
Research Article
multiPDEVS: A Parallel Multicomponent
System Specification Formalism

Damien Foures,1,2 Romain Franceschini ,1

Paul-Antoine Bisgambiglia,1 and Bernard P. Zeigler3

1CNRS UMR SPE 6134, Université de Corse, 2050 Corte, France
2CNRS, LAAS, Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, 31077 Toulouse, France
3RTSync Corp, 12500 Park Potomac Ave., Potomac, MD, USA

Correspondence should be addressed to Romain Franceschini; r.franceschini@univ-corse.fr

Received 29 September 2017; Accepted 12 February 2018; Published 27 March 2018

Academic Editor: Peter Giesl

Copyright © 2018 Damien Foures et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on multiDEVS formalism, we introduce multiPDEVS, a parallel and nonmodular formalism for discrete event system
specification. This formalism provides combined advantages of PDEVS and multiDEVS approaches, such as excellent simulation
capabilities for simultaneously scheduled events and components able to influence each other using exclusively their state
transitions. We next show the soundness of the formalism by giving a construction showing that any multiPDEVS model is
equivalent to a PDEVS atomic model. We then present the simulation procedure associated, usually called abstract simulator. As a
well-adapted formalism to express cellular automata, we finally propose to compare an implementation of multiPDEVS formalism
with a more classical Cell-DEVS implementation through a fire spread application.

1. Introduction

An important concept of general system theory is that of
decomposition, which allows a system to be broken down
into smaller subsystems to tackle its complexity, following
a top-down approach. Conversely, interacting components
may be coupled together resulting in a larger system following
a bottom-up approach [1].

Zeigler et al. [2] introduced the Theory of Modeling and
Simulation (TMS), based on general system theory. Besides a
framework which offers a precise description of the various
entities involved in the modeling and simulation process,
TMS provides a specification language for the modeling step
called discrete event system specification commonly known
as DEVS. DEVS handles well modular and nonmodular
composition. With DEVS, modular systems interact through
I/O ports, whereas nonmodular ones influence each other
directly. While the former yields higher level of specification
since it allows hierarchical construction, the latter remains
interesting when modeling complex systems from bottom-
up.

In order to facilitate evenmore themodeling process TMS
has saw emergence of multiple DEVS-based formalism. Most
of them have been established for a modular and hierarchical
approach, such as FD-DEVS for model with finite state space
[3], Cell-DEVS for cellular automata [4], RT-DEVS for real-
timemodeling [5], and ST-DEVS for stochastic modeling [6].
For nonmodular approach, Zeigler et al. introduced another
DEVS-based formalism, named multiDEVS [2].

Despite good extensibility properties, classic DEVS for-
malism has its own limitations. As with all other event
scheduling approaches, it is up to the modeler to understand
interactions between models and manage collisions that can
occur between events. Consequently, the behavior of the
model can easily deviate from the expected one if such
collisions are not properly managed [7]. This issue prompted
Chow and Zeigler to propose PDEVS, which includes entities
dedicated to event collision handling, but only for the
modular approach.

In this context, we propose a new formalism bringing
effective management of event conflicts as was initially

Hindawi
Complexity
Volume 2018, Article ID 3751917, 19 pages
https://doi.org/10.1155/2018/3751917

http://orcid.org/0000-0001-9563-3449
https://doi.org/10.1155/2018/3751917

2 Complexity

proposed within PDEVS, combined with the multiDEVS
modeling approach. We propose a construction of equiva-
lence with the PDEVS formalism and provide the associated
abstract simulator. We call this formalism multiPDEVS.

multiPDEVS was initially created for a specific work,
where an existing set of PDEVS models had to be coupled
with nonmodular approach. However, this paper is fully
dedicated to the formalism itself, and a simple example to
help each knowledge level, from beginner to the expert in
DEVS formalisms.This formalism is well adapted to problem
classes similar to cellular automata [9, 10] and could be
used in problems such as circulation management, robot
path planning, physical propagation, or crowd modeling.
Unlike specialized formalisms such as Cell-DEVS [4] where
functions and structures are integrated to facilitate the speci-
fication process (e.g., the delay function ofCell-DEVS formal-
ism),multiPDEVSdoes not integrate such specificities, which
means that multiPDEVS is intended to be more generic and
could be adapted to other classes of problems.

The next section gives a review of the PDEVS and
multiDEVS formalisms where limitations and advantages of
such formalisms are discussed. Section 2 presents recent
applications of the multicomponent approach. Then, a third
section gives a detailed description of the multiPDEVS
formalism. Section 4 describes an example to illustrate the
use of the formalism. Section 5 gives a clear overview of
pros and cons of multiPDEVS from a modeling perspective,
but also from a simulation perspective. The last section gives
conclusions and perspectives.

2. Related Works

As far as we know, there are few works which explicitly use
the multiDEVS formalism despite decades of existence [2].

We can cite Innocenti et al. [11] and Muzy et al. [12]
where the nonmodular multicomponent is explicitly used.
Based onmultiDTSS (multicomponentDiscrete Time System
Specification) [2], the authors extend this formalism with the
Active function (AmultiDTSS) to focus on activated cells of
cellular forest fire propagation models in order to increase
simulation performances. They agree that a nonmodular
multicomponent based approach helps in reducing modeling
and simulation complexity for cellular systems compared
to a conventional modular approach as proposed by the
DEVS formalism. Indeed, the feature of influencer/influencee
offered by the multicomponent approach allows avoiding
many messages exchanges, which permits increasing the
simulation speed.

We can observe an equivalent message reduction princi-
plewithin the flattening process ofDEVSmodelswhere simu-
lation speed improvement has been studied [13–15]. However,
the flattening process must be clearly distinguished from
multicomponent modeling. The flattening process of PDEVS
model can be considered as amodeling transformation, where
multicomponent approachmust be considered as a modeling
process. As given by Chen andVangheluwe [16], the flattening
of DEVS model consists of two steps: direct connection step
where the coupled model is transformed to a coupled model
of depth one, and flattening step where the coupled model

of depth one is transformed in an atomic model, for the
sole purpose of improving simulation performance. As we
will see in detail subsequently, multiPDEVS is dedicated to
nonmodular modeling process.

As introduced in the previous section, we believe that
the multiDEVS formalism as initially proposed does not
allow proper management of conflicts. Recent works of
Shiginah and Zeigler [17] confirm our idea that the mul-
ticomponent approach is an interesting modeling approach
but is somewhat neglected due to lack of efficient conflict
management system. The authors offer a new specification
for cellular DEVS models to increase performances of cell
space simulations [17]. As a perspective, the authors recall an
alternative consisting in themodification ofmultiDEVS, such
that it becomes equivalent to the PDEVS formalism.

In this section, we make a review of necessary back-
ground, namely, multiDEVS formalism and PDEVS formal-
ism as introduced by Zeigler et al. [2]. We also briefly
introduce the new version of CellSpace DEVS formalism as
proposed by Shiginah and Zeigler [17] to give the oppor-
tunity to the reader to understand the advantages of both
formalisms.

2.1. The Original Multicomponent DEVS Formalism. There
are two types of DEVS models, atomic and coupled. An
atomic model describes the behavior of a system, while a
coupled model describes a system as a network of compo-
nents coupled together. These models are in the modular
form, whichmeans their interactions are restricted to happen
through identified ports whose connection is preestablished.
The multiDEVS formalism, which is based on classic DEVS,
introduces a nonmodularway to couple components together
where components can interact with each other by accessing
and influencing other components states directly via state
transition functions. As an illustration, we can take the
cellular automaton example as proposed by Muzy et al. [12]:

In a non-modular cellular automaton, simple
neighboring rules can be implemented for every
cell as: If my neighboring cell is alive, then I
become alive. In a modular cellular automaton,
the specification is different. It would be: If the
message received from my neighboring cell indi-
cates that it is alive, then I become alive.

For readers already acquainted with classic DEVS mech-
anism (but not necessarily with multicomponent approach),
we should warn that the multiDEVS formalism can look
forbidding at a first look.

In a multicomponent system, a component has its own
set of states and state transition functions. Each component
also has a set of influencers components from which it may
be influenced and a set of influencees that it may influence
through its state transition functions. Those interacting
components form the overall system. An input to the system
may influence all components and each component may
contribute to the output of the system. Components are not
considered stand-alone system specifications since they are
devoid of an input and output interface.

Complexity 3

MultiComp

Port i

Port j

Port k

Comp A
Influencers: A, B
Influencees: A, B, C

Influencers: A, B
Influencees: B, C

Comp B

Influencers: A, B, C
Influencees: C

Comp C

Figure 1: A multiDEVS model: components can interact through state transition functions.

In the hierarchy of system specifications, the multicom-
ponent system specification lies in a lower level compared to a
modular coupled network of systems such as a DEVS coupled
model. Although both specifications allow the composition
of interacting components to form a new system, compo-
nents in the former are coupled nonmodularly since they
influence each other directly, while, in a coupled network of
systems, components modularly interact only through their
I/O interfaces. If a modular approach is considered a more
abstract level of specification, particular models of systems
may be more suitable to be described in a nonmodular
way. Systems such as cellular automata, individual-based
models, or some kinds of multiagent systems environments
(cellular models) might be good examples. In contrast,
systems with structural constraints that may be encountered
in systems engineering will be best modeled using a modular
compositional approach. We should emphasize that both
approaches may exist within the same modeled system.
Indeed, a multicomponent DEVS system can be coupled
together with other DEVS models. Another advantage of
usingmulticomponentDEVS is that since components do not
interact through I/O interfaces, the implementation cost of
message routing is reduced leading to better performances
[13, 14].

Figure 1 illustrates this principle with a simple case using
three components: 𝐶𝑜𝑚𝑝𝐴, 𝐶𝑜𝑚𝑝𝐵, 𝐶𝑜𝑚𝑝𝐶. In this exam-
ple, 𝐶𝑜𝑚𝑝𝐴, 𝐶𝑜𝑚𝑝𝐵, and 𝐶𝑜𝑚𝑝𝐶 will have the opportunity
to directly change the state of 𝐶𝑜𝑚𝑝𝐶 through its own
state transition functions (𝐶𝑜𝑚𝑝𝐴, 𝐶𝑜𝑚𝑝𝐵, and 𝐶𝑜𝑚𝑝𝐶 are
considered as the set of influencers of 𝐶𝑜𝑚𝑝𝐶). Notice that
there is no reciprocity between influencers and influencees.
That means it is essential to make the distinction between
them. Let us consider the relation between 𝐶𝑜𝑚𝑝𝐴 and
𝐶𝑜𝑚𝑝𝐵 (Figure 1). 𝐶𝑜𝑚𝑝𝐴 declares 𝐶𝑜𝑚𝑝𝐵 as an influencer
whereas 𝐶𝑜𝑚𝑝𝐵 does not mention 𝐶𝑜𝑚𝑝𝐴 as one of these
possible influencees. This means that 𝐶𝑜𝑚𝑝𝐴 can consult
𝐶𝑜𝑚𝑝𝐵 states to take decisions, but 𝐶𝑜𝑚𝑝𝐵 is not able to
directly change the state of 𝐶𝑜𝑚𝑝𝐴. Note that components
could have direct interactions with interfaces of the system
(𝑝𝑜𝑟𝑡 𝑖, 𝑝𝑜𝑟𝑡 𝑗, 𝑝𝑜𝑟𝑡 𝑘) through specific functions (see 𝛿ext
and 𝜆 in following paragraph).

