
.

VHDL Mixed Signal
Modeling and Simulation

April 4th 2003

Shaylesh Mehta (265690) Group 90
Supervisor: Professor G. Wainer

.

 2

Abstract
VHLD Mixed Signal Modeling and Signal
Modeling and Simulation

To facilitate simulation of mixed signal HDL models within a DEVS

simulator, generic DEVS models and HDL to DEVS conversion procedures

are required. These models and conversion procedures are designed for a

subset of VHDL created for this project named sAMS-VHDL, and are

targeted toward the CD++ DEVS simulation toolkit. Hierarchical models

written in sAMS-VHDL that utilize Processes, Signals and Simultaneous

Statements may be simulated in CD++ by elaborating the model, and

converting the model hierarchy into an equivalent CD++ coupled model

composed of Process, Signal and Integrator models. These Process, Signal and

Integrator models and their associated conversion procedures were designed

and then tested in CD++ using a number of characteristic sAMS-VHDL

models.

 3

Acknowledgments
Special thanks to Professor G. Wainer for all of his help, Akara Corporation for

all of their tutelage and Dhanu and Bobby for their support.

.

 4

Table Of Contents

Introduction...7

Problem Motivation..8

Problem Statement ..9

Proposed Solution... 10

Accomplishments.. 10

1.0 Overview of Report... 11

2.0 sAMS VHDL Language.. 12

2.1 Entity ... 13

2.2 Architecture ... 15

2.3.1 Signal and Quantity Declaration ... 16

2.3.2 Concurrent Statements .. 17

2.3.2.1 Conditional/Unconditional Concurrent Assignment Statement17

2.3.3 Process Statement... 18

2.3.3 Sequential Statements ... 18

2.3.3.1 If-Then-Else Statement .. 19

2.3.3.2 Case -When Statement... 19

2.3.3.3 Sequential Assignment Statement... 20

2.3.4 Simultaneous Statements .. 20

2.4 Components and Component Instances...................................... 21

3.0 The DEVS Formalism and CD++.. 21

 5

3.0.1 Atomic DEVS... 22

3.0.2 Coupled DEVS... 23

3.1 CD++ Atomic and Coupled Model Definition................................ 23

4.0 sAMS VHDL to CD++ Coupled Model Conversion........................ 27

4.1 Simulation Dataflow.. 27

4.2 sAMS VHDL Design Hierarchies to CD++ Coupled Model Hierarchies 29

4.2.1 Structural and Hierarchal Linking of Coupled Models................ 30

4.3 Elaboration of Concurrent Statements... 34

4.4 CD++ Process Model .. 35

4.5 CD++ Signal Model ... 40

4.6 Simultaneous Statements and DAE Simulation............................ 42

4.6.1 ODE Simulation via Integration... 42

4.6.2 Euler’s Method Integration ... 44

4.6.3 Fourth-order Runge-Kutta Method Integration 45

4.6.4 Quantized State Systems with Runge -Kutta Integration............. 47

4.6.5 Fourth-order Runge-Kutta Quantized Integrator Model.............. 50

Conclusions and Recommendations.. 54

References.. 56

Appendix A.. 58

.

 6

List of Figures

Figure 1 Low-pass Filter .. 14

Figure 2 Simulation Dataflow... 27

Figure 3 Hierarchical sAMS-VHDL Model 31

Figure 4 Hierarchical CD++ Model 32

Figure 5 Model Dependency Tree.................................... 33

Figure 6 CD++ Process Model ... 35

Figure 7 CD++ Signal Model.. 40

Figure 8 Euler Integration.. 44

Figure 9 Runge-Kutta Integration 46

Figure 10 Signal Quantization.. 48

 7

Introduction

Today’s technology business climate requires hardware designers be fast;

not only when designing new technology, but throughout the design and

maintenance cycle. Digital designers have known for some time, that thorough

modeling and simulation of designs reduces the number of design bugs,

reduces the number of integration errors, eases product maintenance and saves

money. Design and simulation of digital logic with HDLs (Hardware

Descriptor Languages) is a well-proven methodology; digital designers have a

rich toolset available for designing and verifying logic before manufacturing.

Such robust toolsets for analog and mixed signal design and simulation have

yet to be developed, those currently available have many limitations and do

not exhibit desirable performance. A suitable mixed signal simulator would

give the designer the ability to optimize, debug, and verify designs with lower

simulation tool costs, lower risk on manufacturing investment and faster turn

around time.

.

 8

Problem Motivation

The key design challenges for a mixed signal simulator are firstly,

providing desirable performance while maintaining accuracy of continuous

time signals, and secondly, concurrently executing the simulations of the

discrete time digital and continuous time analog models [1]. A proposed

solution to these challenges presented in [1] is to simulate mixed signal HDL

models in a simulator that implements the DEVS (Discrete EVent Simulation)

formalism (see Section 3). This solution requires the HDL model to be

converted to a semantically equivalent model that may be executed using a

DEVS simulator.

 9

Problem Statement

 To simulate a mixed signal HDL model within a DEVS simulator, generic

models that capture the semantics of the constructs within the HDL model

must be developed for the DEVS simulator. A conversion procedure must

then be developed to capture the structure and semantics of a given mixed

signal HDL model within the DEVS simulator using the developed generic

models.

.

 10

Proposed Solution

I propose to select and/or invent a set of VHDL-AMS(Very High Speed

Integrated Circuit Hardware Descriptor Language Analog M ixed Signal)

constructs for digital and analog elements and, design the necessary generic

DEVS models and conversion procedures to simulate designs utilizing these

constructs in the CD++ toolset which implements the DEVS formalism(see

3.1). This set of VHDL constructs with analog extensions will be referred to

as sAMS-VHDL (simple Analog Mixed Signal VHDL).

Accomplishments

The sAMS-VHDL language was specified, borrowing many constructs

from VHDL-AMS. Generic models for simulation of sAMS-VHDL

Processes, Signals and Simultaneous Statements were developed in the CD++

toolkit, as well as procedures for converting hierarchical models written in

sAMS-VHDL using these constructs into hierarchical CD++ models. The

conversion procedures and CD++ models were tested by simulating manually

converted sAMS-VHDL models in the CD++ toolkit.

