
ABSTRACT

MANAGING PENDING EVENTS IN SEQUENTIAL & OPTIMISTIC PARALLEL DISCRETE
EVENT SIMULATIONS

by Julius Didier Higiro

The choice of data structure for managing and processing pending events in timestamp priority
order plays a critical role in achieving good performance of sequential and parallel Discrete Event
Simulation (DES). Accordingly, we propose and evaluate the effectiveness of multi-tiered (2 and 3
tier) data structures, including our proposed 2-tier Ladder Queue, for both sequential and
optimistic parallel simulations, on distributed memory platforms. Our assessments use (a
fine-tuned version of) the Ladder Queue, which has shown to outperform many other data
structures for DES. The experimental results based on the PHOLD benchmark and the PCS
simulation model show that our 3-tier heap and 2-tier ladder queue outperform the Ladder Queue
by 10% to 50% in simulations, particularly those with higher concurrency per Logical Process
(LP), in both sequential and Time Warp synchronized parallel simulations.

MANAGING PENDING EVENTS IN SEQUENTIAL & OPTIMISTIC PARALLEL DISCRETE
EVENT SIMULATIONS

Thesis

Submitted to the

Faculty of Miami University

in partial fulfillment of

the requirements for the degree of

Master of Science in Computer Science

by

Julius Didier Higiro

Miami University

Oxford, Ohio

2017

Advisor: Dr. Dhananjai M. Rao

Reader: Dr. Matthew Stephan

Reader: Dr. Karen Davis

©2017 Julius Didier Higiro

This thesis titled

MANAGING PENDING EVENTS IN SEQUENTIAL & OPTIMISTIC PARALLEL DISCRETE
EVENT SIMULATIONS

by

Julius Didier Higiro

has been approved for publication by

College of Engineering and Computing

and

Department of Computer Science and Software Engineering

Dr. Dhananjai M. Rao

Dr. Matthew Stephan

Dr. Karen Davis

Contents

1 Introduction 1

1.1 Parallel Simulation . 2

1.2 Managing Pending Events . 2

1.3 Thesis Statement . 3

2 Background and Related Work 4

2.1 Ladder Queue (ladderQ) . 5

2.2 Distinguishing aspects of this research . 8

2.3 Miami University Simulation Environment (MUSE) 8

2.4 Experimental Platform . 11

3 Simulation Benchmarks 12

3.1 Parallel HOLD (PHOLD) . 13

3.2 Personal Communication Service Network (PCS) 15

3.3 Performance Metrics . 17

4 Scheduler Queues 18

4.1 Binary Heap (heap) . 19

4.2 Binomial Heap (binomHeap) . 21

4.2.1 Run time comparison of heap vs. binomHeap 21

4.3 Two-tier Heap (2tHeap) . 22

4.4 2-tier Fibonacci Heap (fibHeap) . 25

iii

4.5 Three-tier Heap (3tHeap) . 25

4.6 Ladder Queue (ladderQ) . 25

4.6.1 Fine tuning Ladder Queue performance 28

4.6.2 Shortcoming of Ladder Queue for optimistic PDES 31

4.7 2-tier Ladder Queue (2tLadderQ) . 32

4.7.1 Performance gain of 2tLadderQ . 33

5 Experiments 35

5.1 Parameter reduction via GSA . 35

5.1.1 GSA results for sequential simulations using PHOLD 36

5.1.2 GSA results for sequential simulations using PCS 39

5.1.3 Summary of GSA results for sequential simulations 41

5.1.4 GSA results for parallel simulations . 41

5.2 Configurations for further analysis . 43

5.3 Sequential Simulations . 45

5.3.1 PHOLD sequential simulation results . 45

5.3.2 PCS sequential simulation results . 49

5.4 Parallel simulation assessments . 54

5.4.1 Throttling optimism with a time-window 54

5.4.2 Efficient case for ladderQ . 54

5.4.3 Knee point for 3tHeap vs. ladderQ . 59

5.4.4 Best case for 3tHeap . 64

6 Conclusions 65

Bibliography 68

iv

List of Tables

3.1 Parameters in PHOLD benchmark [17] . 13

3.2 Parameters in PCS Model . 16

4.1 Comparison of algorithmic time complexities of different data structures [17] . . . 19

5.1 Configurations of PHOLD and PCS used for further analysis 44

v

List of Figures

2.1 Structure of Ladder Queue . 7

2.2 Overview of a parallel MUSE simulation [18] . 9

3.1 Impact of varying key parameter values in the PHOLD model [17] 14

4.1 Collaboration UML diagram for Binary Heap based event queue implementation

in MUSE . 20

4.2 Comparison of heap and binomHeap execution time 22

4.3 Structure of 2-tier & 3-tier heap . 23

4.4 Collaboration UML diagram for Two-tier Heap based event queue implementation

in MUSE . 24

4.5 Collaboration UML diagram for Ladder Queue based event queue implementation

in MUSE . 27

4.6 Comparison of execution time and peak memory for PHOLD benchmark (different

parameter settings) using 6 different ladderQ configurations [17] 29

4.7 Impact of limiting rungs in Ladder [17] . 30

4.8 Structure of 2-tier Ladder Queue (2tLadderQ) with 3 sub-buckets / bucket (i.e., t2

k=3) [17] . 32

4.9 Effect of varying tk [17] . 34

5.1 Results from Generalized Sensitivity Analysis (GSA) comparing 2tLadderQ and

3tHeap for sequential simulation using the PHOLD benchmark [17]. 37

vi

5.2 Summary of influential parameters from Figure 5.1 that cause performance differ-

ences between 2tLadderQ and 3tHeap in sequential simulations using PHOLD [17]. 39

5.3 Results from Generalized Sensitivity Analysis (GSA) comparing 2tLadderQ and

3tHeap for sequential simulation using PCS. 40

5.4 Summary of influential parameters from Figure 5.3 that cause performance differ-

ences between 2tLadderQ and 3tHeap in sequential simulations using PCS. . . . 41

5.5 GSA data from parallel simulations (4MPI-processes) showing influential PHOLD

parameters (2tLadderQ vs. 3tHeap) [17]. 42

5.6 GSA data from parallel simulations (4 MPI-processes) showing influential PCS

parameters (2tLadderQ vs. 3tHeap). 43

5.7 Sequential simulation runtimes and correlation of 3tHeap performancewithPHOLD

parameters [17] . 47

5.8 Comparison of peak memory usage [17] . 48

5.9 Sequential simulation runtimes with PCS parameters 50

5.10 Sequential simulation runtimes with PCS parameters 51

5.11 Comparison of peak memory usage . 52

5.12 Profile results from PCS sequential simulation . 53

5.13 Statistics fromPH3configuration of PHOLDparallel simulationwith eventsPerLP=2,

λ = 1, %selfEvents=25% [17] . 56

5.14 Statistics fromPH4configuration of PHOLDparallel simulationwith eventsPerLP=2,

λ = 1, %selfEvents=25% [17] . 57

5.15 Statistics fromPH5configuration of PHOLDparallel simulationwith eventsPerLP=2,

λ = 1, %selfEvents=25% [17] . 58

5.16 Statistics from PHOLD parallel simulation with eventsPerLP=10, λ = 10, %self-

Events=25% [17] . 60

5.17 ph5 Statistics (best case for 3tHeap) [17] . 61

5.18 Statistics from PCS parallel simulation with portables=25 62

5.19 Statistics from PCS parallel simulation with portables=75 63

vii

Acknowledgements

Thank you to my adviser Dr. Dhananjai M. Rao for his encouragement and support during the

completion of this thesis and throughout my time at Miami University. Without his guidance, I

certainly would not be where I am now. Additionally, I would like to acknowledge my committee

members Dr. Matthew Stephan, and Dr. Karen Davis for their support and input.

viii

Chapter 1

Introduction

Discrete event simulation (DES) is a computational methodology for modeling and analysis of

a wide spectrum of systems. In DES, the system being modeled is logically subdivided into

small, independent, but interacting entities with their own independent states. The model and

implementation of an entity is called a Logical Process (LP), which manage the state assocated

with them. Accordingly, a DES is essentially designed as a set of logical processes (LPs) that

interact with each other. LPs interact by exchanging and processing discrete-timestamped events

or messages [1]. Processing an event essentially introduces a change in an LP’s state and causes

the LP to generate additional events to itself or other LPs in the model.

A key aspect of DES is that state changes occur at discrete times [2]. At each point in time in a

simulation, a virtual time-stamp is assigned to an event and the event precipitates a transition from

one state to another state. This change in system state is used to represent the dynamic nature and

behavior of a real-world system [3].

DES has been used in a variety of fields in academia, industry, and the public sector as a tool to

help inform knowledge and to improve decision-making processes [2]. DES provides an effective

means for analyzing real or artificial systems without the constraint of limited resources such as

time, financial costs, or safety. For example, the simulation of a battlefield environment can deliver

insightful information to military planners on enemy troop movements, tactics, and capabilities

during strategic planning efforts [4]. A discrete event simulation of the battlefield allows military

1

leaders to examine the impacts of decisions without the real-world risks associated with committing

forces to dangerous environments.

1.1 Parallel Simulation

Parallelism in computing frameworks that support DES increase performance throughput that is

needed to construct and execute large scale and complex simulation models. With the growth and

prevalence of semiconductor technology, cheaper and powerful multi-processors can be instru-

mented to achieve greater computing power for parallel discrete event simulations (PDES) [5, 6].

In parallel simulations, LPs are subdivided or partitioned to operate on different compute units.

However, event processing on the different compute units must be synchronized to ensure causally

consistent event processing. Consequently, the speedup achieved using multi-core and multi-

processor systems requires efficient strategies to minimize synchronization costs.

Currently, two broad types of synchronization methods are used in PDES, namely: conservative

and optimistic approaches [1]. Conservative methods tightly coordinate event processing so that

causal violations do not occur. Optimisticmethods, such as TimeWarp [1], loosely synchronize LPs

– they permit temporary causal violations to occur but detect and recover from causal violations.

Recently, optimistic synchronization methods have outperformed conservative methods for certain

classes of systems [1].

1.2 Managing Pending Events

Sequential and parallel DES are designed as a set of logical processes (LPs) that interact with

each other by exchanging and processing timestamped events or messages [1]. Events that are

yet to be processed are called "pending events". Pending events must be processed by LPs in

priority order to maintain causality, with event priorities being determined by their timestamps.

Consequently, data structures for managing and prioritizing pending events play a critical role in

ensuring efficient sequential and parallel simulations [7–10]. The effectiveness of data structures

for event management is a conspicuous issue in larger simulations, where thousands or millions

2

of events can be pending [11, 12]. Large pending event sets can arise when a model has many

LPs or when each LP generates / processes many events. Overheads in managing pending events

is magnified in fine grained simulations where the time taken to process an event is very short.

Furthermore, the synchronization strategy used in Time Warp (an optimistic synchronization strat-

egy) can further impact the effectiveness of the data structure due to additional processing required

during rollback-based recovery operations.

1.3 Thesis Statement

This research proposes and explorers multi-tier data structures for the improved management of the

pending event set in sequential and optimistic parallel simulations. The objective of the research is

to develop and assess effectiveness of novel data structures for managing pending events. Specif-

ically, this thesis proposes multi-tiered data structures called 2-tier Ladder Queue (2tLadderQ)

and 3-tier Heap (3tHeap) for managing pending events. We conduct experimental assessment

of the proposed data structures by comparing their effectiveness using benchmark simulations

and a fine-tuned version of the Ladder Queue [13]. We use the Ladder Queue, with amortized

O(1) time complexity for comparison because it has shown to to be very efficient for sequential DES.

Thesis: The multi-tiered, 2tLadderQ and 3tHeap pending event structures outperform other

priority queue based implementation of the pending event set, specifically, Ladder Queue, Binary

Heap, Binomial Heap, Fibonacci Heap and 2-Tier Heap. The contributions of the thesis are

the development of two novel data structures 2tLadderQ and 3tHeap and the identification of key

influential model characteristics for determining the choice of scheduler queue.

3

Chapter 2

Background and Related Work

Many investigations have explored the effectiveness of a wide variety of data structures for man-

aging the pending event set in sequential and parallel discrete event simulation (PDES). The prior

investigations in PDES area fall under two broad categorizes, namely: shared memory versus

distributed memory data structures. Shared memory data structures focus on managing pending

events in PDES that use multiple threads for parallelism. Such simulations are typically performed

on large shared memory machines with many-core CPUs or dedicated GPGPUs or coprocessors.