A multicomponent DEVS is a structure:

multiDEVS = (𝑋, 𝑌,𝐷, {𝑀𝑑} , Select) , (1)

where𝑋 and 𝑌 are the input and output event sets such as

𝑋 = {(𝑝, V) | 𝑝 ∈ IPorts, V ∈ 𝑋𝑝}
𝑌 = {(𝑝, V) | 𝑝 ∈ OPorts, V ∈ 𝑌𝑝}

(2)

with𝑋𝑝 being the set of all possible values for the input port𝑝
and 𝑌𝑝 being the set of all possible values for the output port𝑝.

𝐷 is the set of component references and 𝑆𝑒𝑙𝑒𝑐𝑡 is
a tie-breaking function employed to arbitrate in case of
simultaneous events:

Select : 2𝐷 󳨀→ 𝐷. (3)

For each 𝑑 ∈ 𝐷, component𝑀𝑑 is defined by

𝑀𝑑 = (𝑆𝑑, 𝐼𝑑, 𝐸𝑑, 𝛿ext,𝑑, 𝛿int,𝑑, 𝜆𝑑, ta𝑑) , (4)

where 𝑆𝑑 is the set of sequential states of 𝑑, 𝐼𝑑 ⊆ 𝐷 is the
set of components influencing 𝑑, and 𝐸𝑑 ⊆ 𝐷 is the set of
influenced components by 𝑑. A pair (𝑠, 𝑒) represents a total
state that includes 𝑒, the time elapsed since the last transition,
and 𝑄𝑑 is the set of total states:

𝑄𝑑 = {(𝑠, 𝑒𝑑) | 𝑠 ∈ 𝑆𝑑, 𝑒𝑑 ∈ R
+
0 , 0 ≤ 𝑒 ≤ ta (𝑠)} . (5)

Each component 𝑑 ∈ 𝐷 of amultiDEVS schedules the time of
its next internal event based on total states of its influencers
using the time advance function:

ta𝑑 : ×
𝑖∈𝐼𝑑

𝑄𝑖 󳨀→ R
+
0 ∪ {∞} . (6)

When an internal event occurs in one of the components,
state changes occur through the internal transition function
that takes the total state set of the influencers and maps them
into new total states for the influencees:

𝛿int,𝑑 : ×
𝑖∈𝐼𝑑

𝑄𝑖 󳨀→ ×
𝑗∈𝐸𝑑

𝑄𝑗. (7)

This means that an internal event occurring in 𝑑 is able
to change states of other components and may result in
rescheduling their events. If this behavior is not desired
because a component should only be allowed to change its
own state, then 𝐸𝑑 should be defined as a unit set whose
unique element is 𝑑.

4 Complexity

Eventually, output events may be generated for the multi-
DEVS through the output function:

𝜆𝑑 : ×
𝑖∈𝐼𝑑

𝑄𝑖 󳨀→ 𝑌. (8)

The output of themultiDEVS is defined by the output event of
the component selected over imminent components. When
events in different components are imminent, the 𝑆𝑒𝑙𝑒𝑐𝑡
function is used to arbitrate among them. External events at
the multiDEVS’s input interface can be handled by any of the
external state transition functions 𝛿ext,𝑑 of the component 𝑑:

𝛿ext,𝑑 : ×
𝑖∈𝐼𝑑

𝑄𝑖 × 𝑋 󳨀→ ×
𝑗∈𝐸𝑑

𝑄𝑗. (9)

However, a component may not react to external inputs if its
external state transition function is not defined and, similarly,
𝜆𝑑 can be left undefined if the component is not expected to
produce output events.

As Chow and Zeigler [7] stated, when a DEVS model is
constructed by coupling components together, such model
behavior may deviate from the expected one since multiple
state transitions can happen at the same simulation time. Two
kinds of such transition collisions are distinguished:

(i) collisions, which occur when a scheduled internal
event overlaps with one or more external events;

(ii) simultaneous events, which occur when several exter-
nal events occur at the same time.

The classicDEVS andmulticomponentDEVS solutions to
transition collisions are not satisfactory since the behavior of
a coupled model is established through the tie-breaker 𝑆𝑒𝑙𝑒𝑐𝑡
function. Concerning collisions as defined above, the priority
of internal versus external events depends on the priority
imposed by the 𝑆𝑒𝑙𝑒𝑐𝑡 function over imminent components
(components with simultaneous scheduled internal events).
Among those imminent components, the internal event is
always preferred to the external ones for the first favored
component. For the remaining components, external events
might occur before the internal one since the output event of a
first activated component always takes over the internal event
of another imminent component. Regarding simultaneous
events, the order at which one arrives is also a result of
the priority given by 𝑆𝑒𝑙𝑒𝑐𝑡. For the same simulation time,
the external transition is sequentially activated each time an
external event arrives. Consequently, if a state depends on two
external events, the modeler must consider a transitory state.
DEVS imposed serialization solution to transition collisions
we just described is a weakness because it can be extremely
difficult for the modeler to choose the sequence of internal
events corresponding to the overall expected behavior of the
model, especially if there is a lot of mutually influencing
components. Furthermore, it prevents taking advantage of
event simultaneity by parallelizing their process. For those
reasons, Chow and Zeigler [7] introduced the parallel DEVS
(PDEVS) specification which facilitates handling both kinds
of transition collisions.

2.2. Parallel DEVS. In contrast to the classical DEVS formal-
ism, the parallel form, namely, PDEVS [7], allows themodeler
to properly handle collisions and simultaneous events at
the component level. PDEVS makes several changes to the
structures of atomic models and coupled models, as well
as the abstract simulators. A demonstration that PDEVS
preserves the closure under coupling property is given in
Chow and Zeigler [7] by constructing the resultant of a
coupled model as a well-defined PDEVS atomic model.

In order to provide a solution to transition collisions that
might occur during a simulation (cf. Section 2.1), PDEVS
suggests the following structure for an atomic model:

PDEVS = (𝑋, 𝑌, 𝑆, 𝛿int, 𝛿ext, 𝛿con, 𝜆, ta) , (10)

where 𝑋 and 𝑌 are the input and output event sets and 𝑆
is the set of sequential states as defined in the multiDEVS
specification. The pair (𝑠, 𝑒) form a total state where 𝑒
represents the time elapsed since the last transition and 𝑄 is
the set of total states:

𝑄 = {(𝑠, 𝑒) | 𝑠 ∈ 𝑆, 𝑒 ∈ R
+
0 , 0 ≤ 𝑒 ≤ ta (𝑠)} . (11)

The time advance function ta(𝑠) determines the interval
during which the current state remains valid, unless an
external event occurs:

ta : 𝑆 󳨀→ R
+
0,∞. (12)

When the time elapsed 𝑒 = ta(𝑠), the current state expires.
Before calculating its new state, the model may produce a set
of outputs for the current state through the output function:

𝜆 : 𝑆 󳨀→ 𝑌𝑏. (13)

A new state is then calculated using the internal transition
function:

𝛿int : 𝑆 󳨀→ 𝑆. (14)

However, an external event that occurs on any input port
will beget a new state calculated using the external transition
function:

𝛿ext : 𝑄 × 𝑋𝑏 󳨀→ 𝑆. (15)

In contrast to DEVS, the 𝛿ext function is given a bag of
input events instead of a single input event.Thismodification
allows the modeler to properly handle simultaneous events
we discussed in Section 2.1, since all simultaneous inputs
intended for this model are available in a single transition.

In order to handle collisions (cf. Section 2.1), PDEVS
introduces the confluent transition function 𝛿con, allowing
to explicitly manage them rather than serializing model
behavior at collision times:

𝛿con : 𝑆 × 𝑋𝑏 󳨀→ 𝑆. (16)

The modeler has complete control if any collision is to occur.
He can choose what serialization to use (either the sequential
activation of 𝛿int and of 𝛿ext or the other way around) or a
specific behavior.

Complexity 5

The DEVS and PDEVS formalisms allow describing
systems in a modular and hierarchical way as a network
of coupled components, where components are atomic or
coupled models. PDEVS defines such network as

𝑁 = (𝑋, 𝑌,𝐷, {𝑀𝑑} , {𝐼𝑑} , {𝑍𝑖,𝑗}) , (17)

where𝑋 and𝑌 are the input and output event sets,𝐷 is the set
of component references, and, for each 𝑑 ∈ 𝐷,𝑀𝑑 is a PDEVS
atomic model as defined above or another coupled model as
defined here.

Couplings between components are represented with the
help of a set 𝐼𝑑, where, for each 𝑑 ∈ 𝐷 ∪ {𝑁}, 𝐼𝑑 represent the
set of components influencing𝑑, formally defined as

𝐼𝑑 ⊆ 𝐷 ∪ {𝑁} with 𝑑 ∉ 𝐼𝑑. (18)

Along with 𝐼𝑑, couplings are given by the output to input
function 𝑍𝑖,𝑑. Thus, for each 𝑑 ∈ 𝐷 ∪ {𝑁} and for each 𝑖 ∈ 𝐼𝑑,

𝑍𝑖,𝑑 : 𝑋𝑁 󳨀→ 𝑋𝑑 if 𝑖 = 𝑁
𝑍𝑖,𝑑 : 𝑌𝑖 󳨀→ 𝑌𝑁 if 𝑑 = 𝑁
𝑍𝑖,𝑑 : 𝑌𝑖 󳨀→ 𝑋𝑑 if 𝑖 ̸= 𝑁, 𝑑 ̸= 𝑁.

(19)

The PDEVS coupled model structure is near identical to
a DEVS coupled model. Only the tie-breaker 𝑆𝑒𝑙𝑒𝑐𝑡 function
which originally allows the modeler to prioritize an atomic
model among the set of imminent components (min{ta𝑖(𝑠𝑖 |𝑖 ∈ 𝐷)}) disappears. In PDEVS semantics, the activation
of components scheduled at the same simulation time is
not serialized as in DEVS, so 𝑆𝑒𝑙𝑒𝑐𝑡 becomes unnecessary.
Instead, a two-phase approach is employed: (1) collect all
imminent components outputs and (2) perform appropriate
transitions which are internal transitions for all imminent
components, external transitions for components about to
receive inputs given the collected outputs in the first phase,
and confluent transitions for imminent components which
also receives inputs.

In addition to providing a specification which facilitates
handling transition collisions, PDEVS semantics benefits
from the intrinsic parallelism that imminent components in a
network of models offers. Each time an internal event occurs,
each phase of the simulation protocol as described above can
be easily parallelized among components, with a sync barrier
between the two phases.

2.3. CellSpace DEVS Specification. As introduced previously,
Shiginah and Zeigler [17] present a new cell space DEVS
specification for faster model development and simulation
efficiency based on their previous work [18]. This new
specification offers a significant improvement in simulation
speed by providing effective management of active cells and
a strong limitation of the number of intercell messages.

Usually, a cellular system is described using an atomic
DEVS model for each cell (Cell-DEVS [4]). To reduce
intercell messages, authors integrate all the cells in a single
atomic model called atomic CellSpace. To get there, and it is
here where our works meet, authors transform the modular

description of the system to a nonmodular version using
a restricted version of the influencer/influencee principle
described in multiDEVS (cf. Section 2.1). In contrast to
multiDEVS, they decide to protect the cell integrity and do
not allow to write the state variables of other cells (read
only). This is expressed in our formalism as a restriction
of all influenced components (𝐸𝑑) of a component 𝑑 to the
component itself. Formally, 𝐸𝑑 is restricted to the singleton
{𝑑}, 𝐸𝑑 = {𝑑}. Perfectly acceptable for their application to
cellular automata, this restriction allows authors to easily
manage state changes in cells with a classical storage of the
current state of all cells. In our case, the proposed formalism
aims to be more generic and this restriction is no longer
suitable. This will force us to integrate a new state collision
management mechanism, as presented in the next section.