 11

1.0 Overview of Report

This report begins with a formal specification of the sAMS-VHDL

language in section 2.0, which includes the language grammar as well as a

description of the semantics of the various sAMS-VHDL constructs. Section

3.0 and its subsections are an overview of the atomic and coupled DEVS

formalisms and explain their implementation in the CD++ toolkit. The process

of specifying and simulating a coupled or atomic DEVS model in the CD++

toolkit is also included in this section. Section 4.0 first provides an overview

of the process for sAMS-VHDL model to CD++ coupled model conversion.

Following this the procedure for sAMS-VHDL model hierarchy conversion is

explained in detail in section 4.2. Sections 4.4 and 4.5 are detailed

descriptions of the CD++ Process and Signal models respectively. These

sections also include explicit mapping rules for their respective constructs.

This is followed by an in depth discussion of ODE integration via a number of

methods in sections 4.6.1 to 4.6.4. This is directly followed by a description of

the design of the CD++ Integrator model and its associated conversion

procedure in section 4.6.5. Appendix A contains CD++ models and

simulation results for a few example sAMS-VHDL models.

.

 12

2.0 sAMS VHDL Language

This section outlines the sAMS VHDL language, and explains the syntax

and semantics of it’s constructs. sAMS VHDL is targeted toward register

transfer level modeling of digital circuits with limited behavioral modeling

and analog constructs. sAMS VHDL integrates many of the features of

VHDL-AMS and explicitly includes some of the types and functions defined

by the IEEE 1164 standard logic package.

 13

2.1 Entity

A design entity declaration describes the interface to a sAMS VHDL

design or design unit. The entity declaration contains a list of ports, each of

which is assigned a type and an optional mode. Ports of type std_logic or

std_logic_vector (a standardized type for digital logic) are used for digital

signals while ports of type electrical are used for analog signals. In the case of

digital signals, ports will have mode in, out, inout or buffer. Analog ports do

not require a mode. The syntax of an entity declaration is as follows:

entity entity_name is
 port ([signal | terminal | quantity] identifier {, identifier}: [mode | signal_type |
electrical]
 {; [signal | terminal | quantity] identifier {, identifier}: [mode | signal_type |
electrical]);
) ;
end [entity] [entity_name] ;

An entity declaration of a digital d flip-flop is listed below:

entity d_flip_flop is
 port(
 d, clk : in std_logic;
 q: out std_logic;
) ;
end entity d_flip_flop ;

d and clk are input ports of type std_logic, and q is an output port of type

std_logic. In addition to the basic std_logic type, vectors of std_logic signals

may be declared using the std_logic_vector type. This allows busses of digital

.

 14

signals to be operated on by only referencing one signal name. A declaration

for an analog low pass filter entity is listed below:

Figure 1 Low-pass Filter

tin tout

tgnd

R

C

vin

vout

tout, tin and tgnd are each ports of type electrical which represent the nodes

tout, tin and tgnd in Figure 1 respectively.

entity LPF is
 port (
 terminal tout, tin, tgnd:
electrical
);
end entity LFP;

 15

2.2 Architecture

A design architecture describes the functionality of a design or design

unit; this may be a structural, dataflow or behavioral description. A single

architecture is associated with exactly one entity. The syntax of an

architecture declaration is as follows:

architecture architecture_name of entity_name is
 signal_declaration
 | constant_declaration
 | component_declaration
begin
 {process_statement
 | concurrent_signal_assignment_statement
 | component_instantiation_statement
 | simultaneous_statement}
end [architecture] [architecture_name] ;

The body of an architecture is made up of statements that may be

categorized as concurrent, sequential or simultaneous. These statements

operate on signals and quantities that are declared within the scope of the

architecture and ports that are declared in the entity the architecture is

associated with.

.

 16

2.3.1 Signal and Quantity Declaration

Signals and quantities are declared in the declarative region of a design

architecture, this is the region between the architecture statement and the

begin clause. These signals and quantities belong to the scope of the

architecture in which they are declared and may only be referenced within that

architecture. Signals and quantities are assigned types similar to ports in the

entity declaration. The types std_logic and std_logic_vector are used for

digital logic, these are declared using the signal keyword whose syntax is

listed below:

signal signal_name : std_logic_vector (upper_bound downto lower_bound) | std_logic ;

Analog quantities are declared using the quantity keyword, and have type

REAL, Voltage, Current or Charge. The syntax for a quantity declaration is

listed below:

quantity identifier : REAL | Voltage | Current | Charge ;

Quantities may also be declared relative to terminals in an entity

declaration. These quantities may either be across or through quantities.

Across quantities represent the voltage at the free terminal relative to the

reference terminal. Through quantities represent the current from the free

terminal into the reference terminal. The syntax for a terminal relative

quantity declaration is listed below:

 17

quantity identifier {, identifier} across identifier {, identifier} through free_terminal to
reference_terminal ;

2.3.2 Concurrent Statements

Concurrent statements are statements within an architecture body that

execute concurrently. These include Process Statements, Simultaneous

Statements, Concurrent Assignment Statements and Conditional Concurrent

Assignment Statements.

2.3.2.1 Conditional/Unconditional Concurrent Assignment Statement

The conditional concurrent assignment statement assigns the target signal

the value of expression1 if condition is true otherwise target signal is assigned

the value of expression2.

 target_signal <= expression1 when condition else expression2;

The unconditional concurrent assignment statement always assigns the value

of the source signal to the target signal.

target_signal <= source_signal;

.

 18

2.3.3 Process Statement

A process executes the statements between begin and end process when an

event occurs on a signal in it’s sensitivity list. All signals modified by the

process are not updated until the process body is completed. The statements

that appear between the begin and end clauses are referred to as sequential

statements, as the name implies, these statements are executed in sequence

until the end clause is encountered.

[process_name:]
process (sensitivity_list)
 { type_declaration
 }
begin
 {signal_assignment_statement
 | if_statement
 | case_statement
 end process [process_name] ;

2.3.3 Sequential Statements

Sequential statements appear within the body of a process, these

statements are executed sequentially from the process begin clause to the

process end clause.

