
ABSTRACT

THREAD SAFE MULTI-TIER PRIORITY QUEUE FOR MANAGING PENDING
EVENTS IN MULTI-THREADED DISCRETE EVENT SIMULATIONS

by Matthew Michael DePero

Parallel Discrete Event Simulation (PDES) conducted using emerging shared memory
many-core CPUs presents capacity for even greater performance by 1) eliminating the
need for message passing and associated serialization/deserialization overheads, and 2)
reducing memory requirements by allowing a single copy of an event to be shared
between multiple threads. However, the overall performance of a PDES is highly
contingent on the speed and capacity of its pending event set data structure. Accordingly,
we present a simple, thread-safe priority queue called 3tSkip for managing pending
events. Our design takes advantage of contemporary synchronization primitives,
including atomics and lock-free data structures to ensure good performance. The priority
queue has been incorporated into a redesigned version of a parallel simulator called
MUSE, to enable PDES on shared memory platforms. The effectiveness of the proposed
solution has been assessed using standard PDES benchmarks. Our analysis identifies
many critical design obstacles to multi-threaded design and presents novel solutions to
those design obstacles. Our solution achieves significant speedup in high granularity
scenarios, when compared to existing MUSE simulator, though more work is required
before multithreaded design becomes effective in a broad range of scenarios.

THREAD SAFE MULTI-TIER PRIORITY QUEUE FOR MANAGING PENDING
EVENTS IN MULTI-THREADED DISCRETE EVENT SIMULATIONS

Thesis

Submitted to the

Faculty of Miami University

in partial fulfillment of

the requirements for the degree of

Master of Science in Computer Science

by

Matthew Michael DePero

Miami University

Oxford, Ohio

2018

Advisor: Dr. Dhananjai Rao

Reader: Dr. Mike Zmuda

Reader: Dr. Karen Davis

©2018 Matthew Michael DePero

This thesis titled

THREAD SAFE MULTI-TIER PRIORITY QUEUE FOR MANAGING PENDING
EVENTS IN MULTI-THREADED DISCRETE EVENT SIMULATIONS

by

Matthew Michael DePero

has been approved for publication by

College of Engineering and Computing

and

Department of Computer Science and Software Engineering

__
Dr. Dhananjai Rao

 __
Dr. Mike Zmuda

Dr. Karen Davis

Contents

1 Introduction 1

2 Background 4

2.1 Discrete Event Simulation (DES) . 4

2.2 Shared Memory Multithreading . 7

2.3 Architectural Overview of MUSE . 10

3 Related Work 13

3.1 Pending Event Sets . 13

3.1.1 3-Tier Heap . 14

3.2 Robustness Analysis using Java Implementation 15

3.3 Lock-Free Pending Event Sets . 17

4 Problem Analysis 20

4.1 Problem Statement . 20

4.2 Preliminary Investigation . 21

4.3 Design Considerations . 24

5 Implementation and Solution 28

5.1 Pending Event Set Data Structure . 28

5.1.1 Concurrent Priority Queue . 28

5.1.2 3-Tier Structure Design . 31

5.2 Simulation Kernel Integration and Wrapper Logic 32

6 Results and Discussion 39

6.1 Experiments . 39

6.1.1 Experimental Data . 41

6.2 Results and Discussion . 41

iii

6.3 Comparative Analysis . 44

7 Conclusions 48

7.1 Future Work . 49

Bibliography 51

iv

List of Figures

1.1 Multi-Core and Many-Core CPU Trends . 2

2.1 Potential vs Utilized Concurrency in Parallel Avian Influenza Simulation . . 6

2.2 Three Steps of Time Warp for Optimistic DES 7

2.3 Lock-based vs. Lock-free Insert Pseudocode Example 9

2.4 Effect of Concurrency Potential on Theoretical Speedup with Amdahl’s Law 10

2.5 Current Architectural Overview of Parallel Simulation in MUSE 11

3.1 Ladder Queue as Described by Tang, et al. 14

3.2 Three-Tier Queue Design as Described by Higiro 15

3.3 Java Robustness Benchmark (No Rollbacks) 17

3.4 Java Robustness Benchmark (with Synthetic Rollbacks) 18

4.1 Preliminary Implementation for Multi-Threaded MUSE 22

4.2 Proposed Implementation for Multi-Threaded MUSE 24

4.3 Proposed System Architecture Overview for Multi-Threaded MUSE 24

4.4 NUMA Memory Layout Architecture and Configuration 26

5.1 Structural Overview of Lindén & Jonsson Concurrent Skip List Priority Queue 29

5.2 Data Race Scenario Presented by Naive Concurrent Insert and DeleteAt of

Linked-list . 31

5.3 MUSE Sequential vs Concurrent - High Level Kernel Pseudocode 33

5.4 MUSE Concurrent - Top Tier Restructure Pseudocode 35

5.5 2 Reference Counter Garbage Collection Overview 37

6.1 Arrangement of LP s in PHOLD Benchmark 39

6.2 PHOLD configuration options . 40

6.3 Relative Performance of 3tHeap vs. 3tSkipMT with multiple threads 42

6.4 Impact of Granularity Factor on Per Event Runtime for Sequential Simulations 44

v

6.5 Impact of Compiler Optimization (at −O3 level) on Data Structure Performance 45

6.6 Comparative Analysis of 3tSkipMT against the Ultimate Share Everything

(USE) Simulator . 47

6.7 Runtimes for Comparative Analysis of 3tSkipMT and USE in Seconds . . . 47

vi

Acknowledgments

I would like to extend a huge thank you to my adviser Dr. Dhananjai Rao for all of his

support and guidance throughout this process. Dr. Rao has always gone above and behind

the call of duty to drive success in all students at Miami University, and I will take his lessons

and wisdom with me long into my career. I also would like to thank my committee members

Dr. Mike Zmuda and Dr. Karen Davis for their invaluable time and feedback, without which

this thesis wouldn’t be possible.

vii

Chapter 1

Introduction

Computer-based simulations are a fundamental scientific tool that are used for analysis and

design in a diverse set of domains, including: manufacturing, medicine, VLSI design, data

communication networks, and epidemiology just to name a few. Several different methodolo-

gies have been proposed for conducting simulations. Amongst the various methods, Discrete

Event Simulation (DES) has emerged as a dominant methodology with broad applicability.

More importantly, this type of simulation has the potential to effectively utilize parallel com-

puting platforms to enable simulation of large models in a reasonable timeframe, especially

in scenarios where time sensitivity is imperative such as predicting the spread of a disease.

DES consists of independent entities, or Logical Processes (LPs), that are simulated

and interact with each other by creating timestamped events that are sent to other LPs for

processing. [1] Oftentimes, events must be processed in timestamp order to preserve causality

in a DES. For example, if LP1 creates an event e1 that modifies LP2 at t = 2, LP2 must receive

and process e1 before it can do any processing for t > 2. Accordingly, events are managed

using a priority queue, with entry priorities determined by timestamps of events. Typically,

event management is handled via a centralized scheduler data structure that maintains the

set of pending events to be simulated in chronological order based on simulated time. Due

to the interdependent nature of LPs, however, managing the communication and scheduling

of events is often a bottleneck on performance. [2]

Management of pending events using priority queues also plays an important part in

Parallel Discrete Event Simulation (PDES). Furthermore, PDES also involves additional

event management operations to synchronize parallel processes in order to maintain this

causality property. Parallel simulations have grown in prevalence due to steady advancements

in computing technologies. As shown by Figure 1.1(a) the number of cores per CPU in Intel’s

high performance family of processors has grown steadily since their inception. Today, even

1

2000 2005 2010 2015

0

10

20

30

Year Released

C
or

e
C

ou
n
t

(a) Core Count of Intel Xeon Family CPU

2000 2005 2010 2015

0

0.5

1

1.5

2

·107

Year

C
or

e
C

ou
n
t

(b) Largest Core Count of Supercomputer per
Year

Figure 1.1: Multi-Core and Many-Core CPU Trends

consumer available multi-core CPUs such as Intel Xeon E7-8894V4 have as many as 24 cores

running 48 threads, and servers can pack as many as 4 of these CPUs, providing 192 threads

on a single machine. Additionally, Intel recently released its research grade Xeon Phi family

of chips in 2017 (formerly Knights Landing), boasting as many as 72 cores on a single chip.

This increasing core density has contributed to an exponential growth in the overall core

counts in distributed memory supercomputers as well, as noted in Figure 1.1(b).

The advancement and dichotomy in hardware technologies has spurred two distinct ap-

proaches for Parallel Discrete Event Simulation (PDES). The two kinds of parallelization

are:

1. Distributed memory parallelism: that which occurs on separate machines, each

with their own independent memory. Interactions between parallel processes running

on different machines is accomplished via high speed interconnects such as: 40 GBPS

Infiniband or 100 GPBS Omnipath networks via message passing.

2. Shared memory parallelism: that which occurs on the same machine with shared

memory, where all parallel processes have access to the same main memory. Conse-

quently, data structures can be directly shared and accessed between threads, elimi-

nating the need for communication over interconnects.

Often, a combination of both is used to maximize performance. Distributed memory

architecture requires each machine to have its own data structure for event management,

2

requiring synchronization between independent simulation states. On the other hand, multi-

core CPUs allow for concurrent threads to use the same shared data structure, removing the

need to synchronize state between parallel executions. However, in the worst case, threads

will access and mutate this structure at a near constant rate with very little processing

in between, a case that can be common to DES. The shared scheduling data structure’s

ability to handle heavy concurrency, therefore, is critical to the amount of speedup that

can be obtained from multi-core parallelization on one machine. Diminishing speedup can

become apparent once a given number threads are used for simulation due to this contention

overhead, and a trade off exists between concurrency utilization and overhead to maintain

the parallel threads. [3]

We examine the scheduling data structure used in DES in the context of the Miami

University Simulation Environment (MUSE), detailed in Section 2.3. Specifically, we modify

the 3-Tier Heap priority queue developed by Higiro detailed in Section 3.1 to allow safe

concurrent operation by multiple threads. [4] A design pattern is currently implemented in

MUSE to allow existing sequential structures to achieve this thread-safety on a multi-core

platform through a Message Passing Interface (MPI) implementation detailed in Section 4.2,

however we examine a new version in which the structure itself is inherently thread-safe

with a focus on reducing overheads such as blocking which heavily bottlenecks the benefits

of parallelism. We also discuss the design considerations that were taken into account while

attempting to convert MUSE into a thread-safe, shared memory parallel simulation kernel.

3

Chapter 2

Background

2.1 Discrete Event Simulation (DES)

Discrete event simulation is a computational methodology which allows for a wide range

of systems to be modeled and analyzed. In DES, the system is divided into independent

entities with their own independent states. One of these entities is called a Logical Process

(LP) which manages its own state. Accordingly, a DES is essentially designed as a set of

logical processes (LP s) that interact with each other. LP s interact by exchanging discrete-

timestamped events or messages. [1] Processing an event essentially introduces a change in

an LP ’s state and may cause the LP to generate additional events to itself or other LP s in

the model. DES has been used in a variety of fields as a tool to help inform knowledge and

to improve decision-making processes. DES provides an effective means for analyzing real

or artificial systems without the constraint of limited resources such as time, financial costs,

or safety.