3. A Parallel Multicomponent
DEVS Formalism

To our knowledge, the multicomponent approach as defined
by Zeigler et al. [2] never benefited from the refinements
provided by the PDEVS formalism concerning transition
collisions management. We propose an attempt to bring
those refinements to the multicomponent approach along
with a way to handle another kind of collisions, specific
to the nonmodular approach, which we call state collisions.
Such state collisions simply happenwhenmultiple transitions
occur at the same simulation time.They are related to the way
components interact in multicomponent systems (directly
changing state variables of other components through state
transitions).

Because components are allowed to access and write
on each other’s state, we can consider each transition as a
violation of other components autonomy in the sense that
they do not evolve having full control over their states and,
thus, their behavior. In contrast, a PDEVS atomic model
ensures autonomy through modularity because the only way
to influence it externally is through an external event. We
believe this property is essential for proper modeling of a
given system and should be taken into consideration for the
multicomponent approach.

In the multiDEVS abstract simulator [2], as we explained
in Section 2.1, all imminent components scheduled for the
next simulation time are serialized and prioritized via the
𝑆𝑒𝑙𝑒𝑐𝑡 function. As with DEVS, for the same simulation time,
the order at which components are activated may produce
a behavior that is not the intended one in the first place
and that is difficult to tackle down. As an example, consider
a multicomponent system composed of three components
𝐴, 𝐵, and 𝐶 as illustrated in Figure 1. Figure 2 illustrates a
particular scenario where the ta of components 𝐴 and 𝐵 is
equal to 0, which means an internal event is due for both of
them at the same simulation time (step (a)). It means that
the internal transition of both components (1) and (2) will
sequentially be activated following the priority given at the
multicomponent level by the 𝑆𝑒𝑙𝑒𝑐𝑡 function (step (b)). Here,
priority is first given to component 𝐴, which means it may
write directly on the state of component 𝐶. Consequences
of this particular choice may result in different possible

6 Complexity

multiDEVS formalism

State

t

State

t

State

t

State

t

(2)

(1)

(a)
(b)

(c)
CompC

multiComp

CompB

CompA

S1 S2

Select(CompA, CompB) = CompA

ＣＨＮ(q！1, q＂1) = (q！2！
, q＂2！ , q＃2！

)

S！1 S！2

ＣＨＮ(q！1, q＂1) = (q＂2＂ , q＃2＂
)

S＂1 S＂2

S＃1 S＃2

q＃2！

ta(S！1) = 0

ta(S＂1) = 0

Figure 2: Illustration of state collision serialization using multi-
DEVS.

scenarios from here. The state change made in 𝐶 could result
in another internal event due for the same simulation time
(in that case the two imminent components remaining are
𝐵 and 𝐶). Another possibility is that 𝐵 remains the only
imminent component and its internal transition is finally
activated (which also may write on the state of 𝐶 and could
lead 𝐵 to overwrite changes made by 𝐴 on 𝐶 state). In our
opinion, there is two kinds of difficulties in modeling such
system: the behavior becomes quickly difficult to anticipate
and direct changes on components states are conceptually
arguable.

Recall semantics of PDEVS, which carries outputs of all
imminent components, and then all appropriate transitions
for the same simulation time. In order to apply PDEVS
semantics to the multicomponent approach, we have to apply
the same solutions concerning collisions and simultaneous
events as long as a solution to state collisions exists. Simul-
taneous transitions in a multicomponent system may imply
multiple states generated for a given component at the same
simulation time. Rather than serializing those states, we take
the same path as PDEVS that is leaving the decision to the
modeler.This way, one can decide which state change to apply
in a particular order or how to compose those multiple states
into a new one. Not only does it allow solving state collisions
but also it provides a way to introduce component autonomy
in nonmodular systems: the component is fully responsible
for its state at any moment.

In this section, we present our proposal of a formalmulti-
component approach using PDEVS semantics as introduced
above, called multiPDEVS. We also present the construction
of equivalence of multiPDEVS with a PDEVS atomic model
and, finally, the abstract simulator following PDEVS protocol
is given.

3.1. multiPDEVS. In order to propose a parallel multicompo-
nent system specification, we argued in the above discussion
that we need to apply PDEVS semantics to the nonmodular
approach alongside a way to manage state collisions.

In the multicomponent DEVS specification, components
are not provided with their own I/O interface. Still, they
remain able to communicatewith othermodular components
via the interface of their parent, themultiPDEVS itself. When
an external event occurs at the multiPDEVS level, all com-
ponents that defined an external transition function receive
this event. Similarly, all components that defined an output
function are able to produce outputs at themultiPDEVS level.
To be equivalentwith PDEVS,we introduce in the component
structure the set of bags of inputs 𝑋𝑏 over elements in 𝑋
allowing the modeler to handle simultaneous events and also
introduce the confluent transition function 𝛿con, allowing
the modeler to explicitly define the collision behavior. To
manage state collisions, we propose the reaction transition
function, 𝛿reac, which gives the modeler a chance to explicitly
define state collisions behavior.That implies modifying other
state transition functions, so that 𝛿int, 𝛿ext, and 𝛿con do not
give new states to influencees but suggest them instead. The
reaction transition is given as an argument a bag whose
elements include all states suggested by components able to
influence this particular component for the same simulation
time. Each suggested state is accompanied with the identity
of the component that produced it. We note 𝐾𝑏 as the set of
bag of proposed partial states over elements in𝐾.

The structure of the multicomponent parallel DEVS is

multiPDEVS = (𝑋, 𝑌,𝐷, {𝑀𝑑}) , (20)

where 𝑋, 𝑌, and 𝐷 are defined as in multiDEVS. Note that
the 𝑆𝑒𝑙𝑒𝑐𝑡 function, as in PDEVS, disappears from the mul-
tiPDEVS definition. It becomes useless since all imminent
components are handled simultaneously rather than being
serialized.

For each 𝑑 ∈ 𝐷, a component 𝑀𝑑 is defined by the
structure

𝑀𝑑 = (𝑆𝑑, 𝐼𝑑, 𝐸𝑑, 𝛿ext,𝑑, 𝛿int,𝑑, 𝛿con,𝑑, 𝛿reac,𝑑, 𝜆𝑑, ta𝑑) , (21)

where 𝑆𝑑 is the set of sequential states of 𝑑,𝑄𝑑 = {(𝑠, 𝑒𝑑) | 𝑠 ∈𝑆𝑑, 𝑒𝑑 ∈ R+0 , 0 ≤ 𝑒𝑑 ≤ ta𝑑(𝑠𝑑)} is the set of total states with 𝑒
the time elapsed since the last transition, 𝐼𝑑 ⊆ 𝐷 is the set of
influencing components, and 𝐸𝑑 ⊆ 𝐷 is the set of influenced
components. Components schedule the time of their next
internal event based on total states of their influencers using
the time advance function:

ta𝑑 : ×
𝑖∈𝐼𝑑

𝑄𝑖 󳨀→ R
+
0 ∪ {∞} . (22)

When 𝑒𝑑 = ta𝑑(𝑠), the component may generate a set of
outputs for the multiPDEVS output interface via the output
function (which can be left undefined):

𝜆𝑑 : ×
𝑖∈𝐼𝑑

𝑄𝑖 󳨀→ 𝑌𝑏. (23)

Then, the internal event being due, its internal transition
function is activated. It takes the total state set of the

Complexity 7

influencers and maps them into suggested states for the set
of influencees:

𝛿int,𝑑 : ×
𝑖∈𝐼𝑑

𝑄𝑖 󳨀→ ×
𝑗∈𝐸𝑑

𝑆𝑗. (24)

If one or several new states are produced through state
transitions of components able to influence 𝑑, then the 𝑑
reaction transition function is activated in order to let the
modeler explicitly define the state collision behavior. For
instance, if two components each suggest a new state for
component𝑑where a particular variable is incremented, then
𝑑 should be able to produce a new state where the variable
value depends on the two suggested states and the current
state of 𝑑. To allow this, the function is given the bag of
suggested states 𝐾𝑏𝑑 and the current state of the component:

𝛿reac,𝑑 : 𝐾𝑏𝑑 × 𝑄𝑑 󳨀→ 𝑆𝑑, (25)

where

𝐾𝑑 = {(𝑠𝑑, 𝑐) | 𝑠𝑑 ∈ 𝑆𝑑, 𝑑 ∈ 𝐸𝑐} . (26)

The tuple (𝑠𝑑, 𝑐) is a suggested state for 𝑑 produced by
component 𝑐, where 𝑑 ∈ 𝐸𝑐, and the set of bag of suggested
states for 𝑑 over elements in𝐾𝑑 is noted𝐾𝑏𝑑.

This function takes the bag of states produced by other
components including 𝑑 in their set of influencees alongside
its current total state in order to produce its new valid total
state. The reason we use only𝑄𝑑 instead of the cross-product
of all influencers states (×

𝑖∈𝐼𝑑
𝑄𝑖) is to ensure coherence of states.

If we allow this, we have to ensure that all reads on 𝐼𝑑−{𝑑} are
performed on current states and not on new ones produced
by their own 𝛿reac function, which can happen if proposed
states have been produced at the same simulation time by
components for components included in 𝐼𝑑 − {𝑑}.

When external events occur at the multiPDEVS level,
its components may receive them if they define their corre-
sponding external transition function:

𝛿ext,𝑑 : ×
𝑖∈𝐼𝑑

𝑄𝑖 × 𝑋𝑏 󳨀→ ×
𝑗∈𝐸𝑑

𝑆𝑗. (27)

As in PDEVS (in contrast toDEVS andmultiDEVS), 𝛿ext,𝑑
is given a bag of inputs that contains all simultaneous external
events instead of a single input event. If an internal event
is due simultaneously with one or several external events, a
collision is to be managed.The confluent transition function,
originally introduced in PDEVS, allows explicitly managing
the collision behavior:

𝛿con,𝑑 : ×
𝑖∈𝐼𝑑

𝑄𝑖 × 𝑋𝑏 󳨀→ ×
𝑗∈𝐸𝑑

𝑆𝑗. (28)

Note that, similarly to the internal transition function,
𝛿ext,𝑑 and 𝛿con,𝑑 generate a set of proposed states (𝑆) for the
influencees instead of directly updating their states.

The semantics of multiPDEVS are illustrated in Figure 3
using the same scenario we presented in Section 3 with
Figure 2. Components 𝐴 and 𝐵 are imminent. Both of them
perform their internal state transition ((1) and (2)) generating

simultaneously new states for component 𝐶, which is a state
collision (step (a)).𝐶 is given complete control over its future
state via the 𝛿reac function, whose behavior may consist in
choosing what state to apply or composing a new one (step
(b)).

AmultiPDEVS works in the following way. As in PDEVS,
the activation of imminent components is done simultane-
ously using a two-phase approach. In the first phase, the out-
puts of all components that defined a 𝜆 function are collected.
We divide the second phase in three other microsteps: in the
first microstep, appropriate state transitions are performed
and their outputs (the state bags) are temporarily saved
for the second microstep. For components that defined
𝛿ext, external transitions are activated when external events
occur on the input interface of the multiPDEVS. For all
imminent components, when there is also inputs available at
the multiPDEVS level, confluent transitions are activated for
componentswhodefined 𝛿ext; otherwise their 𝛿int is activated.
If there are no inputs, internal transitions are activated for
all imminent components. The second microstep consists of
activating the reaction transition function for all components
that have a bag of states generated during the first microstep.
Finally, the third microstep consists in calculating the time
of next events of each influenced component using the time
advance function. Such semantics can be integrated in a
PDEVS atomic model, which allows integrating multiPDEVS
in a larger PDEVS simulation.

3.2. Construction of Equivalence with PDEVS. In this section,
we give proof of multiPDEVS equivalence with PDEVS by
constructing the multiPDEVS resultant as a well-defined
atomic PDEVS.This construction ensures that amultiPDEVS
model may be coupled with other PDEVS models within a
coupled model.

