
On the modelling of transportation evacuation: an
agent-based discrete-event hybrid-space approach
B Zhang1, WKV Chan1* and SV Ukkusuri2

1Rensselaer Polytechnic Institute, Troy, NY, USA; and 2Purdue University, West Lafayette, IN, USA

This paper develops an agent-based discrete-event simulation (AB-DES) modelling framework for transportation evacuation by
integrating an event scheduling scheme into an agent-based method. This framework has a unique hybrid simulation space that
includes a continuous space and a flexible-structured network. This hybrid space overcomes the cellular space limitation in
cell-based evacuation models and provides flexibilities in simulating different evacuation scenarios. Based on this AB-DES
framework, we create an evacuation AB-DES model using the Parallel DEVS (Discrete-EVent System specification) formalism.
We develop an algorithm to employ the event-scheduling approach to eliminate time-step scheduling used in classic agent-based
models. Experimental results show that the AB-DES model is significantly more efficient than a pure ABS model while
keeping high model fidelity and the same model capabilities including agent cognitive capability, collision avoidance, and low
agent-to-agent communication cost. The agents’ cognitive capability and autonomy property as well as the hybrid simulation space
differentiate this AB-DES model from classic pure discrete-event models.
Journal of Simulation (2014) 8(4), 259–270. doi:10.1057/jos.2014.3; published online 21 February 2014

Keywords: agent-based simulation; discrete-event simulation; hybrid simulation; DEVS; evacuation planning

1. Introduction

Transportation evacuation is an important issue concerning many
researchers from different disciplines including engineering,
social science, and policy. Evacuation planning is also a critical
step in homeland defence preparation and disaster emergency
management. Underestimation of this issue and ineffective
planning could result in an over-simplified understanding of this
complex evacuation issue, leading to loss of lives and properties.
For instance, in 2005, when New Orleans was hit by Hurricane
Katrina and the Houston area was threatened by Hurricane Rita,
both evacuations suffered from tremendous traffic jams and chaos
(Lindell et al, 2005). Similar traffic evacuations are common
occurrences in many hurricanes. Understanding the traffic
dynamics during an evacuation requires the modelling of interac-
tions of a large number of agents and their interacting behaviour
such as emergency agencies, first responders, household level
behaviour, driver behaviour, and so forth. Various techniques
have been proposed to model and understand the hurricane
evacuation process (Hamacher and Tjandra, 2002; Lu et al,
2005; Zou et al, 2005; Chiu et al, 2008). Among these
techniques, computer simulation has been an effective experi-
mental means for evacuation planning and management due to its
low cost and high speed. A real-time simulation model can help
predict traffic conditions during an evacuation and identify
bottlenecks in transportation networks. In addition, an evacuation

simulation model allows the evaluation of various policies in
improving the evacuation process such as contraflow lanes and
lane closures. Therefore, a good simulation model can assist the
development of a well-coordinated evacuation plan, which could
save lives and properties.

An evacuation process is a stochastic dynamic process with
complex interactions among autonomous evacuees, who employ
various driving behaviours. The collective behaviour of the
evacuees sometimes can be unpredictable or disastrous.

From a modelling point of view, to study such an evacuation
process and to understand its intrinsic phenomena, one needs to
model the behaviour of evacuees including their decision making,
cognitive capabilities, and complex interactions among evacuees
and between evacuees and emergency agencies. Classic discrete-
event simulation (DES) models are not suitable for this type of
systems as the entities in a DES model are rather simple, passive,
and non-autonomous (see a discussion on this limitation of DES
models in Chan (2010)).

ABS is a computational methodology for modelling intelligent
agents, capturing system-level behaviours, and examining the
interactions between autonomous agents. Because of the flex-
ibility and capability in modelling agent behaviours and interac-
tions, the ABS approach is particularly suitable for studying
evacuation process to explore emergent collective phenomena
during an evacuation. Several ABS models have been developed
to investigate emergent evacuation situations (Hackney and
Marchal, 2009; Lammel and Nagel, 2009; Zhang et al, 2009).
A multi-agent behaviour-oriented model is developed in Kagaya
et al (2005). There, a survey is first carried out to construct the
behavioural rules of residents, and then a multi-agent evacuation

*Correspondence: WKV Chan, Rensselaer Polytechnic Institute, Department
of Industrial and Systems Engineering, CII 5015, 110 8th St., Troy,
NY 12180–3590, USA.