These data structures focus on enabling concurrent access to add or remove pending events from

multiple threads while avoiding race conditions. Race conditions are voided using conventional

lock-based approaches such as semaphores or mutexes. Recently, lock-free data structures based on

special check-and-set (CAS) instructions have also been proposed to enable efficient, thread-safe,

and concurrent access.

Distributed memory data structures focus on enabling efficient single-threaded operation. How-

ever, these data structures need to enable managing events received over communication channels

from other remote processes involved in PDES. This thesis focuses on sequential simulations as

well as distributed memory PDES based on Time Warp synchronization. Accordingly, this chapter

focuses on closely related work in sequential and distributed memory PDES.

Dickman [14] compare event list data structures that consisted of Splay Tree, STL Multiset

and Ladder Queue. However, the focus of their paper was in developing a framework for handling

4

pending event set data structure in shared memory PDES. A central component of their study

was the identification of an appropriate data structure and design for the shared pending event set.

Gupta [15] extended their implementation of Ladder Queue for shared memory Time Warp based

simulation environment, so that it supports lock-free access to events in the shared pending event

set. The modification involved the use of an unsorted lock-free queue in the underlying Ladder

Queue structure. Marotta [16] contributed to the study of pending event set data structures in

threaded PDES through the design of the Non-Blocking Priority Queue (NBPQ) data structure.

A pending event set data structure that is closely related to Calendar Queues with constant time

performance [17].

Recently, Franceschini [10] compared several priority-queue based pending event data structures

to evaluate their performance in the context of sequentialDEVS simulations. They found that Ladder

Queue outperformed every other priority queue based pending event data structure such as Sorted

List, Minimal List, Binary Heap, Splay Tree, and Calendar Queue. Tang [13] and Franceschini [10]

both use the classic Hold benchmark simulation model used in this research [17].

2.1 Ladder Queue (ladderQ)

The Ladder Queue (ladderQ) is a priority queue implementation proposed by Tang et al [13]

with amortized constant time complexity. Several investigators have independently verified that

for sequential DES the ladderQ outperforms other priority queues, including: simple sorted list,

binary heap, Splay tree, Calendar queue, and other multi-list data structures [10, 13, 14]. There are

two key ideas underlying the Ladder Queue, namely: minimize the number of events to be sorted

and delay sorting of events as much as possible. However, in contrast to the ladderQ, the other

data structures always fix-up and maintain a minimum heap property [17].

As shown in Figure 2.1, the ladder queue consists of the following 3 substructures:

1. Top: An unsorted list which contains events scheduled into the distant future or epoch [17].

2. Ladder: Consists of multiple rungs, i.e., list of buckets. Each bucket contains list of events with

a finite range of time stamp values. Hence, although events within a bucket are not sorted, the

5

buckets on a rung are organized in a sorted order. The ladderQminimizes the number of events

to be finally sorted by recursively breaking large buckets into smaller buckets in lower rungs

of its ladder. Lower rungs in the ladder have smaller buckets with smaller time ranges and the

maximum number of rungs in Ladder is 8 [17].

3. Bottom: This substructure contains a sorted list of events to be processed. Inserts into Bottom

must preserve sorted order. Hence, the ladderQ strives to maintain a short bottom by moving

events back into the ladder, as needed. The default threshold value at which events from Bottom

are moved into Ladder is 50 [13, 17].

At the beginning of a simulation, enqueue operations only involve the insertion of events into

Top. As the simulation progresses, the insertion of events can occur at any level of the data structure.

The insertion of events in Top and Ladder is an O(1) operation that involves appending events to a

list that remains unsorted. The onset of dequeue operations involves moving unsorted events from

Top into a newly formed rung in Ladder. The time range or bucket-width of a rung is established by

taking the difference between the highest and lowest time stamp and dividing the difference by the

total number of events. As shown in Figure 2.1, the bucket-width computed from the time stamp

in Top is (6.0max - 1.0min)/ 10 = 0.5. In accordance with their timestamps, events from Top are

placed into the appropriate buckets in Rung1. In cases, where the number of events in a bucket

exceeds the established threshold, a new rung is generated to store those events. For example, in

Figure 2.1, Rung2 is generated for time stamped events in the range of 1.0 to 1.5. Next, the bucket

containing events are sequentially removed from the bottom most rung (Rung2) in Ladder into

the lower substructure. The events are inserted in sorted LTSF order into Bottom, where events

are dequeued for further processing. The clearing of events in Ladder and Bottom kickoffs the

movement of additional events from Top into the two lower substructures. The implementation of

Ladder Queue in MUSE adheres to the functionality described in [13] with some modifications.

6

RUNG1

1.0 1.5 2.0 2.5 3.5 4.53.0 4.0

BOTTOM

TOP

RUNG2

1.0 1.5

5.0 5.5

1.1 1.2 1.3 1.4

6.0

Dequeue

LADDER

Figure 2.1: Structure of Ladder Queue
Source: Tang et al. [13]

7

2.2 Distinguishing aspects of this research

Our research focuses on distributed memory platforms in which each parallel process is single

threaded. Consequently, our implementation does not involve thread synchronization issues. How-

ever, our 2-tier design has the ability to further reduce lock contention issues in multithreaded

environments and could provide further performance boost. To the best of our knowledge, the

Fibonnacci heap (fibHeap) and our 3-tier Heap (3tHeap) are unique data structures that have

potential to be effective in simulations with high concurrency.

Since it has been established that the Ladder Queue (ladderQ) outperforms other data structures,

we aim to use it for empirical assessment of our proposed data structures. However, in contrast

to existing work, rather than using a linked list based implementation, we propose an alterna-

tive implementation using dynamically growing arrays, that is, std::vector from the C++ library.

Furthermore, we trigger Bottom to Ladder re-bucketing only if the Bottom has events at different

timestamps to reduce inefficiencies. Our 2-tier Ladder Queue (2tLadderQ) is a novel enhancement

to the Ladder Queue to enable its efficient use in optimistic parallel simulations.

2.3 Miami University Simulation Environment (MUSE)

The implementation and assessment of the different data structures was conducted using our parallel

simulation framework called Miami University Simulation Environment (MUSE). The application

was developed as part of a master’s thesis written byMeseret Gebre in the Department of Computer

Science at Miami University in 2009 [18]. MUSE was developed in C++ and uses the Message

Passing Interface (MPI) library for parallel processing. It also uses Time Warp and standard state

saving approach to accomplish optimistic synchronization of the LPs to maintain causality in event

processing.

A conceptual overview of a MUSE-based parallel simulation is shown in Figure 2.2. The

simulation kernel implements core functionality associated with LP registration, event processing,

state saving, synchronization and Global Virtual Time (GVT) garbage based collection [17]. Each

LP in a simulation maintains an input, output and state queue. The input queue is used to retain

8

Figure 2.2: Overview of a parallel MUSE simulation [18]

events that have already been processed but have not yet been garbage collected. The output queue

stores anti-messages, which are events that are sent to other LPs to cancel out previously sent events.

The state queue stores the state of the LP at each discrete point in virtual simulation time. A Time

Warp LP also maintains a local virtual time (LVT) that is updated to the time-stamp of the event

most recently processed by the LP.

In a Time Warp based simulation such as MUSE, the simulation is organized as a set of LPs

that interact with each other by exchanging virtual times-tamped events. LPs process events in

non-decreasing receive-time order and generate new events that are transmitted to LPs on local or

remote processors. Synchronization of event processing is achieved through the adherence to the

local causality constraint, which requires that LPs only process events in Least Time-stamp First

(LTSF) order [1]. This is in contrast to the conservative synchronization protocol that blocks event

processing until it is guaranteed that an LP cannot receive a future event with a receive-time lesser

than it’s LVT (altogether avoiding the manifestation of causality errors) [1].

A singular advantage of the Time Warp approach in parallel simulations is the ability to

withstand violations of the causality constraint. Time Warp LPs proceed optimistically with event

processing and during occasions that an LP encounters an event (named a straggler) with a receive

time lesser than the LVT, a rollback operation is performed. A rollback requires that an LP undo

all event processing that occurred at the LVT equal to the straggler time stamp and forward. The

9

LP performs a rollback to a state with an LVT preceding the straggler time stamp and it sends an

anti-message to all other agents with the purpose of cancelling the previously sent events.

As shown in Figure 2.2, the kernel also maintains a centralized LTSF scheduler queue for

managing pending events and scheduling event processing for local LPs. LPs are permitted to

generate events only into the future –i.e., the time stamp on events must be greater than their

Local Virtual Time (LVT). Consequently, with a centralized LTSF scheduler, event exchanges

between local LPs cannot cause rollbacks. Only events received via MPI can cause rollbacks in our

simulation. The scheduler is designed to permit different data structures to be used for managing

pending events. This feature is used to experiment with the different pending event scheduler queues

discussed in the subsequent chapter. A scheduler queue is required to implement the following key

operations to manage pending events [17]:

¶ Enqueue one or more future events: This operation adds the given set of events to the

pending event set. Multiple events are added to reprocess events after a rollback [17].

· Peek next event: This operation is expected to return the next event to be processed. This

information is used to determine next LP and to update its LVT prior to event processing.

Note that peek does not dequeue events [17].

¸ Dequeue events for next LP: In contrast to peek, this operation is expected to dequeue the

events to be dispatched for processing by an LP. This operation is performed by the kernel

immediately after a peek operation. The operation must dequeue the next set of concurrent

events, i.e., events with the same receive time sent to an LP. However, the concurrent events

could have been sent by different LPs on different MPI-processes. Dispatching concurrent

events in a single batch streamlines modeling broad range of scenarios. An total order within

concurrent events is not imposed but can be readily introduced if needed [17].

¹ Cancel pending events: This operation is used as part of rollback recovery process to

aggressively remove all pending events sent by a given LP (LPsender) to another LP (LPdest)

at-or-after a given time (trollback). In our implementation, only one anti-message with send

time trollback is dispatched to LPdest from LPsender to cancel prior events sent by LPsender to

10

LPdest at-or-after trollback . This is a contrast to conventional aggressive cancellation in which

one anti-message is generated per event. This feature short circuits the need to send a large

number of anti-messages thereby enabling faster rollback recovery. This feature also reduces

scans required to cancel events in Ladder Queue data structures. Note that this feature is

reliant on the First-In-First-Out (FIFO) communication guarantee provided by MPI [17].

2.4 Experimental Platform

The design of MUSE and the experiments reported were conducted using a distributed-memory

compute cluster consisting of 80 compute nodes interconnected by 1GBPSEthernet. Each compute

node has 8 cores from two quad-core Intel Xeon ®CPUs (E5520) running at 2.27 GHz with hyper-

threading disabled. Each compute node has 32 GB of RAM (4 GB per core) in Non-Uniform

Memory Access (NUMA) configuration. The cluster has an independent 1 GBPS Ethernet network

to support a shared file system. The nodes run Red Hat Enterprise Linux 6, with Linux (kernel ver

2.6.32) and the cluster runs PBS/Torque. The simulation software was compiled using GCC version

4.9.2 with OpenMPI 1.6.4. All debug assertions were turned off for maximum performance [17].

11

Chapter 3

Simulation Benchmarks

We conduct assessment of data structures for managing pending events using both mathematical

and experimental approaches. Mathematical approaches use time complexity analyses of the data

structures to provide asymptotic comparisons of the data structures. However, the theoretical

analysis often requires simplifying assumptions to ensure the analysis is mathematically tractable.

Such simplifying assumptions do not account for time constants and peculiar runtime characteristics

of a Parallel Discrete Event Simulation (PDES). These factors play a crucial role in practical

applicability and effectiveness of data structures. Consequently, in the PDES domain, experimental

approaches are strongly favored over analytical approaches.

Experimental analyses of parallel simulations is typically conducted using target models. How-

ever, for general purpose solutions such as the one proposed in this research, synthetic benchmarks

are used to provide model agnostic analysis. Several synthetic benchmarks have been proposed

by the PDES community in the past. Among the various benchmarks, the PHOLD and PCS

benchmarks have gained general acceptance and are widely used for experimental analysis [19].

These benchmarks have been used for empirical analysis and are discussed in further detail in the

following sections.