A multiPDEVS defines a PDEVS as follows.
Given a multiPDEVS as defined earlier, we associate

PDEVS = (𝑋, 𝑌, 𝑆, 𝛿ext, 𝛿int, 𝛿con, 𝜆, ta) , (29)

where 𝑆 = ×
𝑑∈𝐷

𝑄𝑑.
We define

ta (𝑠) = min {𝜎𝑑 | 𝑑 ∈ 𝐷} (30)

with 𝜎𝑑 = ta𝑑(. . . , (𝑠𝑖, 𝑒𝑖), . . .) − 𝑒𝑑 as the remaining time until
the next scheduled event in 𝑑.

We define the set of imminent components as

IMM (𝑠) = {𝑑♯ | 𝑑♯ ∈ 𝐷, 𝜎𝑑♯ = ta (𝑠)} . (31)

We define, for each 𝑑 ∈ 𝐷, 𝑆𝑑 = {𝑠𝑑 | 𝑑 ∈ 𝐸𝑑♯}, the set
of suggested states produced by 𝑑♯ and 𝐾𝑑 = {(𝑠𝑑, 𝑑♯) | 𝑑♯ ∈
IMM(𝑠), 𝑑 ∈ 𝐸𝑑♯} and the set of suggested states and their
producers for each influenced component 𝑑.

Given that 𝑑♯ ∈ IMM(𝑠) and
𝛿int (𝑞1, 𝑞2, . . . , 𝑞𝑛) = (𝑞󸀠1, 𝑞󸀠2, . . . , 𝑞󸀠𝑛) (32)

8 Complexity

multiPDEVS formalism

CompC

multiComp

CompB

CompA

State

t

State

t
State

t

State

t

State collision detected

(2)

(1)

(a) (b)

S1 S2

S！1 S！2

S＂1 S＂2

S＃1 S＃2

ＣＨＮ(q！1, q＂1) = (s！2！
, s＂2！ , s＃2！

)

ＣＨＮ(q！1, q＂1) = (s＂2＂ , s＃2＂
)

Ｌ？；＝((s＃2！
, ＃ＩＧＪ！) , (s＃2＂

, ＃ＩＧＪ＂) , q＃1) = s＃2

ta(S！1) = 0

ta(S＂1) = 0

Figure 3: Illustration of state collision management using multiPDEVS.

with

(𝑠󸀠𝑗, 𝑒󸀠𝑗)

= {
{{
(𝑠𝑗, 𝑒𝑗 + ta (𝑠)) if 𝑘𝑏𝑗 = ⌀
(𝛿reac,𝑗 (𝑘𝑏𝑗 , (𝑠𝑗, 𝑒𝑗 + ta (𝑠))) , 0) otherwise,

(33)

where

𝑘𝑏𝑗 = {(𝛿int,𝑑♯ (. . . , (𝑠𝑖, 𝑒𝑖 + ta (𝑠)) , . . .) ∙ 𝑗, 𝑑♯) | 𝑑♯
∈ IMM (𝑠) , 𝑗 ∈ 𝐸𝑑♯ , 𝑖 ∈ 𝐼𝑗} ,

(34)

the resultant internal transition function contains two
kinds of component transitions. For components influenced
by imminent ones, 𝛿reac,𝑗(𝑘𝑏𝑗 , (𝑠𝑗, 𝑒𝑗)) function is called. The
state transition function 𝛿int,𝑑♯ of each imminent 𝑑♯ is
executed, where (. . . , (𝑠𝑖, 𝑒𝑖 + ta(𝑠)), . . .) is the state vector of
the influencing components 𝑖 ∈ 𝐼𝑑♯ , which produces a set of
proposed states for all influenced components 𝑗 ∈ 𝐸𝑑♯ . In
order to fill the incoming bag of proposed states (𝑘𝑏𝑗) of each𝑗 ∈ 𝐸𝑑♯ , each suggested state produced for 𝑗 will result in a
tuple composed of the state and its corresponding producer.
For components having their bag of proposed states empty
(𝑘𝑏𝑗 = ⌀), the elapsed time is simply updated.

The output of the system is defined by

𝜆 (𝑠) = {𝜆𝑑♯ (. . . , (𝑠𝑖, 𝑒𝑖 + ta (𝑠)) , . . .) | 𝑑♯
∈ IMM (𝑠) , 𝑖 ∈ 𝐼𝑑♯} .

(35)

The external transition function 𝛿ext upon occurrence of
an input bag of events𝑥𝑏 is defined by the cross-product of the
external state transition functions of all components 𝑑 ∈ 𝐷.
We define the overall external transition function by

𝛿ext ((𝑞1, 𝑞2, . . . , 𝑞𝑛) , 𝑒, 𝑥𝑏) = (𝑞󸀠1, 𝑞󸀠2, . . . , 𝑞󸀠𝑛) (36)

with

(𝑠󸀠𝑗, 𝑒󸀠𝑗) = {
{{
(𝑠𝑗, 𝑒𝑗 + 𝑒) if 𝑘𝑏𝑗 = ⌀
(𝛿reac,𝑗 (𝑘𝑏𝑗 , (𝑠𝑗, 𝑒𝑗 + 𝑒)) , 0) otherwise, (37)

where
𝑘𝑏𝑗 = {(𝛿ext,𝑑 ((. . . , (𝑠𝑖, 𝑒𝑖 + 𝑒) , . . .) , 𝑥𝑏) ∙ 𝑗, 𝑑) | 𝑑

∈ 𝐷, 𝑖 ∈ 𝐼𝑑, 𝑗 ∈ 𝐸𝑑, ∃𝛿ext,𝑑} .
(38)

With a similar mechanism, the incoming bag of proposed
states (𝑘𝑏𝑗) of each influenced component is built using 𝛿ext,𝑑
function. As previously mentioned, in other components
where the bag of proposed states is an empty set (𝑘𝑏𝑗 = ⌀),
the elapsed time is simply updated.

The confluent transition function 𝛿con is defined by

𝛿con ((𝑞1, 𝑞2, . . . , 𝑞𝑛) , 𝑥𝑏) = (𝑞󸀠1, 𝑞󸀠2, . . . , 𝑞󸀠𝑛) (39)

with
(𝑠󸀠𝑗, 𝑒󸀠𝑗)

= {
{{
(𝑠𝑗, 𝑒𝑗 + ta (𝑠)) if 𝑘𝑏𝑗 = ⌀
(𝛿reac,𝑗 (𝑘𝑏𝑗 , (𝑠𝑗, 𝑒𝑗 + ta (𝑠))) , 0) otherwise,

(40)

Complexity 9

PDEVS root coordinator

(i, t) (@, t) (d, t)

PDEVS coordinator

(i, t) (x, t) (@, t) (d, t) (y, t)

Simulateur
ou coordinateur

PDEVS simulator or coordinator/
multiPDEVS simulator

(∗, t)

(∗, t)

Figure 4: multiPDEVS abstract simulator integrated within PDEVS simulation protocol.

where

𝑘𝑏𝑗 =
{{{{
{{{{{

{(𝛿int,𝑑 (. . . , (𝑠𝑖, 𝑒𝑖 + 𝑡𝑎 (𝑠)) , . . .) ∙ 𝑗, 𝑑) | 𝑑 ∈ IMM (𝑠) , 𝑖 ∈ 𝐼𝑑, 𝑗 ∈ 𝐸𝑑} if ∄𝛿ext,𝑑, 𝑑 ∈ IMM (𝑠)
{(𝛿con,𝑑 ((. . . , (𝑠𝑖, 𝑒𝑖 + 𝑡𝑎 (𝑠)) , . . .) , 𝑥𝑏) ∙ 𝑗, 𝑑) | 𝑑 ∈ IMM (𝑠) , 𝑖 ∈ 𝐼𝑑, 𝑗 ∈ 𝐸𝑑} if ∃𝛿ext,𝑑, 𝑑 ∈ IMM (𝑠)
{(𝛿ext,𝑑 ((. . . , (𝑠𝑖, 𝑒𝑖 + 𝑡𝑎 (𝑠)) , . . .) , 𝑥𝑏) ∙ 𝑗, 𝑑) | 𝑑 ∉ IMM (𝑠) , 𝑖 ∈ 𝐼𝑑, 𝑗 ∈ 𝐸𝑑} if ∃𝛿ext,𝑑, 𝑑 ∉ IMM (𝑠) .

(41)

Finally, the incoming bag of proposed states (𝑘𝑏𝑗) dedi-
cated to the resultant confluent transition function is com-
posed using three different contributions: from imminent
components where 𝛿ext,𝑑 function is undefined (influence
comes from 𝛿int,𝑑), from imminent components where a 𝛿ext,𝑑
function is defined (influence comes from 𝛿con,𝑑), and finally
from nonimminent components where a 𝛿ext,𝑑 function is
defined (influence comes from 𝛿ext,𝑑).

Note that such proof ensures that multiPDEVS models
can be transformed to atomic PDEVS models and used as-is
with a PDEVS simulator. A preferable solution is to avoid any
transformation of the multiPDEVS model, using the DEVS
bus principle to simulate themultiPDEVS in its original form,
which we detail in the following section.

3.3. multiPDEVS Abstract Simulator. Among the benefits of
DEVS formalisms, model/simulator distinction is one of the
key elements. This leads to a clear separation of concerns. It
helps to dissociate what is related to the model, from what is
related to how it is executed.This makes DEVSmodels easier
to reuse and exchange [19].

In order to integrate the multiPDEVS approach into a
PDEVS-based simulation environment, we use the DEVS bus
concept by wrapping multiPDEVS into a PDEVS form along
with its own dedicated simulator. This allows multiPDEVS
models to be modularly coupled with other models and
executed through a PDEVS coordinator. The multiPDEVS
formalism presented in Section 3.1 is compatible as-is with
a PDEVS since we provide an I/O interface (ports at the
multiPDEVS level) and associated functions (𝛿ext, 𝛿con, and𝜆 at the component level). The simulator we define here
sticks to the simulation mechanism of PDEVS by following
its communication protocol as defined in Chow et al. [20] as
illustrated in Figure 4.

Abstract simulators, or simulation processors, associated
with PDEVS models come in two forms, simulator and coor-
dinator. While a simulator role is to execute the atomicmodel
functions, a coordinator role is to carry out and manage
output events of its children as long as their scheduling.

We intentionally omit the root coordinator, but we note
that it oversees the whole simulation process and initializes
the simulation time (𝑡) with the min tn of its children.

10 Complexity

(0) variablesmultipdevs-simulator
parent
tl
tn
multiPDEVS = (𝑋, 𝑌,𝐷, {𝑀𝑑})
with components𝑀𝑑 = (𝑆𝑑, 𝐼𝑑, 𝐸𝑑, 𝛿ext,𝑑, 𝛿int,𝑑, 𝛿con,𝑑, 𝛿reac,𝑑, 𝜆𝑑, ta𝑑)

with states 𝑞𝑑 = (𝑠𝑑, 𝑒𝑑)
a bag of states 𝑘𝑏𝑑
time of last event tl𝑑 and time of next event tn𝑑 and local outputs 𝑦𝑏𝑑(10) event-list = list of components
𝑑 ∈ 𝐷 sorted by tn𝑑

end variables
when receive 𝑖-message (𝑖, 𝑡) at time 𝑡

for each component 𝑑 ∈ 𝐷
tl𝑑 ← 𝑡 − 𝑒𝑑
tn𝑑 ← tl𝑑 + ta𝑑((. . . , 𝑞𝑖, . . .))

end for
for each component 𝑑 ∈ 𝐷
sort 𝑑 into event-list using tn𝑑(20) end for

tl ← max{tl𝑑 | 𝑑 ∈ 𝐷}
tn ← min{tn𝑑 | 𝑑 ∈ 𝐷}

end when

Listing 1: Variable declaration and initialization procedure of the multiPDEVS abstract simulator.

