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Abstract

In most modern multi�tasking operating systems the part played by the process scheduler is

critical in ensuring that users� at a macro level� as well as processes� at the system level� are

treated fairly� The basic functionality of traditional operating systems has already started

including real�time capabilities� the e�ective emulation of real�time scheduling algorithms

has therefore become an important issue� There are several advantages to providing real�

time support in a general purpose operating system like Unix � for example� ease of code

development� availability of a large set of development tools and portability� This work

evaluates the performance of decay usage process schedulers through experimentation in

the contexts of fairness and support for real�time applications�

We quantify the fairness of decay usage process schedulers and suggest a method to

improve the fairness of the normal Unix process scheduler based on detailed experimental

studies� We observe that standard assumptions about the start of the decay period and

the execution time of processes used in analytical studies of decay usage scheduler are

unrealistic� In fact� in our experiments we �nd that unfairness in the form of overtaking

among processes� which could not happen if the assumptions were valid� occurs frequently�

In the second part of this work� an experimental evaluation of emulating soft real�

time scheduling algorithms is done by modifying the Linux operating system�s source

code� The related literature contains simulation studies� but we �nd that it is extremely

di�cult to reproduce the workload conditions in an experimental setup� As a result�

the simulation and experimental results do need not always agree making simulation an
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unsuitable methodology to study this issue� Depending on the evaluation criteria� di�erent

algorithms appear to be best� this is neatly captured by two new performance measures

that we introduce� Our experimental results show that the default Unix decay usage

process scheduling performs comparably to the POSIX process scheduler as long as the

mean execution time of tasks is smaller than the CPU quantum assigned per process�



Chapter �

Introduction

In an operating system� the part played by process management� particularly the process

scheduler� is very important� it not only manages the various processes of the users and the

interaction between them� but also enables these contending processes to share the CPU

fairly amongst themselves� while ensuring that system throughput and response times are

good�

In this context� various scheduling algorithms have been proposed� The round robin

algorithm assigns each runnable process a �xed CPU quantum� and all the processes are

serviced in a round robin order� A process is assigned the CPU� and when the CPU

quantum elapses� it is switched out and the next process in the queue is assigned the

CPU� An improvement on this algorithm is the multi�level round robin� where there is

more than one level of ready queues in which the process can be� The higher the level�

the smaller the CPU quantum assigned� and the greater the priority for getting the CPU�

Whenever a process exceeds it�s CPU quantum� it is switched out of the CPU and also

moved to a lower level of the scheduling hierarchy� This algorithm has a drawback� in

that a process at a lower level might never get the CPU due to the continuous presence of

processes in higher levels� which is clearly unfair�

In general time sharing systems� including Unix� use some kind of decay usage schedul�

ing algorithm which assigns priority to a process based on it�s CPU usage� This CPU

usage value is decayed 	reduced in value� periodically in order to re�ect the recent pattern
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of CPU usage of a process� The priority value assigned to a process is inversely propor�

tional to its CPU usage� and the highest priority process is always assigned the CPU� In

this way� the scheduler can avoid the above mentioned drawback and be fair to all the

processes present in the system� The round robin with multilevel feedback scheduling

algorithm� which we discuss in more detail in the next chapter� comes under this class

of decay usage schedulers� All decay usage schedulers loosely address the issue of fair

treatment of di�erent kinds of processes � for example� interactive as well as batch pro�

cesses� However� the existing literature does not address how fair they actually are� This

is precisely what we have addressed in the �rst part of this work� by de�ning a fairness

measure and running experiments on a system with real workloads�

The second part of this work is an experimental evaluation of scheduling algorithms that

have been developed for soft real�time systems� Real�time systems are typically stand�alone

systems� built to speci�cally control and support the real�world environment in which they

operate� Tasks in such systems are time critical and their scheduling plays an important

role in achieving the timing constraints of various tasks� Earliest Deadline 	ED� and Least

Slack 	LS� are the two general classes of scheduling algorithms widely used in real�time

systems� The literature contains some work on emulating these algorithms in soft real�

time systems� and evaluating them through simulations� but none on their experimental

evaluation�

This thesis is organised as follows� Chapter � describes the decay usage schedulers

used in various Unix systems� as well as scheduling algorithms used in real�time systems�

Chapter � surveys the literature related to the fairness aspects of process schedulers� and

describes our experimental work on the fairness of decay usage schedulers� Chapter �

describes our experimental work on the use of decay usage schedulers in soft real�time

systems� We conclude in Chapter �� summarising the results obtained and suggesting

related areas for possible further exploration�



Chapter �

Background

The process scheduler is the part of an operating system that manages the sharing of CPU

time among potentially many competing processes� In a time sharing system the process

scheduler allocates the CPU to a process for a period of time called a time�slice or time

quantum� It later preempts the process and schedules another when that time slice expires�

In the Unix operating system� every active process has a scheduling priority associated

with it and the kernel always does such context switches to the highest priority process at

that moment�

The Unix process scheduler has many objectives to satisfy� some of them contradicting

each other� These include high system throughput� e�cient utilisation of resources� fair�

ness and quick response to processes� Unix uses the category of schedulers based on round

robin with multilevel feedback � whenever the kernel preempts a process� it feeds it back

into one of n scheduling priority levels� The priority values are recalculated periodically�

depending on the recent activity of the process� providing feedback� For all processes in

the same priority level� the CPU is assigned in a round robin manner� As the scheduling

decisions are taken with respect to the current priority of a process� it is only fair that

the priority is inversely dependent on the recent CPU usage of the process� Thus� the pri�

ority of a waiting process increases 	becomes numerically lower�� while that of a running

process decreases� In this chapter� we review background literature in two areas � Unix

decay usage schedulers and scheduling considerations in soft real�time systems�

�
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��� Unix Process Scheduling Algorithms

We next look into the basic Unix decay usage process scheduling algorithm and then

discuss the variations used in ���BSD� System V Release � and Linux process scheduling

algorithms� The basic Unix process scheduling algorithm is described in detail by Bach

���� We will refer to it as the Bach Scheduler throughout this report�

����� Bach Scheduler

In Unix� process priorities fall within two ranges� the user�level priorities are those numer�

ically above a speci�c threshold value� and the kernel�level priorities are below the threshold

value�� Processes are normally executed with user�level priorities� and the kernel�level pri�

orities are attained in the sleep algorithm� The kernel�level priorities are further divided

into two groups� processes with low kernel priority wakeup upon the receipt of a signal�

while processes with high kernel priority continue to sleep uninterrupted�

A �xed kernel�level priority value is assigned to a process before it goes to sleep�

depending on the reason for sleeping� This value is hard�coded and does not depend on

the run�time characteristics of the process� A process that sleeps in low�level system code

tends to cause more bottlenecks� it is therefore given a better priority 	a numerically lower

priority value� than a process that would cause fewer system bottlenecks� Thus� a process

waiting for a disk I�O has a better priority than a process waiting for a free bu�er� as

it already has a bu�er and there is a good chance that it will free the bu�er as soon as

it �nishes the I�O� The kernel adjusts the priority value of a process that returns from

kernel to user mode and also penalises it� as it has just used valuable kernel resources�

While a process is using the CPU� it�s recent cpu usage value is incremented once

every clock tick� Further� once every decay period 	typically� once every second� the

�Unless indicated otherwise� the higher the value of priority for a process� the lower it�s perceived

importance� In the discussion that follows� we sometimes refer to a process getting better priority �

meaning a lower value� that is more conducive to it�s receiving the CPU soon� Where necessary we use an

unambiguous notation� clearly specifying whether priority values are high or low relative to each other�
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recent cpu usage of each process is decayed by a decay factor 	typically� ��� i�e��

recent cpu usage � recent cpu usage��

The priority of a process is recomputed as�

priority � 	recent cpu usage��� � base level user priority

where the base level user priority is the threshold value between user and kernel level

priorities described above� The order and manner in which the scheduling of di�erent

processes is carried out play an important part in achieving the objectives of the Unix

process scheduler mentioned above� This is entirely dependent on the priority value of a

process� which in turn is dependent on the activity of the process and the way the activity

was monitored through the scheduling parameters� viz� recent cpu usage� decay factor�

decay period and the priority function which maps the recent cpu usage to a priority

value�

Let Ti be the amount of CPU time received by a process in clock ticks in the i th decay

period� Then� in consecutive decay periods� the recent cpu usage is updated as follows�

recent cpu usage � ��� � T�

recent cpu usage � ��� � 	T� � ���� T��

� ��� � T� � ���� � T�

recent cpu usage � ��� � T� � � � �� ���� � T�

with priority being re�computed as�

priority � 	recent cpu usage� ���� � base level user priority

Observe that after three decay periods from now� in calculating the priority value�

the weightage associated with the cpu time consumed 	T�� in the current decay period is
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about � percent� The algorithm thus forgets almost �� percent of the process� current

activity within the next three decay periods� We refer to this period 	in this example�

three decay�periods� in which �� percent of the current process behaviour is forgotten as

the spread of the scheduling algorithm� Thus� the value of spread for the Bach scheduler

is �� We will later use the value of spread in discussing the fairness properties of various

schedulers�

����� ���BSD

In ���BSD Unix ���� process scheduling is as described above� except that the decay factor

is a function of the load present on the system at that time� The process�s priority value

is based on the variables p cpu and p nice maintained in the proc kernel data structure

associated with every process� The value of p nice is in the range ��� to ���� with

negative values providing higher priority to the process� The default value of p nice is

zero� p cpu takes care of the recent CPU usage of the process� it is incremented once

every clock tick if the process is found to be executing at that time� It is also decayed

once every second as�

p cpu � �
�� load

�� load� 
�� p cpu� p nice

where� load is the sampled average number of processes waiting for the CPU in the past

 minute interval� Every time the p cpu �eld is incremented� the value is checked to see

whether it is a multiple of four� If so� the process priority value is re�calculated as�

priority � PUSER � p cpu�� � �� p nice

Every process is allocated a quantum of �� milliseconds and is context switched out

at the end of a quantum� in favour of the highest priority 	numerically lowest� process in

the run queue� Once every second� the priority of each runnable process is recalculated

according to the above decay equation� For e�ciency reasons the following optimisation

is done with respect to blocked processes waiting for an event to happen� Since blocked
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processes cannot accumulate p�cpu� there is no point in decaying their values once every

second� Instead a variable p slptime is incremented once every second for all the blocked

processes� and when the process is awakened the value of p cpu is adjusted as�

p cpu � �
� � load

�� load� 
�p slptime � p cpu

Assume that there is only one process in the system� The assumption is necessary as

the load average is part of the decay function in this algorithm� Consider the spread of

this process scheduling algorithm with p nice at the default value of zero� Here� the value

of p cpu is successively updated as follows�

p cpu � 	� � �� T��	� �  � �

� ���� � T�

p cpu � ����	T� � ���� � T��

� ���� � T� � ���� � T�

p cpu � ���� � T� � ���� � T� � ���� � T�

p cpu � ���� � T� � � � �� ����� T�

p cpu � ���� � T� � � � �� ���� T�

After a period of � seconds� we see that only � percent weightage is assigned to the

