
IEEE NETWORK, JULY 2023 1

Learning-based Network Performance Estimators:
The Next Frontier for Network Simulation

Kai Shen , Baochun Li

Abstract—Over the past few decades, a tremendous amount
of research attention has been received to derive the network
performance estimation problem. In its context, network perfor-
mance estimators can provide an early-stage prediction before
emulation and real-world deployment, which is essential for
network design and optimization. The design philosophy of
network performance estimators is to design accurate estimators
with scalability and generality. However, conventional rule-based
network simulators are not able to satisfy all these demands
simultaneously. To achieve these objectives, it has become an
inevitable and appealing trend to empower network performance
estimators with machine learning, especially with deep learning
techniques. In this article, we present a cursory glimpse of
existing results over the past five years in learning-based network
performance estimators, with a particular focus on understanding
the current challenges, the basic ideas and issues of state-of-
the-art solutions, and essentially, the open challenges and future
directions in research attention.

I. INTRODUCTION

Network simulation is one of the most fundamental and
challenging problems in computer networking research. In the
context of network simulation, network performance estima-
tors act as a critical component and have evolved over a few
decades. It can provide an early-stage network performance
estimation before emulation and real-world deployment, which
is essential for future network architecture optimization, such
as topology design and device parameter tuning. The primary
design objective with network performance estimators is to be
as accurate and scalable as possible. Conventional rule-based
simulators fail to meet such an objective: they are accurate, but
not necessarily scalable. Emerging deep learning techniques
offer a promising alternative.

Over the past few decades, a tremendous amount of research
attention has been received to derive the network simulation
problem. The community has resorted to two different di-
rections of research towards rule-based network simulation,
which are illustrated in Table I. The first category is discrete
event simulation (DES), which serves as the most classic type
of network simulation. Typical DES-based simulators include
ns-3 [1], OMNeT++ [2], and OPNET [3]. With packet-level
granularity, DES explicitly simulates each packet and its asso-
ciated events, enabling a comprehensive representation of all
network components and providing high simulation accuracy.
However, DES suffers from its scalability when we encounter
large-scale network simulation tasks, like FatTree [4] topology
for data center networks. Although the direction of Parallel and
Distributed Discrete Event Simulation (PDDES) [5] has been
carefully explored to alleviate the synchronization overhead

Kai Shen and Baochun Li are with the University of Toronto.

TABLE I
CHARACTERISTICS OF RULE-BASED NETWORK SIMULATORS.

Simulators Accuracy Granularity Scalability
DES [1]–[3] high packet-level low

Fluid models [6] low flow-level high
Network calculus [7] low flow-level high

Queueing-theoretic models [8] high packet-level low

associated with the communication traffic between different
processes, there is still no speedup guarantee due to the
nature of synchronization algorithms being applied and the
architecture of the computing platform in use.

The second network performance estimation approach can
be categorized as continuous simulation. As the name implies,
continuous simulation focuses on interpreting the abstraction
of traffic flows in the target network. Many attempts have been
made towards continuous simulation, and they can be divided
into three branches.

The first branch of continuous simulation is stochastic fluid
models [6], an abstraction that simplify the representation
of data flows by treating it as a continuous fluid. These
fluid models are efficient as a flow-level solution which offer
computational efficiency, ease of analysis, and scalability when
compared to packet-level simulations. However, these benefits
are obtained at the expense of accuracy. Secondly, Network
calculus [7] is a theoretical flow-level analytic method that of-
fers a mathematical framework to reveal worst-case bounds on
network performance, such as delay, jitter, and loss. Neverthe-
less, network calculus requires precise bounds of arrival traffic
patterns to derive performance metrics, which is challenging
in increasingly complex network environments. Lastly, the
most advanced continuous simulation approach is queueing-
theoretic models [8], which allows for accurate simulation
by characterizing system behavior using a queueing model
comprising packet arrival modeling and scheduling server
modeling. With respect to packet-level queueing theories, sim-
ulators can easily imitate the behavior of the whole network,
including packet arrivals and scheduling disciplines. Hence,
it can accurately predict the delay and loss for each packet.
Such an extremely effective means nevertheless encountered
the scalability issue. That is, its computation overhead is ex-
ponentially dependent on both the number of queues and their
buffer sizes, rendering it impractical for large-scale network
performance estimations.