The simulator we present in the following assumes both
simulator and coordinator roles since it realizes its own
event handling for the model components. Listing 1 gives
the variables declaration block along with the initialization
procedure of all components (𝑖message).

As shown in Listing 1, we keep track of the time of last
event tl and time of next event tn for the multiPDEVS but
also for all its components (tn𝑑 and tl𝑑). Upon receipt of an
initialization message (𝑖, 𝑡), last and next event times tl𝑑 and
tn𝑑 of each component are set before sorting them into the
event list. Then, the global tl and tn of the multiPDEVS are,
respectively, set to themaximum tl𝑑 and to theminimum tn𝑑.

Since multiPDEVS allows for external and output events,
we give the procedures associated with the corresponding
messages in Listing 2. 𝑥-messages come from the parent
coordinator and carry inputs for the multiPDEVS, and @-
messages also come from the parent coordinator to collect
outputs of the multiPDEVS.

Upon receipt of an external input message (𝑥, 𝑡), the
simulator does nothing more than filling the input bag, as a
PDEVS simulator does. Upon arrival of a collect message (@,
𝑡), the simulator collects all outputs from components that
defined the output function 𝜆𝑑 and sends them back to the
parent coordinator.

Finally, the procedure associated with the receipt of an
internal message (∗) is given in Listing 3.

The procedure associated with the receipt of an internal
event (∗, 𝑡) consists in three sequential steps (Listing 3). The
first step (lines 45–69) activates appropriate state transitions
for components of themultiPDEVS depending on their tn𝑑, if
there is incoming input from the overall system and if 𝛿ext,𝑑 is

when receive 𝑥-message (𝑥, 𝑡) at
time 𝑡 with input value 𝑥𝑏𝑒

add sub-bag 𝑥𝑏𝑒 to the bag 𝑥𝑏
end when
when receive @-message (@, 𝑡) at

time 𝑡
(30) if 𝑡 ̸= tn then

error: bad synchronization
end if
for each imminent component 𝑑

with tn𝑑 = tn and defined 𝜆𝑑𝑦𝑏𝑑 ← 𝜆𝑑(. . . , (𝑠𝑖, 𝑡 − tl𝑖), . . .)
add sub-bag 𝑦𝑏𝑑 to the output bag𝑦𝑏

end for
send (𝑦, 𝑡) to parent coordinator

with output bag 𝑦𝑏
end when

Listing 2: Output (@-message) and input (𝑥-message) procedures
of the multiPDEVS abstract simulator.

defined.When the input bag 𝑥𝑏 is empty, we employ the event
list and retrieve the imminent components with tn𝑑♯ = 𝑡.

The state transition function 𝛿int,𝑑♯(. . . , (𝑠𝑖, 𝑡 − tl𝑖), . . .) of
each imminent 𝑑♯ is executed (where (. . . , (𝑠𝑖, 𝑡 − tl𝑖), . . .)
is the state vector of the influencing components 𝑖 ∈ 𝐼𝑑♯)
and produces a set of proposed states (ps) for all influenced

Complexity 11

(40) when receive ∗-message (∗, 𝑡) at
time 𝑡
if not (tl ≤ 𝑡 ≤ tn) then
error: bad synchronization

end if
if 𝑡 = tn and 𝑥𝑏 = ⌀ then
for each imminent component 𝑑♯

with tn𝑑♯ = tn
ps← 𝛿int,𝑑♯ (. . . , (𝑠𝑖, 𝑡 − tl𝑖), . . .)
for each 𝑠𝑗 in ps where 𝑗 ∈ 𝐸𝑑♯
add (𝑠𝑗, 𝑑♯) to the bag of

suggested states 𝑘𝑏𝑗(50) end for
end for

else if 𝑥𝑏 ̸= ⌀ then
for each component 𝑑 ∈ 𝐷

if 𝑡 = tn and tn𝑑 = tn then
if defined 𝛿ext,𝑑 then
ps← 𝛿con,𝑑((. . . , (𝑠𝑖, 𝑡 − tl𝑖), . . .), 𝑥𝑏)
else
ps← 𝛿int,𝑑(. . . , (𝑠𝑖, 𝑡 − tl𝑖), . . .)

end if
(60) else

if defined 𝛿ext,𝑑 then
ps← 𝛿ext,𝑑((. . . , (𝑠𝑖, 𝑡 − tl𝑖), . . .), 𝑥𝑏)

end if
end if
for each 𝑠𝑗 in ps where 𝑗 ∈ 𝐸𝑑
add (𝑠𝑗, 𝑑) to the bag of

suggested states 𝑘𝑏𝑗
end for

end for
end if

(70)
for each 𝑘𝑏𝑗 where 𝑗 ∈ 𝐷 and 𝑘𝑏𝑗 ̸= ⌀
𝑞𝑗 ← (𝛿reac,𝑗(𝑘𝑏𝑗 , (𝑠𝑗, 𝑡 − tl𝑗)), 0)
tl𝑗 ← 𝑡

end for
for each 𝑗 ∈ 𝐷 where 𝑘𝑏𝑗 ̸= ⌀
tn𝑗 ← tl𝑗 + ta𝑗(. . . , (𝑠𝑖, 𝑡 − tl𝑖), . . .)
reschedule 𝑗 into event-list

end for
(80) tl ← 𝑡

tn ← min{tn𝑑 | 𝑑 ∈ 𝐷}
end when

Listing 3: Internal transition handling procedure of the multi-
PDEVS abstract simulator.

components 𝑗 ∈ 𝐸𝑑♯ . The incoming bag of proposed states
is filled by adding to each suggested state the identity of its
producer.

When the input bag 𝑥𝑏 is not empty and 𝑡 = tn, the
external transition function 𝛿ext,𝑑 is applied for all compo-
nents 𝑑 ∈ 𝐷 with tn𝑑 > tn that defined 𝛿ext,𝑑. For each
imminent component (tn𝑑 = tn = 𝑡), we activate the
confluent transition function 𝛿con,𝑑 if the external transition

function 𝛿ext,𝑑 is defined; otherwise we activate the internal
transition function 𝛿int,𝑑. Note that all three state transition
functions all produce an outgoing set of proposed states for all
its influenced components which is then translated in order
to fill their incoming bag.

The second step (lines 71–74) consists in activating the
reaction transition function for all components having a
nonempty bag of incoming proposed states generated by
imminent components during the first step. Each component
being influenced will produce a new state given all proposed
states and its current total state.

The third step (lines 75–81) role is to update the time of
next events for each influenced component. As a result of the
second step, which update states of influenced components,
a chance is given to those components to update their time
advance values. This requires the tn𝑗 to be updated as well as
a rescheduling of the component in the event list. Finally, the
global event times tl and tn are updated appropriately.

Note that the abstract simulator we present in this section
is fully sequential. Another version that parallelizes process-
ing of components during each microstep of the ∗-message
procedure with a sync barrier between the two steps can be
considered. However, locks associated with influencers states
of a given component should be owned by this component
each time it is susceptible of reading them.This is a potential
source of deadlocks that we do not explore in this paper.
Similarly, a distributed version may be considered. Same
comments apply with an additional constraint: a mechanism
should be provided to allow a component to access its
influencers states thatmay be located on a different node (e.g.,
through the proxy design pattern).

In discrete event simulation, the dynamics of a model can
be represented by different “world views,” namely, the event
scheduling world view, the activity scanning world view, the
three phase approach world view, and the process interaction
world view. The abstract simulator we present here belongs
to the first approach, where components preschedule their
time of execution in the future via the ta𝑑 function. Zeigler
et al. [2] do provide two abstract simulators for the original
multiDEVS formalism, one for the event scheduling world
view, and another for both the activity scanning and the
process interaction world views. For multiPDEVS, those
alternative abstract simulators can be considered for further
research but we do not present them in this paper.

This last subsection, which defines the abstract simulator,
provides behavioral semantics to the structural definition of
multiPDEVS given in Section 3.1. Added to the proof that
a multiPDEVS may exist within a larger PDEVS simulation
(cf. Section 3.2), all necessary information is given in order
to realize a proper implementation of the multiPDEVS
formalism.

4. Case Study: Application to
Fire Spread Modeling

Based on a fire spreading model [8], this section proposes
to illustrate the modeling process using a multicomponent
approach. First subsection introduces the semiphysical fire
spread model. Then, second subsection presents the related

12 Complexity

Table 1: Nomenclature of fire spread model parameters [8].

Parameter Description
𝑇𝑎 (27∘C) Ambient temperature
𝑇ig (300∘C) Ignition temperature
𝑇 (∘C) Temperature
𝐾 (m2 s−1) Thermal diffusivity
𝑄 (m2 ∘Ckg−1) Reduced combustion enthalpy

Δ Laplacian operator in two-dimensional
Cartesian coordinates

𝛼 (s−1) Combustion time constant
𝜎V (kgm−2) Vegetable surface mass

𝜎V0 (kgm−2) Initial vegetable surface mass (before
combustion)

𝑡ig (s) Ignition time

multiPDEVS specification. Finally, last subsection gives com-
parison with a modular formalism, namely, Cell-DEVS [4].

4.1. Semiphysical Fire Spread Model. Among the variety of
mathematical models that grasps fire propagation, we focus
on a semiphysical model [8]. According to Weber [21], fire
spreadmodels can be classified in three categories depending
on their properties: statistical models, which do not include
any physical phenomena; semiempirical models, which con-
sider the principle of energy conservation; and, finally, physi-
calmodels, being themost detailedmodels.Themodel we use
is a combination of the last two categories and is described as a
nonstationary two-dimensional semiphysicalmodel [8]. It is a
semiempirical model transposed to integrate two dimensions
and amodel which considers physical properties such as heat
transfer for propagation.

Themodel is spatialized through elementary cells holding
plant mass, where each cell is described by the following
partial differential equation:

𝛿𝑇
𝛿𝑡 = −𝑘 (𝑇 − 𝑇𝑎) + 𝐾Δ𝑇 − 𝑄𝛿𝜎V

𝛿𝑡 , (42)

where

𝜎V = {
{{
𝜎V0 if 𝑇 < 𝑇ig
𝜎V0𝑒−𝛼(𝑡−𝑡ig) if 𝑇 ≥ 𝑇ig,

(43)

𝑇𝑥,𝑦 = 𝑇𝑎 at the boundary (44)

𝑇𝑥,𝑦 ≥ 𝑇ig for the burning cells (45)

𝑇𝑥,𝑦 = 𝑇𝑎 for the non-burning cells at 𝑡 = 0. (46)

Table 1 gives the nomenclature of model parameters. The
model parameters are identified by Balbi et al. [8] from
experimental data of temperature versus time.

This particular model has been discretized in Muzy et al.
[22] using the Finite Difference Method (FDM), which leads
to the following algebraic equation:

𝑇𝑘+1𝑖,𝑗 = 𝑎 (𝑇𝑘𝑖−1,𝑗 + 𝑇𝑘𝑖+1,𝑗) + 𝑏 (𝑇𝑘𝑖,𝑗−1 + 𝑇𝑘𝑖,𝑗+1)

+ 𝑐𝑄(𝛿𝜎V𝛿𝑡)
𝑘

𝑖,𝑗

+ 𝑑𝑇𝑘𝑖,𝑗,
(47)

where 𝑇𝑖,𝑗 represent the cell temperature and 𝑎, 𝑏, 𝑐, and
𝑑 are coefficients that depend on the time step and mesh
size considered. For our example, as in Muzy et al. [22], we
consider a discrete time step of 0.01 s and uniform cells of
1 cm2.