 19

2.3.3.1 If-Then-Else Statement

This statement has identical semantics to that of an if- then-else statement

in C/C++

[if_name:] if condition then
 sequence_of_statements
 {elsif condition2 then
 sequence_of_statements }
 [else
 sequence_of_statements]
 end if [if_name] ;

2.3.3.2 Case-When Statement

This statement runs the sequence of statements that are listed under the

when clause whose expression matches that of the expression in the case

statement.

[case_name:] case expression is
 {when identifier | expression | discrete_range | others =>
 sequence_of_statements}
 {when identifier | expression | discrete_range | others =>
 sequence_of_statements}

end case [case_name] ;

.

 20

2.3.3.3 Sequential Assignment Statement

This statement assigns the value of the driver signal to the target signal.

When executed from within a process, the target will not get the value of the

driver until the end of the process.

[label:] target <= driver ;

2.3.4 Simultaneous Statements

Simultaneous statements are generally used for describing Differential

Algebraic Equations, and may consist of quantities or signals. For the

purposes of this project sAMS VHDL will only support Ordinary Differential

Equations in simultaneous statements. A minimum of one quantity must

appear in a simultaneous statement. Simultaneous statements may appear

anywhere a concurrent statement may. The order of simultaneous statements

is unimportant. An example of simultaneous statements is given below:

x1’dot’dot == -f*(x1 – x2) / m1;
x2’dot’dot == -f*(x2 – x1) / m2;
…

The ‘dot notation denotes the derivative with respect to time of the quantity

listed before the ‘dot. For example signal’dot is the first derivative wrt time of

signal, while signal’dot’dot is the second derivative wrt time of signal.

 21

2.4 Components and Component Instances

Components facilitate hierarchical design within sAMS VHDL models. A

component instance is a copy of the named entity and it’s associated

architecture that interacts with the architecture it is instantiated within. The

port map clause specifies which ports of the entity are connected to which

signals in the enclosing architecture body. The syntax for a component

instantiation statement is listed below:

Instantiation_label :
entity entity_name
port map (
 port_name => signal_name | expression | variable_name | open
 {, port_name => signal_name | expression | variable_name | open}
);

3.0 The DEVS Formalism and CD++

DEVS is a theoretical approach, which allows the definition of

hierarchical models that can be easily reused (Zeigler 1976, Zeigler at al.

2000). DEVS models may be described as a set of communicating atomic or

coupled submodels.

.

 22

3.0.1 Atomic DEVS

An atomic DEVS model is formally described by:

M = <X, S, Y, dint, dext, l, D >

 Where

X: the input events set
S: the state set
Y: the output events set
dint : internal transition function
dext : external transition function
l: the output function
D: the elapsed time function

Each atomic model is provided with input and output ports that allow the

model to communicate with other models. The input events set is made up of

all possible inputs that may occur on the input ports, similarly the output set

consists of all possible outputs the atomic model may have. The external

transition function is invoked when an event occurs on an input port; this

function determines what state change if any is required as a result of the

event and the current state. The model remains in its current state for an

amount of time determined by the elapsed time function, when this time has

expired the output function is invoked, which sends output events from the

output set on the output ports based on the current state. Following the

invocation of the output function, the internal function is immediately

 23

invoked, which determines which state change if any is required as a result of

the current state.

3.0.2 Coupled DEVS

A coupled DEVS model is composed of a set of atomic or coupled sub-

models. They are formally defined as:

CM = <I, X, Y, D, {Mi}, {Ii}, {Zij} >

 Where

I: the models interface
X: the input events set
Y: the output events set
D: an index for the components of the coupled model
Mi: is a basic DEVS (atomic or coupled) model
Ii: the set of influencees of model I
Zij: i to j translation function

Coupled models are defined by a set of basic components which are

interconnected through their model interfaces. The influences set determines

which components should receive the outputs of each component. The

translation function converts the outputs of one component to the inputs of

other components.

3.1 CD++ Atomic and Coupled Model Definition

Atomic models are created within the CD++ toolkit by creating C++

classes that are derivatives of the class Atomic. This new class must then

overload the initFunction, externalFunction, internalFunction and

outputFunction methods within the Atomic class. Each Atomic model

.

 24

instantiates ports which are unidirectional, either input or output. These ports

are used to exchange event messages between different atomic models.

InitFunction: This method is invoked when the simulation starts, it performs

the method body as well as setting the model state to passive and setting the

time for the next scheduled event to infinity.

externalFunction: This method is invoked when an even occurs on one of the

atomic models ports.

internalFunction: This method is invoked when the next event timer(D) has

elapsed and after the outputFunction has been invoked.

outputFunction: this method is invoked when the next event timer(D) has

elapsed.

The following primitives can be used to define the Atomic model behavior:

holdIn(state,time): instructs the model to remain in state for the specified

time , following which the output and internal transition methods will be

invoked.

passivate(): equivalent to holdIn(passive,infinity)

sendOutput(time,port,value): sends a message out on port:port at time:time

with value:value

state(): returns the current state of the model.

 25

After creating a new Atomic model class, the class must be registered with

the simulator by invoking the SingleModelAdm::Instance().registerAtomic

method from within the MainSimulator::registerNewAtomics() method.

Following registration the new atomic model should be added to the

simulator makefile, and this makefile should be executed. This will compile

the simulator and all new atomic models.

Following compilation, the new atomic model may be instantiated within

a model (MA) file, which defines a coupled DEVS model. A model (MA) file

consists of components, atomic model instances and links. A sample model

file is listed below:

[top]
components : transducer@Transducer generator@Generator Consumer@Consumer
Out : out
Link : out@generator arrived@transducer
Link : out@generator in@Consumer
Link : out@Consumer solved@transducer
Link : out@transducer out
[Consumer]
components : queue@Queue processor@Processor
in : in
out : out
Link : in in@queue
Link : out@queue in@processor
Link : out@processor done@queue
Link : out@processor out

The model file is made up of components that contain instances of Atomic

models. There must always be at least on component in the MA file, this is

sometimes referred to as the top level component or top. A component is

specified by inserting a line with the component name surrounded by square

.

 26

brackets. The example above has two components: Consumer and top. The

line following the component name specifies instances of atomic models or

components that are used within the component. This line begins with the

keyword component: followed by a list of atomic model or component

instances. Atomic model instances have syntax:

instance_name@atomic_model_name

while component instances have syntax

instance_name@component_name.

