
Model-Based Testing of RESTful Web Services
Using UML Protocol State Machines

Pedro Victor Pontes Pinheiro1, Andre Takeshi Endo1, Adenilso Simao1

1Instituto de Ciências Matemáticas e de Computação (ICMC)
Universidade de São Paulo (USP) – 13.566-590 – São Carlos – SP – Brazil

Abstract. Service-Oriented Architecture is a well-known architectural style that
promotes many benefits among enterprise systems. In the last years, an alterna-
tive architectural style, so-called REST, has been proposed and widely adopted
to design services’ capabilities as resources. However, when it comes to verify
these services, many challenges arise and hinder the process of testing. This
paper proposes a model-based approach to test RESTful Web services using the
UML protocol state machine as the formal behavioral model. A tool was devel-
oped to support the approach by automatically generating test cases for state
and transition coverage criteria. An example is presented to illustrate the prac-
tical application of the approach.

1. Introduction
Service-Oriented Architecture (SOA) is an architectural style employed by practitioners
to develop scalable, flexible, and reusable enterprise systems. It has been recommended
for supporting the development of complex and heterogeneous distributed systems [Jo-
suttis, 2007]. SOA guides how a system should be structured so that its capabilities are
exposed as black-box software units, known as services. In the last years, another ar-
chitectural paradigm has been proposed and widely adopted to guide the structuring of
a system in a more resource-oriented way, in which its capabilities are exposed not as
services, but as resources. This architectural paradigm is called REpresentational State
Transfer (REST), and systems that adopt its constraints are called RESTful Web services
[Richardson and Ruby, 2007]

REST can be defined as an architectural style for hypermedia distributed systems
like the World Wide Web (WWW) [Fielding, 2000]. It provides a set of constraints that,
when applied to a system, minimizes latency and maximizes the components’ scalability
and independence. REST represents a solution to design and implement Web services
and has been used as an alternative to the WS-* technologies, such as: Simple Object
Access Protocol (SOAP) and Web Service Description Language (WSDL) [Richardson
and Ruby, 2007]. Many IT companies have applied REST to implement their services,
such as: Google1, Yahoo2, Facebook3, Twitter4, and LinkedIn5. Moreover, there is much
interest in REST in several domains, such as: decentralized systems [Khare and Tay-
lor, 2004], distributed simulation [Al-Zoubi and Wainer, 2009], cloud computing [Chris-
tensen, 2009], and relational databases [Marinos et al., 2010].

1http://developers.google.com/custom-search/v1/usingrest
2http://developer.yahoo.com/search/rest.html
3http://developers.facebook.com/docs/reference/api
4http://dev.twitter.com/docs/api
5http://developer.linkedin.com/rest



The testing process is fundamental to guarantee a certain level of reliability and
quality of services based on REST. Testing RESTful Web services has its own challenges,
making it harder to discover the faults. In general, Web services do not have a user
interface, are loosely coupled and lack reliability on their communication framework
[Chakrabarti and Kumar, 2009]. Other challenges also exist if the consumer is using a
third party Web service, which is susceptible to functionality and availability changes
without notification. Although there is a limited number of operations that can be exe-
cuted over a resource (e.g., PUT, POST, DELETE, and GET), the states and transitions
of resources in a RESTful service can be complex. In this context, UML protocol state
machines have already been investigated to support the design of RESTful Web services
[Porres and Rauf, 2011; Rauf and Porres, 2011; Rauf et al., 2010]. Although this kind of
model can be used to automatically generate test cases [Xu et al., 2007], no initiative has
been found in the application of UML protocol state machines to test RESTful services.

This paper describes a model-based testing (MBT) approach that facilitates the
behavioral testing of RESTful Web services, respecting the REST constraints and pro-
viding a more systematic and formal testing. The chosen model to represent the system
under test (SUT) was the UML protocol state machine [OMG, 2011] since it emphasizes
the transitions between states, and not the actions that occur in each state, thus providing
a level of abstraction that MBT needs [Xu et al., 2007]. Currently, test cases are generated
based on two coverage criteria: state and transition coverage; the approach is illustrated
through an example. Finally, a prototype tool that supports the approach automation is
also described.The remainder of the paper is structured as follows. Section 2 provides the
necessary background, introducing the concepts of RESTful Web services, and presents
related studies found in the literature. Section 3 briefly introduces the UML protocol state
machine and discusses its use to model RESTful Web services. Section 4 describes our
approach to generate test cases for RESTful Web services out of UML protocol state ma-
chines. Section 5 brings information about the supporting tool. Finally, Section 6 draws
the conclusion and sketches future work.