12

3.1 Parallel HOLD (PHOLD)

Experimental analysis has been conducted using a parallelized version of the classic Hold synthetic

benchmark called PHOLD. It has been used by many investigators because it is shown to effectively

emulate the steady-state phase of a typical simulation [10, 13]. Our PHOLD implementation devel-

oped usingMUSE provides several parameters (specified as command-line arguments) summarized

in Table 3.1. The benchmark consists of a 2-dimensional toroidal grid of LPs specified via the

rows and cols parameters. The LPs are evenly partitioned across the MPI-processes used for simu-

lation. The imbalance parameter influences the partition, with larger values skewing the partition

as shown in Figure3.1(a). The imbalance parameter has no impact in sequential simulations [17].

Table 3.1: Parameters in PHOLD benchmark [17]
Parameter Description

rows Total number of rows in model.
cols Total number of columns in

model. #LPs = rows
× cols

eventsPerLP Initial number of events per LP.
delay or λ Value used with distribution –

Lambda (λ) value for exponential
distribution i.e., P(x |λ) = λe−λx .

%selfEvents Fraction of events LPs send to self
granularity Additional compute load per

event.
imbalance Fractional imbalance in partition

to have more LPs on a MPI-
process.

simEndTime GVT when simulation logically
ends.

The PHOLD simulation commences with a fixed number of events for each LP, specified by

the eventsPerLP parameter. For each event received by an LP a fixed number of trigonometric

operations determined by granularity are performed to place CPU load. The impact of increasing

the granularity parameter (no unit) is summarized in Figure 2(b) – smaller values result in finer

grained simulations. For each event, an LP schedules another event to a randomly chosen adjacent

13

L
P

s
 p

e
r

p
a

rt
it

io
n

Imbalance (percentage)

Part. #1 Part. #2 Part. #3 Part. #4

 0

 20

 40

 60

 80

 100

 120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Impact of imbalance

 0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50
 0

 2000

 4000

 6000

 8000

 10000

 12000

P
e

rc
e

n
t

o
f

s
im

u
la

ti
o

n
ti

m
e

 s
p

e
n

t
in

 m
o

d
e

l

In
s
tr

u
c
ti

o
n

s
 p

e
r

e
v
e

n
t

Granularity parameter value

%Run time
Instr./event

(b) Impact of granularity

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20

λ=1
λ=2
λ=3
λ=4
λ=5
λ=6

λ=7
λ=8
λ=9

λ=10
λ=11
λ=12

(c) Impact of delay (λ)

Figure 3.1: Impact of varying key parameter values in the PHOLD model [17]

14

LP. The selfEvents parameter controls the fraction of events that an LP schedules to itself. The event

timestamps are determined by a given delay-distrib and delay or λ parameters. Our experiments

use an exponential distribution for timestamps because it reflects event distribution commonly

found in a broad range of simulation models [13]. Time stamp of events is computed as trecv = LVT

+ 1 + λe−λx . The impact of changing the λ (i.e., delay) is shown in Figure 3.1(c) –smaller values

of λ provide a broader range of time stamp value for future events resulting in fewer concurrent

events per LVT. Conversely, larger λ values cause timestamps to be close to the current epoch,

increasing both the number of concurrent events per LVT and the possibility of rollbacks. The

impact of these parameters on scheduler queue performance were explored using 2,500 different

configurations [17].

3.2 Personal Communication Service Network (PCS)

We performed experimental analysis using a network communication simulation model named

PCS. The model was developed to simulate large scale wireless communication networks [20].

The implementation uses parameters summarized in Table 3.2. The PCS model consists of Cells

(i.e. cellular towers) that transmit and receive phone calls made by mobile cellular phone units

that reside at each Cell. A Cell is the central entity (LP) object type for the simulation. The Cells

contain a fixed number of channels that are licensed to individual mobile phone units known as

Portables. A channel is a wireless channel via which a portable can send/receive information

from a Cell. A Portable at a given cell communicates to local or remote Portables, if a channel is

available. Otherwise, the call is considered a blocked phone call. The Portables are mobile and

travel to various cells throughout the network. The MUSE implementation of PCS models each

cell as an LP and a portable as an event.

The PCS simulation commences with a fixed number of portables/events and channels for each

Cell/LP, specified by the portables and channels parameters. The portables contain three exponen-

tially distributed timestamps fields withmeans specified bymoveIntervalMean, callIntervalMean

and callDurationMean parameters. The minimum of the timestamps is used to determine the be-

havior of the portables (i.e., completion of a phone call, arrival of the next portable call at a cell,

15

and the departure of a portable from its current cell to a neighboring cell). We will use the PCS

simulation to validate resulting experimental analysis using the synthetic benchmark PHOLD. The

evaluation of the data structures using PCS provides a way to evaluate the persistence of trends and

outcomes observed in the PHOLD simulation across a different model.

Table 3.2: Parameters in PCS Model
Parameter Description

rows Total number of rows in model.
cols Total number of columns in model.

#Cells/LPs = rows
× cols.

portables The Portable represents a mobile
phone unit that resides within the Cell
for a period of time and then moves to
one of the four neighboring Cells

moveIntervalMean This value represents the mean used
for an exponential random distribu-
tion used to generate the time when
a portable will move to an adjacent
cell.

callIntervalMean The mean time between two succes-
sive calls to a portable associated with
this Cell. This value is the mean of an
exponential random distribution from
where the next call timestamp value is
determined.

callDurationMean The mean call completion time. This
value represents the mean used for
a Poisson distribution used to gener-
ate the length/duration of a call to a
portable.

#channels Themaximum number of channels as-
signed to each PCS cell.

imbalance Fractional imbalance in partition to
have more LPs on a MPI-process.

simEndTime GVT when simulation logically ends.

16

3.3 Performance Metrics

As previously stated, we compared the effectiveness of our various PES structures to include the

novel structures (2tLadderQ and 3tHeap) against the fine-tuned version of the Ladder Queue using

two benchmark simulations. The assessment of the data structures involved the following metrics:

¶ Raw execution run time: This is the elapsed time between the start and the end of program

execution. In a parallel program, the elapse time requires the end time of the last process to

finish program execution. Serial and parallel wall clock timings were collected and used in

the performance analysis of the various data structures.

º Peak Memory Usage: The total memory used by a serial or parallel program.

» Cache Hits or Misses: Number of times that accessed data is found or not found to reside in

cache memory.

17

Chapter 4

Scheduler Queues

The pending events are managed by distinct scheduler queues that utilize different data structures to

implement the 4 key operations (i.e. enqueue, peek dequeue, and cancel). We have compared the

effectiveness of 7 different non-intrusive queue data structures namely: ¬ binary heap (heap), ­

binomial heap (binomHeap), ® 2-tier heap (2tHeap), ¯ 2-tier Fibonacci heap (fibHeap), ° 3-tier

heap (3tHeap), ± Ladder Queue (ladderQ), and ² 2-tier Ladder Queue (2tLadderQ). The queues

are broadly classified into two categories, namely: single-tier and multi-tier queues. Single-tier

queues such as heap and binomHeap use only a single data structure for accomplishing the 4 key

operations. Conversely, multi-tier queues organize events into tiers, with each tier implemented

using different data structures. Table 4.1 summarizes the algorithmic time complexities of the 7

data structures discussed in the following subsections [17].

18

Table 4.1: Comparison of algorithmic time complexities of different data structures [17]

Legend – l: #LPs, e: #events / LP, c: #concurrent events,
z: #canceled events, t2k: parameter, 1∗: amortized constant
Name Enqueue Dequeue Cancel

heap log(e · l) log(e · l) z · log(e · l)
binomHeap log(e · l) log(e · l) z · log(e · l)
2tHeap log(e)+ log(e)+ z · log(e)+

log(l) log(l) log(l)
fibHeap log(e) + 1∗ log(e) + 1∗ z · log(e) + 1∗
3tHeap log(ec) + log(l) log(l) e + log(l)
ladderQ 1∗ 1∗ e · l
2tLadderQ 1∗ 1∗ e · l÷ t2k

4.1 Binary Heap (heap)

The binary heap based (heap) is a commonly used data structure for implementing priority queues.

It is a single tier-data structure and is implemented using a conventional array-based approach.

Figure 4.1 shows a collaboration UML diagram for the HeapEventQueue implementation in

MUSE. A std::vector is used as the backing container (eventList in Figure 4.1) and algorithms

(std::push_heap, std::pop_heap) are used to maintain the heap. The heap is prioritized on both

time stamp and LP’s ID (to dequeue batches of events), with the lowest time stamp at the root

of the heap [18]. Operations on the heap are logarithmic in time complexity – given l LPs each

with e events/LP, the time complexity of enqueue and dequeue operations is log(e · l) as shown in

Table 4.1. If event cancellation requires z events to be removed from the heap, the time complexity

is z · log(e · l). Consequently, for long or cascading rollbacks the cancellation costs is high [17].

19

HeapEventQueue

- maxQsize

+ HeapEventQueue()
+ ~HeapEventQueue()
+ addAgent()
+ removeAgent()
+ empty()
+ front()
+ dequeueNextAgentEvents()
+ enqueue()
+ enqueue()
+ eraseAfter()
+ prettyPrint()
+ reportStats()
pop_front()
compare()

EventQueue

+ addAgent()
+ removeAgent()
+ empty()
+ front()
+ dequeueNextAgentEvents()
+ enqueue()
+ enqueue()
+ eraseAfter()
+ prettyPrint()
+ reportStats()
+ ~EventQueue()
+ getName()
+ fixHeap()
EventQueue()

std::vector< Event * >

-eventList

Event

senderAgentID
receiverAgentID
sentTime
receiveTime
antiMessage
referenceCount
color

+ CREATE()
+ getSenderAgentID()
+ getReceiverAgentID()
+ getSentTime()
+ getReceiveTime()
+ getReferenceCount()
+ isAntiMessage()
+ allocate()
+ deallocate()
Event()
getColor()
setColor()
getEventSize()
decreaseReference()
increaseReference()
makeAntiMessage()
setReferenceCount()
~Event()
- deleteRecycledEvents()

+elements

Figure 4.1: Collaboration UML diagram for Binary Heap based event queue implementation
in MUSE

20

4.2 Binomial Heap (binomHeap)

The binomHeap is another single-tier data structure that uses Binomial heap from the boost C++

library. In similarity to heap, binomHeap is prioritized on both time stamp and LP’s ID, with the

lowest time stamped event at the root. Additionally, the operations on binomHeap are logarithmic

with a time complexity for enqueue and dequeue operations of log(e · l). A special property of

Binomial heap is the ability to merge two heaps into a single heap with a time complexity of log(n).

Given that binomHeap is a single-tier data structure and all of the LPs on an MPI-process share a

PES queue, the merge operation is not relevant.

4.2.1 Run time comparison of heap vs. binomHeap

Due to similarities between Binary and Binomial Heap, we performed a comparison of heap and

binomHeap to identify which one of the two data structures was the more effective priority queue

based implementation of the PES queue. The comparison involved the production of serial run

times for 2500 different configurations of PHOLD benchmark for both data structures. As shown

in Figure 4.2, heap had a lower serial run time than binomHeap. The average run time for heap

was 43.87 seconds and the average run time for binomHeap was 52.17 seconds. An unpaired two

sample t-test was performed on the two sample run times to determine if averages were generally

different. The data showed t-stat > t-critical (1.96) and the p-value: 2.91E-315 « 0.05. Thus

showing the averages were statistically different. A paired two sample t-test was also conducted

and the paired t-test resulted in a p-value 2.01E-315 « 0.05. Therefore, the null hypothesis (H0:

difference between samples is zero) was rejected and we concluded that heap is generally faster

than binomHeap. Based on the results, Binomial Heap was not used in any further implementation

and assessment of the PES queue.

21

 0

 100

 200

 300

 400

 500

Binary
Heap

Binomial
Heap

Runtime
Difference

-5%

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

R
u

n
ti

m
e

s
 (

s
e

c
)

%
R

u
n

ti
m

e
 d

iff
e

re
n

c
e

(H
e

a
p

 v
s
.

B
in

o
m

ia
l

h
e

a
p

)

Scheduler data structure

Figure 4.2: Comparison of heap and binomHeap execution time

4.3 Two-tier Heap (2tHeap)

The 2tHeap is designed to reduce the time complexity of cancel operations by subdividing events

into two distinct tiers as shown in Figure 4.3. The first tier has containers for each local LP

on an MPI-process. Each of the tier-1 containers contain a heap of events to be processed by a

given LP. A standard std::vector is used as the backing container to maintain pointers to the

pending events [17]. Standard heap operations implemented by C++ algorithms library are used

to maintain the heap property. In MUSE, the 2tHeap has been implemented in a class called

TwoTierHeapEventQueue. Figure 4.4 shows a collaboration diagram illustrating the relationship

between this class and other key classes in MUSE [18].