Parallel Discrete Event Simulation (PDES) Parallelism increases throughput in dis-

crete event simulations, allowing larger and more complex problems to be solved. Many large

scale discrete event simulations require significant processing time to finish. Running a par-

allel discrete event simulation (PDES) increases the speed and allows them to be more useful

in time sensitive scenarios. One common method for constructing a PDES is to organize each

parallel unit as set of LP s. The LP s are divided or partitioned to operate on different com-

pute machines. Each LP contains its own state and local virtual time (LV T) representing

the virtual time it last processed events. This allows logical processes to communicate with

one another with timestamped messages without needing to keep all LP s at the same virtual

time across the parallel system. However, event processing on the different compute units

4

must then be synchronized to ensure causally consistent event processing. Consequently, the

speedup achieved using multiple compute machines requires efficient strategies to minimize

synchronization costs. There are two main ways that these types of parallel discrete event

simulations handle synchronization: conservative and optimistic. [1]

Conservative vs. Optimistic Synchronization Conservative synchronization uses the

timestamp on events to ensure that causality errors do not to occur during parallel simulation.

A strategy is put in place to determine if an event is safe to process; only when all previous

events that could possibly affect the event in question have been processed is the current

event allowed to be processed. Consider a logical process with event e1 and time-stamp t1. If

the process can determine that it isn’t possible to receive an event with a smaller timestamp

t < t1 then it processes e1, otherwise it waits. Links between logical processes are statically

specified, and they hold an associated clock. These clocks on the links allow the process

to determine if it is possible to receive a new event past the given timestamp or not. But

this type of synchronization can lead to deadlock, meaning that multiple logical processes

are waiting on each other to reach a safe state before processing. There are a few methods

of handling or avoiding deadlock. Some involve special messages, others simply detect the

deadlock and recover from it, and there are many more possible ways to avoid deadlock.

Regardless, events are never processed out of order in a conservatively synchronized system.

One of the significant bottlenecks in conservatively synchronized parallel simulation is

that the inherent parallelism in a model may not be effectively used. In fact, the need

to process a single event can often prevent processing of other pending events, preventing

effective parallelism. An example of such a scenario occurs in the parallel simulation of the

avian influenza, discussed by Rao and illustrated in Figure 2.1. [5] The green curve tracks

the potential parallelism in the model. However, the blue curves track the number of events

processed by a conservatively synchronized kernel. The difference between the two curves

illustrates the potential parallelism that goes unutilized in a conservatively synchronized

simulation.

In optimistic synchronization, events are processed regardless of potential causality error.

The system must then detect when a causality error has occurred and correct it. This

correction requires the LP to rollback to a previous state before the causality error occurred

in virtual time. This design does not require static links, which allows much more simple

dynamically allocated logical processes. Optimistic synchronization also takes advantage of

parallelism where causality errors have the possibility of occurring but do not.

Conservative synchronization generally works well for problems that are easy to foresee

future events and account for them. It requires detailed work to ensure the synchronization

5

Figure 2.1: Potential vs Utilized Concurrency in Parallel Avian Influenza Simulation
[5]

mechanism won’t cause deadlock or will always recover when it occurs. On the other hand,

optimistic synchronization does not need to foresee future events and exploits parallelism

much more effectively. But, rollbacks come with their own overhead and demand increased

memory to maintain previous states. Optimistic is typically more complex to implement

than conservative synchronization. The most common protocol for rolling back optimistically

synchronized simulations is known as Time Warp. [1]

Time Warp In Time Warp, a rollback is triggered when an event is received with a

timestamp less than the logical process’s local virtual time, meaning the LP has already

processed events with timestamps greater than the incoming event, breaking causality. This

incoming event is known as a straggler. The LP must be implemented with three queues

to use Time Warp: an input, output, and state queue, as well as maintain their own local

virtual time. The input queue holds events previously received by the LP , the output queue

holds events sent to other LP s, and the state queue holds all previous and current states

of the LP . Finally, the logical processes must exchange time stamped events such that the

unit of virtual time is consistent across the simulation. [1]

There are three steps required to implement Time Warp, outlined in Figure 2.2. First,

when a straggler event is received, the state queue is iterated until it finds the state with a

timestamp immediately before the incoming event. Second, the LP is rolled back, changing

its current state to the previous state found in the queue. The input queue is then rearranged

6

Figure 2.2: Three Steps of Time Warp for Optimistic DES

to add the straggler to the proper location. Finally, the output queue is used to send anti-

messages to the other logical processes informing them that previously valid messages were

rolled back, which will cause a rollback in all subsequent logical processes. Then execution

resumes following the input queue. 2.2.

2.2 Shared Memory Multithreading

Multithreading involves running multiple independent executions of some part of a process in

the same memory context. Typically, this involves taking advantage of multi-core CPUs by

having these separate executions (threads) run concurrently on separate physical CPU cores.

This design provides numerous advantages over sequential programs including increased

computing capacity, resilience to latency issues such as I/O operations, ability to access and

mutate a shared memory space, and more.

Due to the independent nature of threads, considerations must be made to enable proper

synchronization between threads. This cross-thread communication can lead to issues when

threads attempt to read or modify the same memory at the same time. For example, if thread

t1 wishes to increment variable x = 10 by 1, it must first read the value of x, calculate the

new value, and then write the new value to memory. If thread t2 attempts to execute this

increment operation at the same time as t1, both threads may read x = 10, calculate x = 11

independently, and write 11 to memory, even though the true result of both operations

7

should lead to x = 12. This is called a data race, and it results from threads attempting to

modify a shared state between threads in a non-thread-safe way.

Oracle Corporation describes three recognizable levels of thread-safety for a given proce-

dure: [6]

1. Unsafe: The procedure is not safe to run concurrently, and unexpected behavior or

side effects are possible if multiple threads perform the operation at the same time.

This operation can be made Thread Safe - Serializable by introducing a lock/unlock

before and after the operation by concurrent threads.

2. Thread Safe - Serializable: The procedure is safe to be called by multiple threads

running concurrently, however it does not utilize available concurrency due to requiring

only one thread to run at a time, usually with a lock or other mechanism that serializes

the execution.

3. Thread Safe - MT-Safe: The procedure is both safe and utilizes concurrency, thus

providing speed up in execution time compared to performing the same operations

in a serialized way. The amount of possible concurrency is dependent on how much

interdependence exists between the operations being performed on each thread.

Thread Safe - Serializable operations provide thread-safety, but do so by blocking (or

waiting) while a conflicting thread finishes its execution, thus forcing only one thread to

execute at a time. This blocking can bottleneck performance since any speedup associated

with parallel execution of a critical section is lost when a thread must stop and wait for

another thread to finish before it can begin. This is referred to as a lock-based approach to

thread-safety. Thread Safe - MT -Safe operations are preferred as they allow safe execution

in a non-blocking way, but require greater considerations to ensure thread-safety.

Figure 2.3 shows a simple example of lock-based vs lock-free thread-safe operation. In

Algorithm 1, a thread must acquire a lock, blocking until the lock is acquired, before it

continues execution. This implementation is simple, but no parallelization is realized with

this approach. Algorithm 2 shows a lock-free example, using a tryInsert() method that

may fail if there is a conflict with another thread. Importantly, at least one thread will

succeed if a conflict arises during the tryInsert() if called by two threads at the same time.

This approach is more complicated, as tryInsert must utilize hardware instructions such as

Compare and Swap (CAS) to attempt to modified shared memory, but lock-free operations

reduce thread contention and lead to more efficient parallelization.

Two types of these non-blocking concurrent operations exist: lock-free and wait-free.

Lock-free operations guarantee system wide progress, meaning any concurrent operation

8

Algorithm 1 Lock-Based Insert

1: function Insert(v)
2: sharedGuard.lock() . blocks until

free
3: queue.insert(v)
4: sharedGuard.unlock()
5: end function

Algorithm 2 Lock-Free Insert

1: function Insert(v)
2: do
3: success← queue.tryInsert(v)
4: while NOT success
5: end function

Figure 2.3: Lock-based vs. Lock-free Insert Pseudocode Example

conducted by two or more threads will always succeed and move forward by at least one

thread without blocking, even if some threads fail and must re-try (See Algorithm 2). This

differs from lock-based execution, where two threads must compete for some type of shared

lock, meaning successful operation of one thread is contingent on the successful completion

of another thread holding the lock, leading to blocking. Wait-free is even more stringent,

guaranteeing per-thread progress for any operation in a finite number of steps. In other

words, a thread is guaranteed to never block or fail an unpredictable number of times on

any operation, regardless of the state of other threads. This is the ideal state for any non-

blocking algorithm, however it is the most difficult to achieve due to constraints that exist

at the hardware level, and can even result in slowdown compared to lock-free due to the

overhead of these constraints. [7]

The amount of speedup that can be realized in Thread Safe - MT -Safe operations

is based on 1© the amount of possible concurrency theoretically available to an operation,

and 2© the amount of that concurrency utilized by implementation. This is formalized in

computer architecture by Amdahl’s Law, which presents the theoretical limits to speedup in

the context of parallelized resources. [8] The equation is given by

Slatency(s) =
1

(1− p) + p
s

Where Slatency is the limit of theoretical speedup possible for the entire task, s is the

speedup of the part of the system that is able to take advantage of the parallelization, and

p is the portion of original execution time occupied by the part of the system described

by s. The ramifications of this concept are demonstrated in Figure 2.4 which shows the

theoretical reduction in execution time for two hypothetical processes A and B, each with

an original sequential execution time of 100. A has 40% of its overall execution time benefit

from parallelization, while B has 60% benefit. With just this difference, a 4x speedup applied

9

0 10 20 30 40 50 60 70 80 90 100

Process B 2x Parallel

Process B

Process A 4x Parallel

Process A

RuntimeNot Parallelizable Parallelizable

Figure 2.4: Effect of Concurrency Potential on Theoretical Speedup with Amdahl’s Law

to A’s parallelizable section results in the same overall theoretical execution time as an only

2x speedup applied to B.

This property for performance demonstrates the importance of implementing non-blocking,

thread-safe structures and algorithms, which also is what makes multi-threading as a means

for performance gain so challenging. Additionally, multi-threading has various overheads,

making it even more critical to be as efficient as possible when designing thread-safe systems

to ensure maximum utilization is achieved by the multi-threaded design, rather than focus-

ing on speed or number of threads. This is especially difficult on priority queues, where the

primary contention point is the same across all threads (the top of the queue), making it

difficult to achieve a high degree of concurrency.

2.3 Architectural Overview of MUSE

The system used to implement and test our thread-safe design is a parallel simulation frame-

work called the Miami University Simulation Environment (MUSE). The application was

developed as part of a master’s thesis by Meseret Gebre in the Department of Computer

Science at Miami University in 2009 [9]. MUSE is written in C++ and currently utilizes

the Message Passing Interface (MPI) library for parallel processing via multiple independent

processes as discussed in Section 2.1. It also uses Time Warp with a standard state saving

approach to accomplish optimistic synchronization.

The MUSE simulation kernel implements core functionality associated with LP registra-

tion, event processing, state saving, synchronization and Global Virtual Time (GVT) based

garbage collection. Each LP in a simulation maintains an input, output and state queue.

The input queue is used to retain events that have already been processed but have not yet

been garbage collected. The output queue stores potential anti-messages, which are sent to

10

Event Queue

State Queue

In
pu

t Q
ue

ue

O
utput Q

ueue

...

... ...
LP

LP LP LP...

Kernel & Scheduler

Event Queue

State Queue

In
pu

t Q
ue

ue

O
utput Q

ueue

...

... ...
LP

LP LP LP...

Kernel & SchedulerMPI

1
M

P
I P

ro
ce

ss
 (1

 T
hr

ea
d)

1
M

P
I P

ro
ce

ss
 (1

 T
hr

ea
d)

...

Figure 2.5: Current Architectural Overview of Parallel Simulation in MUSE

other LP in the case of a rollback to cancel out previously sent events. The state queue

stores the state of the LP at each discrete point in virtual simulation time. A Time Warp

LP also maintains a local virtual time (LVT) that is updated to the time-stamp of the event

most recently processed by the LP . [3] An overview of this architecture is shown in Figure

2.5.

