
10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France
“Toward circular Economy”

Building partitioning graphs in Parallel-DEVS context for parallel

simulations

C. Herbez, E. Ramat G. Quesnel

ULCO LISIC INRA MIAT

50 rue Ferdinand Buisson, BP 719 24 chemin de Borde Rouge - Auzeville CS 52627

62228 Calais Cedex - France 31326 Castanet-Tolosan cedex - France

[herbez , ramat]@lisic.univ-littoral.fr gauthier.quesnel@toulouse.inra.fr

ABSTRACT: With the emergence of parallel computational infrastructures at low cost, reducing simulation
time becomes again an issue of the research community in modeling and simulation. This paper presents a
method to improve simulation time through handling the structure of the model. This operation consists in
partitioning the graph models based on several criteria. In this works, we use the DEVS formalism which is a
discrete event formalism with a modular and hierarchical structure of models. To improve simulation time, we
use partitioning method. We will present the partitioning method chosen to achieve this division and quantify
the resulting time savings. Many tests are performed from graphs with different sizes and shapes.

KEYWORDS: DEVS, Simulation, Optimization, Graph, Partition, Multilevel.

1 INTRODUCTION

Modelling and analysis of complex system dynamics
is now a full science. Models derived therefrom are be-
coming increasingly complex in terms of components
(sub-models) and interactions. Therefore, we need to
develop both multi-modeling tools and efficient sim-
ulators. Indeed, the multimodelling is a response
to the increase demand for coupling heterogeneous
models. Model becomes an assembly of sub-models
representing subsystems of the global system. Obvi-
ously, this process leads to the increase in computa-
tion demand and therefore, the increase of computa-
tion time. It is therefore important to think about
the good use of new physical processor infrastructure
(multicore and multiprocessor). Work in this area
is it not new : includes all work around distributed
simulation [Chandy79, Chandy81] but also work
on parallel computing [Fujimoto90]. However, what
interests us is the construction of an optimized organi-
zation of simulators as part of DEVS (Discrete Event
Specification) [ZKP00]. The DEVS formalism is a
possible answer to the multimodelling and has spe-
cific properties as discrete events and coupling mod-
els. The global model, called structure of the model
in DEVS terminology, is a graph of coupled models.
Recent works about the DEVS community through
parallelization exist, for example, PhD thesis of Qi
Liu and Ernesto Posse [Liu10 , Posse08] but also
works around CD++ platform [Wainer10].

We will show how possible it is to design a graph

of simulators which guarantees a high level of per-
formance DEVS algorithms. This work involves the
study of DEVS algorithms and graph partitioning.
On the one hand, we describe Parallel-DEVS formal-
ism and we show how models are structured. We
will have a focus on the kernel of some algorithms
to understand what we are looking for to optimize.
Then we show how it is possible to partition the graph
model to optimize the simulation algorithms. And to
finish, various tests will be offered by illustration of
the results.

2 DEVS MODELING AND SIMULATION

As we mentioned in the introduction, DEVS
[ZKP00] is a high level formalism based on the dis-
crete events for the modeling of complex discrete and
continuous systems. The model is seen as a network
of interconnections between atomic and coupled mod-
els. The models is in interaction via the exchange of
timestamped events.

We will present Parallel-DEVS that is an extension
of classic DEVS and that introduces the concept of
simultaneity of events.

Parallel-DEVS [Chow94] extends the Classic
DEVS [Zeigler00] essentially by allowing bags of
inputs to the external transition function. Bags can
collect inputs that are built at the same date, and
process their effects in future bags. This formalism
offers a solution to manage simultaneous events that
could not be easily managed with Classic DEVS.



10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France

For a detailed description, we encourage to read the
section 3.4.2 in chapter 3 and the section 11.4 in
chapter 11 of Zeigler’s book [Zeigler00].