22

LP1	

LP2	
 LP3	
 Ti
er

 1

Tier 2

(a) 2-tier Heap

LP1	

LP2	
 LP3	



	



	




	


	




	
 	



	
 Ti

er
 3

Tier 2

(b) 3-tier Heap

Figure 4.3: Structure of 2-tier & 3-tier heap

In 2tHeap both tiers are maintained as independent binary heaps. Consequently, given l LPs

and e pending events per LP, enqueue and dequeue operates require log e time to insert in tier-2

followed by log l time to reschedule the LP. Note that the tier-1 heap is updated only if the root

event in tier-2 changes after an operation. Consequently, the best case time complexity becomes

log e when compared to log e · l for the heap. Furthermore, cancellation of events for an anti-

message is restricted to just the tier-2 entries of LP dest with utmost 1 tier-1 operation to update

schedule position of LP dest. A std::vector is used as the backing storage for both tiers and standard

algorithms are used to maintain the min-heap property for both tiers after each operation [17].

23

TwoTierHeapEventQueue

+ TwoTierHeapEventQueue()
+ ~TwoTierHeapEventQueue()
+ addAgent()
+ removeAgent()
+ empty()
+ front()
+ dequeueNextAgentEvents()
+ enqueue()
+ enqueue()
+ eraseAfter()
+ prettyPrint()
+ reportStats()
getTopTime()
compare()
top()
getIndex()
updateHeap()
fixHeap()
getNextEvents()

EventQueue

+ addAgent()
+ removeAgent()
+ empty()
+ front()
+ dequeueNextAgentEvents()
+ enqueue()
+ enqueue()
+ eraseAfter()
+ prettyPrint()
+ reportStats()
+ ~EventQueue()
+ getName()
+ fixHeap()
EventQueue()

BinaryHeapWrapper

+ BinaryHeapWrapper()
+ ~BinaryHeapWrapper()
+ top()
+ pop()
+ push()
+ push()
+ removeFutureEvents()
+ removeFutureEvents()
+ clear()
+ size()
+ empty()
+ print()
+ getTopTime()

-EmptyBHW
std::vector<

Event * >

Event

senderAgentID
receiverAgentID
sentTime
receiveTime
antiMessage
referenceCount
color

+ CREATE()
+ getSenderAgentID()
+ getReceiverAgentID()
+ getSentTime()
+ getReceiveTime()
+ getReferenceCount()
+ isAntiMessage()
+ allocate()
+ deallocate()
Event()
getColor()
setColor()
getEventSize()
decreaseReference()
increaseReference()
makeAntiMessage()
setReferenceCount()
~Event()
- deleteRecycledEvents()

std::vector< muse:: Agent * >
+ elements

+e
le

m
en

ts
-h

ea
pC

on
ta

in
er

Figure 4.4: CollaborationUMLdiagram forTwo-tierHeapbased event queue implementation
in MUSE

24

4.4 2-tier Fibonacci Heap (fibHeap)

The fibHeap is an extension to the previous 2tHeap data structure and uses a Fibonacci heap for

scheduling LPs. The Fibonacci heap is a slightly modified version from the boost C++ library.

The Fibonacci heap has an amortized constant time for changing key values and finding minimum.

Consequently, we use it for the first tier which is responsible for scheduling LPs and use a standard

binary heap for the second tier. We do not use Fibonacci heap for the second tier because we found

its runtime constants to be higher than a binary heap. Accordingly, the time complexity for enqueue

and dequeue operations is log(e) + 1∗ [17].

4.5 Three-tier Heap (3tHeap)

The 3tHeap builds upon 2tHeap by further subdividing the second tier into two tiers as shown in

Figure 4.3(b). The binary heap implementation for the first tier that manages LPs for scheduling

has been retained from 2tHeap. However, the 2nd tier is implemented as a list of containers sorted

based on receive time of events. Each tier-2 container has a 3rd tier list of concurrent events.

Assuming each LP has c concurrent events on an average, there are e
c tier-2 entries with each one

having c pending events. Inserting events in the 3tHeap is accomplished via binary search at tier-2

with time complexity log e
c followed by an append to tier-3, a constant time operation. Enqueue to

tier-2 is followed by an optional heap fix-up of time complexity log l as summarized in Table 4.1.

Dequeue operation for a LP removes a tier-2 entry in constant time followed by a log l heap fix-up

for scheduling. Event cancellation has time complexity of e + log(l) as it requires inspecting each

event in tier-3 followed by heap fix-up. As an implementation optimization, we recycle tier-2

containers to reduce allocation and de-allocation overhead [17].

4.6 Ladder Queue (ladderQ)

The ladderQ is a widely used priority queue implementation that has been used as the refer-

ence for experimental assessments. The ladderQ data structure is discussed in detail in Sec-

25

tion 2.1. Similar to the other event queue implementation, the ladderQ has been integrated into

MUSE by suitably implementing the necessary Application Program Interface (API) methods in

the muse::EventQueue base class. The various sub-data structures such as Top, Rung, and Bottom

have been implemented using sub-classes as shown in Figure 4.5.

26

LadderQueue

+ MaxRungs
- nRung
- ladderEventCount

+ LadderQueue()
+ ~LadderQueue()
+ enqueue()
+ dequeue()
+ remove_after()
+ empty()
+ addAgent()
+ removeAgent()
+ front()
+ dequeueNextAgentEvents()
+ enqueue()
+ enqueue()
+ eraseAfter()
+ prettyPrint()
+ haveBefore()
+ reportStats()
recurseRung()
populateBottom()
createRungFromBottom()

EventQueue

+ addAgent()
+ removeAgent()
+ empty()
+ front()
+ dequeueNextAgentEvents()
+ enqueue()
+ enqueue()
+ eraseAfter()
+ prettyPrint()
+ reportStats()
+ ~EventQueue()
+ getName()
+ fixHeap()
EventQueue()

std::vector< Rung >

-ladder

Rung

- rStartTS
- rCurrTS
- bucketWidth
- currBucket
- rungEventCount

+ Rung()
+ Rung()
+ Rung()
+ Rung()
+ Rung()
+ removeNextBucket()
+ empty()
+ enqueue()
+ getStartTime()
+ getBucketWidth()
+ getCurrTime()
+ getMaxRungTime()
+ canContain()
+ remove_after()
+ remove()
+ validateEventCounts()
+ prettyPrint()
+ updateStats()
+ isCurrBucketEmpty()
+ haveBefore()
- LQ_STATS()

+e
le

m
en

ts

std::vector< VectorBucket >

-bucketList

VectorBucket

- count

+ VectorBucket()
+ VectorBucket()
+ ~VectorBucket()
+ push_front()
+ front()
+ back()
+ pop_front()
+ push_back()
+ insert_after()
+ insert_after()
+ size()
+ empty()
+ begin()
+ cbegin()
+ rbegin()
+ end()
+ cend()
+ rend()
+ remove_after()
+ remove_after_sorted()
+ remove()
+ haveBefore()

+elements

Top

- minTS
- maxTS
- topStart

+ Top()
+ ~Top()
+ add()
+ empty()
+ getStartTime()
+ getMinTime()
+ getMaxTime()
+ contains()
+ getBucketWidth()
+ size()
+ remove_after()
+ remove()
+ haveBefore()
reset()

-e
ve

nt
s

Bottom

+ enqueue()
+ enqueue()
+ pop_front()
+ front()
+ empty()
+ getBucketWidth()
+ remove_after()
+ remove()
+ dequeueNextAgentEvents()
+ maxTime()
+ findMinTime()
+ validate()
+ size()
+ haveBefore()
+ getTimeRange()
+ compare()
+ revCompare()
enqueue()
enqueue()
enqueue()
enqueue()

-sel

std::vector< muse::
Event * >

+ elements

-list

-to
p

Figure 4.5: Collaboration UML diagram for Ladder Queue based event queue implementa-
tion in MUSE

27

4.6.1 Fine tuning Ladder Queue performance

Our implementation closely followed the design in the original paper by Tang et al [13]. However,

to minimize runtime constants, we have explored different configurations for the buckets and the

Bottom in the ladderQ. Specifically, we have explored the following 6 different configurations – ¶

L.List-L.List: using a doubly-linked list (L.List) implemented by std::list) for buckets and bottom.

Events are inserted into bottom via linear search as proposed by Tang et al. · L.List-M.Set: L.List

for buckets and aMulti-set (log n operations) for bottom, ¸ L.List-Heap: a L.List and a binary heap

(backed by a std::vector) for bottom, ¹ Vec-M.Set: a dynamically growing array (i.e., std::vector)

for buckets and Multi-set bottom, º Vec-Heap: Vector buckets and binary heap for bottom, and »

Vec-Vec: Vector for buckets and bottom. This configuration enables using quick sort(i.e., std::sort)

for sorting buckets and binary search for inserting events into bottom [17].

Runtime comparison of the 6 ladderQ configurations is summarized in Figure 4.6. The data

was obtained using PHOLD with different parameter settings. The »th Vec-Vec configuration was

the fastest and performance of other configurations are shown relative to it in Figure 4.6(a). The

L.List-L.List configuration was generally the slowest and performed 85 ×(or 98%) slower than

the Vec-Vec configuration. The peak memory used for simulations is shown in Figure 4.6(b), in

comparison with the Vec-Vec configuration. As shown by the charts in Figure 4.6, the increased

performance of Vec-Vec comes at about a 6×increase in peak memory footprint when compared

to L.List-L.List configuration. This increased footprint arises because the std::vector internally

doubles its capacity as it grows. With many buckets in the ladderQ, each implemented using a

std::vector, the overall peak memory footprint is higher. Certainly, the increased capacity is used

if the number of events in buckets grow. However, the Vec-M.Set and Vec-Heap configurations

consume a bit more memory in some configurations, showing that Vec-Vec is not the worst in

memory consumption. Consequently, we use the Vec-Vec configuration as it provides the fastest

performance among the 6 configurations [17].

The maximum number of rungs in the Ladder also influences the overall performance of the

ladderQ [13]. The chart in Figure 4.7 illustrates the impact of limiting the maximum number

of rungs in the ladderQ. When the rungs are too few, the timestamp-based width of buckets is

28

-100%

-80%

-60%

-40%

-20%

 0%

1 L.List
L.List

2 L.List
M.Set

3 L.List
Heap

4 Vec.
M.Set

5 Vec.
Heap

6 Vec.
Vec.

%
 d

iff
 i

n
 r

u
n

ti
m

e
v
s
.

V
e

c
-V

e
c

Data structure for bucket and bottom

1 2 3 4 5 6

L.List: Linked list (std::list)
Vec: Vector (std::vector)
M.Set: std::multi_set

1×

2×

5×

100×

Speedup
of Vec.Vec

(a) Comparison sequential runtimes

-6×

-5×

-4×

-3×

-2×

-1×

 0×

1 L.List
L.List

P
e

a
k

 m
e

m
o

ry
 u

s
e

(v
e

rs
u

s
 V

e
c
-V

e
c
)

1
-0.18×
-0.16×
-0.14×
-0.12×
-0.10×
-0.08×
-0.06×
-0.04×
-0.02×
0.00×
0.02×
0.04×

2 L.List
M.Set

3 L.List
Heap

4 Vec.
M.Set

5 Vec.
Heap

6 Vec.
Vec.

Data structure for bucket and bottom

2 3 4 5 6

L.List: Linked list (std::list)
Vec: Vector (std::vector)
M.Set: std::multi_set

(b) Peak memory used

Figure 4.6: Comparison of execution time and peak memory for PHOLD benchmark (differ-
ent parameter settings) using 6 different ladderQ configurations [17]

29

larger and more events with many different timestamps are packed into buckets. This also causes

the Bottom to be longer with events spanning a broader range of timestamps. Consequently,

when inserts happen into Bottom, many Bottom-to-Ladder re-bucketing operations are triggered

to ensure bottom is short. These re-bucketing operations with many events significantly degrade

performance. However, once sufficient number of rungs (6 rungs in this case) are permitted the

events are better subdivide into smaller timestamp-based bucket widths. Small bucket widths in turn

minimize inserts into bottom and Bottom-to-Ladder operations, ensuring good performance [17].

