
9e Conférence Internationale de Modélisation, Optimisation et SIMulation - MOSIM’12 
 06 au 08 Juin 2012 - Bordeaux - France 

« Performance, interopérabilité et sécurité pour le développement durable » 

DEVS GRAPHICAL SPECIFICATION TO CODE GENERATION  
 
 

M. HAMRI 
 

LSIS UMR 7296 / Université Paul Cézanne 
Avenue Esc. Normandie Niémen 

13045 Marseille- France 
amine.hamri@lsis.org 

G. ZACHAREWICZ 
 

IMS UMR CNRS 5218 / Université de Bordeaux 
351, Cours de la Libération 

33405 Talence Cedex - France 
Gregory.zacharewicz@ims-bordeaux.fr 

ABSTRACT: The paper presents an approach to generate automatically code from DEVS graphical model 
specifications. The generated DEVS models code is given afterward to the LSIS_DME DEVS simulator to execute the 
corresponding behavior. The user, even beginner in DEVS modeling, increases his trust in simulation results due to the 
fact he is not interfaced with an intermediate actor (modeler or programmer) that would interpret user requirements in 
the modeling and simulation activities. Using appropriate graphical items, the user is capable to develop his own DEVS 
models, to carry out simulations and to analyze them. 
 
KEY WORDS: DEVS, Simulation, Graphical Modeling, Teaching DEVS, LSIS_DME. 
 

1 INTRODUCTION 

Discrete event Modeling and Simulation (M&S) is the 
one of the popular paradigms to model dynamic systems 
[Banks et al., 2000]. Scientists and researchers have de-
fined methodologies, approaches and formalisms to as-
sist users (experts in a specific domain) to define models 
and simulate them. 
The modeling activity is a hard task due to the fact that 
the modeler needs knowledge on the system to model in 
addition to skills on the modeling language and pro-
gramming. This activity may be dispatched between 
three actors: the user who specifies the system in his own 
language (natural language, visual models, etc.), the 
modeler who formalizes the specification using a formal 
language, and the programmer who codes the formal 
specification using a programming language to allow 
simulations. 
The steps from specifications conducted by the user until 
coding the formal specifications conducted by the pro-
grammer may lead to lack of understanding and mis-
takes. The modeler does not have enough knowledge on 
the target system to specify. However, the user with his 
knowledge and skills should specify the system easily 
but the complexity of formal languages makes this task 
difficult. So to bridge this gap, theorists associated 
graphical representations to the formalism concepts. In 
fact it is easy to develop formal models using graphics 
instead of using abstract symbols. 
In the other hand, coding the specifications using an 
oriented-object programming language, conducts the 
programmer to develop patterns to design them. These 
patterns are generic object classes that define the compu-
tational concepts of the formalism. Then using these 
patterns, the programmer makes new classes that 
represent the elements of the specifications. So the de-
veloped code is pattern-driven and model-driven specifi-
cations. The effort to code the specification according to 

designed patterns is considerable. This fact evokes much 
development time and coding errors may occur. 
In general discrete event simulation formalisms support 
a graphical modeling in addition to the symbolic one. 
For example Statecharts [Harel, 1987] are purely graph-
ics. States are modelled with opaque rectangles and tran-
sitions with directed arcs. Using such these formalisms, 
the dynamic of the system may be shown while the si-
mulation runs. So the user may validate his specifica-
tions and concludes on simulation results in case of ad-
vanced software tools. Thanks to the graphical concepts, 
the user becomes a modeler capable of specifying his 
system using a sound formalism. However, the pro-
grammer is still useful to implement the specification 
when no friendly user-tool exists which is the case of 
DEVS [Hamri and Zacharewicz, 2007]. To save the user 
from coding and the programmer from learning the for-
malism and understanding the user specifications, we 
propose to generate automatically code from user speci-
fications based on graphics. 
In this paper we propose an approach that allows gene-
rating code automatically from DEVS user specifica-
tions. This will constitute a good framework for model-
ing and simulation of DEVS specifications, in which the 
user does not need skills knowledge on programming or 
help from a programmer. The fact that there is no inter-
mediary between modeling and simulation increases the 
user confidence in models and simulation results. 
The paper is organized as follows: the section 2 and 3 
give recalls on DEVS formalism and issues on designing 
finite state machines. The section 4 discusses how DEVS 
models should be mapped into object models. The sec-
tion 5 illustrates our approach to implement DEVS user 
models on computer with giving an example in section 6. 
Finally in section 7 we conclude on this paper and we 
outline our future works. 
 