Parallel-DEVS defines an atomic model as a set of
input and output ports and a set of state transition
functions:

M = 〈X,Y, S, δint , δext , δcon, λ, ta〉

With: X, Y , S are respectively the set of input values,
output values and sequential states

ta : S → R+
0 is the time advance function

δint : S → S is the internal transition function

δext : Q×Xb → S is the external transition function

where:

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}

Q is the set of total states,

e is the time elapsed since last transition

Xb is a set of bags over elements in X

δcon : S ×Xb → S is the confluent transition

function, subject to δcon(s, ∅) = δint(s)

λ : S → Y is the output function

If no external event occurs, the system will stay in
state s for ta(s) time. When e = ta(s), the system
changes to the state δint . If an external event, of value
x, occurs when the system is in the state (s, e), the
system changes its state by calling δext(s, e, x). If it
occurs when e = ta(s), the system changes its state
by calling δcon(s, x). The default confluent function
δcon definition is:

δcon(s, x) = δext(δint(s), 0, x)

The modeler can prefer the opposite order:

δcon(s, x) = δint(δext(s, ta(s), x))

Indeed, the modeler can define its own function.

Parallel-DEVS formalism is a kind of finite state au-
tomaton. Unlike at the conventional automata, it re-
lies on the decomposition of the transition function in
three sub-functions : internal, external and confluent.
Moreover, the time is an integral part of the defini-
tion of a model via the function time advance, ta.
This function sets the “timing” of simulation. It will
be fundamental in the continuation of our work. To
simplify our tests, in the next part, we consider this
function as a constant in order to relate to a “discrete
time” case.

Every atomic model can be coupled with one or sev-
eral other atomic models to build a coupled model.
This operation can be repeated to form a hierar-
chy of coupled models. A coupled model is defined by:

N = 〈X,Y,D, {Md}, {Id}, {Zi,d}〉
Where X and Y are input and output ports, D the
set of models and:

∀d ∈ D,Md is a Parallel-DEVS model

∀d ∈ D ∪ {N}, Id is the influencer set of d :
Id ⊆ D ∪ {N}, d /∈ Id,∀d ∈ D ∪ {N},
∀i ∈ Id, Zi,d is a function,

the i-to-d output translation:

Zi,d : X → Xd, if i = N

Zi,d : Yi → Y, if d = N

Zi,d : Yi → Xd, if i 6= N and d 6= N

The influencer set of d is the set of models that in-
teract with d and Zi,d specifies the types of relations
between models i and d.

DEVS is an operational formalism. This means that
the formalism is executable and thus it provides al-
gorithms for its execution. These algorithms define
the sequence of the different functions of the DEVS
structure. Moreover, the atomic and coupled mod-
els are respectively associated with simulators and
coordinators. The aim of simulators is to compute
the various functions while the coordinators manage
the synchronisation of exchanges between simulators
(or coordinators in a hierarchical view). Many imple-
mentations reduce the hierarchy to only one level : a
coordinator and several simulators. [MuzyNut05]
introduce this type of structure. In this case, it is
called flattening.

To manage the synchronization between simulators
and/or coordinators, coordinators are based on a
scheduler. This scheduler contains the dates when
simulators must be awakened. These dates are com-
puted using the time advance function ta. It is impor-
tant to choose the right data structure and algorithms
for the schedulers as it will be highly used.

3 INTEGRATION OF THE GRAPH PAR-
TITIONING IN DEVS SIMULATION

Our approach consists to transform the structure of
a model into another. The source model comes from
the modeler activity (plant for agronomist for exam-
ple). The destination structure is optimized for paral-
lel simulation (i.e. with minimal hierarchy and mini-
mal interaction between coupled model) with our par-
titioning algorithms. This work is possible thanks
to the closure under coupling property of DEVS
[Zeigler00].



10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France

For our portioning algorithms, we propose to use a
method of undirected graph partitioning on the graph
stemming from the simulation. Knowing that graph
stemming from simulation is oriented, the first step
is to convert this in a undirected flat graph.

The aim of this section is to make a short state of the
art of graph by partitioning existing methods and to
introduce the one we chose for Section 4.

3.1 Generality on the graph partitioning

The k-way graph partitioning is a constraints opti-
mization problem. This involves cutting up a graph
G into k subgraphs {G1, G2, . . . , Gk} in order to min-
imize one or more criteria often called“objective func-
tions”. This dividing is translated by the creation of
k subsets of vertices called partition. Given a graph
G = (V,E) where V is a set of vertices and E is a set
of edges, Pk = {V1, . . . , Vk} is a partition of G if the
following conditions are respected: (i) neither subset
of V which is a member of Pk is not empty, (ii) the
subsets of V which are members of Pk are pairwise
disjoint. (iii) The union of all the elements of Pk is
V . In this case, the number k was called cardinal
partition or number of parts of the partition.

