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Abstract

Thisarticle presentsan extension to thetimed binary Cell-DEV S paradigm. The goal isto allow the modelling
of ndimensional generic cell spaces, including transport or inertial delays for each cell. The automatic
definition of cell spacesis achieved, simplifying the construction of new models. The model definition is
independent of the simulation mechanism, easing the verification of the structural models. It was shown that
the Cell-DEV S models can be integrated in a DEV S hierarchy, improving the definition and description of
complex systems. This approach allowsimprovementsin the execution times and precision for the cell spaces
simulations due to the use of a continuous time base.

Keywords: DEV S models, Modelling Paradigms, Cellular Automata, Discrete event simulation, Cell-DEVS
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1. INTRODUCTION

Complex physical systems have been studied for centuries using different approaches. In most cases, partia
differential equations have been thetool of choice. Nevertheless, the appearance of digital computersallowed
to attack the problem from different point of views. Even in these days, difference equations areimplemented
in digital computersto solvethiskind of problems. Unfortunately, the complexity of certain problemsissuch
that no solutions can be found. In these cases, the use of computer simulation allowed attacking more complex

problems, providing solutions to specific problems.

Many of these systems can be represented as cell spaces. The Cellular Automata formalism (Wolfram 1986,
Toffoli and Margolus 1987) has been widely used to describe complex systems with these characteristics.
Cellular Automata are discrete-time discrete models described as cells organized as n-dimensional infinite
|attices. These automata evolve by executing aglobal transition function that updates the state of every cell in
the space. Each cell in the automaton has a discrete value that is changed by alocal computation function. The
behavior of thisfunction depends on the results of afunction that executeslocally in each cell. Thisfunction

uses the present value for the cell and afinite set of neighbor cells to compute the new stae.

Conceptually, these local functions are computed synchronously and in parallel, using the state values of the
present cell and its neighbors. This discrete time paradigm constrains the precision and efficiency of the

simulated models. The use of discrete time poses constraints in the precision and execution performance of



these complex models. To achieve the desired accuracy, smaller time slots must be used, producing higher

needs of processing time. To avoid these problems, asynchronous solutions can be used.

Cell's Neighborhood

Figure 1. Sketch of a Cellular Automaton

Furthermore, it is usual that several cells do not need to be updated in every step, wasting computation time.
These problems can be solved using a continuous time base, providing instantaneous events that can occur
asynchronously at unpredictable times. This approach was considered in (Zeigler 1976, Zeigler 1984), where
discrete event cellular models were presented. Discrete event cellular models were applied in real world
applicationsin later works (Moon et al. 1996, Zeigler et a. 1998). These works presented the use of DEV S
(Zeigler 1976, Zeigler et a. 2000) as the modelling technique to be applied to improve the performance in

cellular models.

DEVS is usad to specify formally discrete events systems using a modular description. The quantitative
complexity of the problems is attacked by using a hierarchical approach. A model is seen as composed by
behaviord (atomic) submodels than can be combined into structural (coupled) models. As the formalism is
closed under coupling, coupled models can be seen as new base modelsthat can integrated hierarchically. This
strategy allowsthe reuse of tested models, improving the safety of the simulations and allowing to reduce the
development times. DEVS provides the advantages of being a formal approach. Formal specification
mechanisms are useful to improve the security and development costs of a simulation. A formal conceptua
model can be validated, improving the error detection process and reducing testing time. DEVS models are
closed under coupling, therefore, a coupled model is equivalent to an atomic one, improving reuse. DEVS
suppliesfacilitiesto translate the formal specifications into executable models. In thisway, the behavior of a
conceptual model can be validated against the real system, and the response of the executable model can be
verified against the conceptual specification.

DEVS, asadiscrete eventparadigm, uses a continuous time base, which allows accurate timing representation.

Precision of the conceptual models can be improved, and CPU time requirements reduced. Higher timing



precision can be obtained without using small discrete time segments (that would increase the number of

simulation cycles).

Recalling the definitions, aDEV S atomic model can be formally described as:

M = <x1 S! Y1 diﬂtv deXtv | ’ D >
where

Xistheinput events set;
Sisthe state set;

Y isthe output events set;
dint: S® S, istheinterna transition function;
dexi: QX X ® S, isthe external transition function; whereQ={ (s, ) /sl S,andel [0, D(9)]};

| : S®BY, istheoutput function; and
D: S® Rp" E ¥, isthe elapsed time function.

M odels use input/output portsto communicate, which definesthe model'sinterface. Each statein amodel has
a given lifetime, defined by the duration function. Once the lifetime of a given state finishes, the internal

transition functionisactivated to produce an internal state change. Before this change, the present state of the
model can be spread through the output ports. These ports allow eventsto be sent to other models. The values
are sent by the output function, which must execute before activating the internal transition. At any moment, a
model can receive input external events from other models through its input ports. When an external event
arrives, the external transition function is activated. The external transition function computes a new state for
the model using the present state, the input values, and the el apsed time for the model (defined by the duration

function). Every time atransition function is activated, a new lifetime must be associated with the new state.

An atomic model can be integrated with other DEV'S models to build a structural model. These models are
called coupled, and areintegrated by base models, that is, atomic or other coupled ones. DEV S coupled models
areformally defined as:

CM=<XY, D,{Mi},{li},{Zij},select>

where

Xisthe set of input events;
Y isthe set of output events;

DT N, D <¥ isanindex for the components of the coupled model, and



" i1 D, M, isabasic DEVSmodel, where
Mj = <X, S Yj, dinti> dexti- 1§ >

l; is the set of influencees of model i,and" j1 I;, and
Zj:Yi® X;istheitoj translation function.
Finally, select isthe tie-breaking selector.

Each coupled model consists of a set of basic models (atomic or coupled) connected through the i nput/output
ports of the interfaces. Each component is identified by an index number. The influencees of each model
define other models where output values must be sent. The translation function uses an index of influencees,
created for each model (I;). The function defines which outputs of model M; are connected to inputsin model
M;. When two submodels have simultaneous events, the select function defines which of them should be

activated first.