Journal of Simulation (2014) 8, 259–270 © 2014 Operational Research Society Ltd. All rights reserved. 1747-7778/14

www.palgrave-journals.com/jos/

http://dx.doi.org/10.1057/jos.2014.3
http://www.palgrave-journals.com/jos


model is developed based on these rules. This multi-agent model
is tested by reproducing a district earthquake evacuation in
Japan. The work of Pelechano et al (2005) describes a crowd
simulation system, which incorporates a psychological model to
obtain emergent behaviours of humans during evacuation. This
crowd simulation system manages individual motions and
way-finding process and helps to understand human behaviours
during building evacuations. A micro-simulation framework for
large-scale pedestrian evacuations is introduced in Lammel and
Nagel (2009). The simulation is an iterative process and every
agent tries to optimize its individual evacuation plan at each
iteration.

Although existing ABS models are able to capture the
dynamics during an evacuation process and offer detailed
analysis of agent interactions, they usually require intensive
computational power. They usually employ a time-step based
scheduling method to synchronize agent updates. In this time-
step-based method, each agent updates its state at a fixed time
step. This method is easy to implement but has a high computa-
tional cost. Selecting a suitable time step is therefore important (Hu
et al, 2005). Large time step may result in incorrect simulation
results (ie, missing events that should have occurred within two
time steps), while a too small time step can result in unnecessary
updates, and consequently, a high computational cost.

Although a pure DES model is not suitable for modelling
complex interactions and behaviours of agents, some of the ideas
in DES can be exploited to improve the performance of ABS
models. In particular, a typical DES model uses a sequence of
events to represent the changes of system state, which occurs at
distinct time points. Different from the time-step-based method,
a DES model executes based on events and only updates its
system state when necessary (ie, occurrences of events). Nothing
changes between events, and therefore any unnecessary state
update can be avoided to save computation time. This event-
based scheduling approach in DES is relatively efficient and
will be exploited in this paper to create an agent-based discrete-
event simulation (AB-DES) framework, which allows us to
construct a rather efficient evacuation model compared with a
pure-ABS model.

To facilitate the integration of DES and ABS, we employ a
discrete-event modelling framework: Discrete-EVent System
specification (DEVS). DEVS is a formal modelling and simula-
tion framework derived from mathematical dynamical system
theory and provides well-defined concepts for modular, hierarch-
ical component construction, and reuse (Zeigler et al, 2000; Perez
et al, 2010). It allows modellers to design and construct each
model independently under certain protocols to facilitate the
interaction between models. This event-based modelling
approach has been widely used in many fields including trans-
portation and emergency management (Ntaimo et al, 2004,
Wainer, 2006, Sun and Hu, 2008). Most of the DEVS-based
works in transportation use a cellular space, in which the space is
discretized by a grid of cells. Although cellular space is a popular
way of representing traffic flow models, it has certain limitations.
First, it is not always easy to decide the size of cells. If the cell

size is too small, a large number of cells will be kept in memory.
Second, information diffusion and agent movements will be
restricted to the Von Neuman (ie, four neighbours) or Moore (ie,
eight neighbours) topology (Muller, 2009).

The integration of ABS and DES is a promising modelling
methodology as it takes advantages of both simulation methods.
Researchers have realized the benefits of ABS and DES and have
used them together in various studies. Becker et al (2006)
summarized the pros and cons of ABS and DES in modelling
autonomous logistic processes. ABS can provide higher degree
of flexibility and autonomy encapsulation while DES has a higher
runtime performance. Warden et al (2010) developed a simula-
tion middleware, PlaSMA, to analyse scenarios in logistics area.
PlaSMA is a distributed DES, in which agents communicate with
each other by message passing and simulation time advances in
discrete steps of different length. PlaSMA adopts a conserva-
tive synchronization handled by the hierarchical simulation
controllers.