In our works, we are interested in a constrained par-
titioning problem. It consist in obtaining a parti-
tion whose parts have similar weight, this translated
mathematically by a partitioning balance less or equal
to 1.05. The partitioning balance of a partition Pk is
the ratio between the weight of the heaviest part and
the average weight of parts of the partition. It’s de-
fined by the following formulas :

weightmean = dweight(V )
k

e (1)

balance(Pk) = maxi weight(Vi)
weightmean

(2)

A partition is balanced if its partitioning balance is
higher than 1. It is translated by a small difference
between the weight of the heaviest part and the av-
erage weight.

The balance between the parties is not the only con-
straint which has to be respected, it must also mini-
mize one of the objective functions presented in sec-
tion 3.1.1. The choice of this function occur according
to the type of problem to solve.

3.1.1 The objective functions

The objective functions quantify a criterion that we
seek to respect when creating a partition. The re-
searched goal during partitioning is to find the best
partition that minimizes the studied objective func-

tion. Under the partitioning graph, the objective
functions revolve around two concepts : cost cutting
between the parts of the partition and weight of these
parts.

Given a graph G = (V,E) and two subsets V1 ⊆
V and V2 ⊆ V , we define the cut cost, named cut,
between this two parts as the weight sum of edges
connecting V1 and V2 :

Cut(V1, V2) =
∑

v1∈V1,v2∈V2

weight(v1, v2) (3)

And the cut cost of a partition Pk as the weight sum
of edges between the partition parts :

Cut(Pk) =
∑
i<j

Cut(Vi, Vj) (4)

This objective function was already used by Brian
Kernighan and Shen Lin in [KerLin70].

Another function allows simultaneous management
the minimization of the cut cost and weight bal-
ance between the parties : the ratio cut. It’s intro-
duced by Yen-Chuen Wei and Chung-Kuan Cheng in
[WeiCheng89].

Ratio(Pk) =
k∑

i=1

Cut(Vi, V − Vi)
weight(Vi)

(5)

In our works, we seek to minimize the objective func-
tion of the ratio cut.

3.1.2 The main methods of the graph parti-
tioning

There are many methods related to the problem of
graph partitioning. Each one has its features and
functionality. The main categories of methods are:
greedy methods, spectral methods, meta-heuristics
and region expanding methods. The choice of the
method depends on the nature of the problem and
the objective function to solve. In our case, we seek a
simple and effective method to minimize the ratio cut.
We have opted for a graph definition by adjacency so,
it is natural to seek a method that uses the concept
of neighborhood to generate the partition. That is
why we have chosen a method of expanding region:
the Greedy Graph Growing Partitioning (GGGP).

The GGGP method is an amelioration of the
“Graph Growing Partitioning” method introduced in
[KarKum98]. GGGP is a bisection method, which
aims to divide the set of vertices of the graph into two
parts of equal weight using the concept of neighbor-
hood. It works such as : two sets Vertex source (Vs)



10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France

and Vertex destination (Vd) are defined such as Vs
contains all vertices of the graph and Vd is empty in
the initial state. The algorithm starts by randomly
to select a vertex in Vs and moves it in Vd. An array
containing the adjacent vertices to those of Vd is cre-
ated: Vertex neigh (Vn). The process is to select the
vertex of Vn whose gain with respect to the studied
objective function is maximum. The selected vertex
is moved from Vs to Vd and Vn is updated. The
process stops when the weight of Vd is equal to the
half weight of graph vertices. The algorithm of the
GGGP method is presented by the algorithm 1.

Algorithm 1: Greedy Graph Growing Partitioning

Function : GGGP
Input: Graph G(V,E)
Output: Vs, Vd

Initialization :
Vs ← V
Vd, Vn ← ∅

Random selection of a vertex v ∈ V s
Moving the vertex v from Vs to Vd

while weight(Vd) < weight(Vs) do
Vn ← neighbor vertices of Vd

Gain← gain of each vertex of Vn

vg ← vertex of maximum gain
Moving the vertex vg from V s to Vd

The presented method is a variation of the original
GGGP method because the selection criterion of adja-
cent vertices is initially designed to reduce exclusively
the edge-cut Furthermore, it is important to remem-
ber that it is originally designed for the bisection. It
is necessary to perform a recursive application of the
latter in the context of a k-way partitioning.