CPU time consumed in the current quantum� i�e� almost �� percent of the CPU time

consumed up to now is forgotten� resulting in a spread of about �� Note that for this

algorithm� the notion of spread is not very well de�ned� as the decay function depends

on the number of processes in the system� For example� if there are �ve processes in the

system� the spread will be about � and it increases further as the number of processes

increases� This is due to the fact that the decay rate is slower under higher system

loads� Taking into account the way the priority value of a process is calculated from the

recent cpu usage value in ���BSD� we see that the spread is � for the single process case

and � for the �ve process case�
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Since the decay rate is slow� processes do not jump across priority levels upon decaying�

but step through the levels one by one� As a result� as the spread value increases� a given

set of processes tends to occupy more levels than with the previously described basic Unix

scheduling algorithm� Thus� what the larger spread amounts to is� a �ner di�erence among

the processes being maintained by assigning di�erent priority levels to them� rather than

clubbing them into the same level and treating them equally�

����� System V Release �

Until now� we have seen process schedulers where all processes were subject to the same

selection criteria in assigning the CPU� The notion of priority classes is introduced in

Unix System V Release � ���� There are three priority classes� Real time� System and

Time shared� Each class has a set of class dependent routines associated with it� which

calculate the priority level of a process and place it in the appropriate priority queue� The

kernel�s process selection code � part of the class independent routines � selects a process

from the highest valued priority queue and assigns the CPU to it�

Priority Scheduling Global Priority
Class Sequence Value

First ��
� �

Real time � �
� �
� ��
� ��
� �

System � �
� �
� ��
� ��
� �

Time shared � �
� �

Last �

Table ��� Di�erent scheduler classes
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Table �� shows the order of importance of the di�erent classes and the range of priority

values for each class� Note that the higher the global priority value� the better the priority

of a particular process� Thus� real�time processes have higher 	numerically higher� priority

than system class processes� and system class processes have higher priority than time�

shared processes� By default� all processes initiated by users are assigned to the time�

shared class� The system class consists of system processes� such as the scheduler� swapper�

etc�� which run with a �xed priority� This class is not con�gurable and is reserved for

kernel use only� A user process running in kernel mode is not the same as a system class

process� as it runs with it�s own scheduling characteristics�

Priority class groups

All processes are arranged into speci�c priority class groups and each group is categorised

by it�s own scheduling characteristics determined by the class dependent functions� These

functions determine a process�s priority value� which is made available to the class inde�

pendent kernel functions as a global priority value� The highest valued global priority is

chosen by the scheduler which runs the process from the head of the highest global priority

dispatch queue� The process runs until it uses up it�s time slice� is pre�empted by a higher

priority process� or blocks waiting on an event�

When a process is created� it inherits it�s parent�s scheduling parameters� which include

the priority class and the priority value within that class� It remains in the same class

unless changed as a result of a user request through priocntl command or system call�

Each priority class maintains it�s own table of values to describe the characteristics of a

process� known as dispatch parameter table� Table ��� is one such table provided as default

for time�shared class of processes� where

globpri is the priority value assigned to a process� The initial value is �� for a user

process�

quantum is the value of time quantum 	in millisecs� for which the CPU is assigned to

a process�

tqexp is the new process priority� if the process uses up all of the time quantum assigned
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globpri quantum tqexp slpret mwait lwait globpri quantum tqexp slpret mwait lwait

� ��� � �� � �� �� �� �� �� � ��
 ��� � �� � �� � �� � �� � ��
� ��� � �� � �� �� �� �� �� � ��
� ��� � �� � �� �� �� �� �� � ��
� ��� � �� � �� �� �� �� �� � ��
� ��� � �� � �� �� �� �� �� � ��
� ��� � �� � �� �� �� �� �� � ��
� ��� � �� � �� �� �� �� �� � ��
� ��� � �� � �� �� �� �� �� � ��
� ��� � �� � �� �� �� �� �� � ��
� �� � � � � �� �� �� �� � ��
 ��  � � � � �� � �� � ��
� �� � � � � �� �� �� �� � ��
� �� � � � � �� �� �� �� � ��
� �� � � � � �� �� �� �� � ��
� �� � � � � �� �� �� �� � ��
� �� � � � � �� �� �� �� � ��
� �� � � � � �� �� �� �� � ��
� �� � � � � �� �� �� �� � ��
� �� � � � � �� �� �� �� � ��
�� �� � �� � �� �� �� �� �� � ��
� ��  �� � �� � �� � �� � ��
�� �� � �� � �� �� �� �� �� � ��
�� �� � �� � �� �� �� �� �� � ��
�� �� � �� � �� �� �� �� �� � ��
�� �� � �� � �� �� �� �� �� � ��
�� �� � �� � �� �� �� �� �� � ��
�� �� � �� � �� �� �� �� �� � ��
�� �� � �� � �� �� �� �� �� � ��
�� �� � �� � �� �� �� �� �� ����� ��

Table ���� Dispatch parameter table for the time�shared class
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to it�

slpret is the new process priority assigned� upon a return from sleep�

mwait is the number of seconds within which the process must use it�s assigned time

slice� If not� it�s priority is set to lwait� This ensures that there is no starvation of low

priority processes�

lwait is the new priority value for a process that has exceeded the maximum wait time

of mwait seconds�

The time slice assigned is of variable size� and is dependent on the priority level of

the process� Larger time slices are given to processes with lower priorities and vice versa�

Thus� although a low priority process is likely to starve for some time� once it gets the CPU

it receives a large chunk of CPU time� Themwait and lwait parameters combine to increase

the priority of a process that has not received the CPU for some pre�determined time� The

tqexp parameter is used to ensure that a process which uses the CPU continuously gets

lower 	numerically lower� priority� Entering sleep states frequently is a characteristic of

interactive processes� hence the high priority value for a process that returned from the

sleep state�

rt globpri rt quantum rt globpri rt quantum rt globpri rt quantum rt globpri rt quantum

�� ��� � ��� �� ��� �� ���
� ��� � ��� � ��� �� ���
�� ��� � ��� �� ��� �� ���
�� ��� � ��� �� ��� �� ���
�� ��� � ��� �� ��� �� ���
�� ��� �� ��� �� ��� �� ��
�� ��� � ��� �� ��� � ��
�� ��� �� ��� �� ��� �� ��
�� ��� �� ��� �� ��� �� ��
�� ��� �� ��� �� ��� �� ��
� ��� �� ��� �� ��� �� ��
 ��� �� ��� � ��� �� ��
� ��� �� ��� �� ��� �� ��
� ��� �� ��� �� ��� �� ��
� ��� �� ��� �� ��� �� ��

Table ���� Dispatch parameter table for the real�time class
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The real�time class of processes is assigned a �xed priority value and when the time

quantum for a process expires� it is reassigned that same priority level� As long as there

is a runnable real�time class process in the dispatch queue� no other system class or time�

shared class process is assigned the CPU� The dispatch parameter table for real�time class

is shown in Table ��� where�

rt globpri is the priority value assigned to a real�time process�

rt quantum is the value of time quantum in millisecs� for which the CPU is assigned

to a process�

As real�time process priority values are higher than even system class processes� a

careful use of real�time privileges is required�

����� Linux

Linux 	as of Release ����� has� by far� the simplest scheduling algorithm among those

surveyed here� All scheduling decisions are based on the proc structure variable called

counter associated with every process� counter is the number of ji�es � allotted to a

process once it gets the CPU� The counter value decreases with every system clock tick�

as long as the process is running� until it reaches zero� Then� the schedule function is called

to select the runnable process with the highest non�zero counter value� If the counter value

for no existing processes is greater than zero� new counter values are assigned for all the

processes� as

counter � counter�� � priority�

For the init process� the initial priority value is � and the initial value of counter is

�� Whenever a process is forked o�� the initial priority is the same as that of it�s parent

and the counter value is assigned as

counter � counter�� � priority

�� ji�y � �� millisecs
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Thus� the counter variable acts as a time slice and also as a priority value for a process�

the higher the value� the higher the priority of the process�

��� Real�Time Systems

A real�time system is one which provides support for tasks that are meant to be executed

within a given timing constraint� By de�nition ���� �A real�time system is one in which the

correctness of the computations not only depends upon the logical correctness of the com�

putation but also upon the time at which the result is produced� If the timing constraints

of the system are not met� system failure is said to have occurred�� A good example is a

robot that has to pick up a piece from a conveyor belt� The piece is moving� and the robot

has a small window of opportunity in which to pick up the object� If the robot is late� the

piece will not be accessible� and thus the job will have been done incorrectly even though

the robot went to the right place� If the robot is early� the piece will not be there yet� and

the robot may block it�

Unlike normal systems� real�time tasks have pre�determinable execution times and

resource requirements� The real�time task has to be completed within the given deadline

if its execution is to have any meaning at all� Also� a value function is associated with

every real�time task� The value is normally positive� with higher values meaning that the

task is of higher importance� As soon as the deadline for the completion of a task is over�

the value can become negative� zero or decrease towards zero as time elapses� A negative

value signi�es that the task just missed was a critical task and the result of this miss might

be disastrous� A zero value means that the task is of no signi�cance to the system any

longer and can be abandoned�

����� Classi�cation of Real�Time Systems

Real�time systems are classi�ed into three categories based on the characteristics of the

value function� viz� hard� �rm and soft real�time systems� The tasks in hard real�time

systems have deadlines which are hard� meaning that if the real�time task fails to complete
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its execution before the deadline� the results would be disastrous� Thus� the usefulness

value of the task takes on the maximum negative value after the deadline is over�

In �rm real�time systems if the real�time task fails to completes its execution within

the deadline� the value becomes zero and the task is of no use� Hence� the scheduling

algorithm does not allow the completion of this task� and it is abandoned� Such systems

also guarantee that the deadlines for critical tasks are always met� regardless of the load

present on the system� Thus� scheduling algorithms on such systems typically stop the

execution of a task whose deadline is past� and switch to other tasks which can be com�

pleted within their deadlines� The scheduling algorithm chooses to start the execution of

a task only if it is possible to complete it within the given deadline� Also� in most hard

and �rm real�time systems� scheduling is optimised for periodic tasks� and requires that

the maximum execution time of a task is known a priori�

On the other hand� in a soft real�time system� the scheduler requires only an estimate

of the execution times� or in most cases no such knowledge is required at all� In these

systems� it is di�cult to guarantee that deadlines will be met� and hence the scheduling

algorithm tries to minimise the number of missed deadlines� Di�culties arise from the

nature of the system� For example� in a database system� the completion of a request is

dependent on the number of transactions that are concurrently running and holding locks�

Also� disk access times will be dependent on where the previous request left the disk arm�

which too is unpredictable�

����� Scheduling Algorithms

For any given real�time task� a deadline within which it has to complete must be provided

along with an estimate of the execution time upon it�s arrival� The di�erence in time

between the deadline and the estimated execution time is termed as the slack for that task�

This slack value in a way provides an indication of the importance of task in hand� the

higher the slack value� the lesser is the process� importance compared to other tasks� With

respect to the deadline given� it can be inferred that the earlier the deadline� the greater

the importance of the task� Based on these facts� two classes of scheduling algorithms are
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used in real�time systems�

Earliest Deadline 	ED� � Here� the highest priority is assigned to the task with the earliest

deadline� which is allowed to use the CPU� ED performs optimally in systems which

are not overloaded� In real�time systems� as and when a task arrives� it�s deadline

is compared with the currently executing task�s deadline� If the deadline is earlier

than the current task�s deadline� then the current task is preempted and the newly

arrived task is assigned to the CPU� The remaining tasks are sorted in ascending

order by their deadline and put into a queue� Whenever the CPU becomes free the

�rst task in the queue is assigned the CPU�

Least Slack 	LS� � Here� the highest priority is assigned to the task with the lowest slack

value� The slack value is determined at the time of task arrival and is not changed

thereafter� Upon arrival of a new task or upon completion of a task� the task with

the least slack value is assigned the CPU�
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Fairness in Scheduling

��� Introduction

One of the stated goals of Unix decay usage process schedulers is fairness� The scheduling

literature contains some work that pays special attention to the issue of fairness� The Fair

Share Scheduler described by Henry �� is one such e�ort� It attempts to ensure that CPU

time is divided among the set of users according to pre�determined ratios� It clubs users

into groups known as fair share groups� with each group guaranteed a share of CPU time�

irrespective of the load on the system� This is intended to prevent a sudden burst of activity

by one class of users� say students with a deadline on a course assignment� from occupying

the whole system and rendering it useless to other users� Henry�s implementation associates

a share penalty with the usual priority calculation done by the scheduler� viz�

FSS priority � Unix priority � share penalty

where�

Unix priority is a value proportional to the recent CPU usage of the process�

share penalty is a value proportional to the recent fair share group CPU usage and

FSS priority is the new priority value of a process� based on which scheduling decisions

are taken�

Thus� the priority of a process worsens 	i�e�� its value increases� as either that process

�
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or other processes in the same share�group get more CPU time�

The SHARE scheduler ��� is another extension to the Bach scheduler with fairness

in mind� Its goal is to ensure long term fairness to share�groups� A fairness interval�

often measured in days� is used� with sampling done every � seconds� Like the Fair

Share Scheduler� SHARE adds a share penalty in priority calculation� but the penalty

is scaled by the number of active processes in that share�group� while ensuring that the

short term usage does not exceed the long term allocation by too much� SHARE also

supports hierarchical fair share groups� The PrismaOS scheduler described by Essick ���

works along similar lines� except that it is an event based scheduler� One of the objectives

in PrismaOS scheduling is to handle thousands of processes with as low an overhead as

possible� It ensures accurate short term fairness with a fairness interval of � seconds and

sampling done every second�

Hellerstein developed an analytical model for decay usage scheduling which relates the

service rates of compute�bound processes to their base priorities and scheduler paramet�

ers ���� The fundamental idea in his work is that periodically changing the priority of

a process with respect to its CPU consumption and the service rate objectives for that

user� will increase scheduling overheads considerably if the objective is to be achieved with

precision� Instead� this overhead is avoided by exploiting an already existing feed�back

loop in the scheduler� i�e�� priority being a function of recent CPU usage of the process�

to calculate only the required base priorities of processes in order to achieve the desired

service rates for all classes of processes� This idea can also be used in fair share schedulers

to obtain the most reasonable base priority for a particular share�group� However� Heller�

stein�s model considers only compute bound processes� not considering interactive or I�O

related activity� and is not directly applicable to real world conditions� Epema extended

Hellerstein�s analysis technique to decay usage scheduling in multiprocessor systems ����

showing that 	i� the relationship between the shares achieved and the number of jobs in

the classes is subtle� and 	ii� among the schedulers studied� ���BSD provides the highest

level of control over the share ratios�

All of the work reviewed above views fair process scheduling from the user�s viewpoint�
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In this chapter� we take the alternative approach of viewing fairness from the process�

perspective� Our studies of fairness were conducted through actual measurements on real

systems� We �rst describe the benchmark workload that we used in our experimental work�

It was designed to be a realistic representative of the load on workstations at our computer

centre� We then look at alternative methods to quantify fairness� providing justi�cations

for the fairness measures that we �nally use� Finally� we describe our experimental setup

and results�

��� Workload

To understand the fairness characteristics of decay usage process schedulers� we must

consider realistic workloads containing a mix of the various kinds of processes found on

a real system� unlike the simplistic workload assumptions made by Hellerstein ��� and

Epema ���� We base our workload selection on data we gathered through system activity

monitoring experiments� extending on the studies of Shet ���� Shet monitored the load on

a system continuously� classi�ed the workload in terms of a few parameters� and predicted

the response time of a process by extending the recent load conditions of the system to

the future� His process classi�cation di�erentiated between

� interactive processes� which have CPU usage on the order of few milliseconds�

�� long�lived processes� which have bursty CPU requirements� and�

�� back�ground processes� which have continuous CPU requirement�

To obtain workloads for our fairness experiments� we �rst monitored the workload on

a MIPS R���� Personal IRIS system running IRIX ������ in a networked workstation en�

vironment at the Supercomputer Education and Research Centre at IISc� The monitoring

program periodically obtained statistics on all the processes present in the system� In

order to do so� the following kernel data structures were monitored� the process table� the

uarea and the sysinfo� The process table contains an entry for each process with inform�

ation� accessible to the kernel at all times� such as current process status� pid� priority�
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recent CPU usage� etc� The uarea 	user area� contains �elds that are accessible by the

kernel while the process is running� It includes the total CPU usage of the process in

user mode and system mode� the total number of reads and writes done by it� the number

of voluntary and involuntary context switches so far� etc� The sysinfo structure contains

a system wide collection of statistics maintained by the kernel� including the number of

forks executed� the time spent by the system in user mode and system mode so far� etc�

As the uarea� only contains information about the running process� it does not reside in

un�swappable kernel main memory� In other words� while the entire process table forms

part of the kernel address space� the uarea of only the running process is mapped to a

known location in the kernel address space� Every process table entry contains a pointer

to the respective uarea� which resides in main memory and can be swapped out�

Based on Shet�s ��� observations and the con�rmation of the same from our monitor�

ing work� we arrived at a workload of� two compute bound processes 	doing no I�O�� �ve

compute intensive processes 	with varying degrees of I�O and memory occupancy�� one

script to capture the e�ects of interactive users� one memory bound and one I�O bound

process� The script for interactive users periodically does some editing using vi� compil�

ation of small C programs� recursively does a �nd� does ps� ls� etc� The �ve compute

intensive processes comprise the four Perfect Club benchmarks ���� CSS� APS� TIS� NAS�

Name Description Executable Size Input� Output
CSS Circuit Simulation� Spice� ��� KB �� �� KB
APS Fluid Dynamics� using FFT ��� KB � ��� KB
TIS Integral transforms for application in the �� KB ��  KB

areas of Chemical and Physical models�
NAS sequential Fortran version of the NAS kernels� ��� KB ���� �� MB

Table ��� The Perfect Club benchmarks used�

shown in Table ��� and a Gzip script which untars� gunzips� then gzips and tars an

expanded �le of about �� MB in size containing the source code of emacs�����	� Note

that the NAS program reads in an input �le of size ��� MB during execution� The workload

thus involves some amount of I�O and memory occupancy� apart from heavy usage of the
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CPU�

Our memory intensive program occupies about half of the available main memory by

repeatedly touching the start and end of each page of a dynamically allocated � MB region�

This ensures that the page is brought into main memory even if it had been swapped out�

The I�O intensive program untars and tars a tarred �le of about �� MB size� containing

the source code of xemacs�����
�

��� Measure of Fairness

The next issue we address is how to quantify the fairness of a scheduler� We view fairness

from the process viewpoint� To say that one scheduler is fairer than another� we must de�ne

the term fair from the process point of view� The simplest de�nition would be that given a

set of similar processes running under similar workload conditions� the treatment they get

should be the same� Thus� they should all be equally starved or satiated with the system

resources that they require during the course of the run� Also� across repeated runs of the

same experiment their treatment should be consistent� It might happen that sometimes

the scheduler does well and sometimes it does not� the treatment that a process receives

should be more or less consistent throughout a particular run� But� this is a simplistic

view� given that we typically have a system with dissimilar processes with varying degrees

of resource requirements for the CPU� memory and I�O�

For any program� the elapsed time is a major factor of concern� as it is only when a

program completes that it is of any use� For compute intensive� I�O bound and memory

bound applications we are interested in their total response time� For programs with

bursty CPU requirements and for interactive processes� we are interested in seeing that