With the rapid development of deep learning, there are
recent research interests towards moving away from the con-
ventional wisdom of using rule-based predictions, and shifting
to the use of deep learning techniques for network performance

IEEE NETWORK, JULY 2023 2

estimation. The essence of applying deep learning algorithms
is to replace the computationally expensive parts of prior work
with deep neural networks (DNN), so that such learning-
based network performance estimators can achieve satisfactory
accuracy with high scalability. It is worth emphasizing that
the ultimate design objective is to accurately estimate network
performance with scalability and generality. Over the past five
years, it has become a trend in academia to propose high-
quality network performance estimators by leveraging deep
learning algorithms.

In this article, we present a concise survey of recent promi-
nent research on the growing popularity of proposing network
performance estimators based on deep learning techniques. We
highlight several key challenges, share three state-of-the-art
learning-based network performance estimators followed by
their corresponding issues. Furthermore, we provide insights
toward potential future directions in this field.

II. EXAMINING THE CHALLENGES OF LEARNING-BASED
NETWORK PERFORMANCE ESTIMATORS

To date, existing research on discrete event simulation and
continuous simulation has demonstrated notable performance
in either simulation accuracy or scalability, not yet both.
Inevitably, their performances are still under satisfaction in
the face of large-scale networks because of their inherent
drawbacks. Getting away from previously commonly adopted
rule-based network simulators, we notice a trend in encapsu-
lating deep learning techniques to construct the next frontier
of network performance estimators. Taking full advantage of
deep neural networks, next-generation network performance
estimators can be both accurate and scalable. However, consid-
ering the high performance estimation demand and the widely
diverging quality of different networks, there are still several
critical challenges that should be seriously considered and
carefully addressed.

Accuracy: The accuracy of learning-based network per-
formance estimators is the most straightforward and explicit
evaluating metric. While deep learning techniques showcase
the potential to produce accurate observations, we still need
to guarantee that the learning-based estimators are sufficiently
trained and can truly be comparable to those of packet-
level simulators, i.e., discrete event simulators. Additionally,
to maximize accuracy, one possible approach is to increase
the interpretability of the overall network structure. That is,
attempting to capture the connections between the final eval-
uation metrics and the characteristics of traffic flows, network
topologies, and device configurations. Higher interpretability
will lead to better employment of deep learning techniques,
which can also serve as an essential challenge for accuracy
improvement.

Scalability: Scalability is another essential challenge for
network performance estimators. In order to design scalable
estimators to be employed in large-scale networks, we seek
to focus on lowering computational and communicational
burdens, so as to increase training efficiency. As accurate DES
and queueing-theoretic models are computationally-complex
to scale beyond one or a few devices, deep learning techniques

exhibit considerable application potential due to their constant
time complexity during model inference. In that way, one
of the promising design philosophies is parallelism. With
current distributed and parallel deep learning frameworks,
the inference of learning-based estimators can be accelerated
easily. However, only parallelism itself is not enough, and how
to combine other training approaches reasonably on a parallel
basis to improve efficiency is also a decisive challenge.

Generality: More importantly, the next frontier of network
performance estimators should be generalizable. Ideally, such
learning-based estimators should be applicable to arbitrary
network designs, encompassing network topologies, traffic
patterns, and network device configurations. Additionally,
they should be able to predict a variety of metrics, such
as delay, jitter, and loss. It is worth noting that retraining
the entire estimator model when facing even minor network
changes is not economical. Thus, developing reliable and
easily adjustable learning-based estimators with generality is
a substantial challenge.