High Level Design of MUSE The MUSE core has seven API classes available to the

user. These publicly visible classes are used in different ways to get a simulation running

with MUSE. MUSE core also has classes not available to the API user. These classes are

used by the simulation kernel to help with getting the simulation to schedule agents correctly,

synchronize multiple kernels in the distributed simulation and also to communicate across

parallel kernels by sending messages/events across the wire. The relationships can be seen

in Figure 2.5. [5]

When dealing with logical process based simulations, we clearly need a way to describe

our LP s in the simulation. MUSE defines this concept by the Agent class. The Agent class

is dependent on the State class. Two classes use this Agent: Simulation and Scheduler.

With the singleton instance of the simulation kernel, the agent can be registered and the

Simulation kernel will take responsibility of including the agent in the simulation. Once

the agent is registered, the kernel will register the agent with the Scheduler which handles

organizing events for processing in timestamp order. [5] Note that the Simulation class is

also used for setting the begin/end time of the simulation.

11

When an agent wants to communicate to another agent, it must create an event. The

Event class uses data types described in DataTypes header for construction parameters.

Scheduling of events is done through the Agent class. The Agent class intelligently decides

internally to either pass the work onto the simulation kernel or if the event is to itself, it

bypasses the scheduler and automatically adds it to the Event Queue to be processed. [5]

Within the agent, the user can use one of the subclasses of SimStream to perform IO

operations. We have developed the oSimStream which handles outputting data to any stream

safely. There is a default oSimStream class in the Agent class. This can be used just like

using std::cout. [5]

The GVTManager class implements Mattern’s GVT algorithm. [1] This works via the

root kernel (usually with SimulatorID zero) by circulating a GVTMessage between other

parallel kernels. When a message reaches a kernel, the kernel polls the scheduler for the

event/agent that will execute next. This timestamp by definition will be the local global

virtual time or LGVT. LGVT is the least timestamp of all agents’ LVT (local virtual time)

being handled by that kernel. It updates the GVTMessage accordingly and passes it to the

next kernel in a ring fashion, eventually resulting in the least LGVT across all kernels, which

represents the GVT of the overall simulation. [5]

12

Chapter 3

Related Work

3.1 Pending Event Sets

At the core of all DES is the Pending Event Set (PES) that manages the list of events

waiting to be simulated and organized by timestamp. As a result, there exists a breadth

of literature offering a range of solutions to the PES, each with their pros and cons in

a variety of contexts. One of the original data structures used for this purpose was the

Calendar Queue (CQ) presented by Brown in 1988. [10] Calendar Queue is structured as an

array of buckets each associated with a set span of time (like a desk calendar with indexed

months and days of set time). The width, or time span, associated with each bucket must

be carefully chosen, but when optimal, CQ allows for amortized constant time enqueue of

events and constant time retrieval of the minimum timestamp event. A popular variant of

CQ is the Ladder Queue (LadderQ) proposed by Tang, et al. in 2005 which was empirically

shown to outperform existing popular structures, including CQ. [11] This is done through

the reducing of bucket conflicts when the distribution of event timestamps is non-uniform

by allowing buckets to be split dynamically when a large number of events is added to any

one bucket. Should a bucket begin filling up, a new rung of the ladder is spawned to allow

events in the overflowing bucket to be better organized. How the distribution of time spans

and rungs looks in ladder queue can be seen in Figure 3.1.

One limitation of LadderQ is evident in optimistic PDES which requires cancellation

of events when a causality error is detected (see Section 2.1: Conservative vs. Optimistic

Synchronization). The 2-Tier Ladder Queue (2tLadder) proposed by Higiro et al. in 2017

provides performance gains on LadderQ in the optimistic parallel use case where rollbacks are

present. [4] This is done by creating a second tier in each bucket to further organize pending

events. While only a single additional constant time operation is necessary to distribute

13

Top

Ladder

Bottom
Sorted

Rung [1]

Rung [2]

Rung [3]

X

C

X

Figure 3.1: Ladder Queue as Described by Tang, et al.
[11]

events into this second tier, a rollback has the ability to process cancelled events by only

looking at a single sub-bucket, rather than needing to process the entirety of a bucket in the

traditional LadderQ.

3.1.1 3-Tier Heap

Just as 2-Tier Ladder Queue provides performance gains on Ladder Queue in optimistic

simulations, the 3-Tier Heap Queue (3tHeap) by Higiro also achieves state of the art perfor-

mance by distributing events into multiple tiers of heap based queues to increase the speed of

enqueue, dequeue, and rollback operations. [4] The structure of 3tHeap is shown in Figure

3.2 with the top tier heap sorting agents based on their next available event, the second

tier heap sorting events for that agent into individual timestamps, and the third tier vector

holding the individual events at each timestamp.

This structure provides numerous benefits. First, it achieves performance gains in most all

cases compared to contemporary pending event sets, especially in highly concurrent parallel

simulations where rollbacks are frequent. The structure also optimizes very efficiently by

using c++ standard library vectors and heaps, both of which are fine tuned to benefit

greatly from optimization by the compiler. Additionally, the simplicity of its design makes

it relatively easy to implement and extend into refined use cases. As a result, we choose this

structure as the foundation for our thread safe pending event set structure as described in

14

3
11

2
13

5
14

1
17

6
18

4
19

Agent ID:
Next Timestamp:

14

15

18

21

Tier-1: Agents

Tier-2: Timestamps

Tier-3: Events

Figure 3.2: Three-Tier Queue Design as Described by Higiro
[4]

Section 5.1.2.

3.2 Robustness Analysis using Java Implementation

The key performance differences between these data structures arises from the runtime con-

stants associated with the queues. The runtime constants are influenced by a variety of

factors including: hardware, programming language, and compiler optimizations. Conse-

quently, to establish robustness and reproducibility of the performance characteristics, the

3-tier Heap (3tHeap) and 2-tier Ladder Queue (2tLadder) have been implemented in Java.

The fine-tuned version of Ladder Queue (ladderQ) has also been implemented in Java for

experimental comparison. The difference between the C++ and Java versions arise from the

idiomatic implementation styles of the two languages. A key difference from a performance

perspective is the use of 32-bit int in Java for ArrayLists versus 64-bit size t in C++ for

std::vector – the 64-bit data types require additional CPU cycles.

A simplified version of the standard PHOLD benchmark used by Tang et al. and Higirio

et al. has also been ported to Java. The benchmark is a simplified version of a MUSE

sequential simulation and performs the core tasks of scheduling events, dequeuing events,

and simulating the processing of events. Note that rollbacks do not occur in sequential

simulation. However, the performance differences between 2tLadder and ladderQ arise only

with rollbacks, with minimal difference in the sequential case. Consequently, we have used

runtime profiles of parallel simulations to synthetically characterize the occurrence of roll-

backs (based on geometric distribution) and trigger rollback of pending events in these data

15

structures.

Figure 3.3 illustrate the runtime of the Java benchmark with 10,000 LPs (100 x 100)

using exponential distribution with λ = .1 for timestamps in PHOLD. This configuration is

the same as the high-concurrency configuration discussed by Higiro et al. The charts show

averages and 95% confidence intervals computed from 10 independent simulation replications

for each data point. The experiments were conducted on Red Hawk, that has Intel Xeon

R©CPUs (E5520) running at 2.27 GHz (with hyperthreading disabled) and 32 GB of RAM

(4 GB per core) in Non-Uniform Memory Access (NUMA) configuration. The nodes run

Red Hat Enterprise Linux 6, with Linux (kernel ver 2.6.32) and OpenJDK 1.7.0 99 JVM.

Runtime characteristics of sequential Java benchmark along with linear regression to

estimate runtime constants are shown in Figure 3.3. Note that curves for ladderQ and

2tLadder are very close, which is as expected because there are no rollbacks in sequential

simulation.

The performance trends of the Java implementation is similar to the MUSE simulation

trends shown by Higiro et al. (see Figure 3.3(b) and [4]). Note that we refer to performance

trends and not the raw timings because the Java implementation is a simplified version of

the C++ simulator. In this scenario where a large number of concurrent events are to be

processed, the 3tHeap significantly outperforms both 2tLadder and ladderQ. Consistency

in trends in both Java and C++ establish that the performance differences arise due to the

inherent design of the data structures and not due to platform or compiler peculiarities in

the sequential case.

The charts also illustrate the result of a linear regression fit used to estimate the runtime

constants of the 3 scheduler queues. The linear regression fits were very good with the

coefficient of determination R2 > 0.99. The linear runtime trends for ladderQ and 2tLadder

is expected because they have amortized O(1) time complexity, and consequently runtime =

|events| ∗ C (where C is a runtime constant). The linear regression with 95% confidence

interval yields a per-event time constant (C) for ladderQ and 2tLadder to be 0.0525µs −
0.0639µs and 0.0573µs−0.0589µs respectively. The 3tHeap also exhibits a similar amortized

O(1) trends, but with a much lower per-event time of 0.0234µs− 0.0255µs.

Figure 3.4 illustrates the runtime performance difference between the three data struc-

tures in the presence of rollbacks. Rollbacks introduce the extra operation of occasionally

canceling pending events. The chart in Figure 3.4(a) shows the number of synthetic rollbacks

introduced in the benchmark. The number of rollbacks were very similar in all the runs and

consequently the curves overlap. The data in Figure 3.4(b) shows the observed average run-

time and 95% CI for the three queues estimated from 10 independent replications for each

16

 0

 10

 20

 30

 40

 50

 60

 70

 1 5 10 15 20

R
u

n
ti

m
e

 (
s
e

c
)

Events/LP

3tHeap

2tLadderQ

ladderQ

(a) Java Benchmark Runtimes

 0

 10

 20

 30

 40

 50

 60

 70

 10 25 50 75 99

R
u

n
ti

m
e

 (
s
e

c
)

#Events (in millions)

R2 > 0.99 in all cases

ladderQ: 0.581 x + 1
2tLadderQ: 0.582 + 1.6
3tHeap: 0.245 x + 5.95

(b) Linear Regression Fits

Figure 3.3: Java Robustness Benchmark (No Rollbacks)

data point.

As illustrated by the data, 2tLadder significantly outperforms the traditional ladderQ in

the presence of rollbacks as per its intended design, with similar high performance achieved

by 3tHeap. These observations are consistent with the actual MUSE parallel simulation

runtime trends as well. The consistency of sequential and parallel simulation trends in both

Java and C++ establish that the advantages of the queues are reproducible across platforms

and programming languages. In other words, the advantages of 3tHeap and 2tLadder in

handling rollbacks are algorithmic and arise from its design rather than from hardware or

compiler optimizations.

3.3 Lock-Free Pending Event Sets

The above mentioned Pending Event Sets are all designed for the sequential use case, with

parallelization available only on the process level with message passing vs shared memory

multi-threading. With their original implementation, therefore, a blocking, lock-based design

pattern is needed to enable multi-threading. An example of such a design pattern is currently

used by MUSE and outlined in Section 4.2. Lock-free structures avoid this locking design

by intelligently accessing and manipulating state, often with very low level instructions that

avoid the need for a thread to stop wait for a lock to be released. Examples include lock-free

linked lists proposed by Harris in 2001 or lock-free skip lists proposed by Sundell et al. in

2005 (providing linear and logarithmic ordered insertion times respectively). [12, 13] These

17

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 2 4 8 16 32

R
o

ll
b

a
c
k

s
 (

in
 t

h
o

u
s
a

n
d

s
)

#Partitions (logical)

Note: Curves
are overlapping

3tHeap

2tLadderQ

ladderQ

(a) Number of Synthetic Rollbacks

 0

 100

 200

 300

 400

 500

 600

 2 4 8 16 32

R
u

n
ti

m
e

 (
s
e

c
)

#Partitions (logical)

3tHeap

2tLadderQ

ladderQ

(b) Java Benchmark Runtimes

Figure 3.4: Java Robustness Benchmark (with Synthetic Rollbacks)

structures are made possible by the use of low level atomic instructions, such as compare-

and-swap (CAS), which allow them to be concurrently accessed without the need for locks

and without the risk of race conditions.