2. Background and Related Work

REST is an architectural style created by Fielding [2000] and consists of a set of design
criteria, also called constraints. Services built on these criteria have a Resource-Oriented
Architecture (ROA) [Richardson and Ruby, 2007]. The most important principles of
REST are the following [Pautasso et al., 2008]:

• Resource identification through Uniform Resource Identifier (URI) – The resource
(useful information to a client) must always have at least one URI associated with
it. The URI can be both name and locator of the resource.
• Uniform interface – The client interacts with the resources using the four basic

HTTP operations: POST, GET, PUT, and DELETE. Those operations correspond
to create, retrieve, update, and delete, respectively. There are other operations like
HEAD and OPTIONS that can be used. However, these operations only deal with
the metadata about the resources.
• Self-descriptive messages – Resources can be accessed in a variety of formats,

called resource representation, such as: XHTML, HTML, XML, JSON, plain text,
and PDF. The server response, containing the resource, also present metadata that



can be used to control caching, detect transmission errors, negotiate the appropri-
ate representation format, and perform authentication or access control. The client
can interact with the resource representations through different URIs.
• Stateless interactions – The interaction with the resources must be stateless (the

statelessness property). That means that the server does not need to save data
about the client. All the information necessary for the server to fulfill a request is
included in the HTTP request. One resource can also point to other resources for
future interactions.

Although the adoption of REST has been growing, few studies about testing of RESTful
Web services can be found in the literature. We herein present the main studies related to
our work. Chakrabarti and Kumar [2009] propose a test framework, called Test-the-REST
(TTR), used to execute test cases based on specific REST requirements. The tester writes
a test case which is represented as an XML file that has important pieces of information,
such as: the HTTP method, the URI of the resource, and the expected representation. The
results showed that the framework is capable of detecting many faults.

AlShahwan and Moessner [2010] conduct a study to compare the performance be-
tween SOAP-based frameworks and RESTful-based frameworks for mobile devices. The
frameworks were evaluated in three different scenarios, and results show that RESTful-
based frameworks are better suited for mobile environments. In the same context, Meng
et al. [2009] conduct an in-depth performance analysis of traditional SOA-based Web
services and RESTful Web services. Their testing scheme demonstrated that RESTful
Web services are more suitable for Internet-scale distributed data integration. However,
both works focus only on performance testing and do not apply to any type of functional
testing, neither black-box nor white-box testing.

Reza and Van Gilst [2010] present a framework that provides test inputs to appli-
cations that integrate RESTful Web services. The framework basically provides a gener-
alized test harness to simulate RESTful Web services that are not available to a developer,
thus facilitating the process of unit testing of applications which rely on these Web ser-
vices. The main steps of the framework consist of specifying the interface (available
URIs, parameters and acceptable HTTP methods), specification of parameter values, and
generation of test output.

Chakrabarti and Rodriquez [2010] present an algorithm to test whether a RESTful
Web service conforms to the connectedness property of REST. Connectedness means that
it is possible to access every other resource of a service from a root resource. To test that
property, the algorithm uses two types of graphs that give important information about the
URIs of the system: the POST Class Graph (PCG) and the POST Object Graph (POG).
The PCG needs to be manually created, while the POG is automatically created by the
algorithm. In this same context, Klein and Namjoshi [2011] formalize the concepts and
properties of REST, which can be used to, e.g., model check the behavior of the SUT.
Both of these works address the verification of REST constraints, but the former uses
graph models, while the latter uses formal specification of the SUT.

Although SOA testing has been extensively investigated in literature [Bozkurt
et al., 2012], most of the works focus on Web services based on WS-* technologies. In the
context of RESTful Web services, we identified that existing research mainly focuses on
test execution support, performance testing, and verification of REST constraints. There



is a lack of research that contributes for automated test case generation.