The next two lines in the component definition list the input and output ports

for the component. The keyword out: is followed by a list of output ports for

the component. The keyword in: is followed by a list of input ports for the

component. Finally lines beginning with the keyword Link: specify links

between ports on any two of the following: ports on atomic model instances,

ports on component instances, ports on the component to which the link

belongs. The syntax of a link is:

Link source_port@instance_name dest_port@instance_name

 27

4.0 sAMS VHDL to CD++ Coupled Model Conversion

This section describes the procedures and CD++ models that are used to

convert designs written in sAMS VHDL into CD++ models that may be

simulated in the CD++ toolkit.

4.1 Simulation Dataflow

The dataflow for the simulation of sAMS VHDL models in CD++ is

illustrated in Figure 2. The conversion should begin with a syntax check; to

Figure 2 Simulation Dataflow

Design
Syntax
Check

Elaboration
Model Code
and Netlist
Generation

Model Code
Compilation
and Linking

Model (MA)
File

Generation

Simulation
Execution
(CD++)

sAMS
VHDL

Design Syntactically
Correct sAMS
VHDL Design

Elaborated
sAMS VHDL

Design

Model Netlist

Model
Code and
Makefile

Simulation
Time

Simulation
Model

Simulation Log

Visualization
Tools (CD++

GUI)

Model
Library

Timing
Diagrams
and Plots

.

 28

ensure the sAMS VHDL model is syntactically correct before it is passed on

to the elaboration phase. VHDL elaboration is defined by the VHDL

specification as the process by which a declaration achieves its effect. The

elaboration procedure yields, a description of the structure of each component

in the sAMS VHDL design hierarchy. The architecture and entity description

for each component in the design is parsed in order to produce a netlist in

terms of interconnected integrators, algebraic operators, processes, signals and

sub-component instances. This netlist is then passed to the model code and

netlist generation procedure. This procedure then generates the CD++ model

code for each of the processes in each of the components of the design. The

CD++ process models are then compiled into a model library by executing a

makefile that lists each of the CD++ process models. Following compilation,

the netlist and model library are used by the model (MA) file generation

process to yield a coupled CD++ model definition file. This definition

contains a coupled model representing each component from the sAMS

VHDL design and a top level coupled model. Following model (MA) file

generation, the coupled model definition for the sAMS VHDL design may be

simulated in the CD++ toolkit.

 29

4.2 sAMS VHDL Design Hierarchies to CD++ Coupled Model Hierarchies

sAMS VHDL models hierarchies are converted to CD++ coupled model

hierarchies during the Model Code and Netlist Generation phase of the

conversion process. The components that constitute the design hierarchy must

first be differentiated based on whether they are a basic component or an

aggregate component. Basic components do not contain sub-component

instances in their architectures, while aggregate components may have one or

more sub-component instances in their architectures. A dependency tree must

be generated next; the leaves of the tree will always be basic components,

while branches will be aggregate components composed of either basic

components or aggregate components, the root will be the top-level model.

Figure 5 illustrates a dependency tree for the sAMS VHDL design hierarchy

listed in Figure 3. Coupled CD++ models should be defined in the order

dictated by the dependency tree, namely from the leaves toward the root.

Figure 4 contains a CD++ coupled model definition for the sAMS VHDL

design hierarchy of Figure 3, note the order of component declaration begins

with the top level model and is followed by models that approach the leaves in

the dependency tree.

.

 30

4.2.1 Structural and Hierarchal Linking of Coupled Models

sAMS VHDL sub-component instances are connected to the architecture

in which they are instantiated as defined by the port map clause in their

component instantiation statement. This clause will connect either a signal

within the architecture or a port on the architectures entity definition to each

of the ports on the component instance. In the case of a signal the linking is

termed structural, in the case of another port the linking is termed hierarchical.

In both cases the mode of the sub-component port specified in the port map

clause must be determined prior to generating link statements in the coupled

model definition. In structural links if the ports mode is out, it is linked to the

input port on the signal model specified in the clause, if the ports mode is in,

the output port on the specified signal model is linked to it. In hierarchical

links, if the sub-components port mode is out it is linked to the component

port, if the sub-components port mode is in, the component port is linked to it.

Figure 4 illustrates all four of these cases.

 31

Figure 3 Hierarchical sAMS-VHDL Model

entity flipflop is
 port (clk, d : in std_logic;
 q : out std_logic;
);
end entity flipflop;

architecture rtl of flipflop is
begin
 …
end architecture rtl;

entity 4bitreg is
 port (clk, d0, d1, d2, d3 : in std_logic;
 q0, q1, q2, q3 : out std_logic;
);
end entity 4bitreg;

architecture rtl of 4bitreg is
begin

 b0: entity flipflop
 port map (clk, d0, q0);
 b1: entity flipflop
 port map (clk, d1, q1);
 b2: entity flipflop
 port map (clk, d2, q2);
 b3: entity flipflop
 port map (clk, d3, q3);

end architecture rtl;

entity counter is
 port (clk : in std_logic
 …
);
end entity flipflop;

architecture rtl of counter is
 signal lclk, ld0, ld1, ld2, ld3, lq0, lq1, lq2, lq3;
begin
 4b0 : entity 4bitreg
 port map (clk=>lclk, d0=>ld0, d1=>ld1, … , q0=>lq0, …);
 …
end architecture rtl;

.

 32

Figure 4 Hierarchical CD++ Model

[counter]
components : 4b0@4bitreg lclk@Signal ld0@Signal ld1@Signal lq0@Signal …

in: …
out: …

link : out@lclk clk@4b0
link : out@ld0 d0@4b0
link : out@ld1 d1@4b0
…

link : q0@4b0 in@lq0

[4bitreg]
components : b0@flipflop b1@flipflop b2@flipflop b3@flipflop

in : clk d0 d1 d2 d3
out: q0 q1 q2 q3

link : clk clk@b0
link : clk clk@b1
link : clk clk@b2
link : clk clk@b3

link : d0 d@b0
link : d1 d@b1
link : d2 d@b2
link : d3 d@b3

link : q@b0 q0
link : q@b1 q1
link : q@b2 q2
link : q@b3 q3

[flipflop]

in : clk d
out : q

…

 33

Figure 5 Model Dependency Tree

counter

4bitreg

flipflop leaf: basic

root: aggregate

branch: aggregate

Tail depends
on Head

.