A combined simulation system for rail/road transport is
presented in Gambardella et al (2002). This system includes an
agent-based planner for organizing inter-modal transport units
and a discrete-event simulator to verify the feasibility of the plans
and measure the performance. In Dubiel and Tsimhoni (2005),
agent-based modelling is combined into a DES system with a test
case of people moving in a theme park. The agent-based module
handles people walking and interacting with other people and
their environment, while the discrete-event module models the
tram system in the theme park. Although both ABS and DES
modules can exchange outputs with each other in these environ-
ments, the ABS and DES modules are constructed as two
separate subsystems. Their event scheduling and execution are
run separately. The integration of ABS and DES into a single
model is not explored in these works.

Another line of effort expands existing DES framework to
allow the flexibility and capability of agents (Zhou et al, 2006;
Wu et al, 2008). For example, entities in DES are extended to
mimic agents by adding more flexible attributes and behaviours.
Communication protocols are also implemented to facilitate
interactions among agents and between agents and the environ-
ment. However, the increasingly complex functionality and
complicated interactions of agents can significantly degrade the
performance of those extended DES models.

The work of Wagner (2004) refines the classical DES frame-
work with the Agent-Object-Relationship (AOR) modelling
language to provide a flexible object-oriented approach for
agent-based modelling. However, in order to accommodate agent
and environment updates, this simulation framework still applies
a time-step-based scheduling method. A hybrid ABS for national
airspace systems is developed and tested using different schedul-
ing methods for synchronizing agent updates in Lee et al (2001).
System accuracy and computational efficiency can be achieved
by choosing an appropriate resynchronization interval. In general,
a large resynchronization interval can be efficient but require
good predictions on when resynchronizations are needed. Some-
times, a better prediction may require a high computational cost,

260 Journal of Simulation Vol. 8, No. 4



which could offset the saving gained by using a large resynchro-
nization interval.

Building on existing hybrid modelling technique, this study
develops an efficient and fully integrated agent-based discrete-
event framework for evacuation and extend the cell-based
environment of most existing evacuation models to a
continuous-based environment, which allows flexibility in mod-
elling and simulating movements of evacuees. In particular, we
integrate the ABS approach and DES approach using a hybrid
simulation space to capture the traffic behaviours and interactions
between traveller agents. Different from existing DEVS models,
our model uses a hybrid simulation space, which includes a
flexible cell structure and a coordinate-based continuous space.
This overcomes the limitations of restricted moving directions in
cellular space DEVS models. The hybrid simulation space can
better represent real traffic networks and reduce the number of
cells in a model, thus increasing scalability.

We propose a queueing mechanism to handle agent interac-
tions at intersections (see Section 3.2). We construct a global
event list (which is a key component of the DES) to schedule all
agent interactions (including collision avoidance) and other
environment events. This global event list and associated event-
handling mechanisms eliminate the time-step scheduling issue
in classic ABS models. We note that although the time of the
AB-DES approach advances based on events, this approach is
different from classic DES models because it supports interac-
tions of agents which are autonomous, pro-active, and cognitive,
and the environment is hybrid discrete and continuous (see a
discussion on the difference between ABS and DES in Chan
(2010)). Nevertheless, because both ABS and DES are Turing
complete, the AB-DES has the same theoretical modelling
power as the DES (Chan et al, 2010). Therefore, the difference
between AB-DES and DES lies in the high-level flexibility in
modelling various agent behaviours, cognition, and decision. If
the system is modelled by using a pure-DES approach, then it
could require the use of a large number of artificial entities and
complicated event scheduling. The resulting model is likely
difficult to comprehend and inefficient. See an example in Chan
(2010).

We design decision rules to simulate people’s behaviour
during evacuations. This AB-DES modelling approach can
reduce a large number of updates by skipping unnecessary
agent interactions, defined as those that cause no state changes
in other agents or environment. Computational results show
that the AB-DES model has a significant runtime improvement
compared with the ABS model. A preliminary version of this
modelling framework is presented in Zhang et al (2011). The
current paper extends the model in Zhang et al (2011) by
introducing prediction capability and conducting a more
comprehensive experimental study to evaluate the perfor-
mance of the model.