CPU requests are satis�ed as soon as possible� This can be ensured by associating the

best priority with processes that go to sleep and to processes with a high ratio of idle time

to CPU time�

We ran measurement experiments as follows for each setting of scheduler parameters�

the experimental workload is allowed to run to completion and the elapsed times of all

processes noted for repeated runs of the same experiment� Later� the individual component
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programs of the workload are allowed to run under no�load conditions and elapsed times

noted� If the scheduler is fair to all processes� we might expect the ratio of no�load elapsed

time to normal elapsed time of each program� which we term as the blow�up ratio� to be

almost the same for all similar natured programs� The two CPU bound programs are

considered to be similar in nature� as are the �ve compute intensive programs from our

test suite�

We justify this measure of fairness as follows� if a particular program is a�ected by the

presence of other processes in the system� the same kind of e�ect should be felt by similar

programs which start at the same time� In order to determine whether the treatment they

receive is consistent� we calculate the standard deviation of the blow�up ratio values for

every program� across di�erent runs� To nullify the e�ects of di�erent elapsed times for

di�erent programs� we compute the standard deviation divided by the average value of

the blow�up ratio� The scheduler for which these ratios are the same for all the concerned

processes and for which the normalised standard deviation value is zero will be considered

to be the fairest scheduler� In short� our fairness measure F for a process p is computed

based on measurements from n executions of the concerned program as

Fp �
� 	Blowup Ratiop�

	
Pn

j��Blowup Ratiop�j� � n

where� Blowup Ratio of a process p on it�s jth run is

Blowup Ratiop�j �
Elapsed T imep�j
No Load T imep

��� Experimental setup on Linux

We conducted our fairness studies through measurement� not simulation� This required

a system setup which provides the ability to change scheduling parameter values� Most

commercial operating systems provide only the ability to change the CPU quantum size�

and not the decay rate or the decay period� As we saw earlier� Unix System V Release � is



Experimental setup on Linux ��

an exception� Even in SVR�� we have only indirect control over the scheduling paramet�

ers� there is no obvious correlation between the dispatch table values and the scheduling

parameters 	decay rate and decay period�� Instead� we opted for the freely available public

domain operating system Linux� We added control of the scheduling parameters through

source code modi�cations ���� We have already seen that the scheduling algorithm of

Linux is simple� primarily intended for a small number of processes�

Hence� our �rst task was to implement the Bach scheduling algorithm on top of existing

Linux facilities for process scheduling� We determined that the kernel is guaranteed to

get control of the CPU in the do timer�� routine� which is called HZ times every second�

HZ is a con�gurable system constant whose value is normally ��� giving a system clock

tick of � milliseconds� On return from any system call� and also whenever do timer��

�nishes execution� the variable need resched is checked� If it is set� the schedule function

is called to schedule a di�erent process if so warranted� We modi�ed the do timer��

routine to do accounting of recent CPU usage for a process� elapsed CPU quantum�

priority calculation and other functionality related to a decay period being over� or end

of quantum� Subsequently� we set the need resched �ag whenever the current scheduler

conditions warrant a switch to another process�

Apart from these changes to the Linux source code� we also implemented a penalty

for every process that goes into kernel mode and uses kernel resources� This penalty�

as suggested by Bach ���� is implemented by adding the amount of time spent in kernel

mode to the priority of a process when it returns to user mode� In addition� to allow

scheduling parameters to be changed without the need for re�booting or re�compiling the

kernel� we introduced system calls to change the scheduling parameters dynamically� The

���BSD type process scheduler was also implemented along with necessary system calls to

change the scheduling parameters dynamically� The scheduler has a dynamic decay rate

calculation based on the load present in the system� both of which were calculated once

every � secs�
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Experiments with compute bound processes �

of n was varied from � to � processes� The experiment was conducted on three systems

� a SUN Sparc�� running SunOS ��� 	using the System V Release � process scheduler��

an Intel ��� running a Bach scheduler 	Linux based�� and an Intel ��� running a ���BSD

scheduler 	Linux based�� For both the ���BSD and the Bach scheduler� the CPU quanta

was �� millisecs and the decaying cum priority re�computation was done once every

second� We used compute bound processes to avoid inherent mismatches present across

architectures� like di�erent computing power� I�O rates and main memory availability�

Thus� making comparisons across machines is justi�ed as far as the process scheduler is

concerned�

In order to monitor the CPU usages of the processes� we required some method of

accessing the per process proc structure which contains such information� In the SUN

Sparc��� the data structure used for allocating the proc structure to a process is not static�

like an array� but done through dynamic memory allocation� Hence� directly accessing the

proc structure in the kernel memory starting from the �rst proc structure and sequentially

scanning through structures until the required process� proc structure is reached does not

work� The system provides access to the kernel memory through a set of system calls

which are part of the Kernel Virtual Memory 	KVM� library� kvm open opens the kernel

and supplies the identi�er which is later used in other kvm system calls� We used the

kvm getproc call to access the proc structures of processes� But� there was a drawback in

this approach � the data read were cached by the system� resulting in the values not being

up�to�date in successive calls� However� every�time a kvm open was done the values got

were up�to�date� This suggested that we had to call kvm open before every observation

point during our experiments� We measured the overhead involved for a single kvm open

call and found it to be �� millisecs� Considering that the observations are done once in

every second� the overhead involved is too high� Instead we used the alternate approach

of accessing the proc device using ioctl system call� Fortunately� the overhead involved

here was only around � millisecs and the values reported were accurate and up�to�date�

For the other two process schedulers 	Bach and ���BSD� the CPU usages of the processes

were monitored using a system call that we added� GetUsage� This call takes as parameter
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the pid of the process to be traced and returns the current CPU usage of the process�

In relation to the past work done on Fair Share Scedulers� where a share of the CPU

is guaranteed to a particular group of processes� we now look into the share of the CPU

that a compute bound process gets during the course of it�s execution� If a scheduler is

fair to all processes� the amount of CPU time consumed by each process in the system

should be identical at every instant of measurement� We calculate the standard deviation

of these measured values at every instant� over the range of n� i�e�� � to �� To nullify the

e�ects of the di�erent number of processes in the system� we divide the standard deviation

by the average value� The scheduler for which these normalised standard deviation values

are zero over the whole range of n will be considered to be the fairest scheduler�

Thus� our measure of fairness F � at a given time instant is

� 	CPU usagei�

	
Pn

i�� CPU usagei� � n

where�

CPU usagei is the CPU consumed so far by process i at that instant�

Before we look at the results of these experiments� consider graphically the e�ect of a

perfectly fair scheduler� Figure ��� shows the expected CPU usage for a process on the z

axis� given that there are n similar processes present in the system simultaneously� with

n shown on the y axis� while the time elapsed is plotted in the x axis� The surface plotted

is basically z�	x�y�� since a perfectly fair scheduler is supposed to ensure that the CPU

is shared evenly among the existing processes at any instant�

����� Results

Figure ��� shows the CPU usage measured on a SUN Sparc�� for a single process among

n processes� with a magni�ed view in Figure ���� The upper �gure shows the values

for the �rst process that was forked o�� while the lower one shows the values for the last

process forked o�� in each case� Note that the �rst process gets less CPU time than the last

forked process� Further note that both the �gures show signi�cant deviations in CPU time
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Figure ���� Expected CPU distribution in case of a Fair Scheduler�

distribution from the ideal case� These experiments were run under no�load conditions� As

mentioned earlier� the SUN Sparc���s process scheduler is a System V Release � process

scheduler� We see from these �gures that for a single process� the e�ective CPU time

assigned to it might be well below or well above the expected value� We also see from the

graphs that when viewing the ideal distribution as a surface� then for both the actual cases

plotted� the surface is either fully below or fully above it� For the case of two identical

compute�intensive programs starting o� simultaneously� the �nal CPU usage values after

an observation period of ��� seconds are around ��� and ��� seconds� These values di�er

signi�cantly from each other� recall that this was the outcome of using a process scheduler

for which fairness was a stated design objective�

Figure ��� plots the values of our measure of fairness for the CPU consumed by the

di�erent processes present in the system in the above experiment� The top half the �gure

shows the plot for all odd number of processes while the bottom half shows the plot for

even number of processes� To make the lines clear� every tenth value was used to plot

the graph� During the �rst few 	typically ��� seconds� there is considerable variation

in the values of the measure� indicating that the system is yet to attain a steady state�
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Beyond that time period� the measure seems to stabilise to a constant value� Thus� even

though the process scheduler performs poorly in terms of fairness to processes� it does

so with admirable consistency� As we will see later� in addition to poorer performance�

this consistency is missing in a Bach scheduler� We also see from the �gures that as the

number of processes present in the system increases� the fairness measure also increases

in general� This means that the scheduler behaves less fairly when the load present in the

system increases� Since any system might perform well under low load conditions� it is

the behaviour under high load conditions that we put under greater scrutiny� Curiously�

the best fairness measure values are attained by the system for the case of n equal to �

and the next best at �� For the rest of the values of n� the measure is above ���

Figures ��� and ��� show the measures of fairness for a Bach scheduler under di�erent

number of processes present in the system� Observe that in most cases� the measure

of fairness stabilises as time passes� there are exceptions where the value continously

increases� Also� note that there is no steady value for the measure� neither within a

particular experiment nor across experiments� Therefore� we have plotted results from

three repetitions of each experiment� In each of these plots we see that the measure is

di�erent for the same value of n� The graphs also reveal that in general� as the number of

processes present in the system increases� the fairness measure also increases� This means

that the fairness performance is poor for larger values of n� which can be attributed to

the fact that the spread value of a Bach scheduler is �� Had the spread value been higher�

the measure of fairness would be lower even for higher values of n� We will con�rm this

observation when we look at results for the Bach scheduler with a di�erent decay rate�

In order to better appreciate this measure and its signi�cance� we next looked at

CPU usage times of various processes in an experiment with n � �� In Figure ���� the

upper most plot shows the CPU usage of six identical processes that started executing

simultaneously under a Bach scheduler� The middle plot in the �gure is a magni�ed view

of results for the same experiment� showing the last �� secs of the experiment� For this

particular experiment� the measure of fairness starts o� from a value of ��� and steadily

decreases to ����� as seen in the lower most plot� Thus� at the end of the experiment�
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i�e�� at ��� seconds past the start time� we have a fairness measure of ����� and the

largest di�erence in CPU usage between any two processes is around � seconds� This

di�erence is quite high� considering that if the scheduler had been fair� each process would

have consumed only about �� seconds of CPU time� Also� the �rst process� which has

the highest CPU usage� had received the same amount of CPU 	�� seconds� as the last

process 	lowest CPU usage� at the end of ��� seconds � almost �� seconds prior to it� These

observations emphasise the value of our fairness measure and its practical signi�cance�
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Figure ���� Scheduler Fairness� seven identical compute bound processes�

To compare all of the schedulers with respect to the fairness measure under con�

sideration� Figure ��� was plotted for the case of seven identical processes starting o�

simultaneously� Observe that as the decay factor increases� the fairness measure improves�

which also means that as the spread value increases� there is improvement in the fairness

of a scheduler� The ���BSD scheduler and the scheduler with priority re�computation

have consistently low values� which means that they are the best from the perspective of

fairness� Also� the scheduler with a decay factor of �� performs fairly close to these best

cases� and better than the Bach scheduler� which has a decay factor of �� This is due to

the fact that if the decay rate is high 	due to higher values of the decay factor�� the value
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of recent CPU usage decreases fast� resulting in the scheduler forgetting the heavy CPU

usage of an erring process� if any� Thus� this erring process is back in contention for the

CPU quicker than it would have been if the decay rate had been lower�

Note that the SUN Sparc���s System V Release � process scheduler performs the worst

among the schedulers� with fairness measure of �� which is very high as compared to oth�

ers� But� as pointed out earlier� it performs consistently� unlike the Bach scheduler which

sometimes performs well� but sometimes performs badly� This observation is con�rmed by

looking in to the Figure ��� for the case of seven identical processes� In these experiments�

the CPU quanta size was �xed at �� millisecs� and decaying cum priority re�computation

was done once every second� The scheduler in which priority re�computation is done at

the end of a quantum performs well� since recent behaviour of a process is captured by

these re�computations� Thus� even if an erring process manages to get more CPU time� it

is put into the proper priority level 	low� by having it�s priority re�computed�

Why does the ���BSD scheduler perform so well� To answer this question� we exper�

imented with the scheduler in two ways� We repeated the above experiment of starting

o� seven identical processes simultaneously� for two special cases� 	i� without priority re�

computation being done once every � ticks 	�� millisecs�� and� 	ii� without the load based

decay factor that the scheduler uses� Figure ���� shows the results� Observe that priority

re�computation plays a vital role as for as fairness is concerned� Without it� the measure

is consistently higher� as seen from the upper plot in the �gure� Note that the load based

decay performs reasonably well even without priority re�computation� con�rming our sus�

picion that the spread value plays a role in the fairness aspects of a process scheduler� As

pointed out� the spread increases in the ���BSD scheduler as the load increases� resulting

in the processes getting the CPU evenly�

��� The Phenomenon of Overtaking

The schedulers that we have studied are thus fair to varying degrees� in terms of the

evenness with which CPU time is distributed among competing processes� Consider next

the following fairness related question � Is it possible that a process starting o� after
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another identical process can overtake it and �nish before that older process� In our next

experiment� we started o� n identical processes simultaneously� and followed this with two

more identical processes after an elapsed time of �� seconds� The CPU usages of all the

processes were observed for a period of ��� seconds�
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Figure ���� Overtaking� Bach scheduler�

Figure ��� show results for n equal to � and � for a Bach scheduler� Observe that

overtaking does occur� We explain this phenomenon as follows� Even if all the processes

are forked o� simultaneously� not all of them receive CPU time equally during the �rst few

millisecs� Further� when decaying of recent CPU usage is done� the inequality is further
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compounded� So� there is a distinct possibility that one process is alone in its priority

level for its entire lifetime� As time elapses� this process moves down the priority levels�

i�e�� it gains higher priority� and gets hold of the CPU� But� since it is alone in this highest

priority level at this point in time� it continues to receive CPU quanta until it moves on to

a di�erent priority level� This happens since it�s priority is re�computed based on recent

CPU usage only at the end of the current decay period�

Considering that the spread value for a Bach scheduler is �� this erring process is back

in contention for the CPU after the next three decay periods� irrespective of the number

of processes present in the system� So� it occupies the CPU once again for the whole of

the decay period� and so on� This process could be one of the delayed processes that were

started o� after a delay of �� seconds� Thus� process overtaking occurs�

Figure ���� supports this explanation� In this experiment� ten identical processes were

started o� simultaneously on a Bach scheduler and their CPU usages were monitored for

a period of ��� seconds� It is clear from the graphs that a particular process is being

treated with undue favour� We observed that the �breaking away from the pack� can occur

at any time during the course of the run � sometimes close to the start of the experiment�

sometimes as late as halfway through the ��� second experiment�

Figure ���� illustrates the phenomenon of overtaking on a SUN Sparc�� system� The

�gure plots the values of CPU usage for n value equal to � and �� Here� overtaking occurs

because re�computation of priority 	based on the recent CPU usage� and hence the proper

status of a process� whether it is starving for CPU time or occupying the CPU excessively�

was not done frequently enough� As we see from Figure ���� and Figure ���� showing

experimental results with the ���BSD scheduler� if priority re�computations are done more

frequently� the phenomenon does not occur� These two �gures not only emphasize the

importance of priority re�computation but also the validity of the fairness measure� as

seen by the low values of the measure for the ���BSD scheduler and the Bach scheduler

with priority re�computation� The lower the measure the fairer the scheduler� resulting in

no overtaking of processes under any load conditions�

We con�rmed our explanation of process overtaking through simulation� We simulated
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Figure ����� Simulated Bach scheduler for the case of ten processes�

the Bach scheduler� and studied the e�ects of varying numbers of processes being forked

o�� The start of the �rst decay period was also varied with respect to the start time of the

execution of the processes� We observed that for di�erent decay period starting times� the

fairness of the scheduler also varied � from being fair to all processes� to being absolutely

unfair to some of the processes� Figure ���� shows a simulated instance of the scheduler

being unfair� Here� we have � identical processes each with an execution time of ��

seconds starting o� simultaneously� Note that two of the processes have gotten away from

the rest and managed to complete their execution more than ��� seconds ahead of the last

�nishing process�

��	 Further Comments

For a Bach scheduler� the priorities are re�computed once every decay period� Only when

that happens� do the priorities of all processes correctly re�ect the current nature of the

processes� So the best case for fairness in Bach scheduler is when the cpu quanta allocated

per process is X msecs and the decay period is also X msecs� Instead� if they are X msecs
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and �X msecs respectively� the scheduler is not up�to�date with the current CPU usages

of processes� It should be noted that in ���BSD� the priority of a process is re�computed

every � units of CPU received by it� irrespective of the decay period� Thus the fairness

measure truly indicates the fairness of a particular process scheduler according to it�s

underlying nature�

��
 Conclusion

In this chapter we studied the fairness of process schedulers through two types of experi�

mentation� Both lead us to the conclusion that among the schedulers studied� the ���BSD

process scheduler performs the best in terms of providing fair treatment to the processes

present in the system� We attribute this to the frequent priority re�computations done by

this scheduler� and therefore introduced a variation to the Bach process scheduler� where

priority is re�computed for every process as soon as its alloted quantum is over� In general�

this resulted in improvement of the Bach scheduler�s fairness measures�

We observed that SUN Sparc�� process scheduler treats processes in an unfair manner�

allowing a young process to overtake and �nish ahead of identical older processes� despite

the young process� late start in life� This unfair overtaking problem can be corrected and

the scheduler improved upon� since the set of parameter values under which the scheduler

operates is con�gurable� However� this may not be a simple task� as there is no documented

correlation between the scheduler table values and the standard scheduling parameters�

One of the assumptions made in past analytical evaluations of process schedulers is

that the decay period and the evaluation time period are aligned� We saw that this is not

a good assumption� during the course of our experiments� we had varying values for the

measure of fairness and CPU usages of processes� despite keeping scheduler parameters

and the experimental setup �xed � this was found to be due to the actual start time of the

decay period calculation�
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Soft Real�Time Scheduling

��� Introduction

Traditionally� real�time systems used dedicated real�time operating systems 	RTOS� with

the necessary support for guaranteed execution times� Today� this notion of dedicated

systems is changing� and there is interest in developing real�time applications on general

purpose operating systems 	GPOS�� The reasons for this change are many � the widespread

availability of GPOSs� portability of programs written over a GPOS as opposed to a RTOS�

and the ease of code development due to the large set of developmental tools available over

a GPOS � which result in shorter development time and lower costs�

In this chapter� we �rst look into the work done in the area of soft real�time systems

built on general purpose operating systems� followed by a description of the scheduling

algorithms implemented� We then describe the modi�cations we made to the Linux kernel

for our experiments in using decay usage schedulers in soft real�time situations� and report

on the results of these studies�

��� Background

A large body of work has been done on real�time scheduling in various environments�

including processor� I�O and transaction scheduling� Most of this assumes an in�nite

�
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range of priority values and a custom scheduler on a real�time system� The suitability

of Unix for real�time applications has been investigated by some researchers� Furht ���

identi�es performance and determinism as the essential properties of an operating system

to support real�time applications� and goes on to show that REAL�IX� a fully preemptive

Unix based system compares favourably to a special purpose real�time OS� Mizuhashi

and Teramoto ��� come to the same conclusion based on another real�time Unix� RX�UX

���� Wells studies two other GPOSs� SCO XENIX System V and OS�� ���� concluding

that both are viable for real�time applications� with OS�� being particularly well suited

due to it�s high predictability� Wainer ��� implements facilities for real�time scheduling

under MINIX and evaluates the performance of two real�time scheduling algorithms on

real workloads�

While these studies demonstrate that a GPOS can be used to support real�time ap�

plications� none of them addresses the issue of priority assignment to the real�time tasks�

This problem is addressed by Adelberg et al ��� ���� They propose three strategies for

priority assignment in a traditional multi�tasking environment� and evaluate them through

simulation� Our work involves an implementation of these priority assignment algorithms

on top of a Unix operating system and their evaluation through experimentation� We also

introduce two new performance measures to describe the e�ect of these algorithms� apart

from the usual measure of miss ratio�

����� Priority Assignment

For scheduling purposes� GPOSs assign priority values to processes� the process with

the highest priority is assigned the CPU� These priority values are discrete and lie in a