 34

4.3 Elaboration of Concurrent Statements

Concurrent statements in a sAMS VHDL design are converted to a process

statement containing one or more sequential statements during the elaboration

phase. For example the following concurrent conditional assignment

statement:

x<=‘1’ when (a=b or c=‘1’) else ‘0’ ;

Is converted into this equivalent process statement:

my_proc: process (a, b, c)
begin
 x<=‘0’;
 if (a=b or c=‘1’)
 x<=‘1’
 end if;
end process my_proc;

This conversion is possible for any and all concurrent statements in sAMS

VHDL. As a result, the problem of converting concurrent statements to CD++

models is solved by first elaborating all concurrent statement s to convert them

into equivalent process statements and then converting those process

statements to CD++ models.

 35

4.4 CD++ Process Model

During conversion a CD++ Process Model is generated for each process

model in the design hierarchy. The CD++ process model captures the

semantics of a sAMS VHDL process statement by converting it’s sequential

statements to C++ code and instantiating ports for every signal that is read or

driven from within the process and for every signal in the processes sensitivity

list. Figure 6 illustrates the CD++ process model for the following flip-flop

process:

Figure 6 CD++ Process Model

d

q

active

passive

clk
rising_edge(clk)

clk buffer

d buffer
q buffer

clk port

d port

q port

comparitor

controlled
switch

controlled
switch

δext

δint

λ(active)

flipflop: process (clk)
begin
 if(rising_edge(clk))
 q<=d;
 end if;
end process my_proc;

.

 36

The process body is implemented within the external transition function of

the CD++ process model. The values received from all external events

generated on the input ports that represent read and sensitivity list signals are

buffered within the model. This is accomplished by inserting the following

block of C++ code within the external transition function for each read or

sensitivity list signal:

if (msg.port()==[signal name]) {
 [signal buffer]=msg.value(); //buffer inputs to processes
}

A special case exists if the process body contains a reference to the

rising_edge(signal_name) or falling_edge(signal_name) operation. This

operation determines if a rising edge or falling edge has occurred on a signal

(0 to 1 or 1 to 0). In this case, the values received from all external events

generated on the input port that represents the signal referenced in the

rising_edge or falling_edge operation must be have a buffer of length two

within the model. This maintains the previous value and current value of the

signal. The buffering is accomplished by inserting the following block of C++

code within the external transition function for each signal referenced in a

rising_edge or falling_edge operation.

 37

if (msg.port()==[signal name]) {
 [old signal buffer name]=[new signal buffer name]; //keep last value of signal
 [new signal buffer name]=msg.value(); //buffer inputs to processes
}

Buffers are also created for each output port on the CD++ process model.

The output ports on the model represent all the signals that are driven from

within the sAMS VHDL process. The values that are assigned to these buffers

will be output on their respective ports when the model schedules an output

event.

The sequential statements in the process body can be converted directly to

C++ code and inserted into the external transition function since they are

sequentially executed and are semantically equivalent to C++ statements.

sAMS VHDL If , case and assignment statements are converted directly into

C++ if, switch and assignment statements. The boolean expression which

refers to read and sensitivity list signals in the sAMS VHDL if statement is

replaced with an equivalent boolean expression that refers to port buffers for

those signals. This same procedure can be used to convert the expression in a

sAMS VHDL case statement to an equivalent one in C++. In the case where

the rising_edge or falling_edge operation appears within an if or case

statement in the process body, rising_edge and falling_edge may be

substituted with the following code in the C++ equivalent if or case statement:

![old signal buffer name] and [new signal buffer name] // rising edge
[old signal buffer name] and ![new signal buffer name] // falling edge

.

 38

If the condition within the sAMS VHDL if statement contains a sensitivity

list signal, the last piece of code within the C++ if condition body should

instruct the process model to change to the active state for a time of zero. This

will cause an output event and internal transition to be triggered. The output

event will update all of the driven signals by sending the value of each output

port buffer out on each output port. The internal transition will cause the

model to return to the active state. The sAMS VHDL code for a process used

in a four bit counter is listed below:

Counter: process (clk) is
begin
 if(rising_edge(clk))
 q1<=not d1;
 q2<=d1 xor d2;
 q3<= d3 xor (d1 and d2);
 q4<=d4 xor (d1 and d2 and d3);
 end if;
end Counter;

This process has one sensitivity list signal (clk), four read signals (d1, d2,

d3 and d4) and four driven signals (q1, q2, q3 and q4). The process body

contains an if sequential statement with a boolean expression that contains the

rising_edge operation acting on signal clk, and 4 sequential assignment

operations. The C++ code that represents the body of the above process is

listed below. o_clk, n_clk, _d1, _d2, _d3 and _d4 are input port buffers, _q1,

_q2, _q3 and _q4 are output port buffers. _1164and, _1164not and _1164xor

are functions that implement and, not and xor operators in CD++.

if (msg.port()==clk) { //since clk is in the trigger list
{
 o_clk=n_clk;
 n_clk=msg.value();
}

 39

… //port buffer code for d1 d2 d3 d4

if(o_clk==0 && n_clk==1) { // if rising_edge(clk)
{
 _q1=_1164not(_d1);
 _q2=_1164xor(_d2,_d1);
 _q3=_1164xor(_d3,_1164and(_d1,_d2));
 _q4=_1164xor(_d4,_1164and(_d3,_1164and(_d1,_d2)));

 holdIn(active,0);
 }

.

 40

4.5 CD++ Signal Model

The CD++ signal model is not an implementation of sAMS VHDL signals

in CD++. Signals in the sAMS VHDL design are used to determine how the

ports on the many process model instances must be interconnected for each

component, this information is then used during model file generation to

create links. Thus, a signal model is not needed for the purpose of

interconnecting processes, instead the CD++ signal model is used to

implement transport delay on messages sent between process model ports.

Figure 7 CD++ Signal Model

d

active

passive

in buffer

in port

out port

δint(5)δext

λ(active)

 41

 The implementation of the CD++ process model does not allow assignment

statements to have transport delay, since the output events for all driven

signals must occur simultaneously. To remedy this shortcoming, transport

delay is implemented in the CD++ signal model. The signal model simply

receives and buffers data on it’s input port, enters the active state for the time

specified by the assignment statement transport delay, then outputs the

buffered data on it’s output port.