The rest of this paper is organized as follows. Section 2
describes the modelling approach and the detailed structure of
each atomic model. In Section 3, we construct the atomic
models in the Parallel DEVS formalism. Section 4 gives the

performance evaluation of the model. Section 5 concludes the
paper and presents future work.

2. Modelling approach

This section introduces the framework of the AB-DES approach.
This framework allows most realistic traffic behaviours, includ-
ing car-following, congestion, collision avoidance, intersection
merging/crossing conflicts, etc. As a micro evacuation approach,
this framework also allows various individual agent (traveller)
behaviours to be included if needed. We use a queuing mechan-
ism to handle agent interactions, thus keeping a low communica-
tion cost between agents in this framework.

2.1. Simulation architecture

Our integrated AB-DES approach focuses on the simulation
architectures, and is not required to be written in a specific
language. Figure 1 shows the modelling framework that inte-
grates agents and a hybrid-space model for transportation
simulation. This system is composed of traveller agents, a
simulation space, and a simulation coordinator. The simulation
space includes two components: a coordinate-based continuous
space and a transportation network composed of roads and
intersections. Each road or intersection is modelled as one entity.
Roads and intersections are linked by directed ports as illustrated
in Figure 1. Each traveller is an agent with its own decision rules
and movement rules. During the simulation, a traveller can be
anywhere in the hybrid-space, on a road, an intersection, or off-
road locations. The simulation coordinator is the central control
module of the simulation. It handles requests and sends com-
mands to its subordinates. When a traveller is on a road or
intersection, dynamic coupling between the traveller and the road
or intersection is established and maintained by the simulation
coordinator so that they can exchange information and interact
with each other. Traveller agents can also travel in any off-road
space that is not covered by the traffic network. The simulation
coordinator manages such agents through the coordinate-based
continuous space.

Traveler
(decision rules,

movement rules)

Simulation Coordinator

…… ……

Continuous Space

Execute events

Affect roads and
intersections states

Receive network information

Requestin formation

Execute events

Requestin formation

Transportation Network
(including roads and intersections)

Figure 1 Model framework with agents and a hybrid space.

B Zhang et al—On the modelling of transportation evacuation 261



2.2. Transportation network modelling

The transportation network module is a coupled model composed
of roads and intersections. Roads and intersections are atomic
models linked by directed ports. Figure 2 (a) and (b) shows the
schematic view and logical structure of a single-lane road,
respectively. Each lane within the road is represented by one pair
of in-port and out-port, which are connected to the corresponding
intersections. Roads with multiple lanes can be built easily by
adding more pairs of ports and lane changing behaviours need to
be considered. In this paper, we apply a lane changing model
which will be described in the next section. Each port can be
seized by only one traveller at any time. The road model is
coupled with the intersections during the initialization of the
transportation network. When the simulation is running, the road
model is dynamically coupled with the travellers by the Simula-
tion Coordinator. In Figure 2 (b), the ‘queryState’ and ‘outState’
ports are built for communicating with other agents and the
simulation coordinator. When queried, each road reports its state
to the Simulation Coordinator.

Figure 3 (a) and (b) shows, respectively, the schematic view
and logical structure of an intersection linking four single-lane
roads. Similarly, additional pairs of ports can be added to
represent multiple lane case. Also, there is no restriction on the
number of roads to which an intersection can connect. The
intersection model determines travellers’ passing priorities based
on their arrival times, in-ports, and out-ports. Similar to the road
model, an intersection model can also report its state to the
Simulation Coordinator.

2.3. Traveller agent modelling

Different from roads and intersections which are entities, each
traveller is modelled as an autonomous agent with the abilities to
decide its actions and to perceive the environment information.