In (Wainer and Giambiasi, 2001) the Timed Cell-DEV S formalism was presented as a combination of the
DEVS and Cellular Automata with timing delays. This approach alows describing cell spaces as discrete
events models, where each cell is seen as a DEVS atomic model that can be delayed using several

constructions (Giambiasi and Miara, 1976). The paradigm included binary or three-state val ues for each of the
cellsin the space, and only allowed two-dimensional models. Thiswork is devoted to present an extension to
a more general formalism that alows to model n-dimensional spaces with generic date sets. These
specifications allow to define complex models, defining different behavior in each dimension and combining

them without needing extra coupling information.
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Figure 2. Informal definition of Cell-DEVS (Wainer 2000).

Inthe Timed Cell-DEV S formalism, each cell is defined as an atomic model, and a procedure to couple cells
is depicted. Inertial and Transport delays allow to define complex behaviors for each cell, improving the
definition for each of the submodels. We introduced two kind of delays with different semanticsto allow the

construction of models at two levels of accuracy. Transport delay has an anticipatory semantics, that isto say



that every input event is just delayed. This is an extension of discrete event models with implicit time
representation in which event are only ordered. Inertial delays allow representing more complex temporal
behavior because they have preemptive semantics. An scheduled event will not necessary be executed. For
example, this can of delay allows to analyze frequency responses of systems (Giambiasi and Ghosh, 1996).
Delay constructions were adapted and included as afunctional component of each cell. The extensions allow
to define explicit timing for each cell, providing a simple mechanism to defineit. Each cell is now built asa

local computing function combined with adelay construction, avoiding other definition mechanisms.

These constructionsare useful to represent different phenomena. For instance, the transport delay can be used
to represent the fire spread rate in a wood fire simulation (the inverse of the delay length). In addition, an
inertial delay could be used to represent the activity of firefightersor raininthe area. Let us supposethat acell
is set on fire when any of its neighborsison fire. The delay is used to represent the time taken by the fire to
burn the cell and spread to the close cells. In this case, a state change with inertial delay is scheduled,
representing a cell non burning that is set on fire. If the delay is consumed, the event is transmitted and the
crossing receivesfire. Instead, let us suppose that in the meantime, an external event, representing firefighter
actionisreceived. The neighborhood of the left cell has changed, and thelocal function must be computed. As

the previous state of the cell has changed, the scheduled event representing fire spread is preempted.

The following sections will be devoted to present the definitions for the formalism, considering
n-dimensional spaces and showing the equivalence with DEV S models. First, aformal description for cellular
automata is depicted. Section three presents the formal specification for the Cell-DEVS paradigm. Here, a
definitionfor onecell isanalyzed. After, closed cell spacesare studied. Finally, cell spacesthat can be coupled
with other DEV S models are presented.

2. FORMAL DEFINITION OF CELLULAR AUTOMATA

Thissection isdevoted to present aformal definition for different paradigms associated with cellular automata.
Itincludesformal descriptionsfor conceptual and executable cellular automata. Inthe latter case, synchronous
and asynchronous approaches are considered. The section introduces several specifications for cellular
models, which will be used in the following sections as a base for the Cell-DEV S definitions. We include
several useful notations, and present semantics definition for these cellular models, that can be used as a

comparison with the definitions in following sections.

2.1 Conceptual Cellular Automata

A conceptual cellular automaton can be defined as:



CCA=<Sn,CN,T,t,czgt >
where
Sisthe alphabet used to represent the state for each cell;
n isthe dimension for the cell space;
C isthe state set for the cell space;
N isthe neighborhood set;
T isthe global transition function;

t isthelocal computation function; and

c.Zgp" isthe discrete time base for the cellular automata.

Notation 1
From now, CCT Swill define the status for the cell ¢, beingc1 Z", ¢ = (i1,....in) the cell's position into the
n-dimensional cell space. Here," k1 [1,n],ik] Zisthe position of the cell in the k-eth dimension.

For conceptual cellular automata, " k1 [Ln], ik [- ¥ ¥].

Using this notation, each of these sets can be defined as follows:
Si zU#S<¥.
nl N.
C={Cc/cl Z"UC.T S}.
If the neighborhood is homogeneous, N = { (Vicq,-Vikp) /" (KT N, KT [L,h) UGT N,iT [1, n]), w

T Z}. The h value represents the neighborhood's size, and in thiscase, h T N U h = #N. N is usually
defined as a set of adjacent cells; that is, each \; T [- 1, 1]. Instead, if general neighborhoods are

considered, then, N={Ng/cl Z"},withNg={ (Vi Vi /" (KT N, KT [L,h)UGT N,iT [1,n]),
Vi1 Z }.Here heT N Uhg=#N¢

T:CxcZpt® C.

t:CcxNxcZgt ® Ce.Herg, if theneighborhood ishomogeneous, C[t+c] =t(Cesa[t],..., Cennlt]), where

tT ¢zt U" (kT N,KkT [L,h]),vkT N Uc+ vk = (i1+Wa,..., in+Vkn). Instead, if non-homogeneous
cellular automata are defined,

t:CcXNexcZgt ® Cc.Here, Cft+c] =t(Cemalt],..., Cownc[t]), WwheretT cZgt U™ (kT N,k [1,hd]),
vk NcUc+ vk = (i1+Via, .., intHVin).

Finadly,cZgt={i/il1 N,i=cjUjT N} ={0,c 2c3c, ..}.




Asit can beseenin the definition, the model iscomposed by an n-dimensional cell space (C). This state space
progressesin discretetime steps: thetime baseisdefined by c.ZoJr (aset of integer values separated by atime

constant). The statefor each cell in the space can take a value from afinite aphabet (S). Several extensions of

cellular automata consider continuous values for the states. In this cases, ST R.

The cell's neighborhood is defined as a list of h n-dimensional neighbors. In the homogeneous case, the
neighborsare defined asan n-tuple of positionsrelativeto the origin cell. Thisdefinition uses an index (k) that
allows to identify the neighbor number, and a second index (i) indicating the dimension for each of the
neighbors' positions. The non-homogeneous neighborhoods are defined with an array of neighborhood lists. In
this case, each cell will have a neighbor's list composed by h. e ements, which are constituted by tuples of

indexes relative to the origin cell.