As Charles Edmond Bichot reports in his book [Bich-
Siar], the major problem of this method is that it
gives good results only on graphs of small size (less
than 200 vertices). In order to apply this method
on large graphs, it is necessary to establish a method
to reduce its size without changing its structure. We
propose to implement a multi-level scheme, presented
in [KarKum98], to solve this problem.

3.2 Multilevel Graph Partitioning

The interest of multi-level is in this question : how
can we create quickly a partition of a graph G of given
size, knowing that it is very expensive to take care of
each vertex one by one?

The answer to this question is in three phases of the
multilevel introduced in the figure 1 :

• Coarsening: Generating of a reduced graph by
successive matching vertices, while maintain-

Figure 1 – Multilevel Graph Bisection

ing the nature of the original graph. Iterative
process generating a graph base {G1, · · · , Gn},
where G1 = G the original graph and Gn the
contracted graph.

• Partitioning: The purpose of this step is to cre-
ate a partition Pk of the graph Gn. For this, the
graph Gn resulting from the step of contraction
can be partitioned by using a heuristic of par-
titioning such as, for example, expanding region
method.

• Uncoarsening: The refining step is to project the
solution of the partition Pk on the initial graph
G. However, the partition can not be projected
directly on the original graph on pain of getting a
result of poor quality. An overall good solution
on the graph Gn may not be on the graph G.
That’s why it is necessary to realise a refinement
after each projection. The solution obtained on
the original graph remains globally and locally
good.

To implement our multilevel structure, we were in-
spired by algorithms present in literature and have
contributed to their development for some of them.
This is especially the case for the partitioning and
uncoarsening phase algorithms. These algorithms are
introduced in the following subsections.

3.2.1 Coarsening Phase

There are different methods of graph contraction ori-
enting mainly around the aggregation of vertices. As
part of our researches, we were interested in methods
Random Matching and Heavy Edge Matching (HEM)
introduced in [KarKum].

These methods have a common iterative structure.
At each iteration, adjacent vertices are merged until



10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France

there are no more available vertices. The difference
between these two methods lies in the choice of the
neighboring vertex eligible for a merger. The algo-
rithm 2 presents the iterative structure common to
both methods of contraction.

Algorithm 2: Graph contraction for one iteration

Function : Contraction
Input: Graph Gi(Vi, Ei)
Output: Graph Gi+1(Vi+1, Ei+1)
Initialization :

Gi+1 ← Gi

V list vertices set of Gi sorted randomly

for each vertex vi in V list do
Search of adjacent vertices at vi

Select a neighbor → vn (*)
Remove edge (vi, vn)
weight(vi) + = weight(vn)
for each neighbor α of vn do

if edge (vi, α) ∈ Gi+1 then
weight(vi, α) + = weight(vn, α)

else
Creation of edge (vi, α)

Remove edge (vn, α)
Delete vn

Modification of Vertex list

Now, let’s talk about the specificity of each method:
the selection criterion of the neighbor (represented
by (*) in the algorithm 2). In Random Matching
method, the selection criterion of neighbor is purely
random. There are no specific regulations concern-
ing the neighbor choice. Unlike it, the HEM method
selects the neighbor whose weight of the edge is the
strongest. The advantage of this approach is to re-
group the vertices connected by edges whose weight
is maximal. Thus, the edges of low weight should be
most likely to be cut during the partitioning step.

We chose to use the HEM contraction method in the
multilevel because it has the advantage to guide the
partitioning towards a minimizing the edge-cut crite-
rion.

3.2.2 Partitioning Phase

The partitioning process is accomplished using the
GGGP method described in section 3.2.1. It has the
advantage of being fast and efficient, but the disad-
vantage of having a highly dependent outcome of the
chosen starting vertex. To relieve this, we propose an
partitioning optimization approach related to start-
ing vertex. This approach is described by the algo-
rithm 3.