A basic driver behaviour model for traveller agents is devel-
oped to handle how each traveller acts based on real-time
travelling conditions. We implement a simple yet representative
car-following model here. It calculates a vehicle’s speed, accel-
eration rate, and deceleration rate considering the space from the
vehicle in front. Based on the distance to the vehicle in front, the
travelling process of a vehicle can be one of the three phases: free
flowing, car-following, and decelerating, as suggested in Gazis
et al (1959). For each traveller agent, the speed in the next time
step is mainly determined by the legal speed of current road and
the distance to the agent ahead. First, we define an upper bound
and a lower bound for the distance. If the distance is larger than
the upper bound, the traveller agent is at the free flowing phase. It
does not interact with other vehicles and speeds up gradually to
its desired speed. The acceleration rate is calculated based on the
general car-following model introduced in Gazis et al (1959). If
the distance is smaller than the lower bound, the traveller agent is
at the decelerating phase. It has to slow down or stop to avoid
collision. For deceleration, two functions are built, one for
gradually decelerating and the other for emergent decelerating.
When a traveller agent is approaching an intersection with a red
traffic signal, it will also slow down until it completely stops. If
the distance is in between, the traveller agent is at the car-
following phase. It will adjust its speed based on the vehicle
ahead. For roads with multiple lanes, different suitable lane
changing models (Gipps, 1986; Moridpour et al, 2010; Bham,
2011) need to be incorporated based on testing map situation
(urban, highway, etc).

Figure 4 shows the structure of the traveller agent model.
Besides being queried and reporting its state to the Simulation
Coordinator, a traveller can also receive travel times from roads
or intersections to determine the occurrence time of its next
action. When a traveller enters a new road, it sends update
information to the Simulation Coordinator which will remove old
couplings and add new couplings between the traveller and the
new road.

Before an evacuation simulation starts, a traveller agent needs
to decide its destination and evacuation route. It should be noted
that different routing strategies can be incorporated in the
simulation framework. In this paper, we focus on the simulation
method itself.

After the evacuation route is determined, the traveller starts
from its home and enters the transportation network. Because its
home may not be located right at a main road, the traveller first
needs to proceed to the nearest main road through a private path
(such as a drive way) at a constant speed. Upon reaching a main
road, the traveller can gradually speed up to its desired speed if
the traffic condition allows. The travel time on each road can be
computed using either a link performance function based on its

Road Roadin-2
out-1
out-2

in-1

query State out State

Figure 2 Structure of road atomic model for a single-lane road:
(a) schematic view road; (b) logical structure (in-1 and out-1
represent the two ends of a lane entering and exiting a road, so are
ports in-2 and out-2; queryState and outstate are communi-
cating ports)

Intersection Intersection

in-2

out-1

in-3

out-4

out-2

in-1

out-3

in-4

query State out State

Figure 3 Structure of intersection atomic model.

Traveler
query State

travel Time

out State

update State

Figure 4 Structure of traveller agent model.

262 Journal of Simulation Vol. 8, No. 4



congestion level of the road (Sheffi, 1985) or random distribu-
tions using historical data.

Rules are built for travellers agents to handle the movement in
the hybrid simulation space. Figure 5 shows an example of
entering a road and moving on the road. We assume that the
moving direction is from left side to right side. When a traveller
agent enters the road from an intersection, three events will be
used to represent the three phases (free flowing, car-following,
and decelerating) during the travelling process. Also, if there is no
other traveller ahead on the road, the traveller will continue on its
free following phase until deceleration.

During the scheduling, the traveller needs to communicate
with other travellers on the road. For example, a traveller in
the car-following phase cannot reach the next phase earlier
than its direct front neighbour, otherwise there will be a
collision. Similarly, the scheduled leaving time will be
delayed if the leaving port of the road is already seized at the
scheduled time. If the road is too short for the traveller to fully
accelerate, the travelling process will not be separated into
three phases and the traveller will use a relatively low speed to
pass the road.

Between leaving the previous road and entering the next road,
a traveller must first seize the right of way before passing an
intersection. When a traveller is coming to an intersection, the
time to enter its next road must be determined. If the intersection
is currently occupied by another traveller, a prediction function is
used to estimate a passing time for the current traveller. If the
intersection is still not available at the predicted time, then a
prediction error happens and the passing time will be resched-
uled. If multiple travellers with the same leaving port arrive from
different ports with a very short time period, their arriving ports
will be used to determine the right of way.