Utilizing these types of primitive lock-free structures, there currently exist lock-free pend-

ing event set structures for the context of DES. For example, a version of thread safe Cal-

endar Queue was proposed by Marotta et al. in 2017 that fixed many issues provided by

various previous attempts at such a structure. [14] For example, previous attempts allowed

for concurrent enqueue and dequeue, but required threads to block when a resize operation is

necessary. Marotta’s version shows reliable success and scalability on machines as large as 32

cores while accessing the same shared structure. A variation of Ladder Queue was proposed

by Gupta et al. [15] While ladder queue has been shown to demonstrate performance gains

over Calendar Queue, the version presented by Gupta is tailored exclusively to optimistic

parallel processing due to the events in the bottom rung no longer being sorted, and thus the

dequeue operation does not necessarily retrieve the overall least timestamp. Additionally,

the version created by Gupta does not include the second tier proposed by Higiro, making

it less efficient at handling rollbacks in optimistic simulation than it could be. Hardware

Transactional Memory (HTM) support has also been explored as a means to provide a con-

current pending event set. [16] Manipulation of the structure can be done in constant time

as HTM-based transactions. These types of structures however do not scale well on modern

machines and can be prone to runtime issues unrelated to conflicted concurrent access.

Jagtap et al. [17] discuss their experiences with developing a multithreaded version of

18

the ROSS Time Warp simulator. [18] Follow-up expanded research is presented in [19]. In

their multi-threaded Time Warp simulator called ROSS-MT, event exchanges between LP s

are accomplished using a single input queue per thread. Communication occurs by inserting

a copy of the message in the input queue of the destination thread. The receiver thread

dequeues events from the input queue and inserts them into the thread’s event priority

queue. This two stage insertion is used to avoid lock contention on the main scheduler event

queue, however our research aims to accomplish event exchanges directly between threads via

pointers to a shared queue. Jagtap also uses a NUMA-aware memory management scheme

to reduce access latencies by having the event recycler choose events that were originally

allocated by the receiving thread. We hope to implement a similar scheme in MUSE. In

contrast, our research aims to run on a cluster of shared memory machine and not just one

compute node. Moreover, we aim to use lock-free structures where possible. Pellegrini et

al. also discuss NUMA issues and propose the use of Linux’s NUMA API for optimizing

memory access. [20]

19

Chapter 4

Problem Analysis

4.1 Problem Statement

Due to the importance of the pending event set structure, a large amount of research has

already been done to find structures that allows very fast access, insertion, and rollback time

complexities. The primary problem this research attempts to solve is finding a way to modify

those already fast data structures for shared memory multi-threading in the context of a

multi-core or many-core CPU to minimize conflicts that prevent immediate access/mutation

and avoids locking. In other words, we want a structure that is safe to concurrently access

at any time and is tolerant to high contention. As discussed above, the structures that have

shown the most promise for PDES in both the sequential and optimistic use case are the 2-

Tier Ladder Queue and 3-Tier Heap Queue proposed by Higiro. [4] We choose to investigate

the 3-Tier Heap Queue (3tHeap) as the candidate for our thread safe structure due to its

relative simplicity, ease of implementation, and other design benefits discussed in Section

5.1.2.

The four key data structure operations As discussed by Higiro et al, the following 4

operations on the data structures will be of primary focus, namely:

1. Enqueue one or more future events: This operation adds the given set of events

to the pending event set. Multiple events are added to reprocess events after a rollback.

2. Peek next priority event: This operation returns the next event to be processed in

priority order without removing it. The event is used to update an LP’s LVT and

schedule it. Note that in multi-threading this event could be removed by another

thread immediately after being peeked.

20

3. Dequeue events for next LP: In contrast to peek, this operation dequeues all events

at the next timestamp for a single LP to be processed. Concurrent events could have

been sent by different LP s on different MPI-processes. Events at the same timestamp

do not need to be processed in any particular order.

4. Cancel pending events: This operation is used as part of rollback recovery process to

rapidly remove all pending events sent by a given LP (LPsender) to another LP (LPdest)

at-or-after a given time (trollback). In our implementation, only one anti-message with

send time trollback is dispatched to LPdest from LPsender to cancel prior events sent by

LPsender to LPdest at-or-after trollback. This feature short-circuits the need to send a

large number of anti-messages thereby enabling faster rollback recovery.

We aim to optimize the worst case scenario of parallel DES. That is, where the amount of

time processing each event is very small and thus requests to our scheduler data structure are

frequent and near constant. For example, a naive approach to the problem is simply to lock

the entire data structure anytime a thread needs to read or write to the scheduler. Because

each thread must near constantly access and update the scheduler to continue processing new

events, this naive approach would provide zero speedup in our worst case scenario since the

blocking nature of the thread safety essentially renders event processing to be sequential. In

contrast, real world processing of events calls for some level of process time per event. This

process time between event handling operations (later referred to as granularity) relaxes some

contention off the shared queue by requiring threads to do work before they request the next

set of events. With high enough granularity, even a naive locking approach could achieve

near perfect linear speedup as the proportion of time spent processing events outweighs the

time our scheduler queue must spend organizing them, however we would like to ensure good

performance independent of this event granularity.

4.2 Preliminary Investigation

In conjunction with the research conducted in this paper, a multi-threaded solution to DES

simulation was developed and incorporated into MUSE. Outlined in Figure 4.1, our prelim-

inary implementation uses multiple threads on a shared memory system but is agnostic to

the pending event set data structure being used. That is, it operates by creating a separate

scheduler queue for each thread, which is accessed sequentially and thus does not need any

inherent thread safety. The LP s in the simulation are partitioned (or mapped) to specific

threads. Each thread manages the lifecycle activities of the LP s it is allocated, even though

21

Event Queue
(Scheduler Data Structure)

Blocking Buffer Queue

Simulator

Serialized
MPI Messages

MPI Queue

Figure 4.1: Preliminary Implementation for Multi-Threaded MUSE

all events are accessible via the shared memory space. This design accounts for the following

three types of event exchanges between the LP s in a simulation:

1. Intra-thread events: These events are exchanged between LP s managed by a single

thread. Since these events are restricted to a single thread (no risk of concurrent

access), they are directly inserted into the pending event queues. This setup is identical

to the single threaded implementation of MUSE.

2. Inter-thread events: These events are exchanged between LP s managed by different

threads but on the same process. Inter-thread communication is accomplished by using

an input buffer for each thread that receives incoming events and holds them until they

can be safely inserted into to the non-thread safe Event Queue for that thread.

3. Inter-process events: Inter-process events are sent via serialized MPI messages (MPI

maintains its own internal buffer queue) similar to the current MUSE design. However,

on the receiving end multiple threads read messages from MPI leading to two possible

scenarios, namely: 1© the event is read by the thread that is managing the LP to which

the event is destined and 2© event is read by a thread that is not managing the LP . In

the former case, the incoming event is processed by the thread directly. In the latter

case, the event is inserted into the blocking buffer queue of the actual thread that is

managing the LP to which the event is destined, similar to ”inter-thread” exchanges.

22

Messages are regularly removed from the blocking buffer queue and then inserted into the

Event Queue. By use of these buffers, this solution allows each thread to simulate without

ever being significantly bottlenecked by another thread. Additionally, this solution is data

structure agnostic and can thus be used with any scheduler queue, including non-thread safe

data structures. However, this design experiences several issues, including:

1. Memory overhead of needing to make copies of events, which take up unnecessary space

in buffers

2. Extra CPU overheads due to needing to copy, serialize, and transfer messages between

threads, despite being on a shared memory system.

3. The blocking in-bound event queues are lock based and heavy inter-thread commu-

nication will give raise to contention on the blocking buffer queue, still resulting in

locking overhead.

4. LP s are set to individual threads, meaning we do not gain the benefit of threads always

pulling the least timestamp event across all LP s, increasing optimistic synchronization

overhead compared to a shared scheduler queue design.

Ongoing Investigations for Improved Concurrency In continuation with this pre-

liminary investigation, our research focuses on fundamentally enhancing the design using a

single centralized scheduler queue shared by all the threads. The single scheduler queue is in

contrast to the multiple scheduler queues (1 per thread) used by the preliminary implementa-

tion. The objective of a single centralized scheduler queue is to minimize the four key short-

comings of our preliminary design discussed above. However, using a single shared scheduler

queue for multiple threads will significantly increase contention from multiple threads for

performing the 4 key operations, namely: enqueue, peek, dequeue, and cancel events.

In order to minimize the cost of contention, we aim to use modern thread safe techniques

that minimizes blocking by utilizing atomic instructions and synchronization. The goal is

to make a thread safe version of the existing 3-tier heap (3tHeap) queue that allow threads

to concurrently access the same shared data structure in memory while being bottlenecked

by operations of another thread. The new structure must be able to provide thread safe

operation for insertion of events to be scheduled, priority-order retrieval for least-timestamp-

first scheduling, and out of order deletion due to rollbacks in a thread safe way. Due to the

complexity of how information is stored in the existing structures, creating a non-blocking

version comes down to identifying the minimal slice of the structure that must be protected

23

MT Safe Event Queue
(Scheduler Data Structure)

Simulator

Figure 4.2: Proposed Implementation for Multi-Threaded MUSE

Shared Scheduler & Queue

State Queue

In
pu

t Q
ue

ue

O
utput Q

ueue

...

... ...
LP

LP LP LP...

Kernel
Thread

MPI1
M

P
I P

ro
ce

ss
 (4

 T
hr

ea
ds

)

...
LP

Kernel
Thread

Kernel
Thread

Kernel
Thread

Shared Scheduler & Queue

State Queue

In
pu

t Q
ue

ue

O
utput Q

ueue

...

... ...
LP

LP LP LP...

Kernel
Thread

1
M

P
I P

ro
ce

ss
 (4

 T
hr

ea
ds

)

LP

Kernel
Thread

Kernel
Thread

Kernel
Thread

Figure 4.3: Proposed System Architecture Overview for Multi-Threaded MUSE

(critical sections) in order to safely conduct all three operations so as to avoid unnecessarily

contention any one part of the queue at a time. Downfalls of this implementation are that its

design is contingent on very specific data structures, unlike our preliminary solution which

can be applied to any PES data structure.

4.3 Design Considerations

A multi-threading extension to MUSE will require restructuring its architecture to support

concurrent operation. With shared memory multi-threading enabled, each thread will run

as a scheduler permitting different agents to process events scheduled for them. Note that

the subset of LP s that each scheduler operates on continuously changes depending on the

pending events the unified scheduler queue that is shared by all the threads. The desired

architecture, outlined in Figure 4.3, also brings in a new range of scheduling and event

processing issues that need to be addressed.

24

Rollback Management In configurations where each thread has its own sequential sched-

uler queue, rollback cancellation is performed immediately upon the triggering message being

received, even if there are other pending events in the queue. Two types of messages trigger

a rollback: 1© a straggler event (i.e., event with lower timestamp than an LP ’s LVT) or 2©
an anti-message. Upon being received, all pending events from the sender after the send

time of the incoming event are immediately canceled.