III. BASIC IDEAS AND ISSUES OF ADVANCED SOLUTIONS

In this section, we walk through three representative frame-
works for DNN-based network performance estimators from
the research community. With our investigation of how deep
neural networks are leveraged through the lens of recent
literature, we have seen that they created a trend to replace a
specific portion of network architectures with advanced deep
learning models for the next frontier of network performance
estimation. Again, the ultimate design objectives are to ac-
curately estimate network performance with scalability and
generality.

A. RouteNet

In network performance estimation tasks, traditional sim-
ulators struggle to provide functional networks models for
accurate predictions. To bridge this gap, it is conceivable
that deep learning algorithms can be used to understand the
complex relationships among topology, routing, and input traf-
fic, thereby producing accurate estimates of key performance
indicators (KPIs) like delay distribution and loss.

As one of the first attempts toward this direction, Rusek
et al. [9] designed a new framework, named RouteNet, to
predict key performance indicators of the whole network by
employing Graph Neural Networks (GNN) [10]. The high-
level idea is to build the network as a graph, where each
edge represents a link between network devices (e.g., routers,
switches). In particular, GNN is leveraged to process the graph
so as to capture the complex relationships in each path given
the network topology and routing configurations. According
to relational reasoning and combinatorial generalization over
graph-based information structure, RouteNet can estimate the
performance of arbitrary topologies, routing schemes and
variable traffic intensity.

Figure 1 demonstrates that RouteNet accommodates
variable-size network topologies, arbitrary source-destination
routing schemes, and traffic matrix as input while predicting
end-to-end key performance indicators as output. In details,

IEEE NETWORK, JULY 2023 3

 GNN-based
 model

Topology

Routing

Traffic matrix

Source-destination KPIs
(delay, jitter and loss)

RouteNet

Fig. 1. The core architecture of RouteNet is a GNN-based model. It takes
topology, routing, and traffic matrix as input, and outputs source-destination
key performance indicators.

RouteNet treats the entire network between the source and the
destination as a black-box, and employs GNN models to con-
struct the message-passing architecture specifically tailored to
produce accurate performance estimates. The model produces
two types of output: packet-level information, such as end-
to-end delay representing packet sojourn time from source to
destination, and link-level information, which includes statis-
tics for each link or path, like packet drop rate over a period of
time for each pair of devices. Note that the main assumption
behind RouteNet is that the information for all links, as well as
paths that are constructed by links, can be encoded in learnable
vectors of real numbers. Based on this assumption, RouteNet
is built upon the following two principles:

• The state of a path depends on the state of all the links
that lie on the path.

• The state of a link depends on the state of all the paths
that traverse the link.

As one of the early-stage explorers to build network per-
formance estimators upon deep neural networks, there are a
number of clear advantages brought forth by RouteNet. The
most salient advantage is its prediction capability over arbi-
trary topologies, routing schemes and variable traffic intensity.
Secondly, benefiting from its network-scale modeling, which
encompasses the entire network in a single model, RouteNet
is scalable by performing with low computational cost in
acceptable time budgets. Hence, RouteNet can be used for
Quality of Service (QoS)-aware routing optimization tasks by
evaluating the resulting performance after testing new routing
modifications. In addition, it can also be useful to explore the
optimal network device upgrading problem.

With the design philosophies in mind, we argue that
RouteNet has the potential to perform better in many aspects.
It is intuitive to point out that the scope of the network-
scale GNN-based model can be narrowed down to achieve
more interpretability of networks, and thus achieve better
estimation performance. For the accuracy challenge, RouteNet
only performs well on small-scale networks, and it is far
from satisfaction when facing more complicated network
topologies. Although RouteNet supports a variety of QoS-
aware performance metrics that include delay, jitter, and packet
drops, it is impossible to provide more flexibility toward extra
accurate performance indicators. For instance, the quantile-
based end-to-end measure, which is not sub-additive. More-
over, RouteNet is devoid of higher generality due to its inherent

drawback of using specially trained model for each network.
Even though the computational overhead is manageable, the
customized source-destination settings restrict the possibilities
to reuse pre-trained models, posing a challenge for rapid model
deployment on large-scale networks.