The state space of the automata evolves by executing a global transition function (T) that changes the state of
the cell space. The behavior of thisfunction responds to the execution results of local transition functions (t)
that execute locally in the neighborhood for the cell (N). Conceptually, the computation for these local
functionsis done synchronously and in parallel for every cell in the space. The semantics of this behavior can

be defined by the following rule:
c.lc"ecl2zn t1 czp*

Clt+c = T(C[t]), with CJt+c] =t(N.,C[t]) " cT ZM t=t+c

This definition considers that the global transition function analyzes all the cell space at the instant t, and then
it produces achangein the cell space for the next step. The period for this step is of ¢ time units. This change

can be seen asthe individual computation of the local transition function for each cell in the space.

2.2 Synchronous executable cellular automata

The previous case considered that the index for the cell space can include an infinite number of cells. Asthe
interest isfocused into modelsthat can run in acomputer, an executable synchronous cellular automata can be
defined as:

CA=<Sn,{t,...tn},C,N,B, T,t,cZp" >
where all the elementsin the tuple represent the same sets of the previous case, and the following sets were
added:



{t1,....tn} isthe number of cellsfor each of the dimensions; and

B isthe set of border cells.

Here,
Si ZU#S<¥;
nl N;n<¥;
{t,.ta} T N,withty <¥ " k1 [1,n];
C={Cg/cl IUC;T S}, with
={ (inenin) /ikd N Uit [Ltd" kT [Ln]} (1)

For homogeneous neighborhoods, N = { (Viq,-Vkr) /" (KT N, KT [L,h)UGT N,iT [1,n]), w1 Z
Uti-|v |2 0}.HerehT N,h £ 6 t; Uh =#N. Instead, if general neighborhoods are defined,

=1
N={Nc/cl N cl [Lt1]x..X[Lta]}, WithNeg ={ (Vi1 /" (KT NLKT [L,hc)UGT N,iT [1,
N, Vi T Z Uti-|vj |2 0}. Here,hgT N Uhg=#Ng.
B ={ A} if the cell spaceis"wrapped" (that is, the cellsin each border are connected with the cellsin the

opposite one), or
B={Cp/Cpl Cwithbl I},withl defined asin (1). Inthiscase, B hastherestrictionthattp? to=t "

(CcT B)U(Cyl B).

T:CxcZpt® C.

t: CcxXNex €.ZgT® Cg; where Cft+c] =t(Cerva[t],...Cosvn [t]), (2)

withtT cZgtU" (kT N,kT [1,he]), vkT N¢ U c+ vk = (i1+Vie mod(ty),..., in+Vin mod(tn)) in the case
that B = { A}, and C [t+c] =t(CJt]), " bl B,withtT cZg*. Inthiscase, tp® tc=t" cl B, and for

these ones, C. is computed likein (2). If the cell space is homogeneous, then h. =h UN.= N.

This definition for executable cellular automata differsin certain aspects of that of conceptual ones. Thefirst
difference isthat the cell space isbounded in each of the dimensions (ts,...,tn). The number of dimensionsis

also finite, and the cell's indexes are bounded to finite natural numbers.

Another constraint is due to the loss of homogeneity in the cell space. Thisis dueto the existence of afinite
number of cells. Therefore, it isnecessary toinclude aset of border cells (B) with different behavior than the
others in the cell space. All the cells in the border have different behavior that those in the rest of the
automaton. When B* {/&}, itisusedto bedefined as: B = {Cp, / CbT CwithbT L}, beingL ={ (i1,..in) /i



=0Ui;=t;" jT [Ln]},andwithtp? tc=t" ci L.Whenwrapped modelsare considered, B = { A} and the
rules defined in (2) should be used.

The semantics for the transition function T is that the local transition functions in the automata are executed

simultaneoudly in parallel, and is defined by:

Col C" c={ (i in)/ijT [L4]1" j1 [LA]}, th czg*

Clt+c] = T(C[t]), with C[t+c] =t(Ne,Cft]) " ¢={ (i in) /0T N, ;T [L,]" jT N,jT [0 };

t=t+c

The meaning is similar that in the case of conceptual automata, but bounding the cell space.

2.3 Asynchronous executable cellular automata

Finally the formal definition for a set of asynchronous cellular automata that can be executed is defined as:

ACA =<S n,{t,...ta}, C,N, B, Nevs, T, t, Ry* >

where all the sets are defined asin the previous cases, except by the time base (that in this caseis continuous),
and aNext eventslist (Nevs). These sets are defined by:

Si ZU#S<¥
nl N,n<¥.
{t,.ta} T N,withte <¥ " kT [1,n].
C={Cc/cl IUC;T S},withl defined asin (1).
For homogeneous neighborhoods, N = { (Viq,--Vkr) /" (KT N, KT [Lh)UGT N,iT [L,n]),vq1 Z
Uti-|vg |3 0}.HerehT N,h £ 6 t; U h = #N. Instead, if general neighborhoods are defined,
i=1
N={Nc/cl N cl [Lt1x..X[Lta]}, WithNg ={ (Vik,-Vike /" (KT NLKT [L,h)UGT N,iT [1,
n),Vij T Z Uti-|vj |2 0}. Here,hcT N Uhg=#Ng.

B ={ A if the cell spaceiswrapped, or



B={Cp/Cpl Cwithbl I},withl definedasin (1). Inthiscase, the set B issubject to the constraint that
tht te=t " (CcT B)U(Cpl B).

Nevs={ (c,t)/cT 1UtT Rp*}, wherecisthe position of acell in the space, | isdefined asin (1), and
t isthe time of the corresponding event.

T:CxRp*t® C.

t: CcxNex Ryt ® Cg; where Ce[tp] = t(Cervalt],--,Cond[t]), (3)

withtT RptU" (kT N,KkT [1,h]),vkT NcU c+ vk = (iz+iq mod(ty),..., in+Vin mod(t,)) when B = { A3,
and C [tp] =t(Git])," bT B,withtT Rg*.Inthiscase tp® tc=t" ci B, and for these cases, C. is
computed asin (3). Here, t, =min{t} L, , withi,pl N +t1 Ryt,andb=c, Uc=c,, with (t,c) 1 Nevs.
In this case, tp! tc=t" c i | (1), and for these, C is computed as in (3). If the cell space is

homogeneous, then h. =h UN.= N.