Figure 7 illustrates the CD++ Signal Model for the sAMS VHDL assignment

statement below:

signal my_signal, x, y, z: std_logic;
…
my_signal<=x after 5ns;

.

 42

4.6 Simultaneous Statements and DAE Simulation

Simultaneous statements in sAMS VHDL allow the definition of

continuous time systems through differential algebraic equations (DAE). For

the purposes of this project, the problem of solving differential algebraic

equation systems was confined to solving ordinary differential equation

systems with initial conditions.

4.6.1 ODE Simulation via Integration

The problem of simulating an nth ordinary differential equation is solved

by reducing the nth order ordinary differential equation into a set of first order

differential equations. For example:

)()(
2

2

xq
dx
dy

xp
dx

yd
=+

can be written as two first-order differential equations:

)()()(

)(

xzxpxq
dx
dz

xz
dx
dy

−=

=

 43

In general, an nth order ordinary differential equation of form:

0),...,,,,()(=′′′ nyyyytF (1)

may be decomposed into a set of first order differential equations:

Niyytf
dt

tdy
Ni

i ,...,1),,...,,(
)(

1 == (2)

where each),...,,(1 Ni yytf is known

A solution for each)(ty i is obtained for some t >0 and set)0(iy by integrating

each
dt

tdyi)(
. This is most simply accomplished by replacing each iy by

y∆ and each dt by t∆ in (2) and then multiplying (2) by t∆ . An acceptable

level of accuracy is obtained from this approach providing t∆ is sufficiently

small. This type of integration is known as Euler’s method.

.

 44

4.6.2 Euler’s Method Integration

The formula for Euler’s method is

interval theof begining at they of value theis and
 interval theof end at they of value theis where

(3)),(

1

1

n

n

nnnn

y
hy

ythfyy

+

+ +=

As shown in Figure 8 this method extrapolates the solution for y over the

interval nt to htt nn +≡+1 using the derivative at the beginning of the interval

),(nn ytf . Because the Euler’s method uses the slope at the beginning of the

Figure 8 Euler Integration

y

ttn
tn+1

h

yn+1

yn

f(tn,yn)

Actual Solution

Approx. Soln.
Point

 45

interval only it is generally inaccurate compared to other methods, and can be

unstable for large h .

4.6.3 Fourth-order Runge-Kutta Method Integration

The Fourth-order Runge-Kutta method is generally accepted to be more

accurate and stable when compared to the Euler’s method for a given step

size. The Fourth-order Runge-Kutta method does not rely on the derivative at

the beginning of the interval only, but rather uses the derivative at the

beginning of the interval, the derivative at two trial midpoints and the

derivative at a trial end point. The equations for the Fourth-order Runge-Kutta

method are as follows, and the method is illustrated in Figure 9:

interval theof begining at they of value theis and
 interval theof end at they of value theis where

(4)
6336

),(

)
2

,
2

(

)
2

,
2

(

),(

1

4321
1

34

2
3

1
2

1

n

n

nn

nn

nn

nn

nn

y
hy

kkkk
yy

kyhthfk

k
y

h
thfk

k
y

h
thfk

ythfk

+

+ ++++=

++=

++=

++=

=

.

 46

Figure 9 Runge-Kutta Integration

The Fourth-order Runge-Kutta method first extrapolates the derivative at

the beginning of the interval (nt) to the end of the interval (1+nt) to determine

1k . Then a trial step is taken to the midpoint of the interval, and the derivative

is evaluated at this point using
2

1k
yn + , this deriva tive is then used to

extrapolate the solution to the end of the interval to determine 2k . A second

trial step is taken to the midpoint of the interval, and the derivative is

evaluated at this point using
2

2k
yn + , this derivative is then used to

extrapolate the solution to the end of the interval to determine 3k . A final trail

step is taken to the end of the interval, and the derivative is evaluated at this

point using 3kyn + , this derivative is then used to extrapolate the solution to

y

ttn
tn+1

h

yn

yn+k1

Actual Solution

yn+k2

yn+k3

yn+k4

 47

the end of the interval to determine 4k . Finally a weighted sum of

1k , 2k , 3k and 4k is added to ny to determine 1+ny .

4.6.4 Quantized State Systems with Runge-Kutta Integration

Continuous time ODE systems with initial conditions have traditionally

been simulated by discretizing the time domain, and solving the ODE over

each discrete time interval. An alternative approach introduced by Zeigler et

al.[12], suggests discretizing the state space of the solution rather than the

time domain to solve the ODE system. Systems using this alternative

approach are termed quant ized state systems. This approach requires a

fundamental shift in thinking about the system as a whole. Instead of

determining what value a dependant variable will have (it’s state) at a given

time, we must determine at what time a dependant variable will enter a given

state, namely the state above or below it’s current state. This approach may

yield results as accurate as a discrete time approach under the condition that

the quantum size of the state space is sufficiently small. Figure 10 illustrates

the mid-read quantization of a continuous time signal, note that quantum state

changes occur when the continuous time signal is ±Q/2 from its current

quantum state.

.

 48

Figure 10 Signal Quantization

The Fourth-order Runge-Kutta integration method presented in the

previous section uses a discrete time approach to integrate a first order DE

over an interval h to determine 1+ny . In order to use the Fourth-order Runge-

Kutta method in a quantized state system, equation (4) must be modified to

determine h when
21
Q

yy nn =−+ where Q is the quantum size. The

following is a derivation of the Fourth-order Runge-Kutta method for a

quantized state system.

q0

q1

q2

q3

q4

q5

q6 Q

t

 49

(5)
6

1
3

1
3

1
6

1

6
2

3
2

3
2

6
2

2

2

6336

6336

 and ,,for substitute and (4)in sum Rearrange

)
2

)(,(

)
4

)(,
2

(

2

)
4

)(,
2

(

2

),(
2

 and , ,get to(4)in
2

 and
2

 ,
2

 ,
2

 substitute

size quantum thebe let

1

4321

4321

1

4321
1

4321
1

4321

33

4

2
2

3

1
1

2

1

43214321

−

+

+

+

+++=

+++=

=−

+++=−

++++=

++
=

++
=

++
=

=

====

hhhh
h

h

Q

h

Q

h

Q

h

Q

h
Q

Q
yy

kkkk
yy

kkkk
yy

kkkk

Q
hsignyhtf

Q
h

Q
hsigny

h
tf

Q

h

Q
hsigny

h
tf

Q

h

ytf

Q

h

hhhh
Q

k
Q

k
Q

k
Q

k

Q

nn

nn

nn

nn

nn

nn

nn

.