3. Modeling RESTful Web Services with Protocol State Machines
The UML state machine diagram (in UML 2) [OMG, 2011] is a type of diagram that
models the different states of an object during the execution of a process. It is normally
used to monitor the states in which an instance of a class goes through during its life cycle
in response to events [Booch et al., 2005]. In UML, there are two types of state machines:
behavioral state machines and protocol state machines. Behavioral state machines can be
employed to model the behavior of individual entities, such as class instances. Protocol
state machines are employed to express usage protocols and can be used to model life
cycles of objects or the order of their operations [OMG, 2011].

Protocol state machines consist of states and transitions. The transitions are asso-
ciated with a precondition (guard), postcondition and an event [Xu et al., 2007]. Protocol
state machines are intended to model the sequence of events and the states caused by
those events. In order to perform MBT, the chosen model must contain a certain level of
precision and abstraction of the SUT [Utting et al., 2011]. The UML protocol state ma-
chine fits these criteria, because it provides a way to formalize, for example, the interface
of classes, and they hide the behavior inside those classes. In other words, this model
focuses more on the effect of the transition, rather than the behavior inside the states. It
is important to highlight the fact that the UML notation contains object-oriented concepts
that can conflict with the REST constraints [Schreier, 2011]. However, it is still possible
to apply the model in RESTful services as shown in [Porres and Rauf, 2011] and [Rauf
and Porres, 2011]. In these studies, modifications are made to the model to comply with
the REST constraints. For example, the authors added state invariants using addressable
resources to comply with the statelessness property and they also constrain the transition’s
events to the standard HTTP methods to comply with the uniform interface property.

A protocol state machine m is composed of different states S in which a system
can be found. In the model, there is a set of transitions T that connect two states. So we
can define the model as a tuple m = (S, T, P, F ) where P is a set of pseudostates and F
is a set of final states. A transition t ∈ T can be represented as a tuple t = (si, e[p], sj),
where si ∈ S is the state before the transition (source state), e[p] is the event with the
optional precondition p and sj ∈ S is the state after the transition (target state). Both
source and target state can be the same (si = sj). An event e can only be defined as
a POST, PUT or DELETE operation since these operations are the only ones that can
alter the state of the service. These operations must have a parameter that represents the
resource, but POST and PUT operations can have additional parameters, in which their
values are defined by the tester. There are two types of states: simple states and composite
states. A simple state s ∈ S can have an invariant inv; a composite state sc ∈ S can
also have an invariant, but it is characterized by an associated state machine m′ that is
structurally within state sc. An invariant inv is a Boolean expression on resources and
attributes of its representation. There are two functions that can be invoked on a resource:
OK and NOT FOUND. The OK method returns true if the HTTP response status code
obtained from a GET request is 200 (successful request); otherwise it returns false. The
NOT FOUND method returns true if the response status code is 404 (a resource was not
found on the server); otherwise it returns false. Both methods accept the resource as
parameter. An expression over a representation’s attribute is similar to expressions used



in a precondition; this type of expression is explained later. A state is considered active if
and only if its invariant evaluates to true. Invariants are also used as the postcondition of
an event. According to the definitions herein presented, every protocol state machine is
in fact a composite state, giving the possibility to apply an invariant to the whole model.

Figure 1 illustrates a protocol state machine model for a RESTful service that
manages a hotel room booking (HRB). The service allows a client to book a room, pay
for the reservation, and cancel it.

Figure 1. Behavioral Model of a RESTful Web service – adapted from [Porres and
Rauf, 2011].

An invariant of a composite state must hold in its substates. For instance, the in-
variant “NOT FOUND(pc)” of state ReserveAndPay is also applied to state Paid, resulting
in the invariant “NOT FOUND(pc) && OK(p)”.

In the UML state machine, pseudostates are used to connect multiple transitions
to form complex transition paths. Although there are 10 kinds of pseudostates [OMG,
2011], the ones used in our approach are only the initial and choice kinds. An initial state
(Symbol •) is used to indicate the default state for a composite state, and it cannot act as
the target of a transition. A choice pseudostate (Symbol �) represents a dynamic branch-
ing point. For instance, state WaitingForPconfirmation has a transition to a choice kind
pseudostate, where the different preconditions must be analyzed to decide which transi-
tion should be enabled. A final state (Symbol �), in turn, is not considered a pseudostate,
but a special kind of state which indicates finishing of its enclosing state [Liu et al., 2013].