Asit can be seen, most of the sets and functions defined are similar than for the synchronous case. The changes
are due to the existence of a continuous time base (that is, the time variable t 1 RO+). To alow the

asynchronous definition, anext event list (Nevs) should be included to keep the information related with the

next eventsto be treated.

In this case, the semanticsfor the global transition function is different from for the previous case. Here, this
function means to execute only a group of non-quiescent cells called the imminent. The execution of this
function is done simultaneously in al the imminent cells for a given simulated time. The semantics of this

behavior can be specified as:

CT Cc"cll(), Co={ (Co tp) / (Cp tp) T Nevs} U t,=min{ti} .,

Cltp] = T(C[t]), with Cep[tp] =t(Nep, Ceplt]) " cP=Cp/ (Co tp) T Cp; t=1, U Nevs=NevsE Ngp

Inthiscase, the automaton progresses using theimminent cells (C,) to execute thelocal computation function.
Thesimulated time is considered that of thelast executed event (t,). Finally, the neighbor cellsare added in the

Next-eventslist.



3. CELL-DEVSFORMALISM

This section is devoted to present a paradigm used to describe n-dimensional cellular models. These models
canbedefined as DEV S models with different delays. Inertial and transport delays are useful to model circuit
applications, and to define other class of physical phenomena that can be described as cell spaces. As
previously stated, the Cell-DEV Sformalism was defined as amodel ling paradigm for bidimensional timed cell
spaces. A simulation mechanism was introduced for these models, based on a previous formal specification
for ideal transport delays (Giambiasi and Ghosh, 1996).

3.1 Formal specification of atomic Cell-DEVS modelswith transport delays.

This section introduces the definition of n-dimensional Cell-DEV S modular models with transport delays.
This construction allowsto reflect the direct propagation of signalsin lines of infinite bandwidth. Each cell in

the model is defined as an atomic model that can be coupled with other cellsto build a complete cell space.

Figure3 presents informally the basic contents for a cell. In this atomic model, a cell hash.inputswhere the
external events arrive. When anew external event arrives, the local computation function t is executed using

the present input values. Theresult of thiscomputation isdelayed during d time units before being transmitted

to the neighbor cells. Todo so, an internal event is scheduled. A queue must be used to keep the values of the
computations' resultswith their future scheduled time, due that during the delay, new external eventscan arrive.
Whentheinternal event timearrives, theva ueistransmitted through an output port. The new state will only be
transmitted if it isdifferent from the previous one, because the influenced model s only must be activated under

state alteration. To allow this distinction, the cell's state keeps the present and past value for the cell.

oquene | | [ | [ee]
P T —x
N g g!
1 U

Figure 3. Informal description of an atomic cell with transport delays.

Hence, a Cell-DEV S atomic model with transport delays can be formally defined as:



TDC=<X Y, I, S g, N, d, dint, dext, t, 1, D >
wherefor#T<¥ U T1 {N,Z,R,{0,1} } E {f};

X1 Tistheset of external input events;
Y| Tistheset of external output events;
| = <h, mPX, PY > represents the definition of the model's modular interface. Here,
hT N,h<¥ istheneighborhood'ssize,
mi N, m<¥ isthe number of other input/output ports, and
" T [1,h],iT {X, Y}, P isadefinition of aport (input or output respectively), with
Pi={ (Nji,Tji)/ "1 [1, h+nd, NjiT i1, in+n] (pOrt name),yTjiT l; (port type)}, where
Li={x/xT XifX}orli={x/x1 Yifi=Y};
Si Tisthe set of sequential states for the cell;
g isthe definition of the cell's state, defined as
g ={ (s, phase, squeue, s) /
s1 Sisthestatus valuefor the cell,
phasel {active, passive},
squeue={ ((v1,51),-+MmsSm) /mT NUm<¥)U" (i1 N,iT [Lm]),v] SUs;1 RytE¥};ad
sT RptE ¥
b
NT Sh+Misthe set of states for the input events;
di Rp*, d<¥ isthetransport delay for the cell;
dint: q® qistheinternal transition function;
dext: QXX ® qisthe external transition function, where Q isthe state values defined as:
Q={(s,e/sl gqxNxd:el [0,D@O)]};
t: N® Sistheloca computation function;
| : S® Yisthe output function; and

D:gxNxd® Ry' E ¥, isthe state's duration function.

Thisdefinition isindependent of the simulation technique used. Therefore, it allowsto specify the behavior of

the system without considering implementation details.



Each cell has an interface, composed by afixed number of ports used to establish the internal coupling of the
cell'smodel. The number of these portsis equal to the size of the neighborhood for the cell. If other inputs or
outputs are needed, the other defined ports are used. Each port is defined by an identifier (X for input or Y for

output) and a number. Though the ports values, input/output sets and cell's states can be defined on many

different domains, theN, Z, R, and Boolean sets were chosen. This choice was due that most applications use
datain these domains, and most symbol sets can be mapped onto them. An undefined symbol (f ) was included
with the goal to define the state of the cell when it isnot known. Thisallowsto reflect certain situations where

the present value for a cell is not known nor can be computed.

Thestate for each cell isdefined asaset composed by its present value and phase. A queueisalso used to keep
the next eventsvalues and their scheduled simulated time. TheN set isused to represent theinput valuesfor the

cell anditiscomposed by anh+mtuple(sy,..., Sh+m), Wheres; T S. Thissetisused to record the present values

used to computethefuture valuefor the cell through thelocal computation functiont . The duration function D
managesthe cell'slifetime. Here, D(s, phase, squeue, s, N, d) =t represents the time during which a cell keeps

the present status if no external events are detected.

