-DEVS. At structural level, large numbers of

connections and components in a network are captured using a

pseudorandom graph definition. The latter is finally compared

to the P-DEVS network structure definition.

A. Systems, pseudorandom variables and pseudorandom num-

ber generators

Definition 4. A generator is an autonomous sequential ma-

chine G = (S, s0, γ), where S is the set of states, s0 is the

initial state and γ : S → S is the state generation function.

Definition 5. A pseudorandom number generator (RNG)

(cf. [6], p.132, whose definition is extended here) is defined

as RNG = (SP , sP0
, γP), with SP = R the generator state

set with R ⊂ R[0,1] the finite set of pseudorandom numbers

(with each pseudorandom number a realization of a uniformly

distributed random variable, i.e., r ∼ U(0, 1)), γP : R →
R the pseudorandom number generation map, and sP0

= r0
the initial status (or seed for old generators). A stream (i.e.,

a sequence) of independent and identically distributed (i.i.d.)

pseudorandom numbers of length period l, noted (ri)
l−1
i=0 =

r0, r1, . . . , rl−1, for i = 0, 1, . . . , l−1, is defined by γP (ri) =
ri+1 and with γP (rl+i) = ri .

Definition 6. A pseudorandom variate generator (RVG) is

defined as RV G = (RNG,SV , sV0
, γV), with SV = V the

generator variate set, V ⊂ R the finite set of pseudorandom

variates (with each random variate v ∈ V being a realization

of a random variable with inverse non-uniform cumulative

function distribution γV), γV : R → V the pseudorandom

variate generation map, and sV0
the initial pseudorandom

variate. A stream of pseudorandom variates follows exactly the

sequence of the pseudorandom numbers generated by RNG
and is of equal length l, i.e., for (ri)

l−1
i=0 = r0, r1, . . . , rl−1,

there exists (vi)
l−1
i=0 = v0, v1, . . . , vl−1.

Definition 7. A pseudorandom variable consists of the map

γV : R → V of a pseudorandom variate generator RVG =
(RNG,SV , sV0

, γV), where R ⊂ R[0,1] is a finite set of

uniformly distributed pseudorandom numbers. Every time a

random variate vi ∈ V of the pseudorandom variable γV (ri)
is obtained, the next pseudorandom number is generated

through ri+1 = γP (ri).

Algorithm 2 Variables, procedures and functions of Executor.

Variables:

LWP = {lwp |nLWP ≤ nLC}: set of lightweight pro-

cesses

nLWP : number of lightweight processes

nLC : number of logical cores

TASKS = {fd | d ∈ D}: set of tasks

with fd a function to execute over d ∈ D
tmax
exec: maximum execution time of a process

Begin

procedure SELF-INIT(nLWP)

nLC ← getNbOfLogicalCores()
if nLWP > nLC then

nLWP ← nLC

end if

end procedure

function RUN(TASKS)

In parallel ∀task ∈ TASKS do

run task on available lwp ∈ LWP
add possibly result to ResSet

end In parallel

lock TASKS
wait tmax

exec for each lwp ∈ LWP to terminate

return ResSet

end function

procedure INIT(D)

set TASKS = {(d, init(0)) | d ∈ D}
run(TASKS)

end procedure

function GET-TN(D)

TASKS = {(d, getTn()) | d ∈ D}
TNEXT (s)← run(TASKS)
return TNEXT (s)

end function

function COMPUTE-OUTPUTS(IMM(s), tn)

set TASKS = {(imminent, computeOutput(tn))
| imminent ∈ IMM(s)}

SEN(s)← run(TASKS)
return SEN(s)

end function

function ROUTE(SEN(s))
TASKS = {(sender, route()) | sender ∈ SEN(s)}
REC(s)← run(TASKS)
return REC(s)

end function

procedure COMPUTE-TRANSITIONS(ACTIV E(s), tn)

TASKS = {(active, computeDelta(tn))
| active ∈ ACTIV E(s)}

run(TASKS)
end procedure

End

Example 8. For a pseudorandom variable following an ex-

ponential law γV ∼ Exp(λ), each realization (pseudorandom

variate) is obtained by γV (r) =
−ln(1−r)

λ
= v (i.e., inverting

the cumulative distribution function of the exponential law).