 5

 15

 25

 35

 45

 2 4 6 8 10 12

S
e
q

u
e
n

ti
a
l
ru

n
ti

m
e

(s
e
c
o
n

d
s
)

Max rungs in Ladder Queue

Suboptimal number
of rungs. Several inserts
into bottom and
many Bottom to Ladder
operations.

Sufficient number of rungs.
No inserts into bottom.
Zero Bottom to Ladder operations.
Ideal configuration for Ladder Queue

Max rungs set to 8.
Also proposed by

Tang et. al

Figure 4.7: Impact of limiting rungs in Ladder [17]

The chart in Figure 4.7 shows that a minimum of 6 rungs is required. For some select

configurations of larger models we observed (data not shown) that 5 rungs would be sufficient.

However, the number of rungs cannot exceed beyond a threshold to avoid infinite spawning of

rungs [13]. Moreover, it limits the overheads involved in re-bucketing events from rung-to-

rung [13]. Accordingly, based on the observations in figure 4.7, we decided to adopt a maximum

of 8 rungs, consistent with the threshold proposed by Tang et al [13]. Furthermore, we trigger

Bottom-to-Ladder re-bucketing only if the Bottom has events at different timestamps to further

reduce inefficiencies [17].

30

4.6.2 Shortcoming of Ladder Queue for optimistic PDES

The amortized constant time complexity of enqueue and dequeue operations enable the ladderQ

to outperform other data structures in sequential simulations [10, 13, 14]. However, canceling

events, requires a linear scan of pending events because Top and buckets in rungs are not sorted.

In practice, scans of Top, Ladder rung buckets, and Bottom can be avoided based on cancellation

times. Nevertheless, in a general case, event cancellation time complexity is proportional to the

number of pending events – i.e., e · l as summarized in Table 4.1. This issue is exacerbated in

large simulations where thousands of events are typically present in Top and buckets in various

rungs [17].

In this context, it is important to recollect from that – as an optimization, MUSE utilizes only

one anti-message from LP sender to LP dest to cancel all n events sent after trollback (rather than

sending n individual anti-messages) which reduces overheads. Furthermore, with our centralized

scheduler design, only events received from LPs on other MPI-processes can trigger rollbacks.

Consequently, the number of scans of the ladderQ that actually occur is significantly fewer in our

case, despite the aggressive cancellation strategy [17].

31

	
 ●	
 ●	
 ●	
 ●	
 ●	

	
 ●	
 ●	

	
 ●	
 ●	
 ●	

Top:

Ladder:

Bottom: ●	
 ●	
 ●	
 	

: Bucket
: Tier-2/sub-bucket

●	
 	
 : Pending event

	
 	

	
 	

	
 	

	
 ●	
 ●	
 ●	
 ●	

	
 ●	
 ●	

	
 ●	
 ●	
 ●	

	
 ●	
 ●	
 ●	
 ●	

	
 	

	
 ●	
 ●	
 ●	

	
 	

	
 	

	
 	

	
 ●	

	
 ●	
 ●	

	
 ●	
 ●	
 ●	

	
 ●	
 ●	
 ●	
 	

	
 	

	
 ●	
 ●	
 	

	
 ●	
 	

	
 ●	

	
 	
 	

	
 ●	

	
 ●	
 ●	

Figure 4.8: Structure of 2-tier Ladder Queue (2tLadderQ) with 3 sub-buckets / bucket (i.e.,
t2 k=3) [17]

4.7 2-tier Ladder Queue (2tLadderQ)

A key shortcoming of the Ladder Queue for Time Warp based optimistic PDES arises from

the overhead of canceling events used for rollback recovery. Our experiments show that event

cancellation overhead of ladderQ is a significant bottleneck in parallel simulation. On the other

hand, our multi-tier data structures, where pending events are more organized, performed well [17].

Consequently, to reduce cost of event cancellation, we propose a 2-tier LadderQueue (2tLadderQ)

in which each bucket in Top and Ladder is further subdivided into tk sub-buckets, where tk is spec-

ified by the user. Figure 4.8 illustrates an overview of the 2tLadderQ with tk = 3 sub-buckets in

each bucket. Given a bucket, a hash of the sending LP’s ID (or the receiver LP ID, one or the

other but not both) is used to locate a sub-bucket into which the event is appended. Currently, we

use a straightforward LP sender modulo tk as the hash function. Consequently, enqueue involves

just 1 extra modulo instruction over regular ladderQ and hence retains its amortized constant time

complexity. Similar to buckets, the sub-buckets are implemented using standard std::vector with

events added or removed only from the end to ensure amortized constant-time operation [17].

The dequeue operations for a bucket require iterating over each sub-bucket. However, for a small,

32

fixed value of tk, the overhead becomes an amortized constant. The constant overhead is determined

by the value of tk. Consequently, dequeue also retains the amortized constant characteristic from

regular ladderQ as summarized in Table 4.1. Currently, we do not subdivide Bottom but leave it

as a possible future optimization [17].

4.7.1 Performance gain of 2tLadderQ

The primary performance gain for 2tLadderQ arises from the reduced time complexity for event

cancellation. Since each bucket is sub-divided, only 1÷tk fraction of events need to be checked

during cancellation. For example, if t2k=32, only 1
32 of the pending events are scanned during

cancellation. This significantly reduces the time constants in larger simulations enabling rapid

rollback recovery [17].

The value of t2k is a key parameter that influences the overall constants in 2tLadderQ. For

sequential simulation, where event cancellations do not occur, we recommend t2k=1. With this

setting the performance of 2tLadderQ is very close to that of the regular ladderQ. However, in

parallel simulation, the value of t2k must be greater than 1 to realize benefits of its design. Figure 4.9

shows the effect of changing the size of t2k in a parallel simulation with 16MPI processes. The total

rollbacks in the simulations were with 10% (except for t2k=512, which for this model experienced

fewer rollbacks). Nevertheless, for t2k=1, the simulation has much higher runtime due to event

cancellation overheads. The runtime dramatically decreases as t2k is increased. The runtime

remains comparable for a broad range of values, namely: 64≤t2k<512. However, for t2k≥512, we

noticed slow increase in runtime due to overhead of larger sub-buckets. Consequently, we have

used a value of t2k=128 for parallel simulation. We anticipate t2k value to vary depending on the

hardware configuration of the compute cluster used for parallel simulation [17].

33

 0

 10

 20

 30

 40

 50

 60

 70

 1 4 16 32 64 128 256 512 1024 2048
 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

P
a

ra
ll

e
l

ru
n

ti
m

e
 (

se
c)

T
o

ta
l

#
R

o
ll

b
a

ck
s

(m
il

li
o

n
s)

Value of 2tk (sub-buckets in 2tLadderQ)

Parallel
Sim.Time

#rollbacks
(millions)

Figure 4.9: Effect of varying tk [17]

34

Chapter 5

Experiments

We conduct assessments of the effectiveness of the six scheduler queues using different config-

urations of the PHOLD benchmark and the PCS simulation. The experiments were conducted

on our previously described distributed memory computing cluster. The PHOLD benchmark was

compiled using (-O3 optimization) and the PCS benchmark was compiled without the compiler

optimization turned on. Our initial experimental analysis proved to be time consuming due to the

large number of parameters (see Tables 3.1 and 3.2) and combinations of their values. Conse-

quently, we pursued strategies to focus on the most influential parameters that impacted relative

performance of the scheduler queues using Generalized Sensitivity Analysis (GSA) [17, 21].

5.1 Parameter reduction via GSA

Generalized Sensitivity Analysis (GSA) is based on two-sample Kolmogorov-Smirnov Test (KS-

Test) and yields a dm,n statistic that is sensitive to differences in both central tendency and differences

in the distribution functions of parameters [21]. The dm,n statistic is the maximum separation

between cumulative probability distribution observed in a two-sample KS-Test. The KS-Test is

performed with data from Monte Carlo simulations involving combinations of parameter values

from a specified range or probability distribution. The simulation result is then classified into

number of “success” (m) or its converse “failure” (n) to compute cumulative probability distribution

35

and dm,n statistic for each parameter. In this study we have defined “failure” to be parameter values

for which the 2tLadderQ runs slower when compared to another scheduler queue. For sequential

and parallel simulations we use t2k=1 and t2k=128 respectively [17].

An important aspect of GSA is to ensure that the values for each parameter covers its full range of

values. Consequently, we use Sobol random numbers to select a combination of PHOLD parameter

values to be used for simulation. Sobol random numbers are quasi-random low-discrepancy

sequences that provide uniform coverage of a multidimensional parameter space for PHOLD[22].

Our parameter ranges also ensure that the peakmemory consumption do not crossNUMA threshold,

which in our case is 4GBofRAM.Exceeding the 4GBNUMA threshold introduces a lot of variance

in runtimes requiring many runs to reduce variance to acceptable limits [17].

The randomly (using Sobol sequences) selected parameter set is used to run the model using

two different scheduler queues. Average simulation execution time from 3 different replications is

recorded for each scheduler queue along with the parameter-set. The process is repeated for 2,500

different Sobol sequences. The 2,500 data set is then collectively analyzed to compute the dm,n

statistics for the different parameters [17].

5.1.1 GSA results for sequential simulations using PHOLD

The charts in Figure 5.1 show the cumulative m, n, and the dm,n statistics for the 9 different

PHOLD parameters explored using GSA for sequential simulations. The orange impulses show

the parameter values and number of samples used for Monte Carlo simulation. Note that the

distribution of samples varies depending on the nature of the parameter – i.e., eventsPerLP varies

in discrete steps of 1 from 1–20 while imbalance varies from 0 to 1.0 in small fractional steps [17].

The chart in Figure 5.2 shows the summary of the dm,n statistic or influence of each parameter

(see Table 3.1) on the outcome – i.e., 2tLadderQ performs better or worse than 3tHeap. The

lightly shaded bands show the 95% Confidence Intervals (CI) computed using standard bootstrap

approach using 5000 replications with 1000 samples in each. As expected, the imbalance (i.e.,

skew in partition) has no impact in sequential simulation and has a low impact score of 0.037.

Similarly, the GVT computation rate does not impact pending events and consequently its influence

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 2500 5000 7500 10000

 G V T Period

0.051

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75

 Imbalance

0.037

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 5 7.5

 Lambda

0.171

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75

 Self Events%

0.078

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 375 450 525

 Sim End Time

0.043

 0

 0.2

 0.4

 0.6

 0.8

 1

 25 50 75

 Rows

0.059

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15

 Events Per L P
0.774

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

 Granularity

0.023

 0

 0.2

 0.4

 0.6

 0.8

 1

 25 50 75

 Cols

0.050

Figure 5.1: Results from Generalized Sensitivity Analysis (GSA) comparing 2tLadderQ and
3tHeap for sequential simulation using the PHOLD benchmark [17].

37

is low at 0.051 [17].

Interestingly, other model parameters such as rows, cols, self-events, simEndTime, and gran-

ularity have no influence on relative performance of 2tLadderQ vs 3tHeap. The parameter with

most influence is eventsPerLP with a score of 0.774. This parameter determines the total number

of concurrent events which influences bucket sizes and number of rungs in 2tLadderQ as well as

the third tier size in 3tHeap. The parameter λ for exponential distribution has a marginal influ-

ence because it influences number of concurrent events as discussed in Section 3.1 and shown in

Figure 3.1(c) [17].

We have also conducted GSA to determine influential parameters impacting performance of

other scheduler queues versus the 2tLadderQ in sequential simulations. Our analysis shows that

none of the parameters play an influential role. The 2tLadderQ performed consistently better or

the same when compared to ladderQ, 2tHeap, fibHeap, and heap. Only 3tHeap and in few cases

2tHeap outperformed our 2tLadderQ in certain configurations. The performance of ladderQ and

2tLadderQ was practically indistinguishable in sequential simulations (with 2tk=1) [17].

38

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

GVT Imba-
lance

λ %Self
Evt.

End
Time

Rows Evt./
LP

Evt.
Gran.

Cols

F
-m

e
a

su
re

 (
a

n
d

 9
5

%
 C

I)

0.051
(± 0.04)

0.037
(± 0.04)

0.171
(± 0.06)

0.078
(± 0.05) 0.043

(± 0.04)

0.059
(± 0.05)

0.774
(± 0.04)

0.023
(± 0.03)

0.050
(± 0.04)

Figure 5.2: Summary of influential parameters from Figure 5.1 that cause performance
differences between 2tLadderQ and 3tHeap in sequential simulations using PHOLD [17].