The transition and output functions (I , dint, dext) have the same goals than those used in traditional DEVS
models. Theinternal transition function is used to define state changes due to internal events, and the external
transition function will expressthe occurrence of external events. Nevertheless, these functions are used with
a specific purpose here. Each cell can have an associated delay (d), allowing to delay the execution of the
internal transition function. The transport delay construction allows the state changesto be deferred up to the
moment when thetimeis consumed. Also, the atomic models do nhot change to apassive state when theinternal
transition function is executed, because during the delay new external events can arrive. Therefore, acell only
passivates when the delay has been consumed and there are no more scheduled events. This behavior was

presented in (Wainer and Giambiasi, 2001), and the semantics for the functions can be defined as follows:

dint: s =0; squeuet {/A}; phase = active
"i1 [Lm],al squeue a.s =a.s - head(squeues); squeue = tail (s queue);
s= head(squeue.v); s = head(squeues);
s =0 squeue={4A}; phase = active

s =¥; phase=passive



s=0;

out = head(s queue.v);

dext:
s =t(No); s1Q; e=D(gx N x d); phase = active
sts b (S=sU" il [Lmlal squeuea.s=as-e Us=s-¢e add(squeue, <s, d>) )
s =t(No); s1Q; e=D(gx N x d); phase = passive

sts b (s=s U s=d U phase=active U add(squeue, <s, d>) )

Inthis case, the functionstail/head/add represent the traditional methods to manage the elements of alist. The

variables squeue, s, phase, m, sand s are defined by the previous specification.

3.2 Cell-DEVS modelswith inertial delays

Theintroduction of inertial delaysallowsto model phenomenawith preemptive semantics. Thisconstruction
discardstheinputsof acell if their values are not kept during apredefined period. Conversely, theinput values
are taken into account if the input flow is constant for thisinterval (called the inertial delay). The use of this

construction allowsto model complex behaviorsin asimple fashion.
A Cdl-DEV S atomic model with inertial delays can be defined as:
IDC:<X1 Y! |1 Si q1 Nl dl dinty dext,t, I 3 D>

wherefor#T <¥ UTI {N,Z,R {0,1} } E {f};

X1 Tistheset of externa input events;

Y i Tistheset of external output events;

| =< h, mPX PY > represents the definition of the modular model's interface. Here, h T N, h <¥ isthe
neighborhood'ssize,mi N, m<¥ isthe number of other input/output ports, and” jT [1,h],iT {X,Y}, P/ is

the definition of a port (input or output), defined as



PI={ (N, T/ " T [2,hend, NjTT [iq, inee] (port name), y Tji T 1; (port type)}
Li={x/xT Xifi=X}orli={x/xT Yifi=Y};
Si Tisthe set of sequential states for the cell;
q={ (s phase,f,s) /sl S phasel {active, passve},fl T,andsT Ryt E ¥ } isthe definition of the cell's
state;
NT Sh*Misthe set of the external input values;
dT Rot,d<¥ istheinertial delay for the cell;
dint: S® Sistheinternal transition function;
dext: QXX ® qisthe external transition function, withQ={ (s,€) /sl gxNxd Uel [0, D(9)]};
t:N® Sistheloca computation function;
| : S® Yisthe output function; and

D:gxNxd® Ry* E ¥, istheduration for the cell's state.

Asit can be seen, most of the sets and functions are similar to those defined for transport delayed models. The
main differences can befoundinthe definition for the cell'sstate. Here, s, phase and s have the same meaning
than the previous case, but f represents the feasible future value for the cell. If the result of the cell's
computation is kept during the inertial delay, the next state for the cell will be f. The d variable defines the

inertial delay, and the semantic for the transition functions must be redefined.
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Figure 4. Behavior of an atomic cell model with inertial delay (Wainer and Giambiasi, 2001).

The external transition function must execute the local computation function, and keep that result as the
present value for the cell. The internal transition function must detect if that input is maintained during the
inertial delay. If not, the previousinput is preempted. When the time specified by the delay arrives, the present

value for the cell istransmitted to the neighbors. The semantic for these functions can be defined as follows:



dint:

s =0; phase=active

s =¥ U phase= passive

s=0;
out=s
dext:
s =t(No); s1Q; e=D(gx N x d); phase = passive
sts b (s=s U phase=active Us=d U f=s)
s =t(No); st e=D(qx N xd); phase = active
stspb s=s U (fts b s=eUs=s-eUf=y)
Lemmal

The TDC and IDC models are DEV S atomic models.

Pr oof:

Asprevioudy defined, aDEV S atomic model is defined by

M=<X,S,Y, din, dext, | , D>
Besides, we have
TDC=<X,Y,I'S,q, N, d, dint', dext’, t', |, D' >
and
IDC=<X,Y,I'S,q,N,d, dint', dex'’, t', 1, D'>

To show the equivalence of both models, it must be determined that all the defined sets are equivalent. First,
analyzing the definitions of all the models, it canbeseenthat X' ° X;andY' ° Y.




Letusnow defineS=TxTx Sqx N'x d, withSq={ (x,y)/xT TUyT Rg* E ¥};and#Sq<¥. Here, Sq states

for the set including the possible values for squeue, and T the state values for the cell (present and past, or

present and feasible, depending on the case).

Now, it hasto be considered that every atomic model hastwo defined variables: phaseand s. In thiscase, s can
be computed as s = min {yi} ff / (xi, yi) T Sq. Therefore, it can be said that S °© g' x N' x d, and by

construction of the sets, Sisawell-defined set of sequentia states.
In addition din: S® Shbecause, by definition, di: ' ® ¢,andq' i S.
By its definition, D" gxNxd'® RO+ E ¥, andit hasbeen saidthatqx Nxd'° S.

Besides, dexi: QXX® S, becausede: Q' XX ® q,withQ' ={ (s,€)/sl gxN'xd Uel [0,D'()]}, and, by
definition, Q' 1 QU X° XUq'l S

t' is a function activated by dex', and it can be considered as part of its behavior (as it was shown in the

definitions for the behavior semantic).
Finaly,|1 =S ® Y, becauseY ° Y,q I S, and, by definition,1':q' ® Y.

Therefore, the models are equivaent, and TDC and IDC models can be considered as DEV S atomic models.

3.3 Formal specification of closed coupled Cell-DEVS models.

Thegoal of thissectionisto specify aformal description for coupled Cell-DEV S models. They are defined as
a space of atomic cells (as the previously defined) connected by a neighborhood relationship. The present
specification only will define closed models (that is, that they will not be coupled with other basic models).

Therefore, as inputs and outputs are not used, it will not be necessary to define an interface for the model.