 50

Equation (5) determines at what time relative to the present time the

integral of the first order differential equation will enter the quantum state

above or below it’s current quantum state.

4.6.5 Fourth-order Runge-Kutta Quantized Integrator Model

In order to simulate an ODE system written in sAMS VHDL simultaneous

statements, the ODE must first be decomposed into a set of first order

differential equations as outlined in (2). Each of these first order differential

equations will then be converted into a Fourth-order Runge-Kutta Quantized

Integrator model during Model Code and Netlist Generation, and will be

instantiated and linked to other Fourth-order Runge-Kutta Quantized

Integrators during Model (MA) File Generation.

The conversion process must first determine which quantities and signals

are exogenous to the ODE system, and which are endogenous to the ODE

system. Endogenous quantities will be the quantity on the left hand side of the

simultaneous statement as well as all quantities on the right hand side of the

simultaneous statement with the same quantity name as the left hand side

quantity. All other quantities or signals will be exogenous. For example the

following simultaneous statement describes a first order low-pass filter with

input voltage vin and output voltage vout:

vout’dot = (1/(R*C))*(vin-vout);

 51

In this statement vin is an exogenous quantity, while vout and vout’dot are

endogenous quantities.

Once all endogenous and exogenous quantities and signals have been

identified, the ODE specified in the simultaneous statement must be

decomposed into a set of first order differential equations as outlined in (2).

Each of these first order differential equations is then converted directly into a

Fourth-order Runge-Kutta Quantized Integrator model. Each Integrator model

must have an input port for each exogenous and endogenous quantity or signal

on the right hand side of its first order differential equation, and an output port

for the integral of the left hand side of its first order differential equation. For

example, the low-pass filter above requires only a single integrator, and this

integrator has input ports for vin and vout, as well as an output port for vout.

The Fourth-order Runge-Kutta Quantized Integrator model is simple in

design. The model buffers each of the input ports by inserting the following

code in the models external transition function:

if (msg.port()==[signal name])
 {
 [signal buffer name]=(int)msg.value();
 }

Following all port buffer code in the integrators external transition

function, the model executes the Fourth-order Runge-Kutta method for a

quantized state system if the model is in the passive state. The right hand side

.

 52

of the first order differential equation is converted to C++, substituting the

signal buffer name for the signal name, and multiplying this buffer by the

quantum size. The following is the Fourth-order Runge-kutta method code for

the low-pass filter presented above:

 p1 = (1.0/(C*R))*(_vin*QuantumSize - (_vout*QuantumSize));
 p2 = (1.0/(C*R))*(_vin*QuantumSize - (_vout*QuantumSize +
sign(p1)*(HalfQuantumSize/2.0)));
 p3 = (1.0/(C*R))*(_vin*QuantumSize - (_vout*QuantumSize +
sign(p2)*(HalfQuantumSize/2.0)));
 p4 = (1.0/(C*R))*(_vin*QuantumSize - (_vout*QuantumSize +
sign(p2)*(HalfQuantumSize)));

 h1 = HalfQuantumSize / p1;
 h2 = HalfQuantumSize / p2;
 h3 = HalfQuantumSize / p3;
 h4 = HalfQuantumSize / p4;

 h = 1.0/(1.0/(6.0*h1) + 1.0/(3.0*h2) + 1.0/(3.0*h3) + 1.0/(6.0*h4));

The model then transitions to the active state for a time determined by h,

which is calculated as in (5). The output function simply outputs the current

state of the output buffer plus or minus one, plus one if the slope over the

interval was positive, minus one if the slope over the interval was negative.

The internal transition function similarly increments/decrements the state of

the output buffer depending on the slope over the interval and then sends the

model into the passive state.

During Model (MA) File Generation each of the integrator models

converted during Model Code and Netlist Generation, are instantiated and

 53

linked together. For each Integrator model instance, each port that represents a

given endogenous quantity in the simultaneous statement is linked to all ports

that represent that same quantity on itself and on all other Integrator model

instances. All exogenous quantity and signal input ports are linked to their

respective output ports on a process, component or signal model.

.

 54

Conclusions and Recommendations

To facilitate simulation of mixed signal HDL models within a DEVS

simulator, generic DEVS models and conversion procedures were required.

These models and conversion procedures were designed for a subset of

VHDL-AMS named sAMS-VHDL and targeted toward the CD++ DEVS

simulation toolkit. Hierarchical models written in sAMS-VHDL that utilize

Processes, Signals and Simultaneous statements may be simulated in CD++

by elaborating the model, and converting the model hierarchy into an

equivalent CD++ model that is composed of Process, Signal and Integrator

models.

 sAMS-VHDL is limited, and does not support many of the advanced

features of VHDL or VHDL-AMS. Moving forward, it is recommended that

amendments be made to sAMS-VHDL, and additional models and conversion

procedures be developed. Type definition, generate blocks and signal

attributes would be useful additions to the sAMS-VHDL language as they

would ease model definition. The modularity of the CD++ models developed

for this project will facilitate integration of new models in the future.

 If mixed signal simulation work is going to continue within the CD++

toolkit, a time management protocol will have to be developed. Since CD++

treats time as integer values, the simulation models developed in this project

must scale time by a constant factor to allow simulations to run correctly. The

 55

choice of this constant scalar is dependent on the rates of change involved in

the analog simulation, and must be chosen carefully. A time management

protocol integrated into CD++ could remedy this problem.

.

 56

References

[1] Sumit Ghosh and Norbert Giambiasi, "Breakthrough in Modeling and

Simulation of Mixed-Signal Electronic Designs in nVHDL", Modeling and

Simulation, May 2001.

[2] Press, Teukolsky, Vetterling and Flannery, Numerical Recipes in C: The

Art of Scientific Computing. Cambridge: Cambridge University Press, 1988-

1992.