A transition’s precondition is expressed as a Boolean expression over resources’
URI, resource’s attributes, Boolean and relational operators, and constants. The resource
attribute corresponds to a specific attribute in the representation. To access the attribute the
format “resource#attribute” must be used. For instance, the expression “pc#confirm ==
true” in state PaymentConfirmed checks if the attribute “confirm” of the “pconfirmation”
representation is true. This kind of expression can also be used as an invariant, as in



state PconfirmationInfo. Transitions that interact with a composite state have a specific
behavior. If the source state of a transition is a composite state, it means that every substate
is also a source state of that transition. If the target state of a transition is a composite state,
then that state must have an initial state to indicate which substate will be the target of
that transition.

4. Model-based Testing of RESTful Web Services
In this section, we propose a model-based approach to test RESTful Web services using
the UML protocol state machine model described in the previous section. The testing
approach we propose can be summarized by Figure 2.

Figure 2. Model-based testing approach.

The starting point (Step 1) of the approach is to create the behavioral model (pro-
tocol state machine) of a specific behavior of the SUT. The behavioral model must then be
converted to the XML Metadata Interchange (XMI) format. The XMI was chosen since it
is a well adopted standard used in most modeling tools in the market. Usually the manual
process of MBT demands too much effort from the tester, which is why tools are devel-
oped to assist most of the tasks. In our approach, a tool was developed to mainly read the
information on the XMI and generate the test cases based on a specific coverage criterion.
The test cases are generated in the Java language and use the JUnit6 framework.

For each model there is a directed acyclic graph (DAG) that can represent it. A
directed graph structure was chosen because it is a common structure to describe behavior
in state machines and Petri Nets [OMG, 2011], and it is acyclic to prevent the execution
of unnecessary paths. Figure 3 shows the DAG generated by the tool after the processing
of the HRB model in Figure 1 (it corresponds to Step 2 in Figure 2).

This DAG only contains simple states, pseudostates and final states represented as
nodes. For simplicity, some states are merged to form a single node, for instance, the node

6http://junit.org



Figure 3. Corresponded DAG of the HRB model.

“Paid+Final1”. Also, composite states are unfolded and their invariants and transitions are
suited to the substates. Cycles are unfolded in such a way that each transition is traversed
at least once. On Step 3, the tool uses a parser to evaluate all the expressions found in
the model: invariant, and precondition expressions; and creates an abstract syntactic tree
(AST). The tool, on Step 4, is also capable of detecting variables that must be provided by
the tester (as input data). The tester also selects the coverage algorithm during that step.
Variables can be used in the resource’s URI, or in the event’s parameters, for instance, the
“bid” and “rid” variable.

Our tool supports two coverage criteria: the state coverage and the transition cov-
erage. The algorithm for each criterion was based in the work of Xu et al. [2007] and
Rauf and Porres [2011]. The state coverage algorithm generates the code based on the
DAG as follows: (i) find the transitions that has as source the state represented by the cur-
rent node; (ii) for each of these transitions traverse the node that its precondition can be
satisfied, if the target state has not yet been traversed and if its invariant can be satisfied,
then this state is marked as traversed; and (iii) expand the new node.

The transition coverage algorithm works as follows: (i) find the transitions that
has as source the state represented by the current node; (ii) for each of these transi-
tions traverse the node that its precondition can be satisfied, if the transition has not
yet been traversed and if its invariant can be satisfied, then this transition is marked
as traversed; and (iii) expand the new node. These algorithms are responsible to
generate the test sequences (Step 5). A test sequence is a sequence of transitions
(s0, e0[p0, q0], s1), (s1, e1[p1, q1], s2), ..., (sn−1, en−1[pn−1, qn−1], sn), and it represents a
test case.