A closed coupled Cell-DEV S model can be defined as:
CC=<n,{t,..,tn}, N, C, B, Z, select >

where

n isthe dimension of the cell space;

{t1,...tn} isthe quantity of cellsin each of the dimensions;



N isthe neighborhood set;

C isthecell space;

B isthe set of border cells;

Z isthetrandation function; and

select isthe tie-breaking function for simultaneous events.

Definition
Let uscall Ctoacell'sposition, whereC = (i,....in);andV 1 Z" to the n-tuple defined as V = (w,..., Vi), with v;
T Z,|vi| £t. Therefore,
D=C+V (4)
will be defined asthe n-tuple D = (j1,...,jn) computed as: j« = (ix + i) mod (t) " k1 [1, n].

Notation 2

Thek-eth element of the neighborhood list will becalled Vi ={ (Vicg,--Vir) / (Mco-Vk) T N 3" kT N, kT
[1, h].

Notation 3
P.9will definetheport P41 I, withi 1 {X,Y},and(q1 N,ql [1, h]), wherel.i C.,andC.isaTDCor IDC

component.

By using these definitions, we have:
nl N,n<¥;
{ty,.ta} T N,witht, <¥ " k1 [1,n];
For homogeneous neighborhoods, N = { (Viq,--Vkr) /" (KT N, KT [Lh)UGT N,iT [L,n]),vq1 Z
Uti-|vg |2 0}.HerehT N,h £ 6 t; U h = #N. Instead, if general neighborhoods are defined,
i=l
N={N¢c/cl N cl [Lt1]x..X[Lta]}, WithNg ={ (Vk1,-Vikpe /" (KT N, KT [L,h)UGT N,iT [1,
N, Vij T Z Uti-|vj |2 0}. Here,heT N Uhg=#Ng.
C={Cq/cl 1UC.=<I¢,Xg Yo So N g, Gintes dexicy ey | ¢y D> isaTDC or IDC component} , with
I ={ (i1in) / (ikT N Ui [Ltd)" kT [Ln]} (5)
B ={ /A if the cdl spaceis"wrapped"; or
B :{Cb/CbT CwithbT I}, with| defined likein (5). In this case, the B set is subject to the constraint

thattp te=t " (Ccl B)U(Cpl B).




Ingeneral, BisdefinedasB ={Cp/Cp1 Cwithbl L},beingL ={ (i1,...in) /i;=0U0ij=t" jT [1,n]},
and constrained totp* to=t" ci L.
Z: 1c ® lpisthetrangation function, defined (using (4)) as:

Z(PcY) =P Xa" (g N,ql [1h]), where” Vi1 N,D=C+ Vi ad
Z(PX9=P_Ya," (g N,qi [Lh]), where” ViT N,D=C- Vi

select ={ (s, ..., s)/siT N," il [0,n]}.

Inthiscase, the cell spaceC isacoupled model defined asan array of Cell-DEV S atomic models of fixed size
(t1 X ... xtn). Each cell has a set of neighbors defined by the neighborhood set (N). This set isrepresented asa
set of tuples of dimension n defining the relative position between the origin cell and the neighbors. These

indexes cannot exceed the boundaries of the cell space.

TheB set defines the border of the cell space, and can be of two different types. If B = { /A, every cell inthe
space will have the same behavior. The cells in one border will be connected with those in the opposite one
using the inverse neighborhood relationship. Instead, if the border set is not empty, the cells will have a
different behavior of the othersinthe model. TheZ function allows to define the coupling between cellsin the
model. Thisfunction trand atesthe outputs of the g-eth output port in the cell C. into values for the g-eth input
portinthecell Cp. Findly, theselect function defines an order of execution for the case where simultaneous

events occur.

Lemma?2
The CC models are DEV S coupled models.

Proof:
A DEV S coupled model is defined as:

CM =< X, Y,D,{Md}, {lda},{Zq}, select >
CCisacoupled model if CC° CM, with
CC=<n,{t,...,ta}, N, C, B, Z, select >
In this case, the following definition can be considered:

X={ A&},
Y={ A&},




R
DT N,DT[1, O t.

i=1

" d1 D, let usconsider amapping function from (xi,....X») to d, defined by

F: [Lti]x..X[Lt)] ® D in such away that F(c) = F(xi,....xn) = d. For instance, the function F(xy,...,Xn) =

5 u
A a0 ti01-1) + (x2 -1) could be used.
j u

For the bidimensional case (Wainer and Giambiasi, 2001), we have: F: [1,f] x [1,c] ® D, such that F(i,j) = d.
Here, D1 [1, fxc]. For instance, F(i,j) = (i-1).c + (j-1).

Now, let usconsider that Mq=Cr(" ¢l [1ti]x..X[Lts] (inthetwo-dimensional case, M4=Crp " i1 [1,f],
i T [1, c]). By the definition of the mapping function, and by theLemma 1, Mqis a DEV'S atomic model.

By the definition of B and the definition of Mg just presented, B MqUB ={ /}.

Letusdefinelq={ x/x=F(c+ V)" V1 N}, with d defined as d = F(c). Then, by the definition of N, I4i D.
In the bidimensional case,

lg={ x/x =F(i+n, j+m) " (n, m) T N},

withd =F(i,j)). For thiscase, let us verify that the expressionisvalid for one of the extremes of the cell space.
Leti=f-1,j=c-1. Then,
F(i+nl, j+n2) = (i-1+nl).c + (j-1+n2).
Now, by the definition of N,
(i-1+nl).c + (j-1+n2) £ (f-2+1).c + (c-2+1) = (f-1).c+c=f.c

Therefore, F(i+n1, j+n2) 1 D. Thisargument can be repeated for every cell in the space.

Now," dT 14,Z5° ZU Z:Y4® X;. By thedefinition of the CC modelspresented previously, Z: | c® Ip. If the
same mapping function is used, Cistrandated into |4 (by definition of 14). Let F(E), with E = (y,...,yn) be the

14,4 U
same mapping, defined asF(E) = é eO in(Yi+1-1) + (y1 -1). By applying the definition of the Z function,
ji=1ei=x U
n- l 7 ’L AY
o u
FE=a eOt|u(3/,+1+vk,+l) mod tj+1 + V1 modtl—a A.ti, where AT [0, t-1] P F(E) I g
ji=1€i=1 U i=1



For cell spacesintwodimensions, Z: I;; ® |, If thesamemapping functionisused, (i,j) istransatedinto 14 (by
definition of 14). Let F(p,q) bethe same mapping, defined asF(p,q) = (p-1).c + (¢-1). By applying the definition
of the Z function, F(p,q) = [(p+r) mod f-1].c + [(g+s) mod c-1]=A.c+B,whereA T [0, f-1] UBT [0, c-1] b
Fp.a) I la.