5.1.2 GSA results for sequential simulations using PCS

The charts in Figure 5.3 shows the two-sample KS-Test statistics for the cumulative probability

distribution functions of the 10 different PCS parameters. The GSA data shows that in sequential

simulations, most of the parameters do not influence performance difference between 2tLadderQ

and 3tHeap with dm,n « 0.1. As expected, portables was the most influential parameter in the

simulation. This parameter is equivalent to the eventsPerLP parameter in the PHOLD benchmark.

In similarity to the GSA results using PHOLD, higher values of portables parameter cause the

3tHeap to perform better than the 2tLadderQ. The summary of influential parameters in Figure

5.4 shows the portables parameter with a high impact score of 0.796. In addition, rows and cols

parameters displayed marginal influence with low impact scores of 0.328 and 0.291, respectively.

GSA to determine influential PCS parameters impacting the performance of other scheduler

queues against 2tLadderQ showed that no parameter was more influential than portables. Fur-

thermore, the results showed that 2tLadderQmostly outperformed the other scheduler queues with

the exception of 2tHeap and 3tHeap in certain configurations.

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75

 Imbalance

0.067

 0

 0.2

 0.4

 0.6

 0.8

 1

 120 125 130 135

 Move Interval

0.029

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 22.5 25 27.5

 Call Interval

0.083

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 5 7.5

 Call Duration

0.080

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25

 Channels

0.031

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 350 400 450

 Sim End Time

0.052

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15

 Portables
0.796

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 22.5 30 37.5 45

 Rows

0.328

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 7.5 15 22.5

 Granularity

0.039

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 22.5 30 37.5 45

 Cols

0.291

Figure 5.3: Results from Generalized Sensitivity Analysis (GSA) comparing 2tLadderQ and
3tHeap for sequential simulation using PCS.

40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Imba-
lance

Move-
Inr.

Call-
Inr.

Call-
Dur.

Chan-
nels

End
Time

Port-
ables

Rows Evt.
Gran.

Cols

0.067
(± 0.06) 0.029

(± 0.05)

0.083
(± 0.07)

0.080
(± 0.07) 0.031

(± 0.06)

0.052
(± 0.06)

0.796
(± 0.05)

0.328
(± 0.08)

0.039
(± 0.06)

0.291
(± 0.08)

F
-m

e
a

su
re

 (
a

n
d

 9
5

%
 C

I)

Figure 5.4: Summary of influential parameters from Figure 5.3 that cause performance
differences between 2tLadderQ and 3tHeap in sequential simulations using PCS.

5.1.3 Summary of GSA results for sequential simulations

GSA shows that for comparing event queue performance in sequential simulations using our

PHOLD benchmark and PCS simulation, we just need to focus on 1 or 2 parameters. Other aspects

such as: event granularity, fraction of self-events, GVT rate, etc., do not matter for comparison of

scheduler queues. We focus our continuing analysis on the following scheduler queues: ladderQ,

2tLadderQ, and 3tHeap.

5.1.4 GSA results for parallel simulations

GSA for parallel simulations were conducted using the same procedure discussed earlier but using

4MPI-processes for parallel simulation. These analysis focused only on ladderQ, 2tLadderQ, and

3tHeap based on the inferences drawn from the earlier analyses. The average simulation execution

time from 3 replications is recorded for each scheduler queue along with the parameter set. For

the parallel PHOLD simulation, we observed that the ladderQ timings showed a lot of variance

in runtime depending on number of rollbacks that occur. Consequently, to reduce variance, we

have used a time-window of 10 time-units to curtail optimism and reduce rollbacks. The time-

window restricts the simulation kernel from scheduling events that are more than 10 time-units

41

ahead of GVT. We use the same time-window for all scheduler queues for consistent comparison

and analysis [17]. This consideration was not applied to the PCS simulation to remain consistent

with the simulation properties as presented in [20].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

GVT Imba-
lance

λ %Self
Evt.

End
Time

Rows Evt./
LP

Evt.
Gran.

Cols

F
-m

e
a

su
re

 (
a

n
d

 9
5

%
 C

I)

0.048
(± 0.03)

0.115
(± 0.03)

0.090
(± 0.04)

0.365
(± 0.04)

0.021
(± 0.03)

0.089
(± 0.04)

0.486
(± 0.04)

0.048
(± 0.04) 0.018

(± 0.03)

Figure 5.5: GSA data from parallel simulations (4 MPI-processes) showing influential

PHOLD parameters (2tLadderQ vs. 3tHeap) [17].

The chart in Figure 5.5 shows the summary of the dm,n statistic or influence of each parameter

(see Table 3.1) on the outcome – i.e., 2tLadderQ performs better or worse than 3tHeap. The

lightly shaded bands show the 95% Confidence Intervals (CI) computed using standard bootstrap

approach using 5000 replications with 1000 samples in each. The parallel results are consistent

with the sequential results and the eventsPerLP is the most influential parameter. However, in

parallel simulation, the percentage of selfEvents (i.e., LPs schedule events to themselves) has

a more pronounced influence when compared to λ. The increased impact of selfEvents arises

due to the use of optimistic synchronization. The self-events are local and can be optimistically

processed, with some being rolled back, causing more operations on a larger pending event set.

The data also shows that conspicuous imbalance in partitioning or load balance has some influence

on the outcomes. However, in this study we explore typical parallel simulation scenarios in which

load is reasonably well balanced [17].

42

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Imba-
lance

Move-
Inr.

Call-
Inr.

Call-
Dur.

Chan-
nels

End
Time

Port-
ables

Rows Evt.
Gran.

Cols

0.120
(± 0.04) 0.038

(± 0.03)
0.029

(± 0.03)

0.045
(± 0.04) 0.013

(± 0.03)

0.028
(± 0.03)

0.236
(± 0.04)

0.138
(± 0.04)

0.036
(± 0.03)

0.139
(± 0.04)

F
-m

e
a

su
re

 (
a

n
d

 9
5

%
 C

I)

Figure 5.6: GSA data from parallel simulations (4 MPI-processes) showing influential PCS

parameters (2tLadderQ vs. 3tHeap).

The chart in Figure 5.6 summarizes the dm,n statistic for parameters of the parallel PCS simu-

lation (see Table 3.2). Portables is the most influential parameter with a subdued score of 0.236.

Similarly, the model size has a marginal influence in the parallel simulation with scores of 0.138 and

0.139 for the model rows and columns. The imbalance parameter has a slightly more pronounced

effect in the parallel simulation but as previously mentioned, a well balanced scenario is presumed.

5.2 Configurations for further analysis

TheGeneralized SensitivityAnalysis (GSA) enables identification of influential parameters, thereby

substantially reducing the parameter space. However, GSA data does not provide an effective data

set to analyze trends, such as: scalability, memory usage, rollback behaviors, etc. In order to

pursue such analysis we have used 6 different configurations for the simulations. The PHOLD

configurations are called ph3, ph4, and ph5 and the PCS configurations are called pcs6, pcs7,

and pcs8. The fixed characteristics for the 6 configurations is summarized in Table 5.1. We use

larger simulation end times for parallel simulation to obtain sufficiently long runtimes using 32

cores. The value of influential parameters, namely: eventsPerLP, %selfEvents, and λ for the

43

PHOLD configuration and portables for PCS is varied for comparing different settings, similar to

the approach used by other investigators [10, 13, 17].

Table 5.1: Configurations of PHOLD and PCS used for further analysis
Name #LPs Sim. End Time

(Rows×Cols) Seq Parallel

ph3 1,000 (100×10) 5000 20000
ph4 10,000 (100×100) 500 5000
ph5 100,000 (1000×100) 100 1000

pcs6 100 (10×10) 5000 50000
pcs7 1,000 (100×10) 1000 4500
pcs8 10,000 (100×100) 100 200

44

5.3 Sequential Simulations

We conduct sequential simulations to assess the effectiveness of the different data structures.

We pursued sequential simulations to compare the base case performance of the data structures,

consistent with prior investigations [10, 13]. The sequential simulations also serve as a reference

for potential use in conservatively synchronized PDES. The sequential experiments were conducted

using the 6 configurations listed in table 5.1 on one compute node of our cluster described in Section

2.4. The simulations use only 1 MPI-process and states are not saved. Number of sub-buckets

in 2tLadderQ was set to 1, i.e., t2k=1. For the PHOLD experiments, the influential parameters

eventsPerLP, λ, and %selfEvents were varied to explore their impact on relative performance of

the data structures [17]. For the PCS experiments, the portableswas the only influential parameter

that was varied. Event granularity in both simulation models was set to zero resulting in a fine

grained simulation. For each configuration, data from 10 independent replications were collected

and analyzed [17].

5.3.1 PHOLD sequential simulation results

The charts in Figure 5.7(a)–(c) show the change in runtime characteristics as the most influential

parameter eventsPerLP is varied, for λ=1 (widest range of timestamps) and %selfEvents = 0.25.

This configuration was generally the best for ladderQ. As illustrated by Figure 5.7(a)–(c), the

performance of ladderQ and 2tLadderQ (2tk=1) is comparable, as expected. However, the

2tLadderQ performs slightly (paired t-test p-value < 0.05, i.e., averages are not equal) better in

some cases possibly due to improved caching resulting from smaller tier-2 sub-buckets. These two

queues outperform the other queues for lower values of eventsPerLP [17].

However, the 3tHeap generally outperforms the other queues (except for 2tHeap in some cases)

for higher values of eventsPerLP. In all cases, there were no inserts into Bottom or Bottom-to-

Ladder operations (discussed in Section 4.6.1) that degrade ladderQ performance. The size of the

Bottom rung was proportional to the number of LPs and eventsPerLP – i.e., with larger models,

Bottom has more events for many LPs with the same time stamp to be scheduled. In the larger

configurations, the maximum of 8 rungs were fully used. The maximum rung threshold of 8 was

45

determined to be an effective setting as discussed in Section 4.6.1 and the same value proposed by

Tang et al [13, 17].

Profiler data showed that the bottleneck in ladderQ arises from the overhead of re-bucketing

events from rung-to-rung of the Ladder. On the other hand, in 3tHeap re-bucketing does not

occur. Consequently, the overheads of O(log e
c) operations in 3tHeap are amortized as number of

concurrent events c increases [17].

The chart in Figure 5.7(d) shows the correlation between the 3 influential parameters and

the performance difference between 3tHeap and ladderQ. Consistent with the GSA results, the

correlogram shows that the most influential parameter is eventsPerLP (R=0.93, p=0) followed by

λ (R=0.19, p=0.192) with a very weak correlation. The %selfEvents has practically no impact

on performance. The correlogram also shows that these parameters are independent and have no

covariance between each other (R ∼ 0, p >0.95) [17].

The charts in Figure 5.8 shows the peak memory usage corresponding to the runtime data in

Figure 5.7. The memory size reported is the “Maximum resident set size” value reported by GNU

/usr/bin/time command on Linux. The memory usage of heap is the lowest in most cases. Since

2tk=1, the memory usage of ladderQ and 2tLadderQ is comparable as expected. The 3tHeap

initially uses more memory than the other data structures because of many small std::vectors

and due to std::vector doubling its capacity. However, the memory usage is amortized as the

eventsPerLP increases. Consequently, the improved performance of 3tHeap over ladderQ is

realized without significant increase in memory footprint [17].

46

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 5 10 15 20

R
u
n
 t

im
e
 (

se
c)

Events/LP

heap
3tHeap

2tLadderQ
ladderQ

(a) ph3

 0

 10

 20

 30

 40

 50

 60

 70

 1 5 10 15 20
R

u
n
 t

im
e
 (

se
c)

Events/LP

heap
3tHeap

2tLadderQ
ladderQ

(b) ph4

 0

 20

 40

 60

 80

 100

 120

 140

 1 5 10 15 20

R
u
n
 t

im
e
 (

se
c)

Events/LP

heap
3tHeap

2tLadderQ
ladderQ

(c) ph5

x

F
re

qu
en

cy Lambda

0.00 0.15

0.00
p = 1.000

0.00
p = 1.000

−0.2 0.6

2
6

10

0.19
p = 0.192

0.
00

0.
15

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

x

F
re

qu
en

cy Self.Evt
5.2e−21
p = 1.000

−0.0054
p = 0.971

● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

●●●● ●●●●●●●● ●●●●

●●●● ●●●●

●●●● ●●●●

●●●● ●●●●

●●●● ●●●●

x

F
re

qu
en

cy Evt.LP

5
150.93

p = 0.000

2 6 10

−
0.