B. MimicNet

RouteNet has shown that there is a crucial interplay between
deep learning techniques and network performance estimators.
Continuing their work on modeling the whole network by
deep neural networks, Zhang et al. [11] proposed MimicNet
by combining DES and deep learning techniques. Similar to
RouteNet, MimicNet is inspired by providing users with an
abstraction of the simulation for a portion of the network
while leveraging the advances in deep learning techniques. A
significant difference in the motivation of MimicNet, however,
is the severe scalability issue of modern networks. Through-
out its observations, modern networks, especially data center
networks, connect up to hundreds of thousands of machines,
which should be capable of processing hundreds of billions of
packets per second in aggregation. As a consequence, Mim-
icNet targets on scale-out network architectures, in particular,
FatTree topology. In essence, FatTree topology is a layered
network architecture, consisting of core, aggregation, and edge
layers with multiple parallel paths between nodes. In addition,
a cluster refers to a pod of switches in the edge and aggregation
layers, and in a k-pod FatTree, each cluster contains k switches
with k ports per switch.

As proposed to address the scalability issue in scale-out data
center networks, MimicNet is believed to have two outstand-
ing design shining points. Firstly, MimicNet sheds the first
light on designing accurate and scalable network performance
estimators by reducing the scope of the DNN from network
scale to cluster scale. By constructing and composing models
at the granularity of individual data center clusters, which are
named as mimics, MimicNet employs DNNs to model their
performance. This approach allows it to perform packet-level
accurate simulations for each cluster within the data center
network. In more detail, as a cluster-level estimator, MimicNet
removes the observable effects of internal traffic and bake its
effects into the cluster-level predictions. Therefore, MimicNet
uses mimics to resemble regular clusters and predicts how
the network of the cluster will affect packets on the basis of
external traffics.

The second significant design philosophy of MimicNet is
to combine DES and continuous simulation, as well as deep
learning techniques. It is worth noting that the goal of Mim-
icNet is not to replicate the effects of large-scale network
simulation, but to generate results that are able to exhibit their
characteristics. Hence, it is natural to conceive a simple but
effective design of network estimators, in which the system,
is coupled by two key models responsible for packet-level
simulation and network behaviors learning, respectively. DES
finishes the packet-level accurate simulation of clusters, and
its output includes detailed queueing and transport layer dy-
namics. Afterwards, deep-learning-based internal models will
be leveraged to train mimics that learn both non-observable

IEEE NETWORK, JULY 2023 4

Hyper-parameter Tuning

 Learned
 Model

Model Testing

Data Generation

Feature
Extraction

Module

LSTM model

+

Model Training

 Hyper-tuned
 Models

Large-scale

Simulation

 Hyper-tuned
 Models
 Hyper-tuned
 Models

Fig. 2. The workflow of MimicNet includes 5 steps: a) data generation through small-scale observations; b) model training; c) model testing; d) hyper-parameter
tuning to produce tuned LSTM models for use in mimics, which speed up large-scale simulations; e) large-scale simulation by replacing the majority of the
network.

internal and cross-cluster behaviors based on the collected
data.

Figure 2 illustrates the end-to-end, fully automated work-
flow of MimicNet. There are five steps in the full workflow
of MimicNet: data generation, model training, model testing,
hyper-parameter tuning, and large-scale simulation. The usage
of MinicNet begins with a small-scale data generation. In
such a small subset of the full simulation, two clusters will
communicate with each other, and the generated full-fidelity,
small-scale simulation results will be utilized for later model
training and testing stages. Next, MimicNet adopts Long Short
Term Memory (LSTM) [12] models as the core, which will be
trained and tested recursively. Augmenting this training phase
is a configurable hyper-parameter tuning stage in which Mim-
icNet explores various options for modeling. With respect to
the hyper-parameter tuning stage, MimicNet aims to maximize
the accuracy of end-to-end metrics like throughput and Flow-
Completion Time (FCT), as well as increasing the generality
to larger configurations and different traffic matrices. The final
step involves replacing clusters in large-scale networks with
tuned mimics to accelerate simulation and increase prediction
accuracy. Also, it is worth noting that a salient feature of
MimicNet is that the first four steps are all done at small
scale, which serve as the main reason why MimicNet is able
to outperform prior works in rapid training and deployment.