Our supporting tool produces, as output, the required infrastructure to execute the
test cases in the RESTful service under test (Step 6). The test sequences and the AST
are used to generate four Java classes: Invariants Class, Events Class, Guards Class and
TestSuite Class. Invariants Class has static Boolean methods that perform all the OK



and NOT FOUND methods in the model. Events Class has static Boolean methods that
perform all the POST, PUT and DELETE operations in the model. Each operation has
its own HTTP status code to verify if it was performed successfully. A successful request
returns a response code in the 2XX range. Guards Class has static Boolean methods that
perform all the expressions that deal with representation’s attributes. Finally, TestSuite
Class contains the methods that execute the test sequences. Those classes are used by
the main Java class, that contains the test cases, to perform events, check invariants and
guards.

Then, the tester runs TestSuite Class on a command line or on an integrated de-
velopment environment (Step 7). Our tool compiles the classes and organizes all the
necessary libraries in a specific folder. Figure 4 shows a code snippet of a test case for
a single transition. In the pseudocode it is possible to see that event “event1” only hap-
pens if precondition “guard1” evaluates to true; after that, postcondition “invariant1” is
checked. Notice that any error situation in the test case is represented by some method
returning false (events, guards, and invariants). In this case, the generated code is struc-
tured to fail the test case. If there is a failed test case, a fault can be identified and related
to a specific part of the model.

Figure 4. Generated test case code example.

5. Supporting Tool
Our supporting tool was developed using the Java programming language. It has four
main modules: state diagram construction, parsing, coverage algorithms, and code fac-
tory. During the phase of state diagram construction, the tool must read the XMI and be
able to generate the directed graph. To do so, the tool uses the XPath framework to parser
the XMI, and using the acquired information, creates the states and transitions. The com-
posite states must then be unfolded. This operation must alter the transitions to point to
the proper substates, and merge the invariants to substates as well. Finally, the tool runs
an algorithm to convert directed graph to the proper DAG.

In the current stage of the prototype, we are using the ArgoUML7 tool to create
the behavioral model and generate its XMI; thus the tool is currently adapted to deal with
the XMI generated by ArgoUML. The parser module was built using two frameworks:
JavaCC and JJTree8. The module checks for any error in the expressions and builds the
abstract syntactic tree, which is later used for code generation. The code factory works

7http://argouml.tigris.org
8http://javacc.java.net



along with the expressions to generate the classes and methods responsible for executing
every expression. It also stores a relation between these expressions and the generated
methods, which later can be used to generate the test cases. To generate proper Java code,
the CodeModel9 framework was also adopted. All the code interacts with the service
using the HttpComponents10 framework. Finally, the coverage algorithms are responsible
to traverse the DAG and create the proper test cases using the information stored in the
abstract syntactic tree.

6. Conclusion

We have presented a model-based testing approach to generate test cases for RESTful Web
services. The approach uses an adapted UML protocol state machine that conforms to the
resource-oriented architecture of REST. The current implementation of the tool generates
test suites for state and transition coverage. We have presented an example to illustrate
the practical application of the approach, from modeling to test execution. We believe
that this initial effort motivates further research on model-based testing of RESTful Web
services, from theoretical and experimental points of view.

In future work, the supporting tool can be extended to include automatic test data
generation and other coverage criteria, as well as to deal with common features in most
Web services like authentication, authorization, and resource representations (e.g., JSON,
XML). Moreover, we intend to investigate how the approach can be applied to test the
composition of RESTful Web services, taking into account existing advances in this topic
[Rauf et al., 2010]. Oportunities to evaluate the approach are also manifold. It is important
to analyze how the approach performs in the wild with real-world and industrial RESTful
Web services. Finally, experimental evaluations (e.g. case studies) should be conducted
in order to demonstrate the effectiveness of the proposed approach.

Acknowledgments

Andre T. Endo is financially supported by FAPESP/Brazil (grant 2012/21083-9). Ade-
nilso Simao is partially funded by FAPESP (Grant 2012/02232-3) and CNPq (Grant
301170/2012-6).

References

Al-Zoubi, K. and Wainer, G. (2009). Using REST web-services architecture for distributed simu-
lation. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced
and Distributed Simulation, PADS ’09, pages 114–121.

AlShahwan, F. and Moessner, K. (2010). Providing SOAP web services and RESTful web ser-
vices from mobile hosts. In Internet and Web Applications and Services (ICIW), 2010 Fifth
International Conference on, pages 174–179.