However, with a shared scheduler queue, the rolling-back LP (i.e., the LP whose events

are to be canceled) could be concurrently processing the events that need to be canceled

when an event is received. Event processing of LP s is non-preemptable, and consequently

the only alternative would be to enqueue the known straggler or anti-message and then

processes the event once the LP in question has completed its event processing. To avoid

blocking, the kernel must then temporarily enqueue the triggering event so that it may later

be processed once the LP is no longer actively processing.

LGVT Estimation Another important challenge that arises when operating with multi-

ple threads and a single centralized scheduler queue is estimation of Local Global Virtual

Time (LGVT) on the multi-threaded process that is used to eventually compute the Global

Virtual Time (GVT) in the overall simulation. With one scheduler-per-thread, LGVT esti-

mation is relatively straightforward because obtaining a consistent snapshot of all threads is

trivial. However, obtaining a consistent snapshot from multiple concurrent threads is a chal-

lenge. This is because each thread is operating independently and could be sending/receiving

messages from other threads or MPI. In multi-threaded scenarios, two different approaches

are possible:

1. Synchronizing threads: This is more or less a stop everything approach in which

all threads are forced to synchronize LVT’s. Once synchronized, a consistent snapshot

of all threads on the process can be determined by one thread to compute LGVT

for GVT estimation. This approach is relatively straightforward and is used by other

investigators as well. [15, 21] Another advantage of this approach is that it is agnostic

to which thread processes an LP and which thread handles the GVT estimation.

2. Independent GVT managers per thread: An alternative approach would be to to

explore independent GVT managers on a per-thread basis. Essentially, GVT managers

would perform just as they do in optimistic parallelization across processes, except they

would be assigned at the thread level rather than the process level. This is much more

complicated and expensive, and was not necessary for our implementation.

25

P1 P2 P3 P4

RAM RAM

e1

t1 .
Thread

 t2
Thread

(a) Overview of NUMA Memory Architec-
ture

available: 2 nodes (0-1)

node 0 cpus: 0 2 4 6
size: 12288 MB
free: 10697 MB

node 1 cpus: 1 3 5 7
size: 12275 MB
free: 8990 MB

node distances:
node 0 1

0: 10 20
1: 20 10

(b) NUMA Configuration on Miami Red
Hawk

Figure 4.4: NUMA Memory Layout Architecture and Configuration

NUMA-Aware Event Recycling and Memory Management Most supercomputing

clusters, including the Miami University Red Hawk cluster, have compute nodes that have

two or more CPUs in Non-Uniform Memory Access (NUMA) configuration as shown in the

Figure 4.4(a). Each CPU has its own local Random Access Memory (RAM) modules that

are fast to access. However, accessing other RAM modules is possible but incurs much higher

latency. Consequently, with NUMA, access to different regions of the virtual memory space

of a process have significantly different access times. For example, in Figure 4.4(a), assume

that event e1 is stored in the first RAM module as shown. In this scenario, access to event

from thread t1 is much faster than access from thread t2. If thread t2 is the intended thread

that must process event e1, then the overall event processing will be slowed down.

Figure 4.4(b) shows the NUMA configuration on a compute node on Red Hawk that has

two Intel Xeon E5620 @ 2.4 GHz CPUs in NUMA configuration, labeled node-0 and node-1.

As illustrated by the output of numactl, the time to access local modules is fast at about

10 time units (not to be confused with latency as distance is an pseudometric) while access

to remote RAM blocks is 2 slower at 20 time units.

In order to avoid significant slowdown due to NUMA configurations, shared memory

parallel processing must implement NUMA aware event access and recycling – that is, events

will be reused based on the destination thread to which events are to be dispatched. This will

require restructuring the event management infrastructure of MUSE to accept an optional

destination LP ID. The destination LP ID will then be converted to a thread ID. If the

26

thread is local then the NUMA-aware event recycler will select the appropriate event to be

recycled to minimize NUMA issues.

27

Chapter 5

Implementation and Solution

5.1 Pending Event Set Data Structure

A Pending Event Set that can store and manage events in a thread safe way requires two

primary features:

1. A Concurrent Priority Queue (CPQ) data structure with 1© enqueue, 2© peekMin, 3©
deleteMin, and 4© deleteAt operations.

2. Wrapper logic that utilizes CPQs to efficiently manage lists of events across multiple

agents.

Shared state would be contained to inside CPQs, with the wrapper logic performing

operations on that state to allow multiple threads to schedule and process events in a PDES

simulation.

5.1.1 Concurrent Priority Queue

Gruber discusses that skip-list backings for priority queues are the current state of the art for

strict shared memory concurrent priority queues. [22] He furthers that Lindén-Jonsson’s skip-

list based queue has particularly good performance under very high contention conditions,

which is the property we are most interested in for our event queue. [23] Specifically, skip-lists

are relatively simple to implement, and by making balancing decisions for the search tree

that are agnostic to the state of the queue, skip-lists are particularly useful in concurrent

structures where contention for shared state is the primary bottleneck on performance. As a

result, we chose to use the Lindén-Jonsson queue as the starting point for our CPQ backing

28

Head

-∞timestamp

next[]

5 8 9 11 14 18

Tail

∞

deleted deleted Top

Figure 5.1: Structural Overview of Lindén & Jonsson Concurrent Skip List Priority Queue

data structure. It’s important to note that the backing priority queue and the wrapper logic

are independent, so future research on a better CPQ could be easily incorporated into our

overall pending event set structure.

The concurrent queue is designed to handle simultaneous insert and delete operations

without data loss, duplication, or inaccuracy. The structure of the queue can be seen in

Figure 5.1. There are two important regions of the queue: 1© the next[] skip links above

level 0, which are used to reduce search complexity when traversing the queue, and 2© skip

links on level 0, which represents the true order of the queue and is traversed to find the

min node (top). The height of these levels for a single node is chosen at random with a

geometric distribution, meaning that for level (starting with level 0 which is always present)

the likelihood of a node reaching the level above it is cut in half. As a result, traversing links

from the top down creates an effective binary search for long lists.

As a result of this design, we can concurrently insert and delete while maintaining causal-

ity by manipulating pointers on level 0 (the true state of the queue), then restructuring the

upper region purely to decrease search time. This is done by using the next[0] pointer (level

0) to hold the deleted state by flipping its last bit, allowing for the detection of a conflict-

ing inserts and deletes on the same node with the compare-and-swap (CAS) operation. [23]

If a thread attempts to insert a new node directly before a node that is also trying to be

deleted (which should thus be the new top), or if a thread attempts to delete the same node

as another thread, the CAS instruction will detect the conflict because the next[0] pointer

will have changed, causing the operation to fail, depending on which thread managed to

manipulate the next[0] pointer first.

Modifications to Lindén & Jonsson The primary modification that needed to be made

to the original queue was the ability to delete an arbitrary key from the middle of the queue

29

(deleteAt operation). This is because in the final PES queue, an inserted event for an agent

could likely change the priority of that agent, thus requiring that agent to be reorganized.

This operation is also necessary for rollback functionality. This change was done by creating

a second operation in the delete process in addition to flipping the bit on the next[0] pointer:

a compare-and-swap on the value reference for the node. Delete operations still flip the bit

on the pointer to avoid conflicting operations, however the thread must also then successfully

set the value reference to null in order to successfully complete the delete operation. This

allows restructure threads to delete an element from the middle of the queue by setting the

value to null, and allowing the node to naturally move to the top of the queue and then be

ignored.

This is a novel modification to the Lindén & Jonsson queue, however it comes at a cost.

For one, nodes deleted via the deleteAt operation must waste space in the queue as they

wait to be moved to the top where they are actually deleted. In a situation where many

deleteAt operations are being conducted (which is true in our case), this results in a queue

that could be multiple times larger than necessary. So long as we can achieve non-locking

operation, this increased size can be acceptable due to the constant time deleteMin and the

log time insert, however it is results in both significantly increased space as well as increased

runtime due to needing to delete nodes twice. Additionally, restructuring a node in the

queue (in our current implementation) requires a deleteAt followed by a subsequent enqueue

as shown in Figure 5.4 Algorithm 8. In theory, it should be possible to simply restructure

the node in place without the need to fully remove and re-insert. This operation has been

implemented by Higiro in his 3tHeap, however would present extensive challenges to be

conducted concurrently. Both of these problems are an area of future work on the CPQ, as

the deleteAt and restructure operations are necessary to the operation of a PES structure.

It’s important to note the reason for this type of convoluted deleteAt operation. Ideally,

we would simply logically delete the node from the middle of the queue by setting the

next[0] pointer of the previous node to the successor node (thus bypassing the node we want

to delete). This is not possible concurrently, however, as it is possible another node could be

trying to insert a new node immediately before the node we are trying to delete, creating a

data race on the next[0] pointer for the previous node where the state of the queue is different

depending on which thread manipulates the pointer first. This scenario is demonstrated in

Figure 5.2 with the pointer in question highlighted in red, and is discussed by Lindén &

Jonsson as the motivation behind having the delete flag and the next pointer be the same

point in memory. [23]

30

21 4Before 5

t1

2 4 5

deleteAt(4)
t2

enqueue(3)

32 4

Possible Results
t1 then t2 t2 then t1

32 4

(4 not deleted, 3 inserted)

2
4

5

3

(4 deleted, 3 not inserted)

Intended
Result

Figure 5.2: Data Race Scenario Presented by Naive Concurrent Insert and DeleteAt of
Linked-list

5.1.2 3-Tier Structure Design

We base our PES structure on the Three Tier Heap (3tHeap) by Higiro described in Section

3.1.1 to create our Three Tier Skip-List with Multi-Threading Support (3tSkipMT). [4] The

overall layout of our structure mimics that of 3tHeap except with a concurrent priority queue

(CPQ) as the backing structure rather than the C++ standard library’s heap based priority

queue. Our interpretation uses a CPQ for Tier-1 and Tier-2 (each of which is sorted) and

a standard vector queue with locks for Tier-3 (which is not sorted, and does not have high

contention).

This three tier design also complements the design constraints outlined in Section 5.2,

specifically the Agent State Critical Section where no two threads can be processing (dequeue

events for) the same agent at the same time. By having agents sorted in the top level queue,

any thread can quickly and safely pop the top agent off the Tier-1 queue to gain exclusive

processing rights to that one agent and prevent any other thread from attempting to process

events for that agent concurrently (since the agent is removed from the queue in a thread

safe way). Concurrent inserts of events can still occur on that agent while it is processing

by directly accessing the agent’s Tier-2 and Tier-3 queues (agents hold a reference to their

31

tier-2 queues), but no two threads can dequeue events for the same agent at the same time

by using this multi-tiered structure.

This multi-tiered design also limits contention overhead by reducing the likelihood that

any two threads will be concurrently manipulating a single CPQ at the same time. The

bottleneck to this is need for the top level queue to be accessed by every thread before it

can access the lower tier queues, however this is still significantly less than if all events were

stored in a single queue with constant contention by all threads. Additionally, inserts for one

agent have zero contention with inserts for another. Lastly, we achieve all the same benefits

of the sequential 3tHeap, such as constant time dequeue and log|n| inserts where n is the

number of timestamps for events on a single agent rather than the number of events overall

across agents.

5.2 Simulation Kernel Integration and Wrapper Logic

Converting a sequential system into a parallel one is no easy task. Before building a data

structure that supported concurrent operation in the context of Parallel Discrete Event

Simulation (PDES), we found it valuable to instead work from the top down in redesigning

the system. We decided to first modify the MUSE simulation kernel (see Section 2.3) to

support shared memory parallelization, and use this process to determine the properties a

Pending Event Set would need (as has been described above), and then use that knowledge

to design the data structure and later include it in MUSE.