Finally, using the same mapping function, it can be seen that select: D ® D.

Therefore, both models are equivalent, and the proposition isvalid.

3.4 Formal specification of generic coupled Cell-DEVS models.

The procedure shown in the previous section allowed to define complete cell spaces using parameters. In this
section, the coupling with other kind of modelswill be defined. Theideaisto extend the definition of coupled
models to alow the combination of Cell-DEVS and other basic models in a hierarchy. For instance, a
Cell-DEVSmode can be coupled with otherswith adifferent neighborhood or cell's behavior. It also could be
combined with models that are not Cell-DEVS.

To alow this definition, generic Cell-DEV S coupled model can be represented as.

GCC=<Xlig, Yligt, I, X, Y, n, {ta,....tn}, N, C, B, Z, select >
Here,
Ylist isthe output coupling list;
Xlist isthe output coupling list;
| represents the definition of the interface for the modular model;
Xisthe set of external input events;
Y isthe set of external output events;
n isthe dimension of the cell space;
{t1,...tn} isthe number of cellsin each of the dimensions;
N isthe neighborhood set;
Cisthecell space;
B isthe set of border cells;
Z isthetrandlation function; and

select isthetie-breaking function for simultaneous events.



Here for#T <¥ UTI {N,Z,R{0,1} } E {f};
Ylisti { (inin) /ikd [Ltd" KT [LA], kT N}
XIist i { (inin) /1T [Ltd" kT [LA] kT N}:
| =< PX PY> where" ¢l I, withl definedasin (5),iT {X, Y}, Pd isadefinition of aport, and
Pd={ (N, Td) / " cT ilist, Ng T i(c) (port name),y Tl T T (port type)};
X T
YIiT;
nl N,n<¥;
{t,.ta} T N,withty <¥ " k1 [1,n];
For homogeneous neighborhoods, N = { (Viq,-Vkr) /" (KT N, KT [L,h)UGT N,iT [1,n]),vT Z
Uti-|vg |2 0}.HerehT N,h £ 6 t; Uh =#N. Instead, if general neighborhoods are defined,
=1
N={Nc/cl N cl [Lt1]x..X[Lta]}, WithNeg ={ (Vi1 /" (KT NLKT [L,hc)UGT N,iT [1,
N, Vi T Z Uti-|vj |2 0}. Here,hgT N Uhg=#Ng.
C={Cq/cl 1UC.=<l¢ %o Yo Sor N Ao, Gintes dextes te | oo D> isaTDC or IDC component, such
asthe defined previoudly, being | defined asin (5);
B ={ A& if the cell spaceis"wrapped", or
B={Cp/ Cyl CwithbT 1}, with | defined asin (4). Here, B is subject to the restriction that
th! te=t " (CcI B)U(Cpl B). Inmostcases, B={Cp/Cp1 CwithbT L}, beingL ={ (i,..in) /]
=0Uij=t" jT [1,n]}, and subject to therestriction thattp? to=t" ci L.
Z: 1c ® lpisthetrandation function, defined (using (4) ) as.
Z(PcY9) =P Xa" (g1 N,ql [1h]), where” Vi1 N,D=C+ Vi ad
Z(PcX=P_Ya," (g1 N,qi [Lh]), where” Vi1 N,D=C- Vi

select ={ (s, ..., s)/siT N," il [0,n]}.

The present specification allows to define automatically amodular Cell-DEV S space consisting of different
submodels. The specification isindependent of the simulation technique, and can be used to verify the model's
correctness. Several differences can be found respecting the specification of closed Cell-DEVS models
defined inthe previous section. First, asin every coupled DEV S model admitting inputs and outputs, the setsX

and Y have been included. Asthese modelscan be coupled with others, thel interface is also defined.



The Z function defined in the previous section is used to carry out the internal coupling of the cell space.
Finally two new sets have been included (Xlist and Ylist) to define cells that receive or produce external
events for the coupled model. These lists will be used to define automatically other input/output portsin the
affected cells.

Finally, theselect function is defined as alist of positionsin the neighborhood. Thelist is ordered according

the selection criteriato be used when more than one cell is active simultaneously.

Lemma3
The GCC models are coupled DEV S models.

Proof:
It must be shown that the sets
CM =<X,Y,D,{M},{li},{Z;}, select >
and
GCC =< Xligt, Ylist, I, X, Y, N, n, {ts,...t:}, C, B, Z, select >
are equivaent.

The equival ence of most of the setswas shownintheLemma?2. Besides, X' ° X; andY'° Y, due to the definition
of each of these sets. Finally, using the same mapping of the previous Lemma, it can be seen that Xlisti D and

Ylisti D. Therefore both sets are equivalent, and the proposition is valid.

3.5 Coupled DEVSmodels: redefinition to include Cell-DEV S models.

The original definition for DEV'S coupled model has been changed so as to include base models that can be
seen ascell spaces. For the Cell-DEV S model s, the coupling scheme should use the previous input and output
cell's definitions. Therefore, acoupled DEV S model will be defined as:

CM =<XY,D,{Mg,{l¢,{Zqg}, select >
Xisthe external input events set;
Y isthe external output events set
DT Nisanindex for the components of the coupled mode!, and
" dl D,MyisaDEVSbasic model, where
Mq=GCCq=<Ig Xg Yg Xlistg, Ylistg, Ngp {tr,---tn} ¢ Ny C B Zg» Selectg>
if the coupled model is Cell-DEV'S, and




Mg=<Xg S Y dintg dexts Dg >

otherwise.
lq isthe set of modelsinfluenced by the model d, and™ jT Ig,

Zgj isthetrandation function from d to j, where
Zg: Yq® X;if none of the implied modelsis Cell-DEVS, or
Z4: Y(c)g® X(c2)j, with ()T Ylistg, and (cp) 1 Xlisj if any of themodelsd or j isaGCC.