Performance-wise, MimicNet achieves high accuracy on
all metrics, including FCT, throughput and Round-Trip Time
(RTT). Across the entire range, the Cumulative Distribution

Function (CDF) of MimicNet adhere closely to the ground
truth (i.e., the full-fidelity, packet-level simulation), and be-
haves much better than other continuous simulators. It is
reasonable to achieve such high accuracy as it utilizes DES to
accurately simulate a small subset of the scale-out network,
and thus can obtain and feed the LSTM model with detailed
information such as queueing and protocol interactions. With
respect to the scalability, MimicNet performs surprisingly good
that it can provide consistent speedups up to 675× for the
largest network that full-fidelity DES simulators could handle,
which has 128 clusters in a FatTree topology. Above that
size, full-fidelity DES could not finish within three months,
while MimicNet can finish in under an hour. From this point
of view, the scalability of MimicNet is incredibly remarkable,
benefiting from its substantial design philosophy that models
each cluster as a whole.

Although MimicNet achieves orders of magnitude reduction
in simulation completion time of modern scale-out data center
networks, its generality is still a severe concern. Along this
direction, we argue that MimicNet only works for FatTree
networks. Hence, we question its generality, and believe that
it is not able to be agile in adapting to more complex and
challenging network topologies.

C. DeepQueueNet

Continuing the prevailing work of MimicNet, Yang et al.
[13] set their sights on further improving the generality of
network performance estimators and proposed DeepQueueNet.

IEEE NETWORK, JULY 2023 5

Ingress stream

Forwarding tensor

Multi-port Device Model

PFM
tensor

multiplication
SEC

PTM

Egress stream

Fig. 3. There are three parts in multi-port device model of DeepQueueNet:
packet-level forwarding model, packet-level traffic-management model, and
statistical error correction model. The overall device model takes ingress
stream and forwarding tensor as input, and outputs the egress stream.

There are three insights of their estimator design. First, based
on the success of the predecessor that achieves high accuracy
and scalability by narrowing down the scope of DNN-based es-
timators from the network level to cluster level, DeepQueueNet
is motivated to further narrow down the scope of DNN-based
estimators to device level. Second, DeepQueueNet seeks to
address the unsolved generality issue, making it more cost-
effective to adapt to changes in network settings. This ensures
that network performance estimators will not be confined to
a specific topology. The last insight lies in providing packet-
level statistics to reveal concrete performances about specific
devices, flows, or even packets. In other words, DeepQueueNet
aims to promote performance visibility to the packet level.

With the goal of achieving accurate, scalable, and general
deep-learning-based network estimators with packet-level vis-
ibility, DeepQueueNet, combines prior networking knowledge
and advanced simulation techniques. More specifically, it
starts with solid queueing-theoretic modeling of networks, and
utilizes deep neural networks to model the mathematically-
intractable or computationally-expensive parts.

To run the simulations with the underlying deep learning
framework, there are basically three steps in the workflow.
The first step is simulation preparation and device modeling.
Similar to DES, we need to prepare simulation settings to
feed DeepQueueNet, which include network topologies, de-
vice configurations, and traffic generators. Meanwhile, as a
device-scale network performance estimator, DeepQueueNet
trains and maintains a device library. In this library, deep
learning algorithms are applied to predict the input-output
relationships of various network devices, such as routers and
switches. As such, users can easily retrieve device models
from the pre-trained device library based on their specified
device configurations. Consequently, DeepQueueNet can own
the packet-level visibility from the predicted results of each
device while maintaining the generality across network devices
and traffic patterns. Afterwards, the second step is to compose
the network. Given the network topology, DeepQueueNet will
map it to a corresponding neural network architecture. Hence,
it surpasses MimicNet in terms of the generality for network
topologies because of its flexibility in device setting within
the network. Lastly, DeepQueueNet will run parallel inference.
That is, decomposes the network for parallel inferences. It pro-
posed a core execution algorithm to guarantee the correctness
of the framework running, and greatly increased the scalability
to network sizes as it processes packets in batches.