MOSIM’12 - 06  au 08 Juin 2012 - Bordeaux - France 

2 2. RECALLS 

2.1 2.1. DEVS formalism 

According to the literature on DEVS [Zeigler, 2000] the 
specification of a discrete event model is a structure, M, 
given by: M= <X, S, Y, δint, δext, λ, D>, where X is the 
set of the external input events, S the set of the sequen-
tial states, Y the set of the output events, δint is the in-
ternal transition function that defines the state changes 
caused by internal events, δext is the external transition 
function that specifies the state changes due to external 
events, λ is the output function, and the function D: 
S R+ ∞ represents the maximum length or the life 
time of a state. Thus, for a given state “s”, D(s) 
represents the time during which the model will remain 
in state “s” if no external event is incurred. 
Zeigler introduced the concept of total states TS of a 
system as: TS = {(s, e) s  S, 0 < e < D (s)}, where e 
represents the elapsed time in state “s”. The concept of 
total states is fundamental in that it permits one to speci-
fy a future state based on the elapsed time in the present 
state. Potential benefits may lie in its ability to imple-
ment event filtering, wherein a planned change of state 
will be realized by a model only when the time that sepa-
rates two key events exceeds a predefined value, and to 
encapsulate otherwise the mechanical event filtering at 
the conceptual level. A DEVS model M is encapsulated 
in atomic model to make it reusable. The user defines the 
external interface which consists in defining input and 
output ports that receive on and send out events respec-
tively. 
DEVS atomic models are reusable using DEVS coupled 
formalism that includes the specification of DEVS com-
ponents and the couplings over them. The obtained mod-
el is defined with the following structure: 
 
MC = <X, Y, D, {Md/d D}, EIC, EOC, IC, Select> 

X: set of external events. 
Y: set of output events. 
D: set of components names. 
Md: DEVS models. 
EIC: External Input Coupling relations. 
EOC: External Output Coupling relations. 
IC: Internal Coupling relations. 
Select: defines a priority between simultaneous 
events intended for different components. 

 
2.2 DEVS languages oriented user specification 

The high level user specification language based on 
graphics is well suited to describe, at a conceptual level, 
the complex systems with discrete event models. Most of 
automata use the graphical specification that is easy to 
model behaviours. The principle is simple, states are 
specified with nodes on which the state name figures, 
and transitions are specified with oriented (directed) arcs 
that rely a source state to a target one. In DEVS, this 
concept was popularized by Seong and Kim [Seong and 

Kim, 1994]. For each element of DEVS, they propose a 
corresponding graphic: 
- A state is modelled with a circular node on which 

the name of state and its duration are mentioned, 
- An external transition is modelled with a dark 

directed-arc on which it is mentioned the event 
causing the transition (preceded by the port name if 
DEVS atomic), 

- An internal transition is modelled with a dashed 
directed-arc with the output event written on 
(outport is added if DEVS atomic), and 

- Also conditions could be specified on transitions to 
distinguish them when they are candidate to be 
triggered. When a transition could be fired, it is 
necessary to verify the value of the associated 
condition (if false the candidate transition is ignored, 
if true the candidate transition should be fired). 

 
Finally this description is encapsulated in a box on 
which input ports are noted on the left side and output 
ports on the right side (e.g. Figure 1). Next these box that 
model DEVS atomic components are employed to define 
a composite (DEVS coupled) model in hierarchical way. 
 

 
Figure 1: Example of Graphical representation of DEVS 

Atomic Model 
 
2.3 Existing DEVS software tools 

In the literature of discrete event M&S, there is about a 
hundred of tools in the field. This is shows the impor-
tance of the software tools in the cycle of M&S. The 
DEVS group standardization lists on his web site the 
most used DEVS tools that are known by the DEVS 
community. The oldest tool is ADEVS developed by the 
research team of the Arizona University using C++. The 
tool is an ad-hoc DEVS simulator in which the pro-
grammer who codes the DEVS user models extends the 
abstract class atomic to define DEVS atomic compo-
nents, and the class Network to defined computerized 
DEVS network. Once the whole DEVS model is coded, 
the simulation could run. A Java version of this tool ex-
ists, on which practical facilities are offered like DEVS 
coupled components and defining coupling over them in 
graphical way. 
Another interested tool is the CD++ tool developed in-
side the Carleton university [Wainer, 02] [Wainer et al., 
01]. The tool is recognized to be beginner-friendly in 

X?x
Y?y

Z!z

A 
∞

X

Z
B
2 

: passive state                         :  active state

: external transition : internal transition

X?x : input event x X!x : output event x 
on inport X                               on outport X

: passive state                         :  active state

: external transition : internal transition

X?x : input event x X!x : output event x 
on inport X                               on outport XX?x : input event x X!x : output event x 
on inport X                               on outport X

Y



MOSIM’12 - 06  au 08 Juin 2012 - Bordeaux - France 

addition to its efficient kernel simulation that allows 
quick simulations. In fact, the tool integrates a work-
space to model graphically DEVS atomic model in addi-
tion to DEVS coupled ones. This is very useful for users 
that have not enough skills in programming and especial-
ly in object oriented programming. 
Therefore, we conclude that the graphical notation al-
lows users to focus on modelling aspects instead of 
spending time on coding models. 
Based on this analysis and the list of simulators available 
on the web site of DEVS group we identify two catego-
ries: 
1) Simulators based on programming code. The pro-

grammer develops code corresponding to DEVS 
models. He should work strictly with the modeller to 
avoid of non-understanding. So, basic skills in 
DEVS modelling are suitable. 