Such discretized model is well and easily expressed using
a multicomponent approach since a cell can be represented
by a component and its neighbors can be represented using
the set of influencing components 𝐼𝑑 and the set of influenced
components 𝐸𝑑. To illustrate how such system can be mod-
eled using multiPDEVS, we propose a detailed specification
in the next subsection.

4.2. multiPDEVS Specification. In this subsection, we pro-
pose a specification of the semiphysical fire spread model
using multiPDEVS to represent a cellular automaton, where
each cell holds its temperature. When the automaton evolves,
each cell updates its temperature according to ones of its
Moore neighborhood. The multiPDEVS model represents
the whole surface, which is composed of homogeneous
components with identical behavior influencing each other
uniformly.

The multiPDEVS can be specified as follows:

multiPDEVS = (𝑋, 𝑌,𝐷, {𝑀𝑥,𝑦}) . (48)

𝑋 and𝑌 are empty sets since there is no input or output to the
model. 𝐷 = {(𝑥, 𝑦) | 𝑥 ∈ 𝐼, 𝑦 ∈ 𝐼} is the index set composed
of two-dimensional coordinates. For each (𝑥, 𝑦) ∈ 𝐷, the
component, which represents a cell, is specified as

𝑀𝑥,𝑦 = (𝑆𝑥,𝑦, 𝐼𝑥,𝑦, 𝐸𝑥,𝑦, 𝛿int,𝑥,𝑦, 𝛿reac,𝑥,𝑦, ta𝑥,𝑦) . (49)

The state 𝑆𝑥,𝑦 of a component cell is represented by the
following quintuple:

𝑆𝑥,𝑦 = {(phase, 𝑇, 𝑇prev, 𝑇neigh, 𝑡ig)} , (50)

where phase ∈ {inactive,warming, burning}, 𝑇 ∈ R+0 is the
current temperature of the cell, 𝑇prev ∈ R+0 is the previous
temperature of the cell, 𝑇neigh = (. . . , 𝑇𝑖, . . .) with 𝑖 ∈ 𝐸𝑖 being
the temperature vector of all neighbors, and, finally, 𝑡ig ∈ R+0
holds the simulation time at which the cell is ignited.

The set of influencers is defined by the Moore neigh-
borhood and the cell itself: 𝐼𝑥,𝑦 = {(𝑥, 𝑦), (𝑥, 𝑦 + 1), (𝑥 +
1, 𝑦), (𝑥, 𝑦−1), (𝑥−1, 𝑦), (𝑥+1, 𝑦+1), (𝑥+1, 𝑦−1), (𝑥−1, 𝑦+
1), (𝑥 − 1, 𝑦 − 1)}. Reciprocally, a cell is able to influence itself
and its neighbors. Thus, the set of influencees 𝐸𝑥,𝑦 = 𝐼𝑥,𝑦.𝛿ext,𝑥,𝑦, 𝛿con,𝑥,𝑦, or 𝜆𝑥,𝑦 are not specified since there is no
overall input or overall output.

Complexity 13

Basically, for a given cell (𝑥, 𝑦), when 𝑇𝑥,𝑦 − 𝑇prev,𝑥,𝑦
reaches a threshold, (𝑥, 𝑦) updates for all its influencees
(𝑖, 𝑗) ∈ 𝐸𝑥,𝑦 its corresponding temperature in the temperature
vector 𝑇neigh,(𝑖,𝑗) with its current temperature 𝑇𝑥,𝑦. At each
step, the cell (𝑥, 𝑦) also produces a new state for itself ((𝑥, 𝑦) ∈
𝐸𝑑). It means that each cell may be given nine potential
states to its 𝛿reac,𝑥,𝑦 function (eight proposed states from its
neighbors plus one suggested for itself). In this particular
case, the reaction transition function composes a new state
using primarily the proposed one produced by itself, but
constructs the 𝑇neigh temperature vector using proposed
states from other components.

Note that in order to simplify transitions functions
specification of the fire spread model, we will use the “dot-
notation,” conventionally used in object-oriented program-
ming languages (e.g., the element 𝑞𝑥 ⋅𝑇must be understood as
the temperature element of the global state 𝑞𝑥 of component
𝑥).

Since each cell holds a vector of nearby temperatures that
is updated by neighbors themselves, it is possible to keep
some cells inactive; that is, inactive cells (phase = inactive,
𝑇𝑥,𝑦 = 𝑇𝑎). This results in the following time advance
function:

ta𝑥,𝑦 (𝑠) = {
{{
∞ if 𝑠 ⋅ phase = inactive

0.01 otherwise.
(51)

Given that the definitions of 𝛿int,𝑥,𝑦 and 𝛿reac,𝑥,𝑦 are
much less concise to write, we specify these functions in the
pseudocode shown in Listing 4.

The 𝛿reac,𝑥,𝑦 function defined in Listing 4 allows a (𝑥, 𝑦)
cell to decide its new state given its current state 𝑞𝑥,𝑦 and all
suggested ones in 𝑘𝑏𝑥,𝑦. When iterating over suggested states
(line 6), if a suggested state was produced by (𝑥, 𝑦) for itself
through the 𝛿int,𝑥,𝑦 function ((𝑖, 𝑗) = (𝑥, 𝑦), line 7), the next
state is primarily constructed based on this suggested state. If
there is no suggested state produced by (𝑥, 𝑦) (cell is inactive),
the state is primarily based on the current one (line 4). For
other producers of suggested states ((𝑖, 𝑗) ̸= (𝑥, 𝑦)), the cell
(𝑥, 𝑦) is only interested in the temperature vector that was
updated by the producer, so it constructs its new temperature
vector according to all these contributions (line 10). If the cell
is currently inactive while receiving nearby temperatures, the
cell will pass in the warming phase (lines 11–13).

The 𝛿int,𝑥,𝑦 function suggests new states for all its influ-
encees. Two parts can be identified. The first (lines 21–27)
corresponds to the construction of new states for neighbors.
Those states are simply a copy of their current states with
an update to the temperature vector so that the current
temperature corresponding to ((𝑥, 𝑦)) is updated.The second
phase (lines 28–36) corresponds to the calculation of the new
temperature for this cell, according to equations given in
Section 4.1. The conditional statement allows computing the
𝜎V value depending on the macrostate of the cell, according
to (43). Regarding (47), coefficients 𝑎 and 𝑏 corresponding to
the thermal conductivity of neighbors cells are merged into 𝑎
since we use the same value. This coefficient is applied to the
sum of neighbors temperatures, which is computed line 21.

A new phase is then calculated using the newphase function
depending on the new temperature and the current phase.
Finally, if the cell phase passes from warming to burning, the
ignition time is set.

We should emphasize that we modeled component cells
this way as a proof of concept of state collisions handling,
but such a model could be modeled the other way around
using only the set of influencers 𝐼𝑥,𝑦 to read neighbors
states temperatures and restrict 𝐸𝑥,𝑦 to the unit set {(𝑥, 𝑦)}
so that each cell generates a state only for itself. However,
this alternative approach would require to change the time
advance functions in order to keep all cells active so that
they are able to poll neighbors temperatures even if they are
inactive. In practice, the former approach prevents inactive
cells to be activated until they are warmed up by neighbors
while the latter approach keeps all cells active.

4.3. Comparison with aModular Formalism. We discuss here
the benefits of specifying a system such as the fire spread
model described earlier using multiPDEVS in comparison
with a modular formalism such as PDEVS or Cell-DEVS.

From amodeling perspective, the same fire spread model
specified through a network of components such as a PDEVS
coupled model instead of a multiPDEVS is much more
verbose to specify because all couplings between cells have
to be addressed since cells are represented by atomic models.
The Cell-DEVS [4] extension, on the other hand, eases the
specification of cellular automata by abstracting the definition
of couplings between neighbor cells while preserving mod-
ularity, since these cells are represented by atomic models.
As of multiPDEVS, it is well-suited for the specification of
cellular automata as-is for two reasons: neighborhood is easily
represented through the influencer/influencee principle and
components are able to access their neighbors states without
having to anticipate variables of interest and having to send
these through dedicated functions as this is the case for
PDEVS or Cell-DEVS.

From a simulation perspective, using amodular approach
may be less advantageous depending on the implementa-
tion since event routing is a potential source of overhead
[23], although several techniques [16, 24] allow managing
this issue. In contrast, multiPDEVS has no communication
overhead between components influencing each other since
it avoids traditional event routing.

We realized an implementation of multiPDEVS using
Quartz (code available at https://github.com/rumenzu/
quartz.), a Crystal port of DEVS-Ruby [25], which is a
simulation tool that allows specification of PDEVS models.
It provides several extensions such as Cell-DEVS [4] or
DSDE [26], and we extended it to integrate multiPDEVS and
its simulator. To define new multiPDEVS models, Quartz
provides a class MultiComponent::Model which can bemod-
ularly coupled to other models and to which may be added
componentmodels. Componentmodels can be defined using
the provided abstract class MultiComponent::Component
that the modeler has to extend via inheritance. Our tool then
uses the appropriate simulator according to the model type
during simulation.

https://github.com/rumenzu/quartz
https://github.com/rumenzu/quartz

14 Complexity

(0) variables:
𝑎, 𝑐, 𝑑, 𝛼 // equation coefficients
𝑡

function 𝛿reac,𝑥,𝑦(𝑘𝑏𝑥,𝑦, 𝑠𝑥,𝑦, 𝑒𝑥,𝑦) do𝑠󸀠𝑥,𝑦 ← 𝑠𝑥,𝑦𝑇󸀠neigh ← 𝑠𝑥,𝑦 ⋅ 𝑇neigh
∀(𝑠, (𝑖, 𝑗)) ∈ 𝑘𝑏𝑥,𝑦 do

if (𝑖, 𝑗) = (𝑥, 𝑦) then
influence

𝑠󸀠𝑥,𝑦 ← 𝑠
else

(10) 𝑇󸀠neigh ⋅ 𝑇𝑖,𝑗 ← 𝑠 ⋅ 𝑇neigh ⋅ 𝑇𝑖,𝑗
if 𝑠𝑥,𝑦 ⋅ phase = inactive then
𝑠󸀠𝑥,𝑦 ⋅ phase ← warming

end if
end if

end
𝑠󸀠𝑥,𝑦 ⋅ 𝑇neigh ← 𝑇󸀠neigh
return 𝑠󸀠𝑥,𝑦

end function
(20) function 𝛿int,𝑥,𝑦((𝑠𝑥,𝑦, 𝑒𝑥,𝑦), . . . , (𝑠𝑖,𝑗, 𝑒𝑖,𝑗), . . .) do

sum← ∑(𝑖,𝑗)∈𝐼𝑥,𝑦\{(𝑥,𝑦)} 𝑠𝑥,𝑦 ⋅ 𝑇neigh ⋅ 𝑇𝑖,𝑗𝑠󸀠𝑥,𝑦 ← 𝑠𝑥,𝑦𝑠󸀠𝑥,𝑦 ⋅ 𝑇prev ← 𝑠𝑥,𝑦 ⋅ 𝑇∀(𝑖, 𝑗) ∈ 𝐼𝑥,𝑦\{(𝑥, 𝑦)} do𝑠󸀠𝑖,𝑗 ← 𝑠𝑖,𝑗𝑠󸀠𝑖,𝑗 ⋅ 𝑇neigh ⋅ 𝑇𝑥,𝑦 ← 𝑠𝑥,𝑦 ⋅ 𝑇
end
if 𝑠𝑥,𝑦 ⋅ phase = warming

𝑠󸀠𝑥,𝑦 ⋅ 𝑇 ← 𝑑 ∗ 𝑇 + 𝑎 ∗ sum + 𝑐
(30) else if 𝑠𝑥,𝑦 ⋅ phase = burning

𝑠󸀠𝑥,𝑦 ⋅ 𝑇 ← 𝑑 ∗ 𝑇 + 𝑎 ∗ sum + 𝑐 ∗ exp(−𝛼 ∗
(𝑡 − 𝑡ig))

end if
𝑠󸀠𝑥,𝑦 ⋅ phase ← newphase(𝑠𝑥,𝑦 ⋅ phase, 𝑠󸀠𝑥,𝑦 ⋅ 𝑇)
if 𝑠𝑥,𝑦 ⋅ phase = warming ∧ 𝑠󸀠𝑥,𝑦 ⋅ phase = burning
𝑠󸀠𝑥,𝑦 ⋅ 𝑡ig ← 𝑡

end if
return (𝑠󸀠𝑥,𝑦, . . . , 𝑠󸀠𝑖,𝑗, . . .)

end function
(40) function newphase (phase, 𝑇) do

if 𝑇 ≥ 𝑇ig then
return burning

else if 𝑇 > 𝑇𝑎
return warming

end if
end function

Listing 4: Specification of 𝛿int,𝑥,𝑦 and 𝛿reac,𝑥,𝑦 functions in pseudocode for the multiPDEVS fire spread model example.