Multiple design issues became apparent during the implementation of a thread safe non-

blocking kernel compared to the original sequential version...

1. Kernel Pipeline Critical Sections The first aspect of converting MUSE to a thread

safe, shared memory platform involved identifying and protecting critical sections in

the kernel. The original MUSE makes many underlying assumptions about variables

and state that are no longer valid in concurrent programming.

For example, in Algorithm 3, the kernel first checks if the event queue is empty, and then

begins processing it. In concurrent programming, it’s possible a thread t1 is removing

events at the same time as t2, meaning the moment t1 calls eventPQ.empty() and

gets false, t2 may have just removed the last event and made the queue empty, even

though t1 thinks the queue should have items in it. Also in Algorithm 3 Lines 5-6,

if eventPQ was shared between threads, the agent retrieved on Line 5 could also be

concurrently retrieved by another thread, meaning Line 6 would be a data race to pull

events associated with that same agent and process them.

32

Algorithm 3 Sequential MUSE - Kernel

1: function StartSimulation
2: while GV T ≤ endT ime do
3: LGV T ← eventPQ.nextTime()
4: if NOT eventPQ.empty() then
5: agent ←
eventPQ.front.agent

6: events ←
eventPQ.dequeue()

7: agent.process(events)
8: end if
9: updateGVT()

10: end while
11: end function

Algorithm 4 Concurrent MUSE - Kernel

1: function SingleSimThread
2: while GV T ≤ endT ime do
3: agent← agentPQ.pop()
4: events← agent.events.dequeue()
5: agent.handleRollbacks(events)
6: threadLGV T = events.time
7: agent.process(events)
8: agentPQ.restructureTop(agent)
9: updateGVT()

10: end while
11: end function

Algorithm 5 Sequential MUSE - Schedule

1: function ScheduleEvent(event)
2: agent.handleRollbacks(event)
3: eventPQ.enqueue(event)
4: end function

Algorithm 6 Concurrent MUSE - Schedule

1: function ScheduleEvent(event)
2: agent = event.recipient
3: agent.enqueue(event)
4: agentPQ.restructureTop(agent,
event)

5: end function

Figure 5.3: MUSE Sequential vs Concurrent - High Level Kernel Pseudocode

33

Overall, the kernel pipeline must make any calls to shared state in a single operation,

as is done in Algorithm 4. Any state that is shared between threads is accessed in a

single function call, resulting in no possibility that state changes between calls. For

example, Algorithm 4 Line 6 sets the local threadLGVT from events that have already

been dequeued while Algorithm 3 Line 3 gets LGVT from what would be a shared

state before the events associated with that LGVT have been removed from the queue.

2. Agent State Critical Section Processing events on an agent is a very important

critical section for our concurrent version. The next state for a given agent is very

critically dependent on the previous state, and no level of concurrency can exist between

state transitions. Put more simply, an agent must have fully processed all previous

events before it can begin processing future events, meaning two agents can not process

events at the same time without conflicts.

Our solution to this issue creates a situation where no two agents will ever be processing

events concurrently. This is done by creating top-tier thread safe queue that contains

agents prioritized by their next timestamp (See Algorithm 4, agentPQ). By removing

the agent from this queue in a thread safe way, a thread ensures that it alone has control

of manipulating that agent’s state and that no other agent is processing events. This

also applies to rollbacks, as rollbacks change agent state, thus requiring our version to

process rollbacks as part of the dequeue process rather than scheduling process as had

been done previously (See Algorithm 6 Line 5).

Other threads can still access the agent directly, however these threads would only

be able to schedule new events onto that agent, not remove events for processing.

This design allows for agents to still concurrently add new events to an agent without

blocking, while also ensuring a critical section is achieved for agent processing and

state changing.

3. Synchronization As discussed in Section 2.1, Synchronization is necessary when

events are processed in parallel and can cause causality issues. This is usually a

problem with distributed parallel simulations due to different processes on different

compute nodes getting out of sync and sending events out of time. The issue presents

itself in multi-threaded simulations, where one thread may be processing events at some

timestamp while another thread inserts events for that agent at the same timestamp.

The result of this situation is not serious, as we simply need to rollback the agent

before re-processing the events at that timestamp, however it presents an unavoidable

overhead to making simulations multi-threaded. One benefit is that while the situation

34

Algorithm 7 Restructure After Dequeue

1: function Restructure-
Top(agent)

2: agent.restructureLock.lock()
3: nextMin← agent.nextMin
4: agentPQ.insert(agent, nextMin)
5: agent.restructureLock.release()
6: end function

Algorithm 8 Restructure After Enqueue

1: function RestructureTop(agent, evt)
2: agent.restructureLock.lock()
3: if evt.time < agent.nextMin then
4: agentPQ.delete(agent)
5: agentPQ.insert(agent, evt.time)
6: end if
7: agent.restructureLock.release()
8: end function

Figure 5.4: MUSE Concurrent - Top Tier Restructure Pseudocode

is possible, sharing the event queue between threads prevents any one thread from

getting drastically out of sync as is possible in distributed optimistic parallel simulation.

Each thread always pulls the lowest timestamp event across all concurrent threads,

requiring the errant event to be both at the next possible timestamp in the queue and

for an agent that is processing at that next timestamp concurrently, which is unlikely.

Regardless, thread-based rollbacks will be a minor overhead that will especially be

apparent in smaller simulation with a fewer number of agents.

4. LGVT Management In sequential and optimistic simulations, local global virtual

time (LGVT) calculation is straight forward as we simply keep track of the timestamp

of the last event we processed (Algorithm 3 Line 3). With multiple threads sharing

the same set of events, however, we cannot simply set a single variable as a data race

would occur. For example, if a thread pulls event e1 at timestamp t = 1 and another

thread pulls the next event e2 at timestamp t = 2, the variable for LGVT could be

set to either timestamp, depending on which thread sets the value first after they pull

their respective events. This means its very likely that LGVT could be set to t = 2

before e1 has even begun being processed, which is invalid. LGVT should always be

the

The simplest solution to this was to keep a thread local instance of LGVT per thread.

This threadLGV T holds the minimum timestamp processed by that thread, and the

minimum value across all values would be the true LGVT for the process. There

still exists a data race between accessing a threadLGV T and that thread moving on

to the next event, but this will only ever cause LGVT to be underestimated, never

overestimated as demonstrated in the example above.

35

5. Top Tier Restructure The top level queue agentPQ in Algorithm 4 must be re-

structured 1© when events are removed and 2© when an event with timestamp less

that the previous min event are scheduled. This is a function that cannot be done

concurrently, and can result in conflicts if not handled properly. This is because the

nextMin value of the agent can change while a thread is restructuring if concurrent

enqueues or dequeues are present on the agent. Figure 5.4 shows the difference in logic

necessary to restructure in concurrent mode, and critically requires a lock on the agent

to be done properly.

The most important insight about the restructure logic is that a concurrent dequeue

and enqueue can still occur, just not the restructure portion of the operation. For

example, a thread t1 will always restructure following a dequeue operation, but a

thread t2 can still perform the enqueue operation while t1 is processing, t2 just has

to block while t1 restructures before it can be allowed to start its own restructure

operation. Restructure is a required critical section, but by limiting this necessary

blocking to only the critical portion of the operation, we avoid excessive overhead.

Following a Dequeue (Algorithm 7), it is only possible for other threads to be inserting

new events, not removing them (because dequeue on an agent is a critical section in

and of itself). As a result, we can safely ask the agent for nextMin (so long as we have

the lock) because this min can only get smaller (if a thread inserts an earlier event) not

larger (only possible by removing an event). As a result, even if another thread inserts

and changes this nextMin while we’re restructuring, we safely know that that insert

thread will restructure itself once it can get the lock, and another thread attempting

to dequeue will not pop an agent that isn’t actually the minimum timestamp (which

would be possible if nextMin was able to increase in value concurrently).

Following an Enqueue (Algorithm 8), other threads may be enqueuing or dequeuing.

This is fine, because we have a constant value for our restructure time (evt.time)

which is the timestamp of the event that was just scheduled. This means we aren’t

dependent on the shared queue state for our key value in the priority queue, and

the only thread safety we need to worry about is the restructureLock to avoid race

conditions on the previous key. If another thread enqueues or dequeues to change

the value of agent.nextMin after we check it on Line 3, that thread will handle the

necessary restructure after this thread give up the lock.

6. Garbage Collection Issues The sequential version of MUSE uses reference counters

to keep track of when we are done with an event and tag it for recycling by the garbage

36

CreateNewEvent

Thread t1 Thread t2

tim
e

S
ha

re
d

S
ch

ed
ul

er
 Q

ue
ueoutputRef++

EnqueueEvent

e1e*1

FinishedWithEvent e*1

inputRef- -

e*1 DequeueEvent

ProcessEvent

inputRef++

outputRef- -
FinishedWithEvent

if (inputRef == 0 && outputRef == 0) recycle(event)

Figure 5.5: 2 Reference Counter Garbage Collection Overview

37

collector. Because of concurrency, this method could result in data races between

threads, and provides no way to determine when the other thread was finished with

an event and when it left the recipient agent’s state queue. As a result, we instead

implemented two reference counters on each event: 1© the reference count on the thread

that created and sent the event, and 2© reference count on the thread that receives the

event, processes it, and inserts it into the agent state queue until it is completely no

longer necessary by the simulation.

By using this two counter system, we can ensure that both threads are independently

finished with an event before scheduling it for recycling, without needing to add time

complexity or excessive overhead to our simulation. See Figure 5.5 for an overview of

the two counter garbage collection system.

38

Chapter 6

Results and Discussion

6.1 Experiments

PHOLD Benchmark The PHOLD benchmark has been used by many investigators be-

cause it has shown to effectively emulate the steady-state phase of a typical simulation.

Our PHOLD implementation developed using MUSE provides several parameters (speci-

fied as command-line arguments) summarized in Figure 6.2. The benchmark consists of a

2-dimensional toroidal grid of Logical Processes (LP s) specified via the rows and cols pa-

rameters as shown in Figure 6.2. The total number of LP s in the simulation is rows cols.

LP s are evenly partitioned across the MPI-processes used for simulation.

Figure 6.1: Arrangement of LP s in PHOLD Benchmark

Figure 6.1 shows the arrangement of LP s (represented by small circles) partitioned to

4 parallel processes with colors indicating the partitions. However, the imbalance param-

eter influences the partition, with larger values skewing the partition such that more LP s

are assigned to some partitions. The imbalance parameter has no impact on sequential

simulations.

The PHOLD simulation commences with a fixed number of events for each LP, spec-

39

Parameter Description

rows Number of rows in model.
cols Number of columns in model.
eventsPerLP Initial number of events per LP.
simEndTime Simulation end time.
%selfEvents Fraction of events LPs send to themselves.
partitions Number of partitions to divide LP s into for rollback simulation
delayDistrib Event timestamp distribution*
recvrDistrib Receiver ID distribution*
delay or λ Parameter for distribution specified by delayDistrib
recvrRange Parameter for distribution specified by recvrDistrib
granularity Additional compute load per event
imbalance Imbalance in partition, i.e. more LPs on some partitions.

*distribution can be one of ”uniform”, ”poisson”, or ”exponential”

Figure 6.2: PHOLD configuration options

ified by the eventsPerLP parameter. For each event received by an LP a fixed number

of trigonometric operations determined by granularity are performed to place CPU load.

For each event, an LP schedules another event to a randomly chosen adjacent LP deter-

mined by recvrDistrib and recvrRange parameters. The selfEvents parameter controls

the fraction of events that an LP schedules to itself. The event timestamps are determined

by a given delayDistrib and delay or λ parameters. The combination of parameters can

be used to model different interaction patterns and simulation-time behaviors of various

models. Specifically, combinations of these parameters influence the number of concurrent

events (i.e., events with the same timestamp) that are scheduled to be processed by a given

LP. The number of concurrent events strongly influences rollback probabilities as well as the

effective performance of various scheduler queues.