Finally, select isthe tie-breaking selector.

When aCell-DEV S is executed, the Z;; function translates the outputs of a cell into inputs for other models
using thetwo lists previoudly defined. The names of theinput/output portswill be defined by using the contents
of Xlistand Ylist.

Lemma4
The CM models are coupled DEV S models.

Proof:

Asitwasshown, the GCC modelsare DEV S basic models, and all the sets here defined are therefore equival ent
to those of coupled DEV Smodels. Therefore, it sufficeswith proving that the Zy function is equivalent to that
one defined for DEVS models. However, here Y(c1)q | Yqand X(c2); I X; due to the definition of the lists
Xlist and Ylist and the mapping function previously considered. Therefore, both sets are equivalent and the

proposition isvalid.

3.6 Closureunder coupling of the Cell-DEVS models.

This section is devoted to show that the Cell-DEVS models are closed under coupling. This means that a
Cell-DEV S coupled model can be associated with aDEV Sbasic model. Thisallowsto integrate the model into

the model's hierarchy, reusing submodels previ ously verified.

Lemmab

The GCC models are closed under coupling.




Proof:
To proof the closure, is necessary to show that the coupled model
GCC =<1, XY, Xlist, Ylist, N, n, {ts,...t:}, C, B, Z, select >
is equivalent to the coupled model
CM =< X, S Y, dint, dext, D >

LetS= X Qc
Cl [Lt1] x.x [1, tn]

where” CT [Lt]x..X[Ltn], Qc={ (Sc,€c)/scl gcxNcxdc ecl [0,Dc(sc)]}; whereCcl CisaTDCor IDC
model.

D:S® Ry E ¥, definedasD(s) =min{sc/CT [Ltgx.X[Ltn]" Ccl C,sc=Dc(so) - €c}.

Using this definition of the duration function, the imminent components set can be defined as:
IMM(s)={ C/cl CUsc=D(s)}

Let C* = select(IMM(s)). Thisisthe component that will be executed.

dint: S® S. Lets=(..., (S, €c, Ng, do),...). Therefore, dint(s) = s = (..., (¢, ec, N, dc),...), with

: (dint <(Sc), 0, Nc, dc) if C=C*
(Scll eCl, NC‘! dCl) = i (dext D ( (SDI eD + D(S) )1 xD)y 01 ND, dD) If DT NC*
T (sc,ec+D(s), Ng, de) otherwise.

where X p =Zc p (I o+ (Sc) )

This means that the internal transition function changes the status of the imminent cell D* according with its
internal transition function. Then, it updates all the influenced components according with the inputs produced

by the output of D*. In the other components only the elapsed time is updated.

de)(t: QXX® S
dext( (S, €), X) =S = (...,(sc, ec, N, dc), ...) with
v Vg i (dext b (S, €0 * €, Zc, p(X)), 0, Ng, de) ifDT Np
(scec,Nc,dc) = 1 .
I (Sc, ec+ €, N¢, do) otherwise.

Inthiscaseall thecellsinfluenced by the external input x changetheir status according with theinput translated

using the mapping between interfaces. The remaining cells only modify their elapsed time.

Finaly,| : S® Y.



Zcep(l o (se)) ifC*1 Ip
yis otherwise.

1 (9) =

——

That is, if (i,j)* sendsan output, it istrandated into an input to the coupled model using the mapping between

interfaces Zc+, p.

4. CONCLUSION

In this work the definition for n-dimensional Cell-DEVS models was presented. The formalism allows to
define complex model using aformal approach, allowing to verify automatically the correctness of the models.
The relationship with other DEV S models was shown, alowing the integration between cell spaces and other
DEVS modds. As it was aso shown that the models are closed under coupling, they can be integrated in a
DEV S modelling hierarchy. One of the main contributions is related with the definition of complex timing
behavior for the cells in the space using very simple constructions. Transport and inertial delays allow the

modeler to make easier the timing representation of each cell in the space.

The modd definition is independent of the simulation mechanism, and at present several simulation
techniques have been implemented. In (Wainer and Giambiasi 2001 b.), the simulation mechanism defined in
(Zeigler 1990) was extended to include cell spaces. A second mechanism, defining flat cell spaces was aso
implemented, allowing seven-fold improvements in the execution times. Recently, a theory of DEVS
guantized modelswas devel oped (Zeigler et ., 2000). The theory has been verified when applied to predictive
quantization of arbitrary ordinary differential equation models. Quantized models reduce substantialy the
frequency of message updates. Quantized Cell-DEVS have been implemented, alowing to check the
theoretical results of quantified DEV S models when applied to Cell-DEV S (Wainer and Zeigler, 2000).

Theautomatic definition of cell spacesisallowed, simplifying the construction of new models, and easing the
automatic verification of the structural models. In thisway, efficient development of complex models can be
achieved. The formal specification has shown improvementsin the development times of up to ten-fold. The
main improvements have been detected in the testing and maintenance phases, because the formal

specification mechanism allowed to reduce the resources devoted to these phases.

The specifications presented in this work were used as the formal basis to implement a modelling and
simulation tool allowing the user to definetimed Cell-DEV S modelsin uniprocessors (Rodriguez and Wainer
1999). This tool includes an specification language that lets the user to define simulation models using the

formal specifications showed in sections 2 and 3.



The simulation literature showed that the use of parallel simulation mechanisms is a promising approach to
obtain results, because it allows speedups in the simulation process. Thisisthe case for Cell-DEVS models,
because they involve a high degree of computation time. The origina definition has been recently been
reformulated to accept Cell-DEV S that can be executed in parallel. As stated in (Chow and Zeigler, 1994), if
we call e to the elapsed time since the occurrence of an event, amodel can exist at e=0 or e=D(s). In coupled
models, the modeler can use the select function to resolve the conflicts of simultaneous events. The caseis
different for basic models: once they are coupled, ambiguity arises when a model scheduled for an internal
transition receives an event. The problem hereishow to determine which of both elapsed times should be used.
The extension permits parallel specification of these models, including a confluent local computing function
that permits a user to specify the course of action under simultaneous events (Wainer 2000). At present the
simulation mechanism has been defined to permit parallel model execution, and has been implemented
successfully (Troccoli and Wainer 2001).
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