Figure 5 illustrates execution of the fire spread model
using multiPDEVS (as given in Section 4.2) on a 25 ×
25 grid at different simulation times. Regarding parameters
values, we used the constant temperature values described
in Table 1. Also, the reduced combustion enthalpy 𝑄 was
set to 2.74, and the combustion time constant 𝛼 was set to
0.19. Coefficients 𝑎 and 𝑏 from (47), which correspond to

the thermal conductivity of neighbors cells, were both set
to 0.0031. Coefficient 𝑑, which corresponds to the thermal
conductivity of the actual cell, was set to 0.98689. Finally,
coefficient 𝑐 was set to 0.213.

An initial hotbed exists at the center of the grid where one
cell is ignited and surrounding cells are warmed (Figure 5(a)),
temperature in the rest of the cell space is homogeneous

Complexity 15

(a) 𝑡 = 0 (b) 𝑡 = 150 (c) 𝑡 = 400

Figure 5: Execution of a simple fire spreading model on a 25 × 25 grid of cells at times 0 (a), 150 (b), and 400 (c).

0

2

4

6

8

10

12

14

El
ap

se
d

re
al

 ti
m

e (
s)

MultiPDEVS
CellDEVS

25 × 25 grid 50 × 50 grid

Figure 6: Performance comparison of multiPDEVS and Cell-DEVS
showing elapsed real time in seconds of a fire spread simulation for a
grid of 25 × 25 and a grid of 50 × 50 with a fixed simulation duration
of 1200 and across 10 runs.

and represents the ambient temperature. This simple model
allows us to test our implementation using highly interacting
low computational components that remain active during the
whole simulation.

In order to verify our intuition that we may obtain best
execution times using multiPDEVS due to the absence of
event routing, we implemented the same model using the
Cell-DEVS extension of Quartz in order to compare both
results. For this performance analysis, we ran ten simulations
for each approach (multiPDEVS and Cell-DEVS) using the
same model, the same initial conditions, and the same
environment (Quartz) and measured the elapsed real time.
The test environment is based on an Intel(R) Core(TM) i5-
3210M CPU @ 2.50GHz (3MB L2 cache), 8GB (2x DDR3L-
1600Mhz) of RAM, and an Apple SSD SM128E hard drive,
running on OSX 10.11.4. Software used is Quartz. Figure 6
shows the results of running those simulations with error
bars showing average, min, and max measured times for
each batch of repeated simulations and Table 2 shows average
elapsed real-time results and the relative standard deviation
for each experiment.

Event routing and message passing overhead in Quartz
is reduced using techniques similar to Himmelspach and
Uhrmacher [24] and Vicino et al. [27]. Despite that, as we
can appreciate on the graph,multiPDEVS yields better results
than itsmodular counterpart for the same simulatedmodel as
we obtain an average speedup of 1.75x. Those results comfort

Table 2: Performance comparison results of multiPDEVS and Cell-
DEVS showing average elapsed real time and relative standard
deviation for each approach.

Approach Grid Avg. ela. time (s) Rel. std. dev.

Cell-DEVS 25 × 25 3.5707911 ±6.43%
50 × 50 11.4745384 ±3.54%

MultiPDEVS 25 × 25 1.9359938 ±6.69%
50 × 50 6.9516354 ±6.59%

us inmultiPDEVS relevance, especially for this kind of highly
communicative models with tight coupling. However, in
order to extract better conclusions relative to performances,
a new benchmark is necessary using a framework that
performs complete flattening (as mentioned in Section 2),
that is, transformation of the Cell-DEVS in a coupled model
of depth one (which Quartz does) and the transformation of
this coupled to an atomic model.

In this section we presented a fire spreading model cel-
lular automaton. Cellular automata is a modeling paradigm
that is well expressed using themultiPDEVS formalism and it
was also the opportunity to compare its performances against
a Cell-DEVS implementation. The next section discusses
benefits and drawbacks of the proposed approach from
modeling and simulation perspectives.

5. Discussion

The fire spread example shows that multiPDEVS can be used
to fully specify a system. However, it is quite legitimate for
the modeler to ask the following question: “When should
I, or should I not use this formalism ?” MultiPDEVS can
improve the modeling process in a multiformalism con-
text, where modular and nonmodular system specification
are used at the same time. We believe that the modular
approach proposed by PDEVS and the nonmodular one have
to be seen as complementary approaches, and in no way
as competing approaches. Regularly, systems offer a clear
hierarchical description coupled with elements where the
system behavior will be harder to describe using modular
specification formalism. In those cases, it can be more
comfortable to describe the overall interaction through direct
influence mechanism rather than describe the system at
a higher level of specification. The modular approach will
allow bringing a good intelligibility of the model, while the
nonmodular multicomponent approach will allow simplify-
ing the description of some phenomena by improving the
formalism expressiveness.

16 Complexity

One can ask the question of the reusability of a nonmodu-
larmodel andmore particularly of these various components.
If with the fire spread example, such question does not
really arise (components are the same), it becomes legitimate
for models where components differ. By nature, the influ-
encer/influencee principle used with nonmodular approach
makes components strongly dependants. Obviously it is
possible to reuse or replace components of amulticomponent
model; however, thismust be donewith caution.Themodeler
needs to perfectly understand interactions with influencee
components and influenced components of the targeted
component. Without making reusability a trivial process, the
modular approach will help since more effort was previously
given to express interactions between components. Reusabil-
ity at the multicomponent level is equivalent to the modular
approach, since a multiPDEVS model is strictly equivalent to
a PDEVS atomic model.

As defined in Section 3.3, a multiPDEVS model can be
integrated within a PDEVS-based simulation environment
using its own dedicated simulator and can be simulated
through an abstract mechanism, as originally defined in
Zeigler et al. [2]. The whole simulation is driven by several
processors (cf. Figure 4), where coordinators are responsible
for managing event routing and scheduling their children
and simulators are responsible for the activation of their
associated model. The multiPDEVS simulator we provide
perfectly conforms to this mechanism, and, thus, allows
multiPDEVS to be modularly coupled with other PDEVS
models and executed by the same PDEVS coordinator. This
allows reducing the difficulty of integrating multiPDEVS
within a simulation environment while enriching the set of
formalisms available for the user of such platform. Due to the
multiPDEVS simulation protocol nature, we observe traffic
messages reduction in relation to PDEVS. Such observations
suggest increased simulation performances. Since an appro-
priate benchmark has not been done yet and some work [23]
shows that proper management of messages can significantly
increase performances of PDEVS, we will remain cautious in
the final performance of multiPDEVS.

Regarding performances, multiPDEVS may be affected
by the nature of interactions between components. In the
fire spread example we used, components states have small
memory requirements, but we can ask how well the for-
malism scales with larger memory needs. Since the sets of
suggested states for each components are temporarily kept
during each simulation cycle, memory allocation can be a
concern. We should note that PDEVS has a similar issue
at a lower extent with input messages, instead of suggested
states. For example, with PDEVS, messages sent between
two components can be sized according to the needs of
the model. Contrariwise, to change a single value of the
state of an influencee, a multiPDEVS component should
construct a whole new state for its influencee. In practice,
pointers techniques could help reduce this overhead, but this
particular issue should be further studied to have a better idea
of multiPDEVS performances.

Another element of performance improvement may
appear with some types of models. If we focus on commu-
nications between components, a multiPDEVS may require

Comp BComp A

Figure 7: Communication between two components.

fewer simulation cycles than PDEVS in some cases. Let us
take two components, A and B, where B needs information
provided by A. Following are PDEVS’s and multiPDEVS’s
ways of modelizing it. Using PDEVS: B can ask A for
data. Then A sends data to B (see Figure 7). Following
PDEVS simulation protocol, this will therefore require at least
two simulation cycles. Using multiPDEVS: B can directly
read data from A (A is an influencer of B). Following the
multiPDEVS protocol, a single simulation cycle will therefore
be necessary. Note that such example considers only the
case where B is explicitly requesting information known
by A component. We intentionally forget cases where A
is a data generator, where A needs computation time to
provide data. An alternative to multiPDEVS and PDEVS is
HFSS [28], which allows components to sample inputs from
their influencers through couplings in a one-step process,
similarly to multiPDEVS. Since HFSS preserves modularity
through couplings, it lies at a higher level of specification than
multiPDEVS. However, multiPDEVS is pertinent for cases
where component states need to be directly accessible.

Further studies would be needed to target the classes
of problems for which this type of property would be an
added value. We are thinking for the moment of the domains
where agent and cellular automata are used jointly (e.g., agent
interrogating its environment modeled by several cells).

Regarding some design choices about multiPDEVS, we
decided to stay as close as possible to the original multiDEVS.
However, an interesting alternative regarding multiPDEVS
semantics may be considered. As multiPDEVS is defined;
only components that have been influenced (i.e., that updated
their state via their reaction function 𝛿reac) have a chance
to update their time of next event. Since the time advance
function of a component depends on all influencers states,
we could also give the opportunity to all components having
at least one influencer with a new state to update its tn. This
would open new modeling perspectives. As an example, the
case study we propose in Section 4.2 could be simplified.
Basically, an inactive cell could decide if it is the appropriate
moment to enter a burning state each time one of its
neighbors is updated.

Generally speaking, DEVS-based formalismswhere com-
ponents are allowed to communicate at the same simulation
time, such as PDEVS or multiPDEVS, do not offer direct
mechanisms to confirm to other components the use of an
information/resource which was provided to them. This can
raise issues of inconsistency unique to such formalisms. To
illustrate this, imagine particles that can move from one cell
to a neighbor as shown in Figure 8.

The state of the model is in {0, 1}. Suppose particles in
the A and C cells want to move in to the center cell B at
the same time. A and C send their proposed states. Since
decision is based on proposed states, the center can choose

Complexity 17

−1 −1+1 +1

A B C

Figure 8: Particles example: two particles proposed to cell B.

a +1 (if it empty) but that leaves open which neighbor is
the sender. If it chooses one (by some rules), it must inform
the neighbors so they will adjust their states accordingly.
Currently, this feedback to maintain consistency will require
a second complete simulation phase. Now, multiPDEVS
introduced the 𝐾 set (whose elements are tuples composed
of suggested states and of the identity of the component that
sent it), specifically for this purpose, so that a component can
choose its new state depending on the identity of the sender
(which is not necessarily present in its set of influencers 𝐼).
In the particle example described using multiPDEVS, each
component would be responsible for adjusting its neighbors’
states to ensure that no particle is lost in the system.This also
means that a state described by 𝑆 = {0, 1} is not sufficient,
since the component has to store information about particles
to be sent back through the classical 𝛿int function and a
ta(𝑠) = 0. At this moment, it seems that such an issue is
best tackled using a modeling approach (which involves use
of ta(𝑠) = 0 loops) rather than expand the formalism itself.
Nevertheless, an extension of multiPDEVS formalism might
be to allow some kind of built-in reverse propagation of
selection information and this can be considered as a source
of further research.