We test our multi-threaded PES data structure using the above parameters and compare

results where applicable to Three Tier Heap (3tHeap) by Higiro. [4] This is because 3tHeap is

structurally very similar to Three Tier Skip-List with Multi-Threading Support (3tSkipMT)

besides their underlying container structure and usage of multiple threads. Additionally,

3tHeap was shown by Higiro to be a state of the art structure for sequential and optimistic

DES simulations, making it the target to beat to demonstrate useful speedup.

Environment The experiments were run on the Miami University Redhawk Supercomput-

ing cluster. Each node of the cluster contains two Intel R©E5620 CPUs @ 2.4GHz providing a

total of 8 cores with 32GB of RAM in NUMA configuration. Trials were individually run on

40

a single dedicated compute node with up to 8 threads (1 per core), with the average of 3 runs

being taken per data point. Any outliers were manually reviewed and re-run if necessary.

6.1.1 Experimental Data

We collected preliminary data across the various parameters for PHOLD described in Section

6.1, finding significant comparative results with the granularity and row/col factors (total

number of LP s in the simulation). Additionally, we measure scalability with both an opti-

mized vs unoptimized compile of the benchmark (−O3 vs −O0 compiler flags) to compare

the impact of optimization on the two structures. These results can be seen in Figure 6.3.

Granularity data was run with 400 LP s with varying granularity factor with an optimized

compile. Scalability data was run with granularity factor of 5 and varying row/col values

with both optimized trials and non-optimized trials. A granularity factor of 5 was chosen

for scalability data as it provides a realistic amount of compute time between events as

determined by our granularity impact analysis visible in Figure 6.4.

Four factors overall were tested to generate our result: 1© The number of Logical Pro-

cesses (LP s) in the simulation, 2© the granularity factor of the PHOLD experiment, 3©
optimization vs no optimization at compile time, and 4© the number of threads/CPU cores

utilized.

6.2 Results and Discussion

Scalability and Simulation Size As shown in Figure 6.3(c), the baseline 3tHeap out-

performed our 3tSkipMT when run sequentially. This baseline also scaled better than

sequential 3tSkipMT as more LP s were added to the simulation, however both structures

scaled linearly to size. The runtime comparisons between these two sequential trials demon-

strates the expected overhead produced with our multi-threaded implementation and less

efficient backing data structure necessary for lock-free operation. Importantly, we see both

of these trends scale in a linear fashion, implying that we do not lose asymptotic complexity

when providing multi-threading support. We also notice diminishing marginal returns on

additional threads, achieving much less speedup from 4 vs. 8 threads compared to 2 vs

4 threads. This represents the overhead experienced from thread conflict on shared mem-

ory. While more threads provides more compute power, more threads also adds additional

memory contention, resulting in less relative speedup once 6-8 threads are being used.

41

0 200 400 600 800

0

100

200

Granularity Factor

R
u
n
ti

m
e

(s
ec

on
d
s)

3tHeap

3tSkipMT (1 thread)

3tSkipMT (2 thread)

3tSkipMT (4 thread)

3tSkipMT (6 thread)

3tSkipMT (8 thread)

(a) Granularity Factor - Zoomed Out

0 2 4 6 8 10

0

10

20

Granularity Factor

R
u
n
ti

m
e

(s
ec

on
d
s)

(b) Granularity Factor - Zoomed In

1,000 2,000 3,000

0

20

40

60

80

Logical Processes (LPs)

R
u
n
ti

m
e

(s
ec

on
d
s)

(c) Sim Size vs Runtime

1,000 2,000 3,000

2

4

Logical Processes (LPs)

S
p

ee
d
u
p

(o
ve

r
3t
H
ea
p)

(d) Speedup over 3tHeap at various sim sizes

Figure 6.3: Relative Performance of 3tHeap vs. 3tSkipMT with multiple threads

42

Granularity Granularity in this context represents the amount of compute time used to

calculate the next state for an LP when processing an event. In our experiment, 0 granularity

represents immediately generating a new event the moment we receive the previous one. This

is unrealistic, as in real DES simulations there are often complicated equations that must

be solved at each time step, occasionally requiring multiple rounds of computation. This

gap between event processing presents a critical factor in utilizing multi-threading benefits

in a shared memory system. Granularity heavily reduces contention between threads by

increasing the time each thread can run independently before needing to query the shared

portion of the system, reducing contention and allowing each thread to better take advantage

of the additional computing resources.

This is demonstrated in Figure 6.3(a) and Figure 6.3(b) where both sequential simulations

are heavily impacted by granularity while parallel simulations are less and less affected by

increased granularity as more threads are added to the system. Furthermore, Figure 6.3(b)

shows how with granularity < 2, two threads results in higher runtime than sequential

3tSkipMT . This is because with such small granularity, the contention overhead between

the threads is so great that it becomes faster to simply process the simulation sequentially.

This finding makes it important to measure the actual impact of granularity in our

experiments. To do this, we ran thousands of sequential trials with varying sizes and varying

granularity factors. From this data, an average runtime per event was generated for each

granularity factor and plotted in Figure 6.4. Due to the slightly different implementation

between our multi-threaded simulation and our baseline sequential version, linear regression

was done separately for each type of simulation kernel. In both cases, we find a linear

relationship of roughly 1.05-1.25 µs runtime increase per event per granularity factor.

Effect of Optimization To test the effectiveness of optimization on our structure, we

ran sequential trials of 3tHeap and 3tSkipMT with and without the −O3 flag to the g++

compiler to give us optimized and non-optimized trials. We ran our optimization analysis

sequentially in order to test the effectiveness of optimization on the data structure, not its

impact on multi-threaded performance. This is because while our data structure becomes

faster when optimized, optimization also leads to reduced per event processing time (granu-

larity) which we already found to heavily decrease multi-threaded performance. Because of

these confounding variables, we opted to test only the underlying pending event set structure

for optimization benefits. These trials were run with PHOLD granularity set to 0 to increase

stress on the data structure, as opposed to previous trials that were run with more realistic

granularity factors.

Figure 6.5 shows the runtimes and relative speedup with and without optimization.

43

0 20 40 60 80 100 120

0

50

100

150 Y = 1.230x+ 1.845

Y = 1.075x+ .6033

Granularity Factor

R
u
n
ti

m
e

p
er

E
ve

n
t

(µ
s)

3tSkipMT
3tHeap

Figure 6.4: Impact of Granularity Factor on Per Event Runtime for Sequential Simulations

3tSkipMT had slower runtimes across all simulation sizes due to it not being as efficient of

a data structure, and had fairly consistent speedup when optimized with more speedup at

smaller simulation sizes. 3tHeap was faster, and had more volatile speedup with a very large

amount of speedup for small simulations and rapidly switching to lower speedup at larger

simulation sizes. This is because 3tHeap utilizes vectors for its backing queues, meaning

caching is much more effective than the linked list type structure utilized by 3tSkipMT .

Once enough LP s are in the system, this caching benefit is reduced and speedup quickly

tapers off.

Overall, we found that our structure achieves significant speedup from optimization and

scales at roughly the same rate as 3tHeap with optimizations enabled. 3tHeap achieves

much more significant optimization benefits in small simulations due to its ability to benefit

from caching, however in large simulations this difference in speedup is not as apparent.

6.3 Comparative Analysis

The Ultimate Share-Everything PDES System (USE) was described by Ianni et al. in 2018

as a solution to very similar challenges that we set out to solve in our present analysis. [24]

They utilize a conflict resilient Calendar Queue that is lock-free and aims to maximize

performance with high thread contention, similar to our 3tSkipMT . [14] While the two

systems share many similarities, comparison is still challenging due to differing designs with

differing kernel implementations.

Integration of the USE system into our existing benchmarking PHOLD test was outside

44

1,000 2,000 3,000

0

50

100

150

Logical Processes (LPs)

R
u
n
ti

m
e

(s
ec

on
d
s)

3tHeap
3tSkipMT

(a) Not Optimized: Runtimes vs sim size

1,000 2,000 3,000

0

20

40

60

80

Logical Processes (LPs)
R

u
n
ti

m
e

(s
ec

on
d
s)

(b) Optimized: Runtimes vs sim size

1,000 2,000 3,000

1

2

3

4

Logical Processes (LPs)

S
p

ee
d
u
p

(o
ve

r
n
on

-o
p
ti

m
iz

ed
)

(c) Speedup gained from optimization

Figure 6.5: Impact of Compiler Optimization (at −O3 level) on Data Structure Performance

45

the scope of our analysis. However, the USE kernel includes its own version of the PHOLD

benchmark with many of the same factors used by our own benchmark. For our comparison,

we overrode the granularity portion of the USE PHOLD benchmark to mimic our own

granularity function, allowing us to add the same granularity factor to the individual event

processing portion of each system. We also adjusted the event distribution framework of

USE PHOLD to mimic to toroidal shape used in MUSE PHOLD as described in Figure 6.1.

While these changes do not create a perfect comparison environment, they at least allow us

to compare the impact of the same granularity factor change across the two implementations.

Our comparative experiment runs each version of a shared memory PDES system in such

a way that a similar number of both LP s and total committed events are simulated. The two

systems are then simulated with a various number of threads with an increasing granularity

factor to see the impact of granularity on speedup with various threads. This is meant to

test the resilience to contention between the two systems, as this is the key result that both

systems attempt to maximize.

Our data, displayed in Figure 6.6 and detailed in Figure 6.7, shows expected results for

3tSkipMT , where speedup starts very low, even experiencing slowdown with 0 granularity

due to such high thread contention, but quickly levels off to approach roughly linear speedup

per thread increase. USE had unexpected behavior, where zero granularity resulted in an

expected distribution of speedup, but increases in granularity resulted in less increased per-

formance per thread, eventually resulting in 8 threads having the same performance as 2.

Overall, this analysis is merely a preliminary attempt to compare two very different systems,

but does at least confirm the effectiveness of 3tSkipMT to achieve very significant speedup

in reasonably high granularity scenarios.