This consists in choosing nbr select different starting
vertices and to keep the best partition that minimizes

Algorithm 3: Optimization of partitioning

Function : Optim Rec GGGP
Input: Graph G(V,E), Integer nbr select
Output: Partition P (k)
Initialization :

V list vertices set of G sorted randomly
crit←∞ criterion to minimize
Pi(k)← ∅ partition with starting vertex i

for i in 1 to nbr select do
Partitioning for starting vertex V list(i) → Pi(k)
Compute the criterion → tmp crit
if tmp crit < crit then

P (k) = Pi(k) recording of the partition
crit = tmp crit

else
Pi(k)← ∅ destruction of the partition

the studied objective function. Considering the solu-
tion space that is the partition quality, the interest of
this approach is to look into the solution space in or-
der to find a good solution (not necessarily the best).
For this, we propose to realise between 10 and 20
“smart” selections. We mean by this that the failure
to take two vertices sensible to give a similar result.

Algorithm 4: Optimal selection

Function : Iterative Optimal Selection
Input: Graph G(V,E), Integer d max, Integer

nbr select
Output: V list

Initialization :
V list vertices set of G sorted
cpt← 0 counter

while cpt < nbr select do
Random selection of a vertex v ∈ V list
Search of vertices from a distance lower or equal
to d max
Remove all vertices in V
cpt← cpt+ 1

Starting from the postulate that a group of vertices
locating in the same area may provide an equivalent
partition, we set up a system of selection using a no-
tion of distance between vertices. Distance is defined
as the number of arcs defining a path (without cycle)
between two vertices. Either the selection of a initial
vertex, the selection policy implementation prohibits
the selection of another vertices located at a distance
less than d max. This approach allows a depth route
of the space solutions. However, if this one is poorly
conditioned it may result a restriction of the solu-
tion space and thus be the cause of a lower quality.
To avoid this type of overflow, we recommend to fix
the d max parameter between 2 and 3. Algorithm 4



10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France

represents the optimal selection method following a
notion of distance.

3.2.3 Uncoarsening Phase

The uncoarsening phase of the multilevel method con-
sists in projecting on the initial graph, the partition of
the contracted graph obtained during the partitioning
phase. However, as George Karypis and Vipin Kumar
find in [KarKum95], a locally optimal partition of a
contracted graph Gi+1 is not necessary after the pro-
jection on Gi. Knowing that the contraction phase
has built a family of graphs contracted {G1, · · · , Gn},
the uncoarsening phase consists in recursively pro-
jecting the partition of a contracted graph Gi+1 on his
father Gi, then to apply on this partition a refining
algorithm in order to maintain the quality (minimiza-
tion of the studied objective function) of the partition
obtained from the contracted graph Gn.

The method introduced is a variation of the original
GGGP method because the selection criterion of adja-
cent vertices is initially designed to reduce exclusively
the edge-cut. Furthermore, it is important to remem-
ber that it is originally designed for the bisection. It
is necessary to perform a recursive application of the
latter in the context of a k-way partitioning.

Algorithm 5: Refining by local displacement

Function : Refining Local Displacement
Input: Graph G(V,E), Partition P (k)
Output: Partition P (k)
Initialization :

D ← ∅ cutting difference

while Ratio Cut decreases do
for each partition parts do

D ← calculation of cutting difference for
each part vertices
for each part vertex do

if D(v) > 0 then
Gain← gain for each adjacent part
g ← max(Gain) and α best adjacent
part
if g > 0 then

move v from current part to alpha
else

Next vetex

else
Next vetex

The method that we have implemented is a local opti-
mization algorithm based on algorithm of Kernighan-
Lin [KerLin70]. It consists in moving successively
vertices located on the periphery of a part. A vertex
is considered on the periphery of a part Vi if it has a
common edge with a vertex that does not belong to
Vi. For each periphery vertex of a part, we notice that

the gain associated at the movement thereof toward
each neighboring parts. The gain represents the dif-
ference between the old value of the studied objective
function and the new one. If at least one gain is pos-
itive, the vertex is moved to the maximum gain part.
This process is applied to each part of the partition
and is repeated as long as one gain is realized. The
structure of the method is described in algorithm 5.

The detection of eligible vertices for displacement
(vertices of the periphery) is realised using the con-
cept of cut difference introduced by Kernighan-Lin
in [KerLin70]. To define what is the cut difference,
we introduce the notions of internal and external cut.
The internal cost I(v) of a vertex v of the part Vi of
the partition is defined as the sum of the weights of
edges adjacent to v whose the second vertex is in Vi :

I(v) =
∑

v′∈Vi

weight(v, v′) (6)

The external cost E(v) of a vertex v of Vi is defined
as the sum of the weights of edges between v and the
vertices not belonging to Vi :

E(v) =
∑

v′∈V−Vi

weight(v, v′) (7)

The cut difference D(v) is the difference of cost be-
tween the external and the internal cost of the vertex
v :

D(v) = E(v)− I(v) (8)

All vertex with a cut difference bigger than 0 is eligi-
ble for a moving. Instead, if it has a negative D(v), it
implies that it is not on the periphery or its movement
is not likely to make a gain.