B. Pseudorandom Parallel Discrete Event System Specifica-

tion

As previously defined, randomness is simulated at the

computer level using a pseudorandom number generator mod-

eled as a deterministic sequential machine. Corresponding

pseudorandom variables are maps taking the generated pseu-

dorandom numbers in argument and generating corresponding

pseudorandom variates. At formal P-DEVS level, the set of

pseudorandom variates V can be embedded as part of the

partial state.

Definition 9. A basic Pseudorandom Parallel Discrete Event

System Specification (PP-DEVS) is a structure

PP-DEVS = (X,Y, S, δext, δint, δcon, λ, ta)

Where, X and Y defined previously, S ⊇ V is the set of

sets of global pseudorandom variates V = Πn
i=1Vi with n the

number of pseudorandom variables. Each set Vi contains the

pseudorandom variates of a stream (vi)
l−1
i=0 = v0, v1, . . . , vl−1

generated by a corresponding pseudorandom variate generator

RVGi = (RNGi, SVi
, sVi,0

, γVi
) (cf. Definition 6), thus

defining a pseudorandom variable γV i
: Ri → Vi. At

each transition function execution the next state is computed

deterministically based on a global pseudorandom variate

v ∈ V and a partial state s ∈ S, i.e., δint(s, v) = s′,
δext(q, x, v) = s′, and δcon(s, x, v) = s′2.

The use of pseudorandom numbers in deterministic se-

quential DEVS models has been discussed in the context

of probability spaces [4]. This work pinpointed cases where

the previous definition may show inconsistencies as well as

convergence issues (when elements are not measurable or

corresponding sets infinite). However, our goal here is not to

redefine a new formalism at continuous system specification

level but rather to specify the deterministic foundations of the

stochastic simulations achieved at computer level and how this

can be modeled in P-DEVS as a first step. This does not

prevent to achieve further mathematical extensions, as done

in [4].

C. Random graph-based network

Definition 10. A pseudorandom directed graph generator

(RGG) is a structure RGG = (Gn,p, SG, sG0
, γG), where

SG = Vcoupling = B is the set of coupling pseudorandom vari-

ates obtained by sampling corresponding (Bernouilli) coupling

pseudorandom variable γcoupling ∼ B(p)3, sG0
= vcoupling,0

2The same reasoning can be done based on each pseudorandom number
ri ∈ Ri, such that the set of sets of (global) pseudorandom numbers is
R = Πn

i=1
Ri, with n the number of pseudorandom numbers. Then, at

each transition function execution the next state of P-DEVSR is computed
based on each global pseudorandom number r ∈ R, i.e., δint,R(s, r) = s′,
δext(q, x, r) = s′, and δcon(s, x, r) = s′. Notice here that each pseudoran-
dom number defines a probability of external, internal and confluent transition.

3Pseudorandom variates in SG are generated by
a pseudorandom variate generator RV Gcoupling =
(RNGcoupling , Vcoupling, vcoupling,0, γcoupling).

is the initial coupling pseudorandom variate, Gn,p is the

set of all pseudorandom directed graphs such that Gn,p =
G{n, P (arrow) = p}, with n the number of vertices and

p ∈ R[0,1] the probability of choosing an arrow. Each directed

graph G(U,A) ∈ Gn,p is described by U = {1, 2, . . . , n}
the set of vertices and A (a set of ordered pairs) the set of

arrows. Last map γG : Gn,p×SG → Gn,p is the directed graph

generation map using the coupling pseudorandom variates

Vcoupling to construct a graph G(U,A) ∈ Gn,p.

Once the graph structure has been generated, the graph can

be transformed into a network where to each node corresponds

a P-DEVS component and to each arrow a coupling.

Definition 11. A Graph-to-P-DEVS Network Transformer

(GNT) is a structure GNT = (G,N, {mi,j}), where G is

a directed graph, N is a P-DEVS network, mi,j is a one-

to-one map (from the elements of G to the elements of

N) defined for: (i) vertices-to-components mu,c : U → D,

(ii) arrows-to-couplings ma,c : U × U → D × D with

D × D = {(a, Za,b(a)) | a ∈ Ib} the influencer-to-influencee

pairs, and (iii) arrows-to-influencers ma,i : U × U → {Ii}
with ma,i(u, u

′) ∈ Iu′ the selection of the influencer of u′.

IV. SPIKING NEURAL NETWORK MODEL

Mathematical modeling of a random spiking neural network

is presented here. The model is specified after using the main

mathematical structures presented in previous sections.