Packet
stream

Feature
Extraction

BLSTM

BLSTM

BLSTM
...

N

BLSTM
N Encoder

Packet
delays

Attention

BLSTM

BLSTM

BLSTM

...
N

BLSTM
NDecoder

Fig. 4. The DNN architecture of the packet-level traffic management model.

One of the most prominent design of DeepQueueNet, we
argue, is about the device modeling. There are three types
of devices considered in this framework: link device, switch
device and router device. For the simplest link device with only
one input and one output port, DeepQueueNet regards it as an
operator that adds a latency to all packets in the ingress time
series, where the latency calculation is based on the length
of each packet and the characteristics of the link (i.e., the
length, the bandwidth, and the propagation speed of the link).
Generally, multi-port network devices take the packet stream
of each ingress port as the first input, obtain a forwarding
tensor as the second input, and output packet streams of all
egress ports to represent the device-level simulation. Notably,
the forwarding tensor acts as an indicator of the forwarding
path from the ingress port to the the egress port of all packets.

As illustrated in Figure 3, multi-port network device mod-
els have two sub-models: packet-level forwarding model
(PFM) and packet-level traffic-management model (PTM).
The packet-level forwarding model specifies the forwarding
behavior of the device, that is, to describe the device behavior
explicitly using tensor multiplication of the given forwarding
tensor and the ingress stream information. The advantage of
adopting such PFMs is to enable high scalability by forwarding
in batches, while previous studies could only process each
packet sequentially.

With respect to PTM, its model will predict how much
delay is experienced for each packet. Given the pre-processed
packet vector, it will perform inference from pre-trained DNN
models and add delays to each packet in batches. As a
sequence-to-sequence processing task, DeepQueueNet chose
the Transformer architecture [14] with attention mechanism to
train the PTM. Figure 4 reveals the detailed DNN architecture
of the PTM. According to the generated packet-level training
data from DES simulators, training PTM follows the approach
of regression in forecasting the delay a packet experiences in a
device. The sojourn time of each packet serves as the response
variable, and the features extracted from the feature extraction
model are regarded as the predictors. In implementation de-
tails, DeepQueueNet selects a 2-layer Bidirectional Long Short

IEEE NETWORK, JULY 2023 6

Term Memory (BLSTM) [15] cell for the Decoder-Encoder
mechanisms, and three parallel heads are jointly attended
to the information from different representation subspaces at
different positions. In addition, DeepQueueNet also designed
a statistical error correction (SEC) model as the post-PTM
part, where the effect of the accumulated errors of the pre-
dicted sojourn time will not be propagated along the packet
transmission path.

As the state-of-the-art network performance estimator,
DeepQueueNet is superior to all previous simulators in many
aspects. Firstly, it provides accurate delay distributions in
an end-to-end fashion, which is close to the ground-truth in
many modern networks. Secondly, DeepQueueNet achieves
packet-level visibility, which help to realize expressive de-
vice models, process packets in batches, and predict the
input-output relationship. Besides, DeepQueueNet has better
generality than all previous deep-learning-based estimators.
Its generality performs well for different traffic generation
models, topologies, and traffic management mechanisms. Last
but not least, DeepQueueNet is scalable because of its ability
of parallel inferences and its near-linear speedup with the
number of additional GPUs.