Results introduced in the section 4 are obtained from
multilevel method using the HEM method for the
coarsening phase, the GGGP method with draw dis-
tance and minimization of the ratio cut for the parti-
tioning phase and refining method by local displace-
ment using the cut difference for uncoarsening phase.

4 RESULTS

The objective of this section is to show the impact of
the structure of the model in a DEVS simulation. We
transform a modeler graph into a new one, optimized
for simulation algorithms.

For this, we propose to make a comparison of sim-
ulation time between a classic modeler’ graph which
uses many coupled models and an optimized graph.

We will seek to quantify the gain (in simulation time)
associated to the redefinition of the structure of the
model by cutting in k sub-models and determine an
optimal parts number for the partition. To bring us



10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France

to the conditions of use of the partitioning method
GGGP introduced in 3.1.2, we have parameterized
our multilevel as follows:

• application of the HEM contraction until it
reaches a graph of size 200,

• application of the GGGP with optimization of
the start selection with a distance of 2 for a parts
number varying from 2 to 100 every two,

• application of the refining method using the dif-
ference of cut.

But before observing the results obtained by apply-
ing the partitioning on the PDEVS models, the sec-
tion 4.1 introduces the data on which were conducted
the tests.

4.1 Data and hardware architecture for tests

This work is carried out in research project named Es-
capade (Assessing scenarios on the nitrogen cascade
in rural landscapes and territorial modelling - ANR-
12-AGRO-0003) funded by French National Agency
for Research (ANR). We are particularly interested in
one of the models of project : TNT (nitrogen and hy-
drologic pathways in topology) [Beauj01]. TNT of-
fers to represent nitrogen transfers by a tree of pixels
where each pixel represents an area and the different
soil layers. Exchange processes and nitrogen transfor-
mations are described at this spatial scale. The num-
ber of spatial elements is several tens of thousands
to the studied catchment area. The following tests
and results are therefore based on both graphs used
in TNT and graphs generated with similar properties
to those of TNT.

The tests were performed on a C++11 program that
implements the Parallel-DEVS abstract simulators.
It was compiled with gcc 4.8 on Linux. The hardware
architecture was based on an intel core i7 quad-core
2.8 GHz processor and 16 GB of memory.

4.2 Results observation

The results introduced in this section are in the form
of relative gain curves. The gain as a percentage, is
the ratio between the time obtained by applying the
method of cutting and the reference time. Our inter-
est is focused on the gain including the partitioning
time of the graph (RG) and on the pure gain (PRG),
that is to say the gain does not include the partition-
ing time.

These relative gains are obtained from the following

equations:

timediff = timeSimu ref − timeSimu parti (9)

RG = timediff

timeSimu ref
∗ 100 (10)

timediffp = timediff − timeP arti (11)

PRG = timediffp

timeSimu ref
∗ 100 (12)

Where, timeSimu parti is the simulation time obtained
by applying the structure original cut, timeSimu ref

is the reference time obtained by applying the original
structure and timeP arti is the partitioning time.

A simulation with 8000 models is used to realise this
testing phase. Each simulation is subject to a num-
ber of iterations and has a duration. This time is
arbitrarily set at 40 time units. It enables to capture
the effects of optimization. The result is shown in
figure 2.

Figure 2 – Relative gain evolution in % in function
of the number of part for a simulation duration of 40
e.t.

As part of this simulation, the maximum gain ob-
tained is around 70%. Regarding the pure gain, i.e.
the gain without the partitioning time, it is close to
80%. It is interesting to take a look at the pure gain
because for a large simulation, partitioning time be-
comes negligible versus the simulation time. Concern-
ing the evolution of the gain in function of the number
of parts, we can observe that there are gain from the
first bisection. It is in the order of 4% with partition-
ing and 34% without. Furthermore, we can observe
an exponential increase of gain to a parts number
close to 20%. The gain varies from 4 to 65% with
partitioning and from 34 to 77% without. Beyond
that, the gain stagnates to achieve 80%. The parts



10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France

number corresponding to this change of state is called
optimal number of parts.