2
0.

6

● ● ● ●● ● ● ●● ● ● ●● ● ● ●●
●

● ●

●
●

● ●●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●●● ●●●●●●●● ●●●●
●
●
●●

●
●
●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

5 15

●●●●●●●●●●●●●●
●● ●

●
●●

●
●
●● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

x

F
re

qu
en

cy Rel.Perf

(d) Corellogram

Figure 5.7: Sequential simulation runtimes and correlation of 3tHeap performance with
PHOLD parameters [17]

47

 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

 1 5 10 15 20

P
e
a
k
 m

e
m

o
ry

 u
se

d
 (

M
B

)

Events/LP

ph3

heap
3tHeap

2tLadderQ
ladderQ

 40

 50

 60

 70

 80

 90

 100

 1 5 10 15 20

P
e
a
k
 m

e
m

o
ry

 u
se

d
 (

M
B

)

Events/LP

ph4

heap
3tHeap

2tLadderQ
ladderQ

 300

 400

 500

 600

 700

 800

 900

 1000

 1 5 10 15 20

P
e
a
k
 m

e
m

o
ry

 u
se

d
 (

M
B

)

Events/LP

ph5

heap
3tHeap

2tLadderQ
ladderQ

Figure 5.8: Comparison of peak memory usage [17]

48

5.3.2 PCS sequential simulation results

The charts in Figure5.9(a)-(c) show runtime characteristics as the number of portables is varied

using our 3 PCS configurations. As illustrated in the charts, the performance of ladderQ and

2tLadderQ (t2k = 1) is comparable. However, these two data structures were largely outperformed

by the other scheduler queues. In fact, mean runtimes of ladderQ and 2tLadderQ displayed

an order of magnitude that was exceedingly high in comparison with the remaining queues. For

the pcs8 configuration with 125 portables per cell, the mean runtime values of the ladderQ and

2tLadderQwere approximately 500× higher than the runtime means of the other queues. Similarly

to sequential simulation using the PHOLD benchmark, profile data from the PCS configurations

showed that overhead of re-bucketing portables from rung-to-rung in both ladderQ and 2tLadderQ

degraded runtime performance. However, the impact of the overhead was even more pronounced

in the PCS simulations.

The charts in Figure5.10 (a)-(c) provide an illustration of the runtime performance of the

scheduler queues without ladderQ and 2tLadderQ. For the most part, 3tHeap outperformed all

of the other scheduler queues for higher number of portables per cell. As previously noted the

re-bucketing operation is not a property of 3tHeap and its design supports more efficient handling

of an increasing number of concurrent events.

The charts in Figure 5.11 show peak memory usage associated with runtime data displayed in

Figures 5.9 and 5.10. The peak memory usage is the lowest and tends to decrease with increasing

number of portables per cell for 3tHeap in configurations pcs6 and pcs7. On the other hand

fibHeap has the lowest memory usage in the pcs8 configuration.

The charts in Figure 5.12(a)-(c) show the profile results for the 3 configurations. As illustrated

in the charts ladderQ and 2tLadderQ displayed more effective use of the CPU data cache in all

configurations, which is critical to performance. However, the percentage of instructions was also

the highest for the two scheduler queues. This is consistent with the larger runtimes observed for

ladderQ and 2tLadderQ. On the other hand, 3tHeap displayed a comparably higher percentage

of cache and branch misses with respect to most of the scheduler queues, however, it also showed

the lowest percentage of instructions in each configuration scenario.

49

(a) pcs6

(b) pcs7

(c) pcs8

Figure 5.9: Sequential simulation runtimes with PCS parameters

50

(a) pcs6

(b) pcs7

(c) pcs8

Figure 5.10: Sequential simulation runtimes with PCS parameters

51

Figure 5.11: Comparison of peak memory usage

52

(a) pcs6

(b) pcs7

(c) pcs8

Figure 5.12: Profile results from PCS sequential simulation

53

5.4 Parallel simulation assessments

The sequential simulation assessments indicated that ladderQ, 2tLadderQ, and 3tHeap performed

the best for a broad range of PHOLD parameter settings. In particular, 3tHeap performed the

best for the PCS experiments. Consequently, we focused on assessing the effectiveness of these 3

queues for Time Warp synchronized parallel simulations. The experiments were conducted on our

compute cluster (see Section 2.4) using a varying number of MPI-processes, with one process per

CPU-core. In order to ensure sufficiently long runtimes with 32-cores, we increased simEndTime

for parallel simulations as tabulated in Table 5.1. The following subsections discuss results from

the experiments [17].

5.4.1 Throttling optimism with a time-window

Initiallywe conducted experimentswith a fine-grained setting (i.e., granularity=0) from sequential

simulations. We noticed that the ladderQ had a large variance in runtimes, particularly when

it experienced many rollbacks. In several cases, cascading rollbacks significantly slowed the

simulations – i.e., ladderQ simulations required over 1 hour while 2tLadderQ would consistently

finish in a few minutes. In order to avoid such debilitating rollback scenarios and to streamline

experimental analysis timeframes we have throttled optimism using a time-window of 10 time-

units. The time-window restricts the simulation kernel from scheduling events that are more than

10 time-units ahead of GVT. The time-window value of 10 is 50% of the maximum timestamp of

events generated by exponential distribution with λ = 1. Consequently, most events in the current

schedule cycle will fit within this time-window with limited impact on concurrency. We use the

same time-window for all scheduler queues for consistent comparison and analysis [17].

5.4.2 Efficient case for ladderQ

The charts in Figure 5.13, Figure 5.14, and Figure 5.15 show key simulation statistics for low value

of eventsPerLP = 2 and λ=1 for which ladderQ performed well, consistent with the observations

in sequential simulations. The statistics show average and 95% CI computed from 10 independent

54

replications for each data point. The peak rollbacks among all of the MPI-processes is shown as it

controls overall progress in the parallel simulations. As illustrated by the charts, both the ladderQ

and 2tLadderQ perform well for all three models. In this configuration, overall the ladderQ

experienced the fewest rollbacks. Nevertheless, the 2tLadderQ continues to perform well despite

experiencing more rollbacks as shown in Figure 5.14. The good performance of 2tLadderQ under

heavy rollback is consistent with its design objective to enable rapid event cancellation and improve

rollback recovery. The maximum of 8 rungs on the ladder was reached in all the simulations, but

with only few (1 to 3) buckets per rung. On average, the number of Bottom to Ladder operations

(that degrade performance) were low per MPI process, about – ph3: {9144, 8911}, ph4: {1904,

1448}, and ph5: {53, 84} for {ladderQ, 2tLadderQ} respectively. We did not observe a strong

correlation between number of these operations and rollbacks [17].

In this configuration, the 3tHeap runs experienced a lot of rollbacks when compared to the

other two queues despite the time-window. For ph5 data in Figure 5.15, 3tHeap experienced about

114805 rollbacks on average while ladderQ experienced only 2341, almost 50×fewer rollbacks.

Consequently, it was slower than the other 2 queues, but its performance is not significantly

degraded – ∼1.5× slower despite 50× more rollbacks. The peak memory usage for all the 3 queues

was comparable in these configurations [17].

55

 0

 10

 20

 30

 40

 50

 60

 2 4 8 16 32

R
u
n
 t

im
e
 (

se
c)

Parallel processes

ph3: Runtime

3tHeap
2tLadderQ

ladderQ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 2 4 8 16 32

M
a
x
 r

o
ll
b
a
ck

 (
m

il
li
o
n
s)

Parallel processes

ph3: Rollbacks

(a) ph3 time & rollbacks

Figure 5.13: Statistics from PH3 configuration of PHOLD parallel simulation with
eventsPerLP=2, λ = 1, %selfEvents=25% [17]

56

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 8 16 32

R
u
n
 t

im
e
 (

se
c)

Parallel processes

ph4: Runtime

3tHeap
2tLadderQ

ladderQ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 2 4 8 16 32

M
a
x
 r

o
ll
b
a
ck

 (
m

il
li
o
n
s)

Parallel processes

ph4: Rollbacks

(b) ph4 time & rollbacks

Figure 5.14: Statistics from PH4 configuration of PHOLD parallel simulation with
eventsPerLP=2, λ = 1, %selfEvents=25% [17]

57

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 2 4 8 16 32

R
u
n
 t

im
e
 (

se
c)

Parallel processes

ph5: Runtime

3tHeap
2tLadderQ

ladderQ

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 4 8 16 32

M
a
x
 r

o
ll
b
a
ck

 (
m

il
li
o
n
s)

Parallel processes

ph5: Rollbacks

(c) ph5 time & rollbacks

Figure 5.15: Statistics from PH5 configuration of PHOLD parallel simulation with
eventsPerLP=2, λ = 1, %selfEvents=25% [17]

58

5.4.3 Knee point for 3tHeap vs. ladderQ

The charts in Figure 5.16 show key simulation statistics for the configuration where 3tHeap and

ladderQ performed about the same in sequential (see Figure 5.7). For ph3, both ladderQ and

2tLadderQ experienced comparable number of rollbacks but the 2tLadderQ performs better due

to its design advantages. In the case of ph4 and ph5, both the ladderQ and 3tHeap experienced

a comparable number of rollbacks. However, the observed number of rollbacks for ladderQ and

3tHeap was much higher than the number of rollbacks for 2tLadderQ despite having a time-

window. Nevertheless, the 3tHeap conspicuously outperforms the ladderQ because it is able to

quickly cancel events and complete rollback processing. For ph5, the 3tHeap outperforms the

other 2 queues despite the high number of rollbacks. The peak memory usage for all the 3 queues

was comparable in these configurations [17].

59

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 8 16 32

R
u
n
 t

im
e
 (

se
c)

Parallel processes

ph3: Runtime

3tHeap
2tLadderQ

ladderQ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 8 16 32

M
a
x
 r

o
ll
b
a
ck

 (
m

il
li
o
n
s)

Parallel processes

ph3: Rollbacks

(a) ph3 time & rollbacks

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 8 16 32

R
u
n
 t

im
e
 (

se
c)

Parallel processes

ph4: Runtime

3tHeap
2tLadderQ

ladderQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 8 16 32

M
a
x
 r

o
ll
b
a
ck

 (
m

il
li
o
n
s)

Parallel processes

ph4: Rollbacks

(b) ph4 time & rollbacks

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 8 16 32

R
u
n
 t

im
e
 (

se
c)

Parallel processes

ph5: Runtime

3tHeap
2tLadderQ

ladderQ

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 8 16 32

M
a
x
 r

o
ll
b
a
ck

 (
m

il
li
o
n
s)

Parallel processes

ph5: Rollbacks

(c) ph5 time & rollbacks

Figure 5.16: Statistics from PHOLD parallel simulation with eventsPerLP=10, λ = 10,
%selfEvents=25% [17]

60

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 8 16 32

R
u
n
 t

im
e
 (

se
c)

Parallel processes

ph5: Runtime

ladderQ sims that ran
longer than 3600 secs
were abandoned. Only
32 process finished
in time limit

3tHeap
2tLadderQ

ladderQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 8 16 32

M
a
x
 r

o
ll
b
a
ck

 (
m

il
li
o
n
s)

Parallel processes

ph5: Rollbacks

3tHeap
2tLadderQ

ladderQ

Figure 5.17: ph5 Statistics (best case for 3tHeap) [17]

61

(a) pcs6 time & rollbacks

(b) pcs7 time & rollbacks

(c) pcs8 time & rollbacks

Figure 5.18: Statistics from PCS parallel simulation with portables=25

62

(a) pcs6 time & rollbacks

(b) pcs7 time & rollbacks

(c) pcs8 time & rollbacks

Figure 5.19: Statistics from PCS parallel simulation with portables=75

63

5.4.4 Best case for 3tHeap

Figure 5.17 shows simulation time and rollback characteristics in high concurrency configuration

with ph5, with eventsPerAgent=20, λ=10, and %Self Evt.=25%. The ladderQ runs exceeded

3600 seconds in most cases even with a time-window, except for 32 processes. Consequently

ladderQ experiments with fewer than 32 processes were abandoned. On the other hand 2tLadderQ

performedwell due to its design. The 3tHeap outperformed the other 2 queues despite experiencing

2× more rollbacks [17].