�xed range� unlike the continuous range of priorities associated with real�time scheduling

algorithms like Earliest Deadline 	ED� and Least Slack 	LS�� Thus� the emulation of these

algorithms on a GPOS requires an appropriate priority assignment algorithm�

The essential idea here is to assign the highest priorities to the tasks with earliest

deadline or least slack� This poses a problem in a GPOS with a limited number of

priority levels� Since the levels are limited� when a real�time task arrives in an empty
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system� what priority should it be assigned� If it is set high and many tasks arrive with

earlier deadlines� the scheduler will run out of priority levels� A similar problem occurs

if the priority is set too low� Setting the priority to a middle value does not help much

either� Whenever a task arrives� if it is assigned the middle value as priority� the priority

range must grow exponentially for the priority assignments to be according to the earliest

deadline �rst or least slack �rst algorithm� Thus� to guarantee correct priority assignments

to � tasks� we require �� priority values�

Our experiments were done with two versions of Unix scheduler� the traditional Bach

one and the POSIX Unix� While the traditional Unix has �� priority levels for the user

processes� there are �� priority levels in POSIX Unix specially designated for real�time

tasks� The priority of a process increases when it goes to numerically lower priority levels

in a traditional Unix system� In POSIX Unix the priority decreases when the process

assumes a lower priority level�

Let n refer to the total number of priority levels in the system� In order that the

discrete and �xed set of priority levels available in the system be used e�ciently� the

following function is used for mapping the real number 	R� obtained from the algorithm

to one of the priority levels available in the system�

maplin	R�

p � bR
ts
c�

IF p � n THEN

p � n� �

ENDIF

return	p��

The linear mapping function denoted by the subscript lin divides the range of R from

� to nts evenly� ts is a tuning factor whose value depends on the scheduling algorithm� so

that the equation max	R� � nts holds�
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����� Scheduling Algorithms

For a real�time task T let�

a	T � be the arrival time of T�

e	T � be the estimated execution time of T�

s	T � be the slack time given for T to complete� and

d	T � be the deadline before which task T must complete�

Clearly� d	T � � a	T � � e	T � � s	T � holds for any given task T� Thus� only three of

these parameters need be known� For all tasks� the arrival time and the departure time are

known� and the execution time estimates are required only by those scheduling algorithms

based on the tasks� slack time�

The Earliest Deadline 	ED� algorithm is emulated in two ways� the Earliest Deadline

Relative 	EDREL� and the Earliest Deadline Absolute 	EDABS�� while the Least Slack

	LS� algorithm is emulated as Least Slack Relative 	LSREL��

In EDREL� the priority level for a task is based on the deadline of the task relative to

it�s arrival time� Upon the arrival of a new task it�s level is assigned by�

level � maplin	d	T �� a	T ��

Tasks with distant deadlines will naturally su�er� as they will be assigned lower priorities�

When new jobs arrive with earlier deadlines� these tasks will not get the CPU even though

their deadlines are fast approaching�

In EDABS� the algorithm assigns priority by computing the deadline of a task with

respect to some �xed time tpinned� This value is �rst assigned as the startup time and

is later adjusted as per the system load conditions� When the number of tasks placed in

the highest level 	n � �� i�e� the lowest priority� exceeds a re�shift count Nr� the value

of tpinned is reset to the current time t� Such an occurance is called a re�shift� To avoid

re�shifts due to a single task with unusually distant deadline� we only count the number of

consecutive assignments of tasks to the n�th priority level� The �ag pinned is initialised
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to false and upon arrival of a new task the following algorithm is employed�

IF 	 not pinned � THEN

pinned � true�

tpinned � t�

max assigns � ��

ENDIF

level � maplin	d	T �� tpinned��

IF level � n �  THEN

max assigns � max assigns� �

ELSE

max assigns � ��

ENDIF

IF max assigns � Nr THEN

tpinned � t�

level � maplin	d	T �� tpinned��

max assigns � ��

ENDIF

Upon task completion� tpinned is set to false again if there are no tasks awaiting exe�

cution� Upon a re�shift� the new tasks are assigned priorities based on the more recent

tpinned� enabling them to obtain higher priorities� Thus� when a re�shift occurs� the older

tasks will lose their advantage of having arrived early and are most likely to miss their

deadlines� This is not unacceptable� as intuitively� when the re�shift occurs� the system is

likely to be overloaded� Thus� giving up on some old tasks and starting afresh will help

lessen the total number of missed deadlines� The rate of re�shifts is dependent on two

factors � the load � present in the system� and the re�shift count� Nr� A high number of

re�shifts will only result in poor performance� as more tasks are likely to be abandoned and

miss their deadlines� But� if the number of re�shifts is too low� tpinned would not change

much and the system is likely to cling on to the older tasks� ensuring that neither the old



Experimental Setup ��

nor the new tasks meet their deadlines�

In LSREL� the priority of a task is calculated based on the task�s slack at arrival�

Thus� the priority level assigned is

level � maplin	d	T �� a	T �� e	T ��

��� Experimental Setup

The existing POSIX support on Linux has only �� priority levels which could be used

to assign priority to processes� We expanded this to accommodate �� levels� the actual

number of priority levels as per POSIX standards� To speed up the selection of a highest

priority process to be scheduled� we indexed the whole set of POSIX processes using a

�� bit array� The runq is an array of �� pointers to processes� which has all the POSIX

scheduled processes in it� Further� we changed the underlying process scheduler from the

default Linux scheduler to the Bach scheduler�

����� Linux Signal Handling Bug

We detected a bug in the signal handling portion of the Linux source code� as of release

����� In the distributed source code� whenever the scheduler is called� the real value of the

time 	in ticks� from the present� at which the next SIGALRM is to be generated is made

equal to a very large value� After that� a check is done on all the processes to see whether

a timer is used� and if so� when the signal scheduled is to be generated� The closest value

is then assigned to a global variable itimer�next� To minimize the time spent in checking

the timer values� a check is made to see if any time has elapsed since the last time the

scheduler was called� if not� that particular process is not checked�

As a result� whenever there is more than one call to the scheduler within a tick� the

timer value at which the next SIGALRM is to be generated was set to a very large value�

Since the count of elapsed ticks is still zero� none of the processes are checked for their

timers� and hence� the value of itimer�next remains a very large value� This bug resulted in

a large loss of time due to signals being generated in our real�time experiments� However�
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when the next call to the scheduler is done after some elapsed ticks� due to the CPU

quantum for the current process being over� the itimer�next was set to the appropriate

value� This situation may or may not occur in normal conditions� but is quite possible

under real�time situations� as each process might not last more than a few millisecs� We

�xed this bug before conducting the experiments reported later in this chapter�

����� System Calls Added

A few system calls were also introduced in order to facilitate our experiments� Some of

these are related to the measurement of time in our experiments� The timing mechanism in

Linux is based on the timer chip of the i��� mother board� which ticks at a constant rate�

The counter in this chip is continuously decremented from a predetermined value until it

reaches zero� and then the predetermined value is re�loaded and decremented again� This

value can be read by latching the current value and then reading it into a register� We

refer to this as the latch count� whose value can be anything between ��� and �� The

ji�es is a global variable which is incremented once every � millisecs by the timer routine

in the system� We implemented a new system call GetTime which returns the current time

in the system in terms of ji�es and latch count� This provides the maximum accuracy to

measure the elapsed time of a real�time task�

A new system call for exit was also introduced� which we refer to as NewExit� It

does everything that the default exit does� but the child process does not wait for the

parent process to acknowledge it�s exit� Also� it does not return the completion status of

the child process to the parent� NewExit does notify the parent of the child�s completion

before freeing up the process table entry� Note that the releasing of a process table entry is

usually done by the parent� and until it happens the process state is set to TASK�ZOMBIE�

This system call was necessary since our experiments involve forking o� a large number

of processes in quick succession� With the parent process tied up due to the forks to be

done� the process table was not being vacated as fast as the new processes were created�

Since a process can not release itself� in NewExit we �rst do everything that the exit

call does� assign the process to a variable� and then set a �ag for releasing this process



Experimental Setup ��

before the next call to the scheduler� Whenever control returns from a system call or the

timer routine� this �ag is then checked and the NewRelease function called to release this

process� The NewRelease function is similar in functionality to the normal Release system

call� in that it frees up the proc structure passed as an argument to it� Before that� it does

what a parent would have done if it had received the SIGCHLD signal� removes the links

associated with the child process� and wakes up any process that is waiting for the child�s

exit�

����� Workload

We opted to use an experimental workload similar to that used by Adelberg et al in

their simulation studies ��� ���� They model real�time task arrival as a Poisson process�

with arrival rate �� which means that the inter�arrival times between tasks is distributed

exponentially with mean value of ��� Task execution times are assumed to be normally

distributed with mean � and standard deviation �� The slack values assigned for the

tasks are uniformly distributed in �Smin� Smax�� We studied the performance of various

scheduling algorithms under di�erent system load conditions� Load� �� is de�ned as � �

�� 	� � � � ��

Parameter Simulation value Experimental value

� ��� �� millisecs
� �� ���� millisecs
Nr ��� ���

�Smin� Smax� ���� ��� ���� ��� millisecs�

Table ��� Baseline parameter values

In all our experiments� the parameter values shown in Table �� were maintained� The

accuracy of the system clock was � millisecs� thus� for meaningful experiments� the mean

execution times of the real�time tasks has to be in the order of several millisecs� We chose

normally distributed task execution times with a mean of �� millisecs� With respect to

this value� the rest of the parameters were adjusted to re�ect the correct load conditions�
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The simulation study of Adelberg et al generated each data point by a run lasting

either ������ time units or until a ��� con�dence interval is obtained for the miss ratio

to be within � of it�s value ��� ���� As our methodology involved measurements on real

systems� we were not able to adopt such means� but instead ran our experiments until

����� tasks were assigned to the system and completed� We thus had a main process

devoted to forking o� tasks as children processes at predetermined periodic intervals� This

main process was given the highest priority possible in the experimental setup� while the

children processes got their priorities based on their nature and the scheduling algorithm

used� Each child process ran a single program which took a few arguments including

the time for which it is supposed to use the CPU� It had a �� microsecond and a �

microsecond computational loop to allow child processes to have CPU usage requirements

to a granularity of � microseconds�

As the parent has no control over the child process after the forking o�� the child must

determine whether it can complete its task before the deadline and report back to the

parent� Also� for some of our performance measures� if the child misses a deadline� it

must notify its parent of the time by which it missed the deadline and the slack value

assigned to it� This communication could not be done through �le I�O� as we determined

by experimentation that the �le control operations took a few milliseconds to complete�

Instead� we used message passing by the child process using a global message queue� The

overhead involved was on the order of tens of microseconds�

����� Fine Tuning

For strict time control� time should start ticking for a child process as soon as it is forked

o�� i�e�� the parent should record the start time of each child process� If instead the child

were to record its own start time when it starts executing� there is a distinct possibility

of a large disparity between the actual process creation time and the recorded creation

time� Since there is only one parent process that forks o� all the real�time children� it is

necessary that this parent process has the highest priority� so that it can get control over

the CPU as and when it requires to fork o� a child� To avoid any unnecessary work on
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the part of the parent during the course of the experiment� before forking o�� we compute

the execution time and slack time for all the ���� children along with the inter�arrival

time with respect to the previous child and store it in a data structure before the start of

the experiment�

Further� on a fork� the elapsed time between the previous fork and the current time

is noted and compared with the pre�determined inter�arrival time� If the elapsed time

is larger� the next inter�arrival time is reduced by the amount of di�erence in order to

maintain the accuracy of the workload generated� If this compensation is not done� we

would start accumulating all the late arrivals and allow the system to be actually less

loaded than the intended load�

Certain other Linux source code corrections were also required� The original Setitimer

system call actually sets the timer to send SIGALRM after the elapse of the given number

of ticks plus one� Also� the code which checks for the expiry of a timer looks for the elapsed

ticks to be greater than timer ticks� rather than for equality

Despite these attempts� the parent continued to get control of the CPU approximately

a tick away from the intended time� which could not be avoided� This is due to the

granularity of the system clock 	� millisecs�� if you want to fork o� a process �� millisecs

from now� the timer is set to �� millisecs and the parent gets control only after �� millisecs�

While working with the child processes� we found that for every fork there was a

considerable amount of time spent by the operating system in setting up the child before

giving control to it� When the relevant portions of Linux source code was studied� we

found that the system call to open the library libso�� took several milliseconds� This was

avoided by having the child program compiled as static� so that the library is linked along

with the executable during compile time rather than dynamic linking during execution

time� This also helped in reducing the number of page faults incurred�

����� Performance Measures

The performance measure used in the literature is the miss ratio� ��� ���� de�ned as the

ratio of the number of tasks that miss their deadline to the total number of real�time tasks
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that were initiated� In addition to using miss ratio for evaluating the performance of

real�time scheduling� we used two other parameters�

Slack Range Weightage Slack Range Weightage
��� � ��� �� ���� � ���� ���
��� � ���� ��� ���� � ���� ���
���� � ���� ��� ���� � ���� ���
���� � ���� ��� ���� � ��� ���
���� � ���� ��� ��� � ��� ��

Table ���� The weightages assigned for di�erent slack values

The �rst was a weighted miss ratio in which those tasks� that missed deadlines were

given weightage according to their importance� We infer the importance of a task from

its slack value� The slack time range for all the tasks was divided evenly into ten parts�

A low slack value means that the task must be completed urgently� Accordingly� when

computing the weighted miss ratio� a task whose slack value falls in the lowest slack range

is weighted to contribute fully to the total number of misses� while a task which falls in the

highest slack range is weighted to contribute less to the total number of misses� Table ���

shows the weightage values for the di�erent slack ranges�

As with miss ratio� the lower the value of the weighted miss ratio� the better the

performance of a scheduling algorithm� In our experiments slack values were assigned

uniformly distributed between �� and ��� Ideally� we would like to see the missed tasks

falling uniformly in the slack range� i�e�� if x tasks missed their deadlines with the slack

value in the lowest range� the same number of misses should be repeated across the whole

slack range� Thus in the ideal case the weighted miss ratio will have a value of ���� times

miss ratio� But� this may not be the case due to our assumption of exponential inter�

arrival times� which results in the system load occasionally being very heavy� Also� as a

lower value of slack time means that the task is of greater importance� the real�time system

is expected not to miss any of them� Thus� we expect the weighted miss ratio to be less

than ���� times miss ratio� For all tasks that have missed their deadlines� the slack value

is noted and the weighted miss ratio is calculated from
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nX

i��

weightage	slack valuei� � � 	total number of tasks�

The weightage function could in general be any kind of function� not necessarily linear�

This measure tells us if we are missing an unusually large number of tasks which have low

slack values�

The second performance measure that we used was relative miss ratio� This gives an

idea of the di�erence in time between the deadline and the actual time at which the task

completed� Since the tasks� have soft deadlines� even if the system misses the deadline

for a particular task we would like it to continue execution and complete after some time�

So it is important for us to know how a scheduling algorithm behaves in order that tasks

which miss their deadlines do not �nish very late� It should not be the case that the miss

ratios for a particular scheduling algorithm are low� but its relative miss ratio is high�

which means that the low miss ratio was obtained by sacri�cing tasks that have missed

their deadlines�

We compute the relative miss ratio for all tasks that missed their deadlines as

nX
i��

�
time by which the deadline was missed

	slack time� execution time �

�
� 	total number of tasks�

��� Results

Figure �� shows experimental results for the POSIX system with �� priority levels�

The intra�level scheduling algorithm used in this set of experiments is First In First Out

	FIFO�� with the tuning factor ts set to the optimumvalue for EDABS� which was ����� For

EDREL and LSREL� the ts value was set according to the equation max	R� � nts� where

n is the number of priority levels� The �gure shows three graphs for the three evaluation

parameters� viz�� miss ratio� weighted miss ratio and relative miss ratio� Similarly� the

right hand side shows the graphs for high system load conditions� We see that in terms

of miss ratio all three algorithms perform more or less equally� while for the other two
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Figure ��� POSIX system with �� priority levels� real�time workload�
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parameters EDABS performs the worst� For weighted miss ratio in particular� we see

a signi�cant di�erence in values� This means that EDABS is achieving it�s otherwise

comparable performance at the cost of tasks which have low slack value� The reason for

such poor performance is that the arbitrary abandoning of the tasks� without any concern

regarding their importance in terms of their low slack values� leads to greater weighted

miss ratios�

Figure ��� shows the performance of the emulated algorithms on a traditional Unix

system with only �� levels of priority� The di�erence in terms of the lower number of

priority levels and the re�assigning of task priorities by the OS scheduling algorithm� has

negligible e�ect on performance� The mean execution time for a task is �� millisecs and

the quantum assigned to a task by the scheduling policy� Multi�Level Round Robin with

Feedback� is also �� millisecs� Also� the decaying of the CPU usage of a process is done

once every second� Most processes complete even before their priority can be changed or

they are context switched out� Thus� the OS scheduling does not a�ect the performance

of the emulated real�time scheduling algorithms�

Next we look into the e�ects of Round Robin intra�level scheduling in a POSIX system

through Figure ���� Here� the scheduler slice 	Schslice� quantum assigned by the scheduler

is varied with a �xed mean execution time for the tasks� The experiments were carried out

under a load of � � ����� The graphs are plotted for the three performance measures� we

notice that as the Schslice�mean ratio increases� the performance of the algorithms tend

to improve� This is because the greater the quantum assigned to a task� the greater is the

probability of a task completing before being context switched out of the CPU� Thus� it

is always advisable to assign a large quantum in the case of a Round Robin intra�level

scheduler�

Consider that there is an optimal value of the tuning factor for which the number of

misses is the minimum for a given load value� all other factors remaining the same� Under

EDABS� when the tuning factor value is lower than this optimal value� the number of

re�shifts is higher� resulting in higher miss ratios� This is because the priority values 	p

in the maplin function� now being calculated will be numerically higher� resulting in the
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Figure ���� Traditional Unix system with �� priority levels� real�time workload�
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highest priority level being reached more often� Note that by highest priority level we

mean that the lowest priority value is assigned to the task� whatever might be the system

under consideration� Therefore� a re�shift occurs which actually results in the re�allocation

of priority values� with the older processes losing their advantage of having arrived �rst�

On the other hand� if the tuning factor 	ts� value is higher than optimal� then as the load

increases there may not be su�cient re�shifts for good miss ratios� Basically� the sacri�cing

of a few processes in order to get better miss ratios by doing a re�shift would not occur�

This holds for both EDREL and LSREL� although the tuning factor a�ects the number

of misses in di�erent ways� The value of ts is got from the equation max	R� � nts� if

the ts value varies signi�cantly from this value� then either the whole priority range will

not be used by the system due to the large value� or the priority of a task will often go

beyond the available range and hence the task will be assigned to the last available level�

In either case� the performance of the system will deteriorate� in the �rst case� there is

heavy competition for a limited subset of priority levels even though there are enough

levels� and in the second case the last available level will most often be used� identically

to the basic intra�level scheduling available in the system� Thus� it is important that the

tuning value be optimised for the load conditions and work patterns of the system� for the

performance of the system to remain near optimal�

Figures ��� and ��� show results from our experiments with varying the ts value on

a POSIX system with FIFO intra�level scheduling� under a system load of ���� and ����

respectively� It should be noted that the x�axis is a logscale in both these �gures� For

EDREL and LSREL the ts values based on the equation max	R� � nts� are ���� and

������ respectively� for �� priority levels� These were the default ts values used for

EDREL and LSREL in all experiments conducted� As regards EDABS� the ts value which

gave the lowest miss ratio� ���� was used� In our experiment� the variation in ts was

around these values�

As for as LSREL and EDREL are concerned� the resulting curves are almost identical

under both the load conditions� Within these graphs the weighted miss ratio more or less

sticks to the same kind of curves as the miss ratio� The explanation for this �bucket� shape