The origin of this gain comes from the minimization
of the number of message exchange between models.

The gain obtained by the implementation of the hier-
archical structure is translated by a reduction factor
of the simulation time. Given P the percentage of
gain obtained by applying the hierarchical structure
and α the factor of time reduction, α is obtained as
follows:

α = 100
100− P (13)

We consider a simulation with a gain of about 70 %,
it means that the reduction factor of time is approxi-
mately 100

100−70 = 3.33. It implies that in this case, the
hierarchical structure provides a simulation time 3.33
times faster than for the simple structure. However,
this result is not only an indicator of the performances
of the algorithms. Remembering that we work with
simulations not containing neither important calcula-
tions nor heavy. The implementation of paralleliza-
tion becomes essential whenever calculations are in-
troduced in the models. It is hoped that the objective
functions used for this preliminary work will lead to
similar results in a parallel context.

Execution Time 10 20 40 80 160
gainmin −67 −24 4 20 28
gainmax 33 56 70 77 81

gainmin pure 27 30 34 36 37
gainmax pure 60 72 78 82 84

Table 1 – Gain evolution in function of the execution
time (E.T.)

We will now detail the results and analyze the impact
of each step. Different times are measured in order
to observe their impact on the gain provided by our
cutting. Table 1 gives the values of minimum and
maximum gain (in %) recorded for different execution
time on a simulation of size 8000.

This table shows that the more a simulation is long,
the more the maximum gain associated tends to 85 %.
This is explained by the fact that the more a simu-
lation is long, the more the number of operations on
schedulers is important. Putting in place a cutting
of schedulers allows to reduce the cost of these oper-
ations, especially when simulation is long. Moreover,
this table allows to confirm that for the long simula-
tions,the time partitioning becomes negligible. This
is explained by the fact that the more the execution
time increases the more the difference between the
maximum gain and the maximum pure gain decreases
(30 for a E.T of 10 versus 3 for a E.T of 160).

A similar study was conducted to observe the im-
pact of the number of models on the pure maximum

gain that can be expected. Here is a comparison of
pure gains for simulations where the number of mod-
els varies from 1000 to 16,000 simulators. The execu-
tion time is always set at 40 time units. The results
are given in figure 3.

Figure 3 – Comparison of the maximum gains for dif-
ferent sizes of simulation

Table 2 summarizes the values of minimum and max-
imum gain pure, and the optimal number of part for
the different numbers of models.

Size 1000 2000 4000 8000 16000
gainpmin 5 13 34 35 33
gainpmax 18 36 64 78 83
Opt part 24 30 30 26 32

Table 2 – Gain evolution in function to the simulation
size

These results show that more the number of models
is big, the more the associated gain is important. It
is perfectly consistent with the results observed for
execution time important. These results tend to con-
firm that 85 % is the maximum pure gain that can
be achieved by applying the hierarchical structure. In
addition, we found that the optimal number of parts
for all simulations studied is neigh to 30. Beyond, the
increase is not significant, it is not necessary to take a
larger number of parties unless in search of maximum
gain.

5 CONCLUSION

This paper presents a method to improve simulation
time. This method consists in partitioning a DEVS
graph models in a optimized DEVS graph models for
the simulation i.e. by minimizing number of message
exchange. This work is possible thanks to the closure



10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France

under coupling property of the DEVS formalism.

This article highlights the importance of integrating
the graph partitioning within DEVS simulations to
reduce the execution time. This time saving is ob-
tained by a reconstruction of a two-level hierarchy of
the original model. When building subgraphs, it was
essential to choose an objective function that reflects
both the balancing of the parties and the minimiza-
tion of the links between the parties.

Concerning the results, the maximum gain observed
(close to 85%) is purely theoretical, it is valid only
for simulations where the computation time of the
models is negligible. The optimized properties in this
context will be then exploited with a Parallel-DEVS
parallelized kernel.

Figure 4 – Multilevel and phases time in function of
the simulation size

Indeed, the parallelization is based on the quality of
the partitioning that reflects the balance of execution
time between subgraphs and the amount of data that
passes between the parties.