46

0 20 40 60 80 100 120 140 160

1

2

3

4

5

6

7

8

Granularity

S
p

ee
d
u
p

(o
ve

r
si

n
gl

e
th

re
ad

ed
)

3tSkipMT (8 Threads)

3tSkipMT (6 Threads)

3tSkipMT (4 Threads)

3tSkipMT (2 Threads)

USE (8 Threads)

USE (6 Threads)

USE (4 Threads)

USE (2 Threads)

Figure 6.6: Comparative Analysis of 3tSkipMT against the Ultimate Share Everything
(USE) Simulator

3tSkipMT USE
granularity 1 Thread 2 Thread 4 Thread 6 Thread 8 Thread 1 Thread 2 Thread 4 Thread 6 Thread 8 Thread
0 1.443 2.473 1.473 1.237 5.577 21.427 16.597 9.450 6.800 1.090
10 10.607 6.450 3.423 2.357 6.363 24.157 18.213 10.383 7.690 1.817
20 19.993 10.950 5.760 4.083 7.613 26.730 19.170 10.693 8.503 3.050
30 28.877 15.607 7.980 5.587 8.823 29.087 20.103 11.683 9.847 4.263
40 37.930 20.197 10.313 7.290 8.903 31.597 21.350 12.763 10.183 5.443
50 47.333 24.887 12.683 8.830 10.383 34.130 23.227 13.543 10.643 6.700
60 56.617 29.480 14.933 10.467 10.983 36.720 24.140 14.537 12.493 7.983
70 65.673 34.010 17.270 12.230 12.980 39.290 25.693 16.223 13.883 9.140
80 74.840 38.663 19.510 13.747 16.207 41.670 26.883 17.147 14.520 10.333
90 83.647 43.433 21.940 15.373 17.223 44.140 27.477 18.673 15.523 11.650
100 92.797 47.923 24.170 16.960 20.627 46.427 28.757 18.910 17.160 12.913
110 102.017 53.287 26.527 18.727 27.473 49.170 30.423 19.877 18.553 14.007
120 111.533 57.040 28.923 20.547 27.883 51.723 31.253 20.030 20.233 15.633
130 120.493 61.830 31.310 21.953 27.827 54.120 32.950 21.337 26.793 16.533
140 130.030 66.387 33.800 23.617 34.597 56.813 33.990 22.013 24.587 17.870
150 138.653 71.140 35.803 25.093 36.623 58.667 36.557 24.433 24.380 18.937

Figure 6.7: Runtimes for Comparative Analysis of 3tSkipMT and USE in Seconds

47

Chapter 7

Conclusions

As high performance computing technology continues to grow, particularly in the context

of shared memory multi-core parallelism, software platforms and research tools must adapt

in order to fully take advantage these increased resources. Shared memory parallelization

presents a particularly challenging problem as most sequential implementations are incom-

patible with concurrent programing due to assumptions that cannot be made when state is

shared between multiple threads. Additionally, speedup from multi-threading can be severely

bottlenecked by contention between threads, especially when access to shared state is near

constant. This means applications that aim to take advantage of multi-core parallelism must

utilize intelligent design to reduce contention between threads as much as possible without

lose of data or accuracy.

Our research aimed to tackle this challenge in the context of Discrete Event Simulation

(DES). Specifically, we implement the Three-Tier Skip List with Multi-Threading Support

(3tSkipMT) pending event set data structure with respective kernel implementation for

the Miami University Simulation Environment (MUSE). We explore many design obstacles

associated with both a thread safe PES and its utilization in an existing optimistic parallel

DES simulation kernel. This implementation was tested using the PHOLD benchmark to

determine relative runtimes of synthetic DES simulations with 3tHeap by Higiro and our

3tSkipMT with various numbers of threads.

First, we implemented a lock-free concurrent priority queue by Lindén & Jonsson to

serve as the backing structure to our pending event set. This queue maintains the state

of the data structure and is non-blocking in nature. We made a novel modification to this

queue by allowing the deleteAt operation for mid queue deletion of a particular key in the

queue, critical to restructuring and rollback operations. Next, our implementation identified

multiple key critical sections to the kernel pipeline inherent to DES. These includes agent

48

state transitions, LGVT management, the top tier queue restructure, and garbage collection.

These critical sections were accounted for and implemented with as little locking as possible

to avoid overheads.

Our results demonstrate the efficacy of shared memory multi-threaded systems, though

with some limitations. We achieve significant speedup compared to sequential equivalents

in a realistic synthetic benchmark, and we find that multi-threading can be implemented

without impacting the asymptotic complexity for large simulations with many LP s. We

see an overhead associated with multi-threading that stems from both 1© requiring a less

efficient backing data structure that cannot be well optimized and 2© contention that forms

from many threads competing for shared memory. As more threads are introduced, this

contention overhead begins out outweigh the increase in system resources.

We also identified granularity as a critical factor in reducing this contention overhead

and realizing utility from multi-threading. Granularity decreases contention of threads by

increasing the amount of processing that can be fully parallelized by multiple cores before

needing to access shared state again. This means multi-threaded simulations scale signif-

icantly better than sequential simulations as a larger and larger granularity is introduced,

however very low granularity can lead to minimal gains from multi-threading, even resulting

in slowdown at very small values. In other words, speedup from multi-threading is most

realized when a large amount of computing must be done between events. This also means

that simple simulations with very little computation between events will be less likely to

realize significant benefits from our design, even possibly experiencing slowdown.

Overall, our introductory investigation finds that shared memory parallelization has the

potential to provide a range of benefits and increase the performance of DES simulations,

however more research much be conducted before our design can be applied to a wide range

of scenarios.

7.1 Future Work

Two primary bottlenecks limit the effectiveness of our described implementation:

1. The speed of the underlying concurrent priority queue data structure

2. Amount of contention that exists between threads

The biggest area for future research would be in the underlying concurrent priority queue.

Our study uses the Lindén & Jonsson Skip List based queue. While effective, the linked-list

structure of this queue prevents it from optimizing well and is inherently not as fast as a

49

heap based implementation such as the one presented by higiro in 3tHeap. Additionally, in

order to make the queue work for our purposes, a novel modification had to be made that

reduces the performance of our queue even further. A more efficient and fine-tuned backing

queue has the potential to make our multi-threaded design significantly faster.

Additionally, more work can be done to further refine the algorithm on top of the under-

lying priority queue to further reduce thread contention on the queue. This would be done

by reducing the number of times a thread must access the same queue as another thread, or

by reducing the amount of time spent modifying the queue. This is especially true for the

restructure operation, where currently restructures are conducted by simply removing and

re-inserting a node from the queue, while a more fine-tuned operation could be possible.

One possible area for further analysis could be to begin measuring thread contention by

the number of failed lock-free operations. That is, to keep track of the number of times a lock-

free operation such as a tryInsert function fails due to contention on threads. Attempting

to minimize this value at low granularity values would be the objective of future research in

this area.

50

Bibliography

[1] S. Jafer, Q. Liu, and G. Wainer, “Synchronization methods in parallel and distributed

discrete-event simulation,” Simulation Modelling Practice and Theory, vol. 30, pp. 54 –

73, 2013.

[2] R. Franceschini, P.-A. Bisgambiglia, and P. Bisgambiglia, “A comparative study of pend-

ing event set implementations for pdevs simulation,” in Proceedings of the Symposium

on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium,

DEVS ’15, (San Diego, CA, USA), pp. 77–84, Society for Computer Simulation Inter-

national, 2015.

[3] K. Muthalagu, “Threaded warped : An optimistic parallel discrete event simulator for

cluster of multi-core machines,” Master’s thesis, 2012.

[4] J. Higiro, M. Gebre, and D. M. Rao, “Multi-tier priority queues and 2-tier ladder

queue for managing pending events in sequential and optimistic parallel simulations,”

in Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete

Simulation, SIGSIM-PADS ’17, (New York, NY, USA), pp. 3–14, ACM, 2017.

[5] D. M. Rao, “Efficient parallel simulation of spatially-explicit agent-based epidemiologi-

cal models,” Journal of Parallel and Distributed Computing, vol. 93-94, pp. 102 – 119,

2016.

[6] O. Corporation, “Thread safety (multithreaded programming guide),” 2010.

[7] M. P. Herlihy, “Impossibility and universality results for wait-free synchronization,”

in Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed

Computing, PODC ’88, (New York, NY, USA), pp. 276–290, ACM, 1988.

[8] G. M. Amdahl, “Validity of the single processor approach to achieving large scale com-

puting capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference, AFIPS ’67 (Spring), (New York, NY, USA), pp. 483–485, ACM, 1967.

51

[9] M. R. Gebre, “Muse: A parallel agent-based simulation environment,” Master’s thesis,

2009.

[10] R. Brown, “Calendar queues: A fast 0(1) priority queue implementation for the simu-

lation event set problem,” Commun. ACM, vol. 31, pp. 1220–1227, Oct. 1988.

[11] W. T. Tang, R. S. M. Goh, and I. L.-J. Thng, “Ladder queue: An o(1) priority queue

structure for large-scale discrete event simulation,” ACM Trans. Model. Comput. Simul.,

vol. 15, pp. 175–204, July 2005.

[12] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,” in Proceedings

of the 15th International Conference on Distributed Computing, DISC ’01, (London,

UK, UK), pp. 300–314, Springer-Verlag, 2001.

[13] H. Sundell and P. Tsigas, “Fast and lock-free concurrent priority queues for multi-thread

systems,” Journal of Parallel and Distributed Computing, vol. 65, no. 5, pp. 609 – 627,

2005.

[14] R. Marotta, M. Ianni, A. Pellegrini, and F. Quaglia, “A conflict-resilient lock-free calen-

dar queue for scalable share-everything pdes platforms,” in Proceedings of the 2017 ACM

SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS ’17,

(New York, NY, USA), pp. 15–26, ACM, 2017.

[15] S. Gupta and P. A. Wilsey, “Lock-free pending event set management in time warp,” in

Proceedings of the 2Nd ACM SIGSIM Conference on Principles of Advanced Discrete

Simulation, SIGSIM PADS ’14, (New York, NY, USA), pp. 15–26, ACM, 2014.

[16] J. Hay and P. A. Wilsey, “Experiments with hardware-based transactional memory in

parallel simulation,” in Proceedings of the 3rd ACM SIGSIM Conference on Principles

of Advanced Discrete Simulation, SIGSIM PADS ’15, (New York, NY, USA), pp. 75–86,

ACM, 2015.

[17] D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev, “Optimization of parallel discrete

event simulator for multi-core systems,” in 2012 IEEE 26th International Parallel and

Distributed Processing Symposium, pp. 520–531, May 2012.

[18] C. D. Carothers, D. Bauer, and S. Pearce, “Ross: a high-performance, low memory,

modular time warp system,” in Proceedings Fourteenth Workshop on Parallel and Dis-

tributed Simulation, pp. 53–60, 2000.

52

[19] J. Wang, D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev, “Parallel discrete event

simulation for multi-core systems: Analysis and optimization,” IEEE Trans. Parallel

Distrib. Syst., vol. 25, pp. 1574–1584, June 2014.

[20] A. Pellegrini and F. Quaglia, “Numa time warp,” in Proceedings of the 3rd ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation, SIGSIM PADS ’15, (New

York, NY, USA), pp. 59–70, ACM, 2015.

[21] T. Dickman, S. Gupta, and P. A. Wilsey, “Event pool structures for pdes on many-core

beowulf clusters,” in Proceedings of the 1st ACM SIGSIM Conference on Principles of

Advanced Discrete Simulation, SIGSIM PADS ’13, (New York, NY, USA), pp. 103–114,

ACM, 2013.

[22] J. Gruber, “Practical concurrent priority queues,” CoRR, vol. abs/1509.07053, 2015.

[23] J. Lindén and B. Jonsson, “A skiplist-based concurrent priority queue with minimal

memory contention,” in Principles of Distributed Systems (R. Baldoni, N. Nisse, and

M. van Steen, eds.), (Cham), pp. 206–220, Springer International Publishing, 2013.

[24] M. Ianni, R. Marotta, D. Cingolani, A. Pellegrini, and F. Quaglia, “The ultimate

share-everything pdes system,” in Proceedings of the 2018 ACM SIGSIM Conference

on Principles of Advanced Discrete Simulation, SIGSIM-PADS ’18, (New York, NY,

USA), pp. 73–84, ACM, 2018.

53

	Introduction
	Background
	Discrete Event Simulation (DES)
	Shared Memory Multithreading
	Architectural Overview of MUSE

	Related Work
	Pending Event Sets
	3-Tier Heap

	Robustness Analysis using Java Implementation
	Lock-Free Pending Event Sets

	Problem Analysis
	Problem Statement
	Preliminary Investigation
	Design Considerations

	Implementation and Solution
	Pending Event Set Data Structure
	Concurrent Priority Queue
	3-Tier Structure Design

	Simulation Kernel Integration and Wrapper Logic

	Results and Discussion
	Experiments
	Experimental Data

	Results and Discussion
	Comparative Analysis

	Conclusions
	Future Work

	Bibliography