2) Beginner-friendly tools like CD++, DEVSJAVA, 
etc. in which graphical manipulations are allowed to 
the user, but limited to the offered facilities. Once 
the user defines the whole model using the chosen 
tool, then from this specification, the translator ge-
nerates a logical structure which will be loaded by 
the kernel simulation to produce behaviours. 

 
We point as an essential remark that each category offers 
advantages to users. The first category by implementing 
DEVS user specifications into byte code, the simulation 
process is fast. However the users are not able to conduct 
simulations alone, they need a programmer to code cor-
rectly their models and run efficient simulations. Other-
wise, the beginner-friendly tool gives a friendly frame-
work to users for M&S their specifications. But the si-
mulation may be delayed due to the fact existing tools do 
not give attention into translators that transform graphi-
cal models into computerized ones by transforming them 
into a set of logical structures. Based on these state-
ments, we will aim to improve beginner-friendly tools by 
focusing on translators to obtain object code readable 
and making simulations safe. By exploring the automatic 
code generation field from automata, we should be able 
to raise this challenge. The next section gives an over-
view of the most research works in this field.  

3 DESIGN OF USER FINITE STATE 
MACHINES 

Designing Finite State Machine (FSM) is an interesting 
field of software engineering from 90’s. Researchers and 
practitioners developed approaches to transform discrete 
event specifications based on graphics to statement code. 
In [Dijk and van Gurp, 99], the authors discuss tech-
niques to code finite state machines (classic automata) 
and classify them into three classes according to the de-
signed code. 
3.1 Code based on switch statement 

Many works adopted the switch statement to code a fi-
nite state machine. The basic idea consists on coding 
states with an enumerate set of states and when events 

occur, according to the current state, the switch state-
ment deduces the next state and updates the current state 
variable. The difficulty of the switch statements is that 
when the number of states increases. This fact leads to 
statements hard to read and maintain. In case of hierar-
chical state like Statecharts, the imbricate switch should 
be used to allow a waterfall test. Unfortunately, this is 
still ambiguous for the reader and the hierarchical struc-
ture of state is not explicit in the code. 
 

 
Figure 2: Coding a FSM using the switch statement 

 
3.2 Code based on structures 

This approach proposes a logical and structured repre-
sentation for the automata. Given a finite state machine, 
the suitable structure could be a table with two dimen-
sions in which the set of states defines lines and the set 
of input event defines columns. Each element of the ta-
ble represents the new current state to consider when a 
transition is fired. If Output events appear on the auto-
mata, the table should be extended (see the figure be-
low). However, dynamic computations like storing con-
ditions and actions on variables are not supported by this 
structure. 
 

state\event x y x y 
S0 S1 - - - 

S1 S1 S0 - z 

s0 s1

?x

?y/!z

?x

 
 

Figure 3 : Mapping a FSM into a two-dimensional ma-
trix 

3.3 Code based on object-oriented paradigm 

The object oriented paradigm offers more programming 
concepts and possibilities to well design concepts for the 
target formalism. Aggregate should be used to describe 
states in hierarchical form, inheritance to reuse existing 

s0 s1

?x

?y

?x

switch(event){ 
   case x: switch(current_state){ 
  case s0: current_state = s1; 
      break; 
  case s1: current_state = s1; 
        break; 
     } 
  break; 
   case y: switch(current_state){ 
  case s0: current_state = s1; 
      break; 
  case s1: current_state = s1; 
      break; 
  } 
  break; 
} 



MOSIM’12 - 06  au 08 Juin 2012 - Bordeaux - France 

models, the encapsulation to encapsulate models, etc. 
This approach gives more freedom to design the formal-
ism elements. The works of Adamczyk [Adamczyk, 
2003] shows how a FSM may be implemented using an 
object-oriented language. Also, The DEVS-Sim propos-
es an interesting approach to generate object code from a 
DEVS textual language that respects a Backus Naur 
Form grammar. 

 
Figure 4 : A designed class diagram from a FSM 

 
Indeed, designing DEVS with object-oriented paradigm 
is an interesting issue and should lead a lot of advantages 
to DEVS community. In the next section we propose an 
approach to design DEVS models (atomic and coupled) 
into object paradigm with showing practical results and 
performances.  

4 DESIGN OF DEVS MODELS USING OBJECT 
PARADIGM 

The first object oriented language was appeared in 1970 
under the name SIMULA and Smalltalk language. It is 
proposed as an alternative to procedural languages that 
present a lot of lacks like: code not safe, difficult to 
reuse, etc. The Smalltalk society popularized this lan-
guage and a new paradigm is born. The object paradigm 
is well recognized by the software engineering commu-
nity to design complex systems and software applica-
tions. This paradigm is based on the concept class. A 
class is defined as an object with characteristics named 
attributes or variables and methods that act on attributes 
and provide services to other classes. The object para-
digm allows encapsulating attributes and methods in 
classes and limits the visibility to other classes using 
specific keywords (public, private, etc.). New classes 
may be designed by reusing old ones and extending them 
to add new attributes and methods thanks to the inherit-
ance. Finally the polymorphism allows writing classes 
with safety. 
Therefore, it is more interesting to map DEVS models 
with object paradigm to obtain computerized models 
instead of using switch statements or logical structures 
like table. 