However, there are still some notable disadvantages that
cannot be overlooked. The most obvious limitation of Deep-
QueueNet is that it cannot deal with stateful behaviors of
network devices. This limitation is because the network-layer
design will ignore the complex interactions among the high
layers, such as the underlying transport protocols, the network
layer traffic management mechanisms, as well as any possible
interaction between devices. Moreover, the DeepQueueNet
puts aside the prediction of packet drops, limiting its applica-
bility to networks with only well-behaved performances (i.e.,
no packet drop), thus reducing its practical value in realistic
environments.

D. Recap

In summary, RouteNet takes the initial step in utilizing
DNNs for network simulation. Expanding on this idea and
targeting data-center networks, MimicNet reduces the network
portion that DNNs mimic from the entire network to the
clusters, significantly enhancing scalability. Finally, the most
advanced DeepQueueNet models network devices, substan-
tially improving accuracy and generality while maintaining
satisfactory scalability. Among these three work, MimicNet ex-
hibits the highest scalability due to its original focus on scale-
out networks, whereas DeepQueueNet possesses the highest
accuracy and generality.

IV. OPEN CHALLENGES AND FUTURE DIRECTIONS

In retrospect, the meteoric rise of research interests in deep-
learning-based network performance estimators was largely
fueled by the rapid maturation of deep learning technologies,
as well as by the need of accurate network simulation, most
notably in large-scale modern networks. The essence of deep-
learning-based estimators is to take full advantage of both solid
queueing theories and advanced deep learning techniques,
realizing potentially accurate, scalable ones with generality

on network simulation tasks. However, there are many open
technical challenges in the next frontier of estimators to be
addressed before fully realizing its benefits.

Better generality. While recent estimators have demon-
strated good performance in their experiments, there is still
room for improvement in terms of generality. For instance,
next-generation learning-based estimators should focus on
generalizing more complex network devices. Even though
DeepQueueNet is generalizable to arbitrary topologies, traffic
patterns, and network devices, we argue, it still needs to
maintain a relatively large device library for different switch
models. Consequently, it lacks the generality to adapt to new
device models that have not been previously trained with the
corresponding parameters. Worse, these estimators have not
been well and fully evaluated under realistic modern network
scenarios.

Better interpretability. Another visible roadblock to re-
alistic performance improvement of deep-learning-based es-
timators is the interpretability of their design. Reflecting on
the development of network performance estimators, increased
interpretability was achieved by narrowing of the application
scope of DNNs, which substantially improved the accuracy of
the prediction. Hence, exploring ways to better interpret the
network through a deeper understanding of networking theo-
ries is a worthwhile question to address, as it may enhance the
rationality of estimators and consequently improve prediction
performance.

In light of the aforementioned open challenges, we discuss
the following potential research directions for future studies.

Accommodating more devices. As mentioned above,
higher interpretability can help increase accuracy as it lever-
ages DNNs to imitate more reasonable modules. Thus, it is
one of the promising directions to use DNNs to perform more
black-box modeling of traffic management mechanisms on the
device scale. In fact, it is a meaningful research direction to
model more complicated packet-processing network devices.
For example, modeling some network devices that can split or
combine packets.

Narrowing down the scope of DNNs. Another promising
approach is to further narrow down the scope of DNNs
by interpreting the components of each network device and
using DNNs to replace only the computationally complex
parts. For instance, improved generality could be achieved by
utilizing DNNs to represent only the ports in a switch. In that
case, network devices could be composed initially, followed
by connecting the network using the composed devices and
given topologies. As a result, maintaining a large device
library would be unnecessary, potentially leading to increased
generality.

Applications for network optimization. In addition to
building estimators with higher scalability and better general-
ity, we can also focus on applying them to network optimiza-
tion tasks. To some extent, it is an inevitable and appealing
trend to leverage the predictions of network performance
estimators to apply modifications in a network configuration.
In particular, we point out that potential optimization tasks
include but are not limited to the following two problems.
Firstly, how to optimize the QoS-aware routing based on the

IEEE NETWORK, JULY 2023 7

simulation results? Secondly, how to optimize the network
by adding new links in the topology or upgrading network
devices.