[3] Kloos and Breuer, Ed., Formal Semantics for VHDL. Dordrecht: Kluwer

Academic Publishers, 1995.

[4] Ashenden, The Designer's Guide to VHDL. San Francisco: Morgan

Kaufmann Publichers, 1996.

[5] Stroustrup, The C++ Programming Language Third Edition. Reading:

Addison-Wesley 1997.

 57

[6] Skahill, VHDL for Programmable Logic. Menlo Park: Addison-Wesley

1996.

[7] Christen et al., "DAC'99 VHDL-AMS Tutorial" presented at 36th Design

Automation Conference, New Orleans, June 21-25, 1999.

[8] Rodriguez and Wainer, CD++ User's Guide. Universidad de Buenos

Aires, Argentina, 1999.

[9] IEEE 1076 Standard VHDL Language Reference Manual, Design

Automation Standards Committe (DASC). Piscataway: IEEE-SA Standards

Board, 2000.

.

 58

Appendix A

This appendix contains the CD++ models and simulation output for a number of test

sAMS VHDL models.

Clock Generator

sAMS VHDL for Clock Generator

entity clock is
 port(clk : out std_logic);
end entity clock;

architecture top of clock is
 signal temp;
begin
 inv: process (temp) is
 begin
 temp<=not temp after 10ns;

end process clk_process;

end architecture rtl;

 59

CD++ model for Clock Generator

[top]

components : inv@Process_Inv temp@Signal

out : clk

Link : out@temp in@inv

Link : out@inv in@temp

Link : out@temp out

[temp]

Transport_Delay : 00:00:00:010

Simulation Output for Clock Generator

00:00:00:010 out 0

00:00:00:020 out 1

00:00:00:030 out 0

00:00:00:040 out 1

00:00:00:050 out 0

00:00:00:060 out 1

00:00:00:070 out 0

00:00:00:080 out 1

00:00:00:090 out 0

00:00:00:100 out 1

.

 60

Four-Bit Counter

sAMS-VHDL for Four-Bit Counter

entity 4_counter is
 port(bo0, bo1, bo2, bo3 : out std_logic);
end entity 4_count;

architecture top of 4_counter is
 signal b1,b2,b3,b4,clk : std_logic;
begin

clock: entity clock -- from example of Clock Generator
 port map (
 clk=>clk

);

 4count: process (clk)
 begin

 if(rising_edge(clk))
 b1<= not b1;
 b2<= b2 xor b1;
 b3<= b3 xor (b2 and b1);
 b4<= b4 xor (b3 and b2 and b1);

end if;
end process 4count;

 bo0<=b1;
 bo1<=b2;
 bo2<=b3;
 bo3<=b4;

end architecture 4_count;

 61

CD++ Model for Four-Bit Counter

[top]

components : 4count@Process_4_Counter b1@Signal b2@Signal b3@Signal
b4@Signal clock

out : bo1 bo2 bo3 bo4

link : out@clock clk@4count

link : q1@4count in@b1

link : q2@4count in@b2

link : q3@4count in@b3

link : q4@4count in@b4

link : out@b1 d1@4count

link : out@b2 d2@4count

link : out@b3 d3@4count

link : out@b4 d4@4count

link : out@b1 bo1

link : out@b2 bo2

link : out@b3 bo3

link : out@b4 bo4

[clock]

components : inv@Process_Inv sig1@Signal

out : out

Link : out@sig1 in@inv

Link : out@inv in@sig1

Link : out@sig1 out

[b1]

.

 62

Transport_Delay : 00:00:00:000

[b2]

Transport_Delay : 00:00:00:000

[b3]

Transport_Delay : 00:00:00:000

[b4]

Transport_Delay : 00:00:00:000

[sig1]

Transport_Delay : 00:00:00:010

 63

Simulation Results for Four-Bit Counter

00:00:00:000 bo1 0

00:00:00:000 bo2 0

00:00:00:000 bo3 0

00:00:00:000 bo4 0

00:00:00:020 bo1 1

00:00:00:020 bo2 0

00:00:00:020 bo3 0

00:00:00:020 bo4 0

00:00:00:040 bo1 0

00:00:00:040 bo2 1

00:00:00:040 bo3 0

00:00:00:040 bo4 0

00:00:00:060 bo1 1

00:00:00:060 bo2 1

00:00:00:060 bo3 0

00:00:00:060 bo4 0

00:00:00:080 bo1 0

00:00:00:080 bo2 0

00:00:00:080 bo3 1

00:00:00:080 bo4 0

00:00:00:100 bo1 1

00:00:00:100 bo2 0

00:00:00:100 bo3 1

.

 64

Low-pass Filter

sAMS-VHDL for Low-pass Filter

entity LPF is
 port (
 terminal tout, tgnd: electrical
);
end entity LFP;

architecture top of LPF is
 signal clk : std_logic;
 signal vin : std_logic;

quantity vout across tout to tgnd;

begin

vout’dot = (1/(R*C))*(vin-vout);

clk: entity clk
port map (clk=>clk
);

vin<=clk;

end architecture top;

 65

CD++ Model for Low-pass Filter

[top]

components : int@rkIntegModel clock

out : clk y

Link : y@int y

Link : y@int dydt@int

Link : out@clock clk

Link : out@clock vin@int

[int]

y0 : 0

dydt0 : 0

C : 1.0E-6

R : 1000

[clock]

components : inv@Process_Inv sig1@Signal qm@QuantumMultiply

out : out

Link : out@sig1 in@inv

Link : out@inv in@sig1

Link : out@sig1 in@qm

Link : out@qm out

[sig1]

Transport_Delay : 00:00:1:000

.

 66

[qm]

Transport_Delay : 00:00:00:000

Attenuation : 100

Simulation Results Low-Pass Filter

Simulation results have been graphed in excel below:

Y: C=1E-5 R=1000

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12

Time*1000

V
ou

t

Y: C=1E-5 R=1000

Y: C=1E-6 R=1000

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12

Time*1000

V
o

u
t

Y: C=1E-6 R=1000

 67

Y:C=1E-8 R=1000

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12

Time*1000

V
o

u
t

Y:C=1E-8 R=1000