 
4.1 Designing DEVS atomic models 

According to past works in software engineering the rule 
to design FSM is to map states with classes and transi-
tions with methods (see figure 3). When events occur, 
they provoke calling the corresponding methods. That is 
to say, events are assimilated to the call of methods. This 
may be useful to obtain fast simulation. However the 
developed code is less readable and less abstract due to 
the fact transitions are mapped into methods. In our pro-
posal, we decide to map transitions to classes, in which 
the target state is stored in the form of an attribute. This 
technique was adopted by [Dijk and van Gurp, 1999] to 
code FSMs. They show the advantages of this kind of 
mapping that consists on obtaining a readable code easy 
to maintain and modify. 
In our approach, we extend this rule to distinguish inter-
nal transitions from external ones. This distinction al-
lows associating the method output() that implements the 
output function λ of DEVS to classes that code internal 
transitions only. Thanks to the inheritance of classes a 
such specialization is possible which guarantees a clean 
and safe code. A code without this distinction, we must 
implement an output method with an empty body in case 
of external transition classes and that pollutes the code. 
Based on these statements of mapping, we design a class 
diagram to implement a DEVS atomic model shown in 
figure 4. This diagram proposes a clear separation be-
tween states and transitions by designing them with in-
dependent classes. Then, relations exist between these 
classes to obtain a coherent structure. A given class of 
state should reference all external transition classes that 
go from the considered state. However the internal tran-
sition classes are only referenced by active states with 
respect to the DEVS operational semantics. This fact 
leads us to specialize the class State and extend it into 
two classes PassiveState and ActiveState. We note that 
cardinalities are expressed on this diagram, to control 
and respect also the DEVS semantics. 

 
Figure 5: Class diagram of a DEVS atomic definition 

 
4.2 Designing DEVS coupled models 

Making a DEVS coupled model consist on reusing de-
fined DEVS model that the user saved in top up way. 
Next he defines connections (oriented ones) among 
reused DEVS models by specifying external input, ex-

s0 s1

?x

?y

?x



MOSIM’12 - 06  au 08 Juin 2012 - Bordeaux - France 

ternal output and internal couplings (EIC, EOC and IC 
respectively). 
All the elements of DEVS coupled appear on the class 
diagram. The ports are mapped into class Port within 
references to other ports. In fact, these references define 
the possible couplings EIC, EOC and IC. The class 
DEVS coupled consists of other classes that implement 
DEVS coupled and atomic models. The class Abstract-
Model plays the role of intermediary allowing saving 
them in a unique object (vector, list, etc.) by the cast 
technique. Still the last element, the function select 
which is encapsulated like a method in the class DEVS 
coupled and should define the priority between DEVS 
components at the same level with the same parent. 

 
Figure 6 : Class diagram of DEVS coupled definition 
 
Now, we will discuss our approach to model and simu-
late DEVS user specifications using a software tool that 
we developed at LSIS lab. 
 
4. LSIS_DME: An environment for M&S of complex 

systems 
 
The LSIS_DME (Lab of Sciences of Information and 
Systems_DEVS Models Editor) tool is developed by the 
LSIS team to enhance the process of M&S of discrete 
event systems in scholar courses and make easier the 
description of models than existing tools. The environ-
ment was designed according to user requirements: al-
low a graphical modeling since design atomic models 
until coupled ones by “drag & drop”, to avoid the pro-
gramming step and focus on learning DEVS concepts 
and principles. Consequently user with basic knoweldge 
on DEVS should be able to describe DEVS compute-
rized models and analyse them by simulation. Step by 
step he improves his skills on M&S and especially 
DEVS; instead of consuming time in coding models and 
handling code due to modifications that often occur on 
his models. 
In addition we propose an original approach that consists 
on generating automatically code from DEVS user speci-
fications. This process is illustrated on the following 
figure, when a user adopts LSIS_DME to model and 
simulate discrete event systems. 
 

LSIS_DME 
Interface

Graphic
DEVS 
models

Auto-
generation

DEVS Java

DEVS 
patternsError report

detected
errors

correct 
syntax

Simulation 
report

Simulation

 
Figure 7 : LSIS_DME approach in DEVS M&S 

 
4.1 Graphical representation of DEVS models 
 
The LSIS_DME provides a worksheet to model DEVS 
atomic and coupled models. The elements of DEVS 
atomic state, transition and port are in grouped into a 
visual palette. The declarations are realized only with a 
click on the palette and a drop inside the worksheet. 
Once the user has modeled his system, he selects the 
corresponding library in which the current model will be 
stored. In this way DEVS basic models are saved and 
may be reused in top up approach to define new models 
in modular and hierarchical fashion. 
To get more freedom with the graphical definition of 
atomic DEVS, we extend the state variable S (the third 
element of DEVS atomic definition) to the concept phase 
in which other state variables could be added. Conse-
quently we can define in a graphical mode actions and 
conditions on state variables. Actions are basic arithmet-
ic operations (addition +, subtraction -, multiplication *, 
division /) that compute the new values of state va-
riables. These actions are defined on the transitions (ex-
ternal and internal ones) and executed when the asso-
ciated transition is fired. Conditions also carry on state 
variables and used to distinguish candidate transitions 
(that mean once an event occurs, if there are more than 
one transition may be fired it should be only one in 
which the associated condition is true at this time).  
We note that also the extension of the state variable is 
done in graphical manner by declaring the other state 
variables in the “init” phase and set them with the cor-
responding initial values. 
 