Figures 5.18 and 5.19 show parallel simulation runtime and rollback characteristics with

pcs6, pcs7 and pcs8 for # of portables set equal to 25 and 75, respectively. Generally, 3tHeap

outperformed the other scheduler queues for all configurations. The performance benefits of 3tHeap

was more noticeable in the pcs8 configuration while undergoing a greater number of rollbacks, as

illustrated in Figures 5.18(c) and 5.19(c). In the pcs8 configuration with 75 portables per cell and

32 processors, 3tHeap experienced an average of 203624 rollbacks, while 2tLadderQ experienced

137800 and ladderQ experienced 90540 rollbacks.

64

Chapter 6

Conclusions

Efficient data structures, i.e., priority queues for managing pending event sets play a critical role

in the overall performance of both sequential and parallel simulations. In the context of this

study, we broadly classified the queues into single-tiered (heap and ladderQ) or multi-tiered

(2tHeap, fibHeap, 3tHeap, and 2tLadderQ) data structures based on their design. Multi-tier data

structures organize pending events into tiers, with each tier possibly implemented using different

structures. Organizing events into multiple tiers decouples event management and Logical Process

(LP) scheduling permitting different algorithms and data structures to suit the different needs [17].

The comparative analysis used a fine-tuned version of the Ladder Queue (ladderQ) proposed

by Tang et al. [13]. Our objective in fine-tuning was to reduce the runtime constants of the

ladderQ without significantly impacting its amortized O(1) time complexity. We realize the

reduction in runtime constants by minimizing memory management overheads – i.e., ¶ favor few

bulk operations via std::vector than many small ones via std::list, and · recycle memory or

substructures rather than reallocating them. Using std::vector (i.e., dynamically growing array)

enables use of algorithmswith lower time constants, such as: std::sort, over std::multiset or binary

heaps. The bulkmemory operations do consume additional memory, but our analysis shows that the

performance gains significantly outweigh the extra memory used. Accordingly, other simulation

kernels can significantly improve overall performance by replacing linked-lists with dynamically

growing arrays [17].

65

One challenge that arose during design of experiments was exploring the large multidimen-

sional parameter space in the PHOLD synthetic benchmark and PCS simulation model. Since

large parameter spaces may arise with actual simulation models. We propose the use of Generalized

Sensitivity Analysis (GSA) to reduce the parameter space. We propose the use of Sobol random

numbers to enable consistent exploration of the parameter space. GSA does require many simula-

tions to be run to fully explore the parameter space. However, it was able to significantly narrow

the parameter space, i.e., from 9 down to 1. GSA data shows that concurrency per LP indicated

by eventsPerLP parameter (i.e., batch of events scheduled per LP), plays the most dominant role.

The data was cross-verified using corellograms from longer simulations. Similar GSA analysis

can be applied to other models and benchmarks enabling consistent analysis for other aspects of

simulations [17].

The sequential and parallel simulation results showed that 2tLadderQ performs no worse than

ladderQ in sequential simulations (with t2k=1). Furthermore, the 2tLadderQ performs better in

parallel simulations because of its design that enables rapid cancellation of events during rollbacks.

In fact, the ladderQ required aggressive throttling of optimism without which it was impractical

to use in scenarios with many cascading rollbacks. These experiments were conducted with

fine-grained settings (i.e., granularity=0) and may vary with granularity. However, GSA data

suggests that the variation with changing granularity would be small, but may allowing relaxation

of the time-window. The results strongly favor the general use of 2tLadderQ over the ladderQ.

Furthermore, the multi-tier organization of 2tLadderQ can further reduce lock contention and

consequent synchronization overheads in multithreaded simulations [17].

The experiments show that multi-tier queues also incur additional overhead as part of the two

step process. Moreover, the runtime constants play an important role – for example, the Fibonacci

heapwith its O(1) time complexity formany operations still did not performwell in our benchmarks.

Consequently, in sequential simulations, their advantages were realized in simulations that have

higher concurrency (i.e., larger batches of events) per LP. The advantages of 3tHeap is realized

only when each LP has 10 or more concurrent events at each time step. Such scenarios with high

eventsPerLP arises in epidemic models [12] and detailed simulation models such as packet-level

66

network simulations [13]. The simulations results using PCS showed that 3tHeap is the desired

scheduler queue for optimal runtime performance in sequential and optimistic parallel simulations.

However, further experimental analysis with such models is necessary to validate effectiveness of

the data structures [17].

The multi-tier data structures enjoy lower runtime constants for event cancellation operations

which play an influential role in Time Warp synchronized parallel simulations. Therefore, the

multi-tier data structures perform consistently better in optimistic parallel simulations. In overall

summary, our analysis favor the use of 2tLadderQ and 3tHeap, as they are consistently effective

in sequential and parallel simulations, with sequential results also bearing potential application to

conservative and multithreaded simulations [17].

Future Work

The results in this thesis provide us with an understanding of the effectiveness of multi-tier data

structures for managing pending events in sequential & optimistic parallel simulations. However,

the thesis can be extended and our findings further strengthened through additional testing and

analysis. An area worthy of further exploration is to determine whether or not our research findings

are attributed to the characteristics and design of our multi-tier data structures or influenced by the

framework that supported the testing.

As such, we propose the implementation of our multi-tier data structure (i.e. ladderQ, 2tLad-

derQ and 3tHeap in a different programming language such as Java and comparing performance.

Furthermore, the data structures should be assessed using different parallel simulation frameworks

and experimental platforms. Franceschini et.al., evaluated different implementation of the pending

event using their Ruby based discrete event simulator [10]. While, Luca Toscano et al., designed

and implemented a Time Warp based parallel simulation framework developed in Erlang [23]. The

approaches and frameworks presented in these studies could be applied to the evaluation of our

multi-tier data structures. Lastly, we constrained our simulation models to the benchmark PHOLD

and the PCS model. It would be useful to assess the performance of our data structures using a

wider range of simulation models to examine the durability of our results

67

Bibliography

[1] S. Jafer, Q. Liu, and G.Wainer, “Synchronization methods in parallel and distributed discrete-

event simulation,” Simulation Modelling Practice and Theory, vol. 30, pp. 54–73, 2013.

[2] G. Fishman, Discrete-event simulation: modeling, programming, and analysis. Springer

Science & Business Media, 2013.

[3] R. M. Fujimoto, “Parallel discrete event simulation,” Communications of the ACM, vol. 33,

no. 10, pp. 30–53, 1990.

[4] R. R. Hill, J. O. Miller, and G. A. McIntyre, “Simulation analysis: applications of discrete

event simulation modeling to military problems,” in Proceedings of the 33nd conference on

Winter simulation, pp. 780–788, IEEE Computer Society, 2001.

[5] P. Pacheco, An introduction to parallel programming. Elsevier, 2011.

[6] R. Bryant, O. David Richard, and O. David Richard, Computer systems: a programmer’s

perspective, vol. 2. Prentice Hall Upper Saddle River, 2003.

[7] D. W. Jones, “An empirical comparison of priority-queue and event-set implementations,”

Communications of the ACM, vol. 29, no. 4, pp. 300–311, 1986.

[8] R. Rönngren and R. Ayani, “A comparative study of parallel and sequential priority queue

algorithms,” ACM Transactions on Modeling and Computer Simulation (TOMACS), vol. 7,

no. 2, pp. 157–209, 1997.

68

[9] R. Brown, “Calendar queues: a fast 0 (1) priority queue implementation for the simulation

event set problem,” Communications of the ACM, vol. 31, no. 10, pp. 1220–1227, 1988.

[10] R. Franceschini, P.-A. Bisgambiglia, and P. Bisgambiglia, “A comparative study of pending

event set implementations for pdevs simulation,” in Proceedings of the Symposium on Theory

of Modeling & Simulation: DEVS Integrative M&S Symposium, DEVS ’15, (San Diego, CA,

USA), pp. 77–84, Society for Computer Simulation International, 2015.

[11] C. D. Carothers and K. S. Perumalla, “On deciding between conservative and optimistic

approaches on massively parallel platforms,” in Proceedings of the Winter Simulation Con-

ference, WSC ’10, pp. 678–687, Winter Simulation Conference, 2010.

[12] J.-S. Yeom, A. Bhatele, K. Bisset, E. Bohm, A. Gupta, L. V. Kale, M. Marathe, D. S.

Nikolopoulos, M. Schulz, and L. Wesolowski, “Overcoming the scalability challenges of

epidemic simulations on blue waters,” in Parallel and Distributed Processing Symposium,

2014 IEEE 28th International, pp. 755–764, IEEE, 2014.

[13] W.T. Tang, R. S.M.Goh, and I. L.-J. Thng, “Ladder queue: Ano(1) priority queue structure for

large-scale discrete event simulation,” ACM Trans. Model. Comput. Simul., vol. 15, pp. 175–

204, July 2005.

[14] T. Dickman, S. Gupta, and P. A.Wilsey, “Event pool structures for pdes on many-core beowulf

clusters,” in Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced

Discrete Simulation, SIGSIM PADS ’13, (New York, NY, USA), pp. 103–114, ACM, 2013.

[15] S. Gupta and P. A. Wilsey, “Lock-free pending event set management in time warp,” in Pro-

ceedings of the 2Nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,

SIGSIM PADS ’14, (New York, NY, USA), pp. 15–26, ACM, 2014.

[16] R. Marotta, M. Ianni, A. Pellegrini, and F. Quaglia, “A non-blocking priority queue for the

pending event set,” inProceedings of the 9th EAI International Conference on Simulation Tools

and Techniques, SIMUTOOLS’16, (ICST, Brussels, Belgium, Belgium), pp. 46–55, ICST

69

(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),

2016.

[17] J. Higiro, M. Gebre, and D. M. Rao, “Multi-tier priority queues and 2-tier ladder queue for

managing pending events in sequential and optimistic parallel simulations,” in Proceedings of

the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 3–14,

ACM, 2017.

[18] M. R. Gebre, “Muse: A parallel agent-based simulation environment,” 2009.

[19] P. A. Wilsey, “Some properties of events executed in discrete-event simulation models,” in

Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of Advanced Discrete

Simulation, pp. 165–176, ACM, 2016.

[20] C. D. Carothers, R. M. Fujimoto, Y.-B. Lin, and P. England, “Distributed simulation of large-

scale pcs networks,” in Modeling, Analysis, and Simulation of Computer and Telecommuni-

cation Systems, 1994., MASCOTS’94., Proceedings of the Second International Workshop on,

pp. 2–6, IEEE, 1994.

[21] B. Guven and A. Howard, “Identifying the critical parameters of a cyanobacterial growth and

movement model by using generalised sensitivity analysis,” Ecological Modelling, vol. 207,

no. 1, pp. 11 – 21, 2007.

[22] G. Levy, “An introduction to quasi-random numbers,” Numerical Algorithms Group Ltd.,

http://www. nag. co. uk/IndustryArticles/introduction_to_quasi_random_numbers. pdf (last

accessed in April 10, 2012), p. 143, 2002.

[23] L. Toscano, G. D’Angelo, andM.Marzolla, “Parallel discrete event simulation with erlang,” in

Proceedings of the 1st ACM SIGPLAN workshop on Functional high-performance computing,

pp. 83–92, ACM, 2012.

70

	Introduction
	Parallel Simulation
	Managing Pending Events
	Thesis Statement

	Background and Related Work
	Ladder Queue (ladderQ)
	Distinguishing aspects of this research
	Miami University Simulation Environment (MUSE)
	Experimental Platform

	Simulation Benchmarks
	Parallel HOLD (PHOLD)
	Personal Communication Service Network (PCS)
	Performance Metrics

	Scheduler Queues
	Binary Heap (heap)
	Binomial Heap (binomHeap)
	Run time comparison of heap vs. binomHeap

	Two-tier Heap (2tHeap)
	2-tier Fibonacci Heap (fibHeap)
	Three-tier Heap (3tHeap)
	Ladder Queue (ladderQ)
	Fine tuning Ladder Queue performance
	Shortcoming of Ladder Queue for optimistic PDES

	2-tier Ladder Queue (2tLadderQ)
	Performance gain of 2tLadderQ

	Experiments
	Parameter reduction via GSA
	GSA results for sequential simulations using PHOLD
	GSA results for sequential simulations using PCS
	Summary of GSA results for sequential simulations
	GSA results for parallel simulations

	Configurations for further analysis
	 Sequential Simulations
	PHOLD sequential simulation results
	PCS sequential simulation results

	Parallel simulation assessments
	Throttling optimism with a time-window
	Efficient case for ladderQ
	Knee point for 3tHeap vs. ladderQ
	Best case for 3tHeap

	Conclusions
	Bibliography