Results ��

0.04

0.06

0.08

0.1

0.12

0.14

0.001 0.01 0.1

ra
tio

s

tuning factor value

LSREL under a load of 0.30

miss ratio
weighted miss ratio

relative miss ratio

0.04

0.06

0.08

0.1

0.12

0.14

0.001 0.01 0.1

ra
tio

s

tuning factor value

EDREL under a load of 0.30

miss ratio
weighted miss ratio

relative miss ratio

0.04

0.06

0.08

0.1

0.12

0.14

0.001 0.01 0.1

ra
tio

s

tuning factor value

EDABS under a load of 0.30

miss ratio
weighted miss ratio

relative miss ratio

Figure ���� Tuning the algorithms in a POSIX system� load of ���



Results ��

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1

ra
tio

s

tuning factor value

LSREL under a load of 0.65

miss ratio
weighted miss ratio

relative miss ratio

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1

ra
tio

s

tuning factor value

EDREL under a load of 0.65

miss ratio
weighted miss ratio

relative miss ratio

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1

ra
tio

s

tuning factor value

EDABS under a load of 0.65

miss ratio
weighted miss ratio

relative miss ratio

Figure ���� Tuning the algorithms in a POSIX system� load of ����



Results ��

is as follows  recall that the maplin function which we de�ned earlier� is used to map the

real value of the slack or deadline of a task to a priority level� Thus� as ts increases� the

number of priority levels on to which the mapping happens steadily decrease and �nally

come down to just one or two priority levels� This means that the scheduling is now

being applied to the tasks more or less with FIFO intra�level scheduling� Similarly� as ts

decreases� the mapping function is almost always going to exceed the available priority

levels and will be forced to assign the last priority level available to the real�time task�

This again means that all the tasks are assigned to the same priority level� resulting in

FIFO scheduling� The relative miss ratio has it�s best 	lowest� values somewhere at the

start of the steep increase in the miss ratio and weighted miss ratio curves� Note that

all the measures reach a saturation level after the steep climb and that there is almost no

change in the values thereafter� At these saturation points� in the case of ���� load� the

miss ratios are quite high 	around ���� resulting in almost every other process missing it�s

deadline�

With respect to EDABS� it is interesting to note that due to the presence of re�shifts� we

see that the ts value signi�cantly a�ects the performance of the algorithm� indicating that

the value must be carefully chosen� The best ts value under low system load condition

is not the best value under high system load conditions� Also� for a load of ����� the

relative miss ratio and the miss ratio curves are the mirror images of each other for most

part� implying that the ts value has to be chosen depending on what performance measure

we are more concerned about� In retrospect� this peculiarity was to be expected� as the

EDABS algorithm gives up older tasks by performing re�shifts to lessen the number of

missed deadlines�

We de�ne the re�shift ratio as the ratio of the total number of re�shifts that occur to

the total number of tasks that were initiated by the system� Figure ��� shows the re�shift

ratios for the case of EDABS when the tuning factor was varied� The reason for the dip

at the start of the x�axis in Figures ��� and ��� for EDABS is explained when we see this

graph � the ts value is so low that the system always performs a re�shift and assigns the

new task to the last priority level� This amounts to the FIFO algorithm being employed
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Figure ���� Re�shift ratios for EDABS on a POSIX system

on the tasks at the start of the x�axis� which is why we see the horizontal line� implying

the ine�ectiveness of the large reshifts that occur� Later the curves dip as the bene�ts

of doing re�shifts ensure a lower miss ratio� After that� the climb in miss ratio values

is immediate for most� This is because� the e�ects of EDABS and the small number of

priority levels available� combine to peak the graph for all the measures except the miss

ratio and weighted miss ratio in the case of ���� system load� As the tuning factor value

further increases we see the bene�cial e�ects of less re�shifts in terms of the miss ratios

decreasing� Thus as the re�shift ratio goes down� with exception of the miss ratio and

weighted miss ratio under ���� system load condition� all others attain favourable values

	numerically lower��

In short� EDABS performs poorly in most of our experiments� To con�rm this observa�

tion� we conducted a simulation study with the same workload� under the same parameter

values and found that it should actually perform better than EDREL� as reported by

Adelberg et al ��� ���� Figures ��� and ��� show the simulation results under di�erent

system loads� We see that EDABS tracks Earliest Deadline �rst 	ED� very closely and

out�performs it under high system loads� Also� in most cases EDABS is the best of the

emulated algorithms� except in the case of weighted miss ratio where it is the worst� As

we explained earlier based on our experiments� this is due to the arbitrary abandoning of
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Figure ���� Simulation of least slack algorithms on a POSIX system
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tasks when a re�shift occurs� Also� comparing Figures �� with Figures ���� ���� we see

that there is a signi�cant amount of di�erence between the experimental and simulation

results� This is mainly due to the overheads involved in the experiments and due to the

system clock granularity� the simulation assumed zero overhead costs�

Algorithm Experimental value Simulation value

miss ratio weighted relative miss ratio weighted relative
miss ratio miss ratio miss ratio miss ratio

EDABS ����� ��� ����� ����� ���� ����
EDREL ����� ���� ����� ����� ��� ����
LSREL ����� ���� ����� ����� ��� �����

Table ���� Miss ratios for a POSIX system under experimentation and simulation�

In order to con�rm this explanation and the correctness of our experiments� we ran

an experiment with task mean execution time set to  second� With such a large value of

execution time� the clock granularity of � millisecs plays a negligible role in a�ecting the

performance of the system� Table ��� shows the simulation values and the experimental

values of miss ratios for all the scheduling algorithms on a POSIX system� run for ����

tasks� We see from the table that the di�erence between simulation and experimental

values for the scheduling algorithms is negligible  within �� for miss ratio and weighted

miss ratio� while it is up to �� for relative miss ratio� It should be noted that the

system load was set to ���� and the mean execution time of a task was  second 	��

times the clock accuracy of � millisecs�� These� along with the experimental overheads�

might be the reasons for such large discrepancy� If the mean execution time of task is

further increased� the overall system overhead per task will also increase� but the negative

e�ects of clock granularity will decrease� However� we are not concerned with real�time

tasks with mean execution times of  second and beyond� This experiment was conducted

merely to demonstrate the correctness of the other experiments�

We thus believe that the reason for the disparity between experimentation and simu�

lation results is partly related to the system clock granularity of � millisecs� On average�

the processes actually arrive � millisecs later than their intended arrival time� mainly



Results ��

because the forking of the processes is done by a single process� which wakes up every

now and then� Recall that as we wanted the experiments to closely adhere to the sim�

ulated workloads� we computed the actual inter�arrival time between processes and then

compensated for the late arrival� if any� by subtracting the amount of time from the next

inter�arrival time� Thus� we have a situation where the process arrives at a time quite

di�erent from the intended arrival time� resulting in the relative di�erence between tpinned

and the current system time to be o� the mark� This means the priority is quite di�erent

from the otherwise simulated value� A re�shift might occur because of this� resulting in

some more complexity� These deviations are quite disastrous in the case of low tuning

factor values� since even small time di�erences result in signi�cant change in the priority

values� It should be noted that even though we do the same kind of compensation for

LSREL and EDREL� they are not a�ected that much by these varying arrival times� This

is because the slack time upon which the priority is computed for LSREL never changes

for a given task and the deadline 	slack plus execution time� which is relative to the arrival

time also does not change�

��� Conclusion

In this chapter� we �rst de�ned two new measures for evaluating soft real�time scheduling

algorithms � the weighted miss ratio and the relative miss ratio� We saw that the number

of priority levels� at least between �� and ��� does not play a signi�cant role in the

performance of the algorithms� Also� the operating system scheduling policy had no e�ect

as long as the CPU quantum assigned to a process was large enough and the priority

re�computation� if any� was delayed as far as possible� We also looked into the e�ects of

Round Robin intra�level scheduling and came to similar conclusions� In our simulations

studies of these algorithms� we observed signi�cant deviation in the behaviour of the

EDABS algorithm� It was the best of the simulated algorithms� but performed worst in

our experimental studies� This we attribute to the coarseness of the system clock and the

inability of our experimental setup to accurately fork o� a task at the intended time�



Chapter �

Conclusion

This thesis studied two aspects of Unix decay�usage schedulers � their fairness and their

suitability in soft real�time environments� To quantify the fairness of Unix process sched�

ulers experimentally� the Linux operating system�s process scheduling and related code

were modi�ed� The modi�cations provide for the traditional decay usage process schedul�

ing of an Unix system and ��� BSD like process scheduling� both built on top of a Linux

system� To study soft real�time scheduling� the POSIX standard process scheduler was

also implemented� To facilitate real�time experiments� support for fast release of system

resources and for measuring elapsed times were provided using new system calls�

��� Results and Contribution

In the literature� there exists no clear�cut mechanism to evaluate the fairness of a process

scheduling algorithm in real�world situations� In the �rst part of this work� we quanti�ed

fairness to evaluate various decay usage process schedulers� We conclude 	i� that the ���

BSD scheduler appears to be superior to the other schedulers studied� and 	ii� that the

fairness of a Bach scheduler can be improved upon without any signi�cant overhead� if the

priority is recomputed on a context switch� We saw that although the SUN Sparc���s SVR�

scheduler was relatively unfair� it is admirably consistent in its treatment of processes�

We found the Bach scheduler to be the most inconsistent scheduler of all� We realised that

��
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this observation may have been due to the fact that the start of a decay period was not

always aligned with the start time of the experiment� and the mis�alignment varied across

experiments�

In the second part of our work� we studied soft real�time process scheduling� We de�ned

two new measures for evaluating the emulated scheduling algorithms� We were able to infer

the tradeo�s involved from these two measures� as they clearly portrayed where exactly

the performance gain or loss of an algorithm comes from� Although EDABS performed

best in our simulation studies� it proved not to be the best scheduling algorithm in our

experimental studies� We believe that this was due to the inability of our experimental

framework to provide a su�ciently accurate clock�

��� Further Work

Further work in this area could be done in the area of the fairness of the SUN Sparc���s

process scheduler� This can be done by �rst analysing the relation between the various

parameters in its scheduling table 	Table ��� in Chapter �� and the usual decay usage

scheduler parameters� Improvement is clearly possible� since the user has control over all

the values of the parameters in the table�

Further� in soft real�time systems� we saw that the EDABS scheduling algorithm is

highly dependent on system load and the tuning factor value� ts� This suggests the de�

velopment of algorithms which dynamically change the tuning factor value depending on

the system load conditions� This would initially require detailed simulation of the system

under various workload patterns� followed by a study of the relation between the best

value for ts and the given load condition� To do this work on our experimental setup

would require a more accurate clock � a complete re�design of the signal handler and timer

mechanism could be attempted to provide accuracies down to a few microseconds�
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