4.2 Formal verification of the syntax and semantics of 

DEVS models 
 
To save correctly the DEVS models defined by users, a 
formal verification is conducted. We define a BNF 
(Backus Naur Form) grammar to determine the precise 
syntax of both DEVS atomic and coupled models. The 
BNF grammar is a formal mathematical way to describe 
specification languages. It consists of rules named pro-
duction rules that are applied to obtain a sentence (in our 
case a DEVS model). The grammar that we use resem-
bles slightly to DEVS definition language [Zeigler et al., 
2000]. However the DEVS BNF grammar that we define 



MOSIM’12 - 06  au 08 Juin 2012 - Bordeaux - France 

is fuller than DEVS definition language and its objective 
is different. The DEVS definition language was intro-
duced to define untimed DEVS models in which the time 
advance function D is not specified. 
With this grammar, syntax (static) errors are detected 
before simulation and the corresponding error messages 
are displayed on a shell. For example let us consider an 

DEVS atomic model, if the user forgets to associate an 
internal transition to an active state “s”, the tool displays 
the corresponding message “phase s without an internal 
transition”. Errors are also detected in DEVS coupled 
models, the grammar can verify if all couplings are done 
to have correct DEVS coupled models. 

 

 
Figure 8 : DEVS BNF grammar associated to LSIS_DME models 
 
An important feature to take into account too is to verify 
the determinism property for DEVS atomic models. To 
enhance the simulation, semantic errors must be avoided. 
We define a set of prevent messages that encourage the 
user to verify the determinism of models. These errors 
are such as defining more than one external transition for 
an input or two internal transitions that are not exclusive. 
This problem leads to a new issue on verification and 
validation of DEVS models that we should explore in the 
near future. 
We note that the BNF grammar defined above concerns 
models edited with LSIS_DME that consists of 41 rules 
of production. We note also that the type of state va-
riables is basic (integer, float and string). This fact limits 
the use of other types like arrays, lists, stacks. 
 
4.3 Automatic code generation of Java code from 

DEVS user models 

The automatic code generation is a part of software en-
gineering. The DEVS scientists and developers proposed 
particular tools that insure partially the step of code gen-
eration like DEVSJAVA tool of ACIM and VLE of LIL 
labs. These tools provide for users to generate skeleton 
and formatted files from designed DEVS models. How-
ever the users do not have dedicated “components” to 
model DEVS behavior which is defined by the variables 
and functions of DEVS atomic. We believe with this 
lack such tools can not be used in scholar courses to 
learn DEVS because the modeling consists on designing 
models and not only reusing them, the facility (the reuse 
of DEVS coupled models) given by many DEVS tools. 
In other terms the users should not code first atomic 
models and reuse them in coupled ones - even if skeleton 
files may be automatically generated - they should focus 

on specifying models and maintain them when errors or 
modifications occur. 
The LSIS_DME provides this option. So based on 
DEVS class diagrams, it generates Java code from 
DEVS user models. In other terms, the tool instantiates 
the DEVS class diagram according to the user model to 
produce Java code that will be given next to the simula-
tor. In first, given a DEVS atomic model we map it into 
a DEVS java class. Next internal classes are added into 
the main class and which correspond to the different 
states and transitions of user model. Each internal class 
extends an abstract class: given a state, it is mapped into 
a class that extends the abstract class Phase and given a 
transition (internal or external one), the corresponding 
class extends an abstract one too. To conduct this auto-
matically, we develop a module that execute the follow-
ing steps: 
Let us consider a DEVS atomic model Model, we: 
 

1) create the class Model, 
2) add two arrays that code the set of input and 

output ports. 
3) if the state variable is extended, adds the cor-

responding variables mapped into attributes of 
the class Model. 

4) for each defined state (phase), extend the ab-
stract class Phase to create the corresponding 
class. Each extended class should return the du-
ration of the state that maps it and the out tran-
sitions by implementing the corresponding ab-
stract method. 