Booch, G., Rumbaugh, J., and Jacobson, I. (2005). The Unified Modeling Language User Guide.
Addison-Wesley, 2nd edition.

Bozkurt, M., Harman, M., and Hassoun, Y. (2012). Testing and verification in service-oriented
architecture: a survey. Software Testing, Verification and Reliability, pages n/a–n/a.

9http://codemodel.java.net
10http://hc.apache.org/httpcomponents-client-ga



Chakrabarti, S. and Kumar, P. (2009). Test-the-REST: An approach to testing RESTful web-
services. In Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns,
2009. COMPUTATIONWORLD ’09. Computation World:, pages 302 –308.

Chakrabarti, S. K. and Rodriquez, R. (2010). Connectedness testing of RESTful web-services. In
India software engineering conference (ISEC), pages 143–152, New York, NY, USA. ACM.

Christensen, J. H. (2009). Using restful web-services and cloud computing to create next genera-
tion mobile applications. In Proceeding of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications, OOPSLA ’09.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architec-
tures. Doctoral dissertation, University of California, Irvine.

Josuttis, N. (2007). SOA in Practice: The Art of Distributed System Design. O’Reilly Media, Inc.
Khare, R. and Taylor, R. N. (2004). Extending the representational state transfer (rest) architec-

tural style for decentralized systems. In Proceedings of the 26th International Conference on
Software Engineering, ICSE ’04, pages 428–437.

Klein, U. and Namjoshi, K. S. (2011). Formalization and automated verification of RESTful
behavior. In Proceedings of the 23rd international conference on Computer aided verification,
CAV’11, pages 541–556.

Liu, S., Liu, Y., André, É., Choppy, C., Sun, J., Wadhwa, B., and Dong, J. (2013). A formal
semantics for complete UML state machines with communications. In Johnsen, E. and Petre,
L., editors, Integrated Formal Methods, volume 7940 of Lecture Notes in Computer Science,
pages 331–346. Springer Berlin Heidelberg.

Marinos, A., Wilde, E., and Lu, J. (2010). HTTP database connector (HDBC): RESTful access to
relational databases. In Proceedings of the 19th international conference on World wide web,
WWW ’10, pages 1157–1158, New York, NY, USA. ACM.

Meng, J., Mei, S., and Yan, Z. (2009). RESTful Web Services: A solution for distributed data
integration. In Computational Intelligence and Software Engineering, 2009. CiSE 2009. Inter-
national Conference on, pages 1–4.

OMG (2011). OMG unified modeling language, superstructure version 2.4.1.
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

Pautasso, C., Zimmermann, O., and Leymann, F. (2008). RESTful web services vs. “big” web
services: making the right architectural decision. In Proceeding of the 17th international con-
ference on World Wide Web, WWW ’08, pages 805–814.

Porres, I. and Rauf, I. (2011). Modeling behavioral RESTful web service interfaces in UML. In
Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, pages 1598–1605.

Rauf, I. and Porres, I. (2011). Designing level 3 behavioral RESTful web service interfaces.
SIGAPP Appl. Comput. Rev., 11:19–31.

Rauf, I., Ruokonen, A., Systa, T., and Porres, I. (2010). Modeling a composite RESTful web ser-
vice with UML. In Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume, ECSA ’10, pages 253–260.

Reza, H. and Van Gilst, D. (2010). A framework for testing RESTful web services. In Proceedings
of the 2010 Seventh International Conference on Information Technology: New Generations,
ITNG ’10, pages 216–221.

Richardson, L. and Ruby, S. (2007). RESTful Web Services. O’Reilly Media, Inc., 1st edition.
Schreier, S. (2011). Modeling RESTful applications. In Proceedings of the Second International

Workshop on RESTful Design, WS-REST ’11, pages 15–21.
Utting, M., Pretschner, A., and Legeard, B. (2011). A taxonomy of model-based testing ap-

proaches. Software Testing, Verification and Reliability.
Xu, D., Xu, W., and Wong, W. E. (2007). Automated test code generation from UML protocol

state machines. In Proceedings of the 19th International Conference on Software Engineering
and Knowledge Engineering (SEKE’07).