If a traveller starts from some private path or somewhere off
road (continuous space beyond the traffic network) and needs to
enter the road as shown in Figure 6, it will be directed to the road
and request the Simulation Coordinator to add a dynamic
coupling to the road. The traveller needs to communicate with
other travellers on the road and get their estimated positions at the
current time, and then the traveller can use this information to
find an appropriate gap to enter the road.

Besides interacting with other agents while travelling on a road
or passing an intersection, an agent can also receive environment
information. For example, when a traveller agent is approaching a
decision node (which could be an intersection), it may perceive
the updated network information and adaptively choose its route.
Depending on different information access level that agents can
receive, multiple routing strategies can be modelled and tested.
Furthermore, this AB-DES framework can also generate char-
acteristics of agents and the environment. Statistic models can
also be applied to simulate the departure timing and destination
choice behaviours (see discussion in the future work). Here, in
this paper, we focus on performance evaluation from a computa-
tional perspective.

3. DEVS expression

In this section, we express the model in terms of the Parallel
DEVS formalism. A basic atomic model in the Parallel DEVS is
defined in the following (Zeigler et al, 2000):

DEVS ¼ ðXM ; YM ; S; δext; δint; δcon; λ; taÞ
where XM= {(p, v)|p∈ InPorts, v∈Xp} is the set of input ports
and values; YM= {(p, v)|p∈OutPorts, v∈Yp} is the set of output
ports and values; S is the set of sequential states; δext: Q×XM

b → S
is the external state transition function; δint: S→ S is the internal
transition function; δcon: Q×XM

b → S is the confluent state transi-
tion function; λ: S→Yb is the output function; ta: S→R0,∞

+ is the
time advance function; Q:= {(s, e)|s∈ S, 0⩽ e⩽ ta(s)} is the set
of total states.

To define the expression in DEVS, we introduce the following
additional variables: phase is a control state used to keep track of
the full states in the DEVS models; tl is the time instant at which
the last event occurred; tn is the scheduled occurrence time for the
next event with tn= tl+ ta(s); t is the global current simulation
time; e is the elapsed time since the last event with e= t− tl; σ is
the remaining time to the next event with σ= tn− t.

We adopt the format in Zeigler et al (2000) to present the
DEVS atomic models in the following.

3.1. Road model

The road atomic model is defined using the Parallel DEVS as
follows:

XM= {(p, v)|p∈ InPorts, v∈Xp} with InPorts= {‘in-k’, ‘query
State’} (k= 1, 2,…, n), Xin− i= {TravelerID} (i= 1, 2,…), and
XqueryState= {queryValue};

YM= {(p, v)|p∈OutPorts, v∈Yp} with OutPorts= {‘out-k’,
‘outState’} (k= 1, 2,…, n), Yout− i= {TravelerID, leavingTime/
NULL}, and YoutState= {outValue};

δext((phase, σ, inport), e, (p, v))=
(phase, σ, p, value(v)) if p= queryState
(phase, σ, p, leavingTime/NULL) if p= in-i

δint(phase, σ)= (phase,∞)
λ(phase, σ, inport, leavingTime/NULL)=

(outState, value(v)) if inport= queryState

Car FollowingFree
Flowing

Decelerating

Figure 5 Moving within a road.

Road

Traveler

Figure 6 Entering a road from off-road.

B Zhang et al—On the modelling of transportation evacuation 263



(out-i, leavingTime/NULL) if inport= in-i
δcon(s, ta(s), x)= δint(δext(s, 0, x))
ta(phase)=∞
When a traveller requests to enter a road, it can be either at an

intersection or somewhere off road. If the traveller currently
locates somewhere off road, we assume he/she is the only one
who wants to enter the road from this location and no one is
following him/her. If the traveller is at an intersection, a queue
may emerge because of the incoming traffic flow behind the
traveller. If the road has sufficient space to hold the traveller, it
will enter the road instantly and receive an estimated leaving time
computed based on the current road condition. If the road is too
congested to hold the traveller, the traveller will receive a NULL
message and wait in its current position. Since each intersection
can only hold one traveller at one time and each port of the road
can be possessed by only one traveller at any time, the current
traveller who already holds the intersection is guaranteed to be
the next one to enter the road when space becomes available. If
the targeting road does not have enough space at current time, the
traveller will be denied and hibernate. It will be notified when
there is space available. If this traveller is currently on an
intersection, this may trigger a delay in the estimated entering
times of the travellers currently waiting in the intersection’s
waiting queue. In addition, further delays may occur on other
roads connected to this intersection.