5) for each defined transition, extend the abstract 
class transition and implement the abstract me-
thod output() that returns the output event. If the 
transition depends on a condition, the method 

Rule1 : Lexical unit ::= 
Keywords|Identificator|Constant| Operator|Punctuation
1. Keywords 
Rule2 : Keyword::=
deltaext|deltaint|del |DATE | end|EVENTVAL 
|FALSE | inputPort|integer|infinite |model |NULL
|of |out | outputPort|PREVIOUSSTATE |real 
|sigma |state |TIMELIFE |TimeNextEvent|TLF
|TRUE |value |with
2. Identificator
Rule3 : Identificator::=
Not_a_number
|IdentificatorNot_a_number
|IdentificatorNumber
Rule4 : Not_a_number ::=
_|[a- z ]|[A-Z]
Rule5 : Number::=
0|1|2|3|4|5|6|7|8|9
3. Constants :
Rule6 : Constant ::=
Integer_Cst|Real_Cst|String_Cst

Rule7 : Integer_Cst::=
Number_without_zero
| Integer_CstNumber
Rule8 : Number_without_zero::=
1|2|3|4|5|6|7|8|9
Rule9 : Real_Cst::=
Fractionnal_part
| Fractionnal_partExponent_Part
|Number_SequenceExponent_Part
Rule10 : Fractionnal_part::=
Number_Sequence
| Number_Sequence. Number_Sequence
| Number_Sequence.
Rule11 : Exponent_Part::=
e Number_Sequence
|E Number_Sequence
|e SignNumber_Sequence
|E SignNumber_Sequence
....

Rule41: Suppression::= deldeltaintnom_etat_src; | deldeltaext
nom_etat_srcPort_nameValue ;| del foutnom_etat; | delDVnom_etat; | 
delnom;

Rule1 : Lexical unit ::= 
Keywords|Identificator|Constant| Operator|Punctuation
1. Keywords 
Rule2 : Keyword::=
deltaext|deltaint|del |DATE | end|EVENTVAL 
|FALSE | inputPort|integer|infinite |model |NULL
|of |out | outputPort|PREVIOUSSTATE |real 
|sigma |state |TIMELIFE |TimeNextEvent|TLF
|TRUE |value |with
2. Identificator
Rule3 : Identificator::=
Not_a_number
|IdentificatorNot_a_number
|IdentificatorNumber
Rule4 : Not_a_number ::=
_|[a- z ]|[A-Z]
Rule5 : Number::=
0|1|2|3|4|5|6|7|8|9
3. Constants :
Rule6 : Constant ::=
Integer_Cst|Real_Cst|String_Cst

Rule7 : Integer_Cst::=
Number_without_zero
| Integer_CstNumber
Rule8 : Number_without_zero::=
1|2|3|4|5|6|7|8|9
Rule9 : Real_Cst::=
Fractionnal_part
| Fractionnal_partExponent_Part
|Number_SequenceExponent_Part
Rule10 : Fractionnal_part::=
Number_Sequence
| Number_Sequence. Number_Sequence
| Number_Sequence.
Rule11 : Exponent_Part::=
e Number_Sequence
|E Number_Sequence
|e SignNumber_Sequence
|E SignNumber_Sequence
....

Rule41: Suppression::= deldeltaintnom_etat_src; | deldeltaext
nom_etat_srcPort_nameValue ;| del foutnom_etat; | delDVnom_etat; | 
delnom;



MOSIM’12 - 06  au 08 Juin 2012 - Bordeaux - France 

condition() should return the logical value of 
condition. Otherwise, it returns true. 

We note that these steps are conducted automatically and 
no effort to spend for coding a DEVS atomic model spe-
cified using graphics. 
Concerning DEVS coupled models done also with 
graphics, the user who is using the tool defines only a 
structural model in which ports are connected. However 
for simplicity, we ignore the function select. So in the 
computational model, we map only the port couplings 
EIC, EOC and IC into arrays in which the index 
represent the sources of couplings and the elements of 
array represent the targets. These arrays are stored in a 
serializable class, and then the simulator uploads this 
structure to route messages when simulation starts.  
 
4.4 Limits of graphical DEVS representations 

With LSIS_DME some modelling difficulties may occur 
when DEVS atomic models require complex objects to 
define state variables (except for integer, float and sym-
bolic variables), or the phases of the system cannot be 
specified. To declare state variables as complex objects, 
the user can access to the formatted file that represents 
the Java code of the system modelled after had generated 
it with the editor, adds the state variables ignored in the 
graphical model (not allow to be defined with the dialog 
box), and finally saves the modifications and recompiles 
the program to generate the DEVS application. 
The second difficulty occurs when the model to simulate 
is a non-phase-based model. This category of models is 
called implicit state-based model in which the user tries 
to describe the event-driven behavior through the DEVS 
functions without phases. In this case, the user imple-
ments the corresponding specification using Java code. 
However to simplify the coding step, we advise the user 
to define the external view of the DEVS atomic model 
i.e. the input and output ports with the editor. Then com-
plete its internal view (the description of DEVS func-
tions) in the formatted file. 
 