V. ACKNOWLEDGMENTS

The research was supported in part by a RGC RIF grant
under the contract R6021-20, and RGC GRF grants under the
contracts 16209120, 16200221 and 16207922.

REFERENCES

[1] G. F. Riley and T. R. Henderson, ”The ns-3 Network Simulator,” Modeling
and tools for network simulation, vol. 14, 2010, pp. 15-34.

[2] A. Varga, ”A Practical Introduction to the OMNeT++ Simulation Frame-
work,” Recent advances in network simulation, 2019, pp. 3-51.

[3] Z. Lu and H. Yang, ”Unlocking the Power of OPNET Modeler,” Cam-
bridge University Press, 2012.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, ”A scalable, commodity data
center network architecture,” Proc. ACM SIGCOMM, 2008, pp. 63-74.

[5] S. Jafer, Q. Liu, and G. Wainer, ”Synchronization Methods in Parallel and
Distributed Discrete-event Simulation,” Simulation Modelling Practice
and Theory, vol. 30, 2013, pp. 54-73.

[6] V. Misra, W. Gong, and D. Towsley, ”Fluid-based Analysis of a Network
of AQM Routers Supporting TCP Flows with an Application to RED,”
Proc. ACM SIGCOMM, 2000, pp. 151-160.

[7] F. Ciucu and J. Schmitt, ”Perspectives on Network Calculus – No Free
Lunch, but Still Good Value,” Proc. ACM SIGCOMM, 2012, pp. 311-322.

[8] H. Zhang, ”Service Disciplines for Guaranteed Performance Service in
Packet-Switching Networks,” Proc. the IEEE, vol. 83, no. 10, 1995, pp.
1374-1396.

[9] K. Rusek, J. Suarez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, ”RouteNet: Leveraging Graph Neural Networks for network
modeling and optimization in SDN,” IEEE JSAC, vol. 38, no. 10, 2020,
pp. 2260-2270.

[10] F. Scarselli, M. Gori, A. Tsoi, M. Hagenbuchner, and G. Monfardini,
”The Graph Neural Network Model,” IEEE TNN, vol. 20, no. 1, 2008,
pp. 61-80.

[11] Q. Zhang, K. K. Ng, C. Kazer, S. Yan, J. Sedoc, and V. Liu, ”MimicNet:
Fast Performance Estimates for Data Center Networks with Machine
Learning,” Proc. ACM SIGCOMM, 2021, pp. 287-304.

[12] F. A. Gers, J. Schmidhuber, and F. Cummins, ”Learning to Forget:
Continual Prediction with LSTM”, Neural Computation, vol. 12, no. 10,
2000, pp. 2451-2471.

[13] Q. Yang, X. Peng, L. Chen, L. Liu, J. Zhang, H. Xu, B. Li, and
G. Zhang, ”DeepQueueNet: Towards Scalable and Generalized Network
Performance Estimation with Packet-level Visibility,” Proc. ACM SIG-
COMM, 2022, pp. 441-457.

[14] J. Devlin, M. Chang, K. Lee, and K. Toutanova, ”BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[15] Z. Huang, W. Xu, and K. Yu, ”Bidirectional LSTM-CRF Models for
Sequence Tagging,” arXiv preprint arXiv:1508.01991, 2015.

BIOGRAPHIES

Kai Shen is currently pursing his M.A.Sc. degree at the De-
partment of Electrical and Computer Engineering, University
of Toronto. He received his B.Eng. degree in Computer Sci-
ence and Engineering from The Chinese University of Hong
Kong, Shenzhen. His research interests include networking,
deep learning and federated learning.

Baochun Li received his B.Eng. degree from Tsinghua
University and his M.S. and Ph.D. degrees from the University
of Illinois at Urbana-Champaign. He is a professor in the De-
partment of Electrical and Computer Engineering, University
of Toronto. He is a Fellow of IEEE and Fellow of the Canadian
Academy of Engineering.