6. Conclusion

TMS provides a DEVS specialization dedicated to nonmod-
ular modeling, named multiDEVS. As DEVS, multiDEVS
formalism comes with a lack of expressiveness to properly
manage collisions between events. PDEVS formalism has
been proposed to fill this gap for the modular approach.
Hence, we proposemultiPDEVS, which furnishes an effective
management of events conflicts as proposed in PDEVS, to
multiDEVS. The multiPDEVS formalism supports concepts
as introduced by PDEVS, such as the bag concept to combine
simultaneous event into a single one, and the confluent tran-
sition function to combine internal and external transition
function when they occur at the same simulation time. In
contrast to PDEVS, multiPDEVS handles an additional kind
of conflict dictated by the nonmodular approach, which we
call state collisions. Such state collisions appear when multiple
components execute state transitions function at the same
simulation time, resulting in a possible violation of other
components autonomy. We are convinced that autonomy of
components is a necessary property for a proper modeling
process. To keep such property, multiPDEVS provides new
concepts around 𝛿reac function. These new concepts give
modelers the possibility of collecting state collisions in a bag of
states (𝐾𝑏) and then managing them explicitly at component
level through the reaction function (𝛿reac). The multiPDEVS
formalism offers to facilitate the modeling process for non-
modular approaches without increasing message exchanges.

The multiPDEVS formalism is proved to be equivalent to a
well-defined atomic PDEVS model. Such property involves
the possibility of integrating multiPDEVS in a larger PDEVS
simulation.

The multiPDEVS formalism has been compared to other
nonmodular formalisms such as CellSpace. We show that
CellSpace can be considered as a restriction of multiPDEVS.
Finally, the multiPDEVS formalism has been implemented
usingQuartz and allowed us to test its performances against a
Cell-DEVS approach using a cellular automaton.This perfor-
mance speedup added to good modeling abilities comforted
us in its significance for highly communicative models with
tight coupling but also for modeling paradigms falling under
bottom-up approaches.

Definition of the multiPDEVS formalism opens many
perspectives, fromboth an utility and an extensibility point of
view. Future works include use of themultiPDEVS formalism
to describe MAS environments as cellular models since mul-
tiPDEVS is well-suited to represent spatially explicit models.
Individual-based models (IBM) are also good candidates
to be defined using multiPDEVS, where individuals are
represented with components interacting with each other.
Besides, we predict a simulation speedup using multiPDEVS
rather than PDEVS both for representingMAS environments
and IBM for the same reason we obtained better results
representing a cellular automaton using multiPDEVS, which
is the reduction of message exchange between models during
simulation.

Finally, Section 5 discusses benefits and drawbacks of
using the multiPDEVS formalism, from both a modeling
perspective and a simulation perspective.

Currently in full-scale testing in a fisheries management
project, the multiPDEVS formalism should allow efficient
modeling of fishing areas and interactions between them.
As for the future of the multiPDEVS formalism we consider
many perspectives of evolution. We plan to define alternative
abstract simulators following other simulation strategies,
known as world views (cf. Section 3.3). We also consider
as a further research the definition of a parallel and dis-
tributed version of the abstract simulator. Another interesting
property applied to multiPDEVS would be that of dynamic
structure, which DEVS and PDEVS benefit from via DS-
DEVS [26] or dynDEVS [29] extensions. For completeness,
we also consider definition of a multicomponent parallel
discrete time system, multiPDTSS, along with its abstract
simulator. Given that discrete time is a special case of discrete
event systems,multiPDTSSwould allow to explicitly combine
discrete time systems with discrete event systems within the
same framework.

As mentioned previously, there are other possible
approaches, especially HFSS [28]. It would be very interesting
to make a deeper comparison with it, especially on the
ergonomic aspect of modeling and performance.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

18 Complexity

Acknowledgments

This work is carried out within the framework of the
MoonFish research project supported by the Corsican region
(CTC) and the EuropeanUnion (EU) through the po-FEDER
regional programs.

References

[1] H. Vangheluwe, “Foundations of Modelling and Simulation of
Complex Systems,” Electronic Communications of the EASST,
vol. 10, pp. 148–162, July 2008.

[2] B. P. Zeigler, Praehofer. H., and T. G. Kim, Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems, Academic press, 2000.

[3] M. H. Hwang and B. P. Zeigler, “Reachability graph of finite and
deterministic DEVS networks,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 6, no. 3, pp. 468–478, 2009.

[4] G. A. Wainer and N. Giambiasi, “Application of the Cell-
DEVS Paradigm for Cell Spaces Modelling and Simulation,”
Simulation, vol. 76, no. 1, pp. 22–39, 2001.

[5] S.M. Cho and T. G. Kim,Real-time devs simulation: Concurrent,
time-selective execution of combined rt-devs model and interac-
tive environment, Koasas, 1998.

[6] E. Kofman and R. D. Castro, “Stdevs, a novel formalism for
modeling and simulation of stochastic discrete event systems,”
in In Proceedings of AADECA, pp. 1–6, 2006.

[7] A. C.-H. Chow and B. P. Zeigler, “Parallel DEVS: a parallel,
hierarchical, modular modeling formalism,” in Proceedings of
the 1994 Winter Simulation Conference, pp. 716–722, Society for
Computer Simulation International, December 1994.

[8] J. H. Balbi, P. A. Santoni, and J. L. Dupuy, “Dynamic Modelling
of Fire Spread Across a Fuel Bed,” International Journal of
Wildland Fire, vol. 9, no. 4, pp. 275–284, 1999.

[9] G. Wainer and R. Castro, “A survey on the application of the
cell-DEVS formalism,” Journal of Cellular Automata, vol. 5, no.
6, pp. 509–524, 2010.

[10] A. Al-Habashna and G.Wainer, “Modeling pedestrian behavior
with Cell-DEVS: Theory and applications,” Simulation, vol. 92,
no. 2, pp. 117–139, 2016.

[11] E. Innocenti, A. Muzy, A. Aı̈ello, J.-F. Santucci, and D. R. C.
Hill, “Active-DEVS: A computational model for the simulation
of forest fire propagation,” in Proceedings of the 2004 IEEE
International Conference on Systems,Man and Cybernetics, SMC
2004, pp. 1857–1863, IEEE, The Hague, Netherlands, October
2004.

[12] A. Muzy, E. Innocenti, J.-F. Santucci, and D. R. C. Hill,
“Optimization of cell spaces simulation for the modeling of
fire spreading,” in Proceedings of the 36th Annual Simulation
Symposium, ANSS 2003, pp. 289–296, IEEE, Orlando, FL, USA,
USA, April 2003.

[13] J. W. Bae, S. W. Bae, I.-C. Moon, and T. G. Kim, “Efficient
Flattening Algorithm for Hierarchical and Dynamic Structure
Discrete Event Models,” ACM Transactions on Modeling and
Computer Simulation (TOMACS), vol. 26, no. 4, article no. 25,
2016.

[14] S. Jafer and G. Wainer, “Flattened conservative parallel simula-
tor for DEVS and cell-DEVS,” in Proceedings of the 2009 Inter-
national Conference on Computational Science and Engineering,

CSE ’09, pp. 443–448, IEEE, Vancouver, BC, Canada, August
2009.

[15] G. Zacharewicz, M. E.-A. Hamri, C. Frydman, and N. Giambi-
asi, “A Generalized Discrete Event System (G-DEVS) Flattened
Simulation Structure: Application to High-Level Architecture
(HLA) Compliant Simulation ofWorkflow,” Simulation, vol. 86,
no. 3, pp. 181–197, 2010.

[16] B. Chen and H. Vangheluwe, “Symbolic Flattening of DEVS
models,” in Proceedings of the Summer Computer Simulation
Conference, SCSC 2010, Part of the 2010 Summer Simulation
Multiconference, SummerSim 2010, pp. 209–218, Society for
Computer Simulation International, July 2010.

[17] F. A. Shiginah and B. P. Zeigler, “A new cell space DEVS
specification: Reviewing the parallel DEVS formalism seeking
fast cell space simulations,” Simulation Modelling Practice and
Theory, vol. 19, no. 5, pp. 1267–1279, 2011.

[18] F. A. Shiginah,Multi-Layer Cellular DEVS Formalism for Faster
Model Development and Simulation Efficiency [Ph.D. thesis],The
University of Arizona, 2006.

[19] B. P. Zeigler and H. S. Sarjoughian, Guide to Modeling and
Simulation of Systems of Systems. Simulation Foundations,Meth-
ods and Applications. Simulation Foundations, Methods and
Applications, Springer, London, Uk, 2013.

[20] A. C.-H. Chow, B. Zeigler, and D. H. Kim, “Abstract simulator
for the parallel DEVS formalism,” in Proceedings of the Fifth
Annual Conference on AI, and Planning in High Autonomy
Systems, pp. 157–163, IEEE, Gainesville, FL, USA, December
1994.

[21] R. O.Weber, “Modelling fire spread through fuel beds,” Progress
in Energy and Combustion Science, vol. 17, no. 1, pp. 67–82, 1991.

[22] A. Muzy, E. Innocenti, A. Aı̈ello, J.-F. Santucci, P.-A. Santoni,
andD. R. C. Hill, “Modelling and simulation of ecological prop-
agation processes: Application to fire spread,” Environmental
Modeling and Software, vol. 20, no. 7, pp. 827–842, 2005.

[23] A. Muzy and J. Nutaro, “Algorithms for efficient implemen-
tations of the DEVS and DSDEVS abstract simulators,” in In
proceddings of the 2008 12th IEEE International Symposium on
Distributed Simulation and Real-Time Applications (DS-RT, pp.
273–279, IEEE, 2005.

[24] J. Himmelspach and A. M. Uhrmacher, “Sequential processing
of PDEVS models,” in Proceedings of the International Mediter-
ranean Modelling Multiconference, I3M 2006, pp. 239–244, esp,
October 2006.

[25] R. Franceschini, P.-A. Bisgambiglia, P. Bisgambglia, and D. R.
C. Hill, “DEVS-Ruby: A domain specific language for DEVS
modeling and simulation (WIP),” in Proceedings of the 2014
Symposium on Theory of Modeling and Simulation - DEVS
Integrative M and S Symposium, DEVS 2014; 2014 Spring
Simulation Multi-Conference, SpringSim 2014, pp. 393–398, SCS
International, April 2014.

[26] F. J. Barros, “Dynamic structure discrete event system spec-
ification: a new formalism for dynamic structure modeling
and simulation,” in Proceedings of the 1995 Winter Simulation
Conference, WSC’95, pp. 781–785, December 1995.

[27] D. Vicino, D. Niyonkuru, G. A. Wainer, and O. Dalle, “Sequen-
tial PDEVS Architecture,” in Proceedings of the DEVS 15:
Proceedings of the Symposium onTheory ofModeling Simulation-
DEVS Integrative, pp. 906–913, Alexandria, VA, USA, April
2015.

Complexity 19

[28] F. J. Barros, “Dynamic Structure Multiparadigm Modeling and
Simulation,” ACM Transactions on Modeling and Computer
Simulation (TOMACS), vol. 13, no. 3, pp. 259–275, 2003.

[29] A.M.Uhrmacher, “Dynamic Structures inModeling and Simu-
lation: A Reflective Approach,” ACM Transactions on Modeling
andComputer Simulation (TOMACS), vol. 11, no. 2, pp. 206–232,
2001.