4.5 Simulation kernel 

The interpretation of the behaviour of a DEVS model is 
given with the DEVS conceptual simulator. It consists of 
processors that represent a root coordinator, coordinators 
that are associated to DEVS coupled models and basic 
simulators that capture the behaviour of DEVS atomic 
models. A set of messages are exchanged between pro-
cessors grouped into rising and falling messages. These 
messages are: 
- i-message that activates the init state and its actions, 
- x-message that informs the simulator about an external 
event arriving and allows the fire of an external transi-
tion, 
- *-message is a scheduled event according to the time 
life of the current state that causes the execution of the 
output function and the corresponding internal transition 
change, 
- y-message that specifies the output function result, and 

- d-message that expresses the fact that the x-message 
or*-message was treated by the simulator. 
To enhance the simulation performances, Kim et al. and 
Zacharewicz et al. proposed to flatten the simulation 
processors by transforming DEVS hierarchical models 
into non-hierarchical ones [Kim et al., 
2000][Zacharewicz et al., 2005]. This transformation is 
realized progressively along the modelling step in 
LSIS_DME. Since the user defines a new coupled mod-
el, we save both the hierarchical and non-hierarchical 
models. The first one is used for the modelling require-
ments, in order to keep the user hierarchy specification. 
The second (non-hierarchical) model defines the layout 
of the DEVS simulator. In addition, we replace the root 
and sub coordinators with a unique processor named 
Local Coordinator (see figure 8) in which the coupling 
arrays (EIC, EOC and IC) are associated. However we 
keep the basic simulator algorithm as defined by Zeigler 
in [Zeigler et al., 2000]. The atomic simulator invokes 
the functions of a DEVS atomic model through the ob-
ject class Model that defines both the external and inter-
nal transition and output functions implemented via in-
ternal classes. 
 

Root
Coordinator

Coordinator
B

Coordinator
D

Coordinator
C

Coordinator
A

Simulator
B1

Simulator
D1

Simulator
C1

Simulator
D2

Local 
Coordinator

ABCD

Simulator
B1

Simulator
C1

Simulator
D2

Simulator
D1

 
Figure 9 : Put in flat the DEVS hierarchical simulator 
 
We believe that the simulation process may be improved 
by exploring technique from software engineering and 
parallel computation. Also a formal analysis of the simu-
lation process based on complexity of the classical and 
flatten simulators should give a clear answer and confirm 
whether or not the experimental results realized at this 
subject. 

5 AN ACADEMIC EXAMPLE: THE LAMP-
USER INTERACTION 

Let us consider a lamp controlled per a human user. He 
switches on the lamp since he perceives that it is switch-
ed off. We estimate the reaction delay of the user to 2 u.t 
(units of time). The light is maintained about 5 u.t, then 
the lamp switches off. 
From this specification we obtain the DEVS models 
shown on the below figure. 
 



MOSIM’12 - 06  au 08 Juin 2012 - Bordeaux - France 

Lamp = (X, Y, S, δint, δext, λ, D)
X = {(In, ON)}
Y = {(Out, OFF)}
S = {switched_off, switched_on}
δint(switched_on) = switched_off
δext(switched_off, e, In ?ON) = switched_on
λ(switched_on) = (Out !OFF)
D(switched_off) = infinity
D(switched_on) = 5

HumanUser= (X, Y, S, δint, δext, λ, D)
X = {(In, OFF)}
Y = {(Out, ON)}
S = {perceived, reacted}
δint(aperçu)=réagi
δext(reacted, e, In ? OFF) = perceived
λ(perceived) = (Out !ON)
D(perceived) = 2
D(reacted) = infinity

Lamp = (X, Y, S, δint, δext, λ, D)
X = {(In, ON)}
Y = {(Out, OFF)}
S = {switched_off, switched_on}
δint(switched_on) = switched_off
δext(switched_off, e, In ?ON) = switched_on
λ(switched_on) = (Out !OFF)
D(switched_off) = infinity
D(switched_on) = 5

HumanUser= (X, Y, S, δint, δext, λ, D)
X = {(In, OFF)}
Y = {(Out, ON)}
S = {perceived, reacted}
δint(aperçu)=réagi
δext(reacted, e, In ? OFF) = perceived
λ(perceived) = (Out !ON)
D(perceived) = 2
D(reacted) = infinity

HumanLampSys = (X, Y, D, {Md | d∈D}, EIC, EOC, IC)
X = Y = {}
D = {HumanUser, Lamp}
EIC = EOC = {}
IC = {((HumanUser, Out), (Lamp, In)), ((Lamp, Out), (HumanUser, In))}

 
Figure 10 : The different DEVS models of the user-lamp 
interaction 
 
Next, we design these models in LSIS_DME incremen-
tally. The following figure shows explicitly the DEVS 
atomic model of the lamp and the simulation trace. The 
two other models (user and coupled ones) are saved in 
the library HumanLamp viewed at the left side of the 
tool. When the user attempts to save the models, the tool 
verifies the syntax of the described models before saving 
them. If there is no error, the models are saved and the 
corresponding object code is generated. Otherwise, this 

generation fails and error messages are displayed to the 
modeler. 
The example shows us how modeling and simulation 
using LSIS_DME is easy to do. Animations of atomic 
models are possible by starting simulation in step per 
step mode. This allows making verification and valida-
tion by including the modeler in this process. 
Note that we have integrated LSIS_DME in simulation 
courses dispensed at Paul Cezanne University. We iden-
tified important impact and advantages on courses and 
students too: 

1) the DEVS courses give a training part that of-
fering to students to apply their academic know-
ledge without coding effort, 

2) enhance the student skills on DEVS M&S by 
stating that describing a model is an art and si-
mulation is a mechanical process, 

3) learn to how making decision on simulation re-
sults and allow to students to guide the verifica-
tion and validation process, and 

4) by forming students in discrete event simula-
tion, we make this discipline popular in indus-
try. 