A. Biological neuron

Figure 3 depicts a single biological neuron. Most commonly,

inputs from other neurons are received on dendrites, at the

level of synapses. The circulation of neuronal activity (electric

potentials) is due to the exchange through the neuron mem-

brane of different kinds of ions. Dendrites integrate locally the

variations of electric potentials, either excitatory or inhibitory,

and transmit them to the cell body. There, the genetic material

is located into the nucleus. A new pulse of activity (an action

potential) is generated if the local electric potential reaches

a certain threshold at the level of the axon hillock, the small

zone between the cell body and the very beginning of the

axon. If emitted, action potentials continue their way through

the axon in order to be transmitted to other neurons. Action

potentials, once emitted, are "all or nothing" phenomena: 0, 1.

The propagation speed of action potentials can be increased by

the presence of a myelin sheath, produced by Schwann cells.

This insulating sheath is not continuous along the axon. There

is no myelin at the level of the nodes of Ranvier, where ionic

exchanges can still occur. When action potentials reach the

tip of the axon, they spread over all terminals with the same

amplitude, up to synapses. The neuron can then communicate

with other following neurons. Notice that a focus on electrical

signals (without dealing with chemical signals) is achieved

here.

Figure 3. Sketch of a neuron (adapted from
http://fr.wikipedia.org/wiki/Neurone).

B. Model

Definition 12. The graphs structure (cf. Figure 4)

Let I , B, O be 3 finite sets with respective cardinality n,

M and N . It is always assumed that M ≥ N . Let (pi)i≥0

denote real numbers in [0, 1]. For any (i, j) ∈ B2, assume

that there exists an arrow i → j with probability p0, for any

i ∈ I and j ∈ B, assume that there exists an arrow i → j
with probability p1 and for any i ∈ B and j ∈ O, assume that

there exists an arrow i→ j with probability p2.

I B O

p1

p2

p0

Figure 4. Structure of the neuron model.

Definition 13. The dynamics

Assume that the activities (Xt(i))i∈I,t∈N of the sites in I
and time t are i.i.d. B(p3). Let a be a positive real number.

For all (i, j, t) ∈ (B ∪ O)2 × N, we choose i.i.d. thresholds

τi ∼ N (m,S2), i.i.d. wi,j = 1 with probability 0.8 and −a
with probability 0.2. Then, the membrane potential Pi(t) of a

neuron i, initially null is updated thanks to the following rule

Pi(t) = (rAi(t− 1) +
∑

i∼j

wi,jAj(t− 1))(1−Ai(t− 1))

Where, r ∈ (0, 1) is the activity remaining from time t − 1,
∑

i∼j wi,jAj(t−1) is the activity received from other neurons

at time t− 1, (1−Ai(t− 1)) reflects a refractory period of 1
(if the neuron fired at time t− 1 it cannot fire at time t), and

the activity of a neuron i is provided by

Ai(t) =

{

1 if Pi(t− 1) ≥ τi
0 otherwise

C. Specification in PP-DEVS

Each neuron i ∈ I is specified as a PP-DEVS reduced to

internal transitions as

Mi = (Yi, Si, δint,i, λi, tai)

Where, Yi = {∅, 1}, with null event ∅ (resp. 1) if the neuron

is non-firing (resp. firing), Si = Vfiring = B with Vfiring

the set of firing pseudorandom variates, internal transition

function δint,i(s, vfiring) samples the pseudorandom variable

γfiring ∼ B(p3) indicating the activity of the neuron depend-

ing on probability p3, output function λi(vfiring) sends an

unitary event if the neuron is active and time advance function

tai(s) = 1 ensures the discrete time sampling of γfiring .

Neurons in B and O are P-DEVS models specified as

Mj = (Xj , Yj , Sj , δext,j , δint,j , δcon,j, λj , taj)

Where, Xj = {∅, 1}n = {∅, 1} × . . . × {∅, 1} (with n the

number of inputs), Yj = {∅, 1}, Sj = {{wk}, c, a, p, phase =
{firing, active, inactive}} with wj the weight of corresponding

input k, c (resp. c′) the sum of received inputs at a time step

t (resp. at a time step t + 1), a (resp. a′) the activity of the

neuron at a time step t (resp. at time step t+ 1), p (resp. p′)
the membrane potential of the neuron at a time step t (resp. at

time step t+1), external transition function δext(q, x) collects

the inputs received at time t, computes the next phase and the

next membrane potential p′ and activity a′, and after call for a

next internal transition at time t+1, internal transition function

δint(s) updates p ← p′ and a ← a′ and reset inputs (c ←
0), if the neuron is in phase active or firing and receives an

input the confluent transition function is called as δcon(s, x) =
δext(δint(s), 0, x), i.e., first update variables and after collect

inputs, and finally time advance function taj(s) = 1 if the

neuron is in phase active or firing and taj(s) = ∞ if the

neuron is in phase inactive.