The short-term prospects of our works follow the op-
timization of multilevel phases. At the moment, only
the contraction phase has not yet improved and as
shown in Figure 4 the time partitioning is largely af-
fected by the phase of contraction. The purpose of
this approach is the implementation of parallelization
on parallel architectures (multi-processors / multi-
core) and the quantification of the gains for expensive
simulations.

REFERENCES

Beauj01 V. Beaujouan, P. Durand and L. Ruiz,
Modelling the effect of the spatial distribution of
agricultural practices on nitrogen fluxes in rural
catchments, Ecological Modelling, n. 137 (1), pp.
93-105, 2001.

BichSiar C. H. Bichot, P. Siarry, 2010. Graph Par-
titioning, p. 29-64

Chandy79 , K. M. Chandy and J. Misra, Deadlock
absence proofs for networks of communicating
processes, Information Processing Letters, vol. 9,
n. 4, pp 185–189, 1979.

Chandy81 , K. M. Chandy and I. Misra, Asyn-
chronous Distributed Simulation via a Sequence
of Parallel Computations, Communications of
the ACM, vol. 24, n. 4, pp 198–206, 1981.

Chow94 A.C.H. Chow and B.P. Zeigler, Parallel
DEVS: a parallel, hierarchical, modular, model-
ing formalism, Proceedings of the 26th confer-
ence on Winter simulation, pp. 716-722, 1994,
Orlando, Florida, United States.

Fujimoto90 R. M. Fujimoto, 1990. Parallel discrete
event simulation, Communications of the ACM -
Special issue on simulation Volume 33 Issue 10,
p. 30-53.

KarKum G. Karypis, V. Kumar, Multilevel graph
partitioning schemes.

KarKum95 G. Karypis, V. Kumar, 1995. Analysis
of Multilevel Graph Partitioning. In Proceedings
of Supercomputing, p. 44-50

KarKum98 G. Karypis, V. Kumar, 1998. A Fast
and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs. SIAM Journal of Sci-
entific Computing, p. 359–392.

KerLin70 B. W. Kernighan, S. Lin, 1970. An
Efficient Heuristic Procedure for Partitioning
Graphs. Bell System Technical Journal, p. 291–
307.

Liu10 Qi Liu, Algorithms for Parallel Simulation of
Large-Scale DEVS and Cell-DEVS Models, PhD
thesis, Ottawa-Carleton Institute for Electrical
and Computer Engineering, Department of Sys-
tems and Computer Engineering Carleton Uni-
versity Ottawa, Ontario, Canada, 2010.

MuzyNut05 A. Muzy, J.J. Nutaro, 2005. ”DEVS
& DSDEVS abstract simulators”, 1st Open Inter-
national Conference on Modeling and Simulation
(OICMS, Clermont-Ferrand), 273-279.



10th International Conference of Modeling and Simulation - MOSIM14 – November 5-7 - Nancy - France

Posse08 Ernesto Posse, Modelling and simulation of
dynamic structure discrete-event systems, PhD
thesis, School of Computer Science, McGill Uni-
versity, 2008.

Wainer10 Gabriel A. Wainer, Qi Liu, and Shafagh
Jafer. Advanced parallel simulation of DEVS
models in CD++, chapter 9, page TBD. Tay-
lor and Francis, 2010. Authors : G. Wainer, P.
Mosterman Eds, Book : Discrete-Event Model-
ing and Simulation : Theory and Applications.

WeiCheng89 Y.C. Wei, C.K. Cheng, 1989. To-
wards efficient hierarchical designs by ratio cut
partitioning. In Proceedings of the IEEE Inter-
national Conference on Computer-Aided Design,
p. 298–331.

Zeigler00 B. P. Zeigler and D. Kim and H. Prae-
hofer, Theory of modeling and simulation: Inte-
grating Discrete Event and Continuous Complex
Dynamic Systems, Academic Press, 2000.


	INTRODUCTION
	DEVS MODELING AND SIMULATION
	INTEGRATION OF THE GRAPH PARTITIONING IN DEVS SIMULATION
	Generality on the graph partitioning
	The objective functions
	The main methods of the graph partitioning

	Multilevel Graph Partitioning
	Coarsening Phase
	Partitioning Phase
	Uncoarsening Phase


	RESULTS
	Data and hardware architecture for tests
	Results observation

	CONCLUSION