 

 
 

Figure 11 : LSIS_DME GUI for DEVS Atomic models 
 

6 CONCLUSION 

In this paper we give different forms of coding DEVS 
models according to the literature of FSM design. There-
fore, we identify three ways to implement a classic 
DEVS behavior: 1) using the switch case statement, 2) 
using a tabular (matrix) form and 3) using the object 
paradigm. Based on this paradigm, we propose different 
models (class diagrams) to design DEVS coupled and 
atomic ones. Next, we define an approach to generate 

automatically code from DEVS user models. These user 
models are done using the graphical user representations 
of DEVS (arrows to model transitions, box to encapsu-
late models, etc.). From these specifications, we generate 
an object code based on the proposed DEVS class dia-
grams. Then, the simulation engine loads the generated 
object code to interpret the target model. 
Knowing the advantages of our approach, we developed 
an environment based on Java language. This environ-
ment is totally graphic and all DEVS elements are mani-
pulated with “drag & drop” technique to define DEVS 



MOSIM’12 - 06  au 08 Juin 2012 - Bordeaux - France 

user models. This environment is useful and helpful to 
student users who like to enhance their skills on model-
ing. In fact we avoid them, thanks to this environment, a 
programming step of models that requires skills on pro-
gramming language (computer science). From a technic-
al view, the simulation process is faster than existing 
tools based on XML that provide to users to model 
DEVS specifications. Because in the case of these tools, 
the simulation process generates trajectories using the 
XML descriptions and not a byte code that speeds up the 
simulation. Still to show it by giving performance com-
parison of each simulation conducted on different tools 
and approaches. 
In the near future, we aim to conduct a research work on 
computing the complexity of different forms of simula-
tion (hierarchical and flatten ones). This work will allow 
discussing formally and will mark another step further 
the experimental results discussed in [Wainer, 2002], 
[Zacharewicz et al., 2005] and more recently [Jafer, 
2011]. In the other hand, we will re-design the environ-
ment to be an IDE (Integrated Development Environ-
ment) like Eclipse © and AnyLogic ©. In perspective to 
give to the user a unified framework in which he de-
scribes graphic models and could analyze the generated 
code that correspond to the described models and to 
overtake the limits of DEVS graphical models. 
 

REFERENCES 

Adamczyk, P. 2003. The Anthology of the Finite State. 
In Proceedings Pattern Languages of Programming 
conference, PLoP. 

 
Banks, J., Carson, J.S., Nelson, B.L. and Nicol, D. M. 

2000. Discrete event system simulation. Third edition 
Prentice Hall. 

 
Giambiasi, N., Escudé, B., and Ghosh, S. 2001. 

Generalized Discrete Event Simulation of Dynamic 
Systems”, in: SCS Transactions: 18(4), p. 216-229 

 
Hamri, M., Zacharewicz G. LSIS-DME: An environment 

for modeling and simulation of DEVS specifications. 
in: AIS-CMS International modeling and simulation 

multiconference, Buenos Aires - Argentina, February 
8-10 2007, pp. 55-60, ISBN 978-2-9520712-6-0. 

 
Harel, D. 1987. Statecharts: A visual formalism for 

complex systems. International journal science of 
computer programming. 8(3), pp. 231-274. 

 
Jafer, S., Wainer, G. Global Lookahead Management 

(GLM) Protocol for Conservative DEVS Simulation. 
Proceedings of DS-RT 2010, Virginia, USA. 2010 

 
Kim, K., Kang, W., Sagong, B., and Seo, H. 2000. 

Efficient distributed simulation of hierarchical DEVS 
models: Transforming model structure into a non-
hierarchical one. IEEE XXX, p. 227-233. 

 
Niaz, I., and Tanaka. J. XXXX. An object-oriented 

approach to generate java code from UML Statcharts. 
International journal of Computer & Information 
Science, vol. 6(2), p. 83-98. 

 
Song, H. S., and Kim, T. G. 1994. The DEVS framework 

for discrete event systems control. Proceedings of AI, 
Simulation and Planning in High Autonomy Systems 
conference, Gainesville, FL, USA, 1994. 

 
van Gurp, J. and Bosh, J. 1999. On the implementation 

of finite state machines. Proceedings of the 3rd 
Annual IASTED International Conference Software 
Engineering and Applications, IASTED/Acta Press, 
Anaheim, CA, pp. 172-178. 

 
Wainer, G. 2002. CD++: a toolkit to develop DEVS 

models. Software, Practice and Experience, Wiley, 
32(3), p.1261-1307. 

 
Zacharewicz, G., Giambiasi N. and Frydman C.: 

“Improving lookhead computation in GDEVS/HLA 
compliant”, Proceedings IEEE DS-RT conference, 
Ottawa Canada October 10-12 2005, pp. 272-282. 

 
Zeigler, B., Praehofer, H. and Kim T. G. 2000. Theory of 

modeling and simulation. second edition Academic 
Press. 

 