The graph structure of neurons in B is generated by a

pseudorandom directed graph generator (RGGN) with p0 the

probability of choosing an arrow.

V. SIMULATION PROCESS AND RESULTS

Model generation and simulation process are introduced first

here. After, the speed-up results are presented and discussed.

A. Environment infrastructure and graphical outputs

The steps and the elements of the process of generation and

simulation of the model consist of the following sequence:

(i) Initialization of all models, (ii) Graph generation us-

ing a model RGG, (iii) Graph-to-network transformation
(GNT), which generates a PP-DEVS network from the graph,

and (iv) Simulation.

Notice that as defined previously, each object uses one

RNG for each pseudorandom variable. This ensures: (i) the

statistical independence between pseudorandom variables, and

(ii) the reproducibility of pseudorandom simulations [5].

Figure 5 depicts a snapshot of the graph corresponding to

neurons of set B. Notice how dense is the graph connection

making it difficult to differentiate edges.

Figure 5. Graph snapshot of B set.

Simulations have been performed on a Symmetric Mul-

tiprocessing (SMP) machine with 80 physical cores and

160 logical cores, 8 processors Intel(R) Xeon(R) CPU E7-

8870@2.40GHz4, and 1Tb RAM. Figure 6 presents the firing

of neurons for neurons of each set I, O, and B.

B. Speed-up results

In [7], an interesting perspective is drawn concerning the

usage of clusters with low latency communication capabili-

ties. Our idea here is to assume (even at abstract simulator

level) that all the computations are centralized on a single

computer, a Symmetric Multiprocessing (SMP) machine5. The

latter allows sharing memory and minimizing the latency of

communications. Besides, centralizing all the computations

facilitates the control of their executions and their synchro-

nization at each time step. Different sizes of neural networks

are simulated here for different numbers of threads.

Input parameters are set to values: p0 = p1 = p2 = 0.9,

p3 = 0.5, a = r = 1, each threshold τi ∼ N (m,S2),

4stepping: 2, cpu: 1064 MHz, cache size: 30720 KB.
5Simulations have been performed on a Symmetric Multiprocessing (SMP)

machine with 80 physical cores and 160 logical cores, 8 processors Intel(R)
Xeon(R) CPU E7-8870@2.40GHz (stepping: 2, cpu: 1064 MHz, cache size:
30720 KB.), and 1Tb RAM. Each Java class main has been executed in com-
mand line using the exec-maven-plugin-1.2.1. Execution times correspond
to the total (processor) time information provided by Maven. Finally, when
running the simulations, the machine was possibly executing other simulations
(launched by other users).

Figure 6. Firing outputs in sets I, O, and B.

with m = 250 and S = 1. The whole simulation has been

implemented in Java programming language.

The sequential execution time of methods tmethods has been

considered as the sum of the execution times for methods:

initialization (tinit), output (tout), routing (trout), and transi-

tions (ttrans) (cf. Algorithm 1), for different sizes of networks.

Considering ttotal as the total parallelizable execution time,

and tseq as the sequential execution time that cannot be

parallelized, it has been noticed that most of the execution

times of a simulation is due to the execution of these methods,

i.e., ttotal

tmethods
= 93.2% for 140 neurons, increasing quickly to

99.3% for 240 neurons. This shows the high parallelizability

of P-DEVS simulations. Besides, it has also been noticed that

most of the execution time is due to the execution of atomic

output and transition functions, i.e., ttotal

ttrans+tout
= 91.51% for

140 neurons increasing quickly to 99.08% for 240 neurons.

Figure 7 presents the speed-up obtained for different sizes

of networks according to different numbers of threads (im-

plemented in a pool6). Each replication has been replicated

30 times leading to a total number of 19 × 30 × 4 = 2280

6Notice that for each simulation the Java Virtual Machine added also 16
threads for garbage collection and specific to the libraries used in the simulator.

simulations. It can be seen that in each simulation, the speed-

up reaches a maximum which remains constant (cf. Figure 7.c

and Figure 7 .d) or decreases (cf. Figure 7.a and Figure 7.b).

Each best average speed-up obtained in Figure 7 is presented

in Figure 8. The optimal number of pool threads is: 20 for 140
neurons, 60 for 240 neurons, 100 for 340 neurons and 50 for

440 neurons. Increasing the number of neurons the average

best speed-up decreases and a practical maximum speed-up

of 23.5 is achieved. This suggests that the simulations are

memory bound, i.e., increasing the number of threads leads to

a bottleneck memory access. Further practical investigations

are required now to confirm this assumption.

Finally, to investigate the parallelizability of our

simulation model, let’s consider Amdahl’s law [1] as

S(n) = 1
τseq+

1

n
(1−τseq)

with the maximum theoretical speed

up S(n) (considering no parallelization overhead) for a

number of threads n, and the fraction of total execution

time as strictly sequential as τseq =
tseq
ttotal

. Having n = 80
physical cores on the SMP machine used, for 140 neurons,

the theoretical maximum speed-up is S(80) = 14.3 (while

the practical speed-up is 5.14) and for 240 neurons, the

theoretical maximum speed-up is S(80) = 53 (while the

practical maximum speed-up is 22.2). Practical maximum

speed-up is less than half of theoretical maximum speed-up,

suggesting great further potential speed-up.

(a)

(b)

(c)

(d)

Figure 7. Comparison of execution time results for an increasing number of
pool threads and: (a) 140 neurons, (b) 240 neurons, (c) 340 neurons, and (d)
440 neurons.

Figure 8. Best average execution-time speed-up for each total number of
neurons.

VI. CONCLUSION AND PERSPECTIVES

This article presented a first formal bridge between com-

putational discrete event systems and networks of spiking

neurons. Parallel and stochastic aspects (and their relationship)

have been defined explicitly. In P-DEVS a simple way of

parallelizing simulations and a link between P-DEVS and

(pseudo)random graphs/generators/variables have been pro-

posed. Finally all these structures have been applied to a

network of spiking neurons. From a simulation point of view,

it can be seen that most of the sequential execution times

(more than 90%) can be reduced theoretically. In practice, the

simplicity obtained by centralizing most of the computations

at the same place requires a strong optimization at software

level and a suitable solution at hardware level.

In conclusion, although further technical investigations need

to be achieved, it is believed that: the formal structures pro-

vided here allow mathematical reasoning at (computational)

system level and that the simplicity of the parallel implemen-

tation technique should allow further (more efficient) paral-

lelization developments, based on our theoretical maximum

speed-up results.

ACKNOWLEDGEMENTS

Many thanks to Gaëtan Eyheramono and specially to An-

toine Dufaure who achieved a first version of the multithreaded

implementation. This work has been partially funded by a

contract Projets Exploratoires Pluridisciplinaires Bio-Maths-

Info (PEPS-BMI 2012), entitled Neuroconf, and funded by

Centre National de la Recherche Scientifique (CNRS), Institut

national de recherche en informatique et en automatique

(INRIA) and Institut National de la Santé et de la Recherche

Médicale (INSERM).

REFERENCES

[1] AMDAHL, G. M. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,

1967, Spring Joint Computer Conference (New York, NY, USA, 1967),
AFIPS ’67 (Spring), ACM, pp. 483–485.

[2] B. P. ZEIGLER, T. G. KIM, H. P. Theory of Modeling and Simulation.
Academic Press, 2000.

[3] BRETTE, R. Simulation of networks of spiking neurons: A review of
tools and strategies. Journal of Computational Neuroscience 23, 3 (2007),
349–398.

[4] CASTRO, R., KOFMAN, E., AND WAINER, G. A formal framework for
stochastic discrete event system specification modeling and simulation.
Simulation 86, 10 (2010), 587–611.

[5] HILL, D. Parallel random numbers, simulation, and reproducible re-
search. Computing in Science Engineering 17, 4 (July 2015), 66–71.

[6] ZEIGLER, B. P. Theory of Modeling and Simulation. Wiley, 1976.
[7] ZENKE, F., AND GERSTNER, W. Limits to high-speed simulations of

spiking neural networks using general-purpose computers. Frontiers in

Neuroinformatics 8, 76 (2014).