3.2. Intersection model

The intersection atomic model is expressed as follows:
XM= {(p, v)|p∈ InPorts, v∈Xp} with InPorts= {‘in-k’, ‘query

State’} (k= 1, 2,…, n), Xin-i= {TravelerID, nextRoad}, and
XqueryState= {queryValue};

YM= {(p, v)|p∈OutPorts, v∈Yp} with OutPorts= {‘out-k’,
‘out-State’} (k= 1, 2,…, n), Yout-i= {TravelerID, leavingTime},
and YoutState= {outValue};

δext((phase, σ, inport), e, (p, v))=
(phase, σ, p, value(v)) if p= queryState
(phase, σ, p, outport, leavingTime) if p= in-i and phase=

‘vacant’
(phase, σ, p, outport, predictedEnteringTime) if p= in-i and

phase= ‘occupied’
δint(phase, σ)=

(‘vacant’, ∞) if phase= ‘occupied’
λ(phase, σ, inport, outport)=

(outState, value(v)) if inport= queryState
(out-i, leavingTime) if inport= in-i and outport= out-i and

phase= ‘vacant’
(out-i, predictedEnteringTime) if inport= in-i and outport=

out-i and phase= ‘occupied’
δcon(s, ta(s), x)= δint(δext(s, 0, x))
ta(phase)=∞
The intersection model is different from the road atomic model

because it allows multiple travellers coming from different roads
to compete for entrance. We employ a queuing mechanism to
queue the travellers as they arrive at an intersection and to

determine the order for passing the intersection. We describe this
queuing mechanism in the following.

The mechanism is similar to an all-way stop sign. First, the
intersection atomic model maintains a waiting queue. When a
traveller arrives at an intersection, the information of this traveller
is stored into the queue according to the first come first served
rule. In the case of simultaneous arrivals of two or more than two
travellers, the right of way is determined using the travellers’
travelling directions just like in the real network, for example, a
traveller making a left turn must yield to a traveller going straight.

Second, each traveller waiting in the queue is given an
estimated entry time to the intersection. Since there may be many
travellers waiting to enter, it is inefficient to have all waiting
travellers frequently check the availability of the intersection. A
prediction function is applied here to estimate the entry time for a
traveller based on the intersection’s next available time, the order
of the traveller in the waiting queue, and the time duration needed
to pass an intersection. When a traveller requests to pass an
intersection, if the intersection has space, it will enter the
intersection and receive a leaving time, which is also set as the
intersection’s next available time. If the intersection has no (or
insufficient) space, the traveller will enter the waiting queue and
receive a predicted entry time to the intersection. Simulation
results may be corrupted and need rollback if the predicted time
could be too late. In order to avoid such issues, the prediction
method is set to be conservative, which means there is a chance
that the intersection is still not available at the predicted time (the
predicted time is early). In such case, the traveller will need to call
the prediction function another time. We call this a prediction
error, which requires additional events to find the next available
entry time. If the traveller is waiting on a road, this may trigger
delay on other travellers following this traveller.

We note that this prediction function only predicts when a
traveller can possibly cross an intersection. It does not reduce the
number of necessary events. Therefore, the model fidelity is the
same as that of a pure discrete-event model that considers only
necessary events (ie, events that trigger other events).

3.3. Traveller agent model

Before expressing the traveller agent model in Parallel DEVS, we
first introduce the following notations. Let ‘FF’, ‘cf’, and ‘DC’
denote, respectively, the free flowing phase, car-following phase,
and decelerating phase. Notations ‘onRoad’, ‘onInt’, ‘offRoad’
indicate that a traveller is currently on a road, on an intersection,
or off roads, respectively. ΔtFF and ΔtDC are the time durations
that a traveller spends on the free flowing phase and decelerating
phase, respectively. c is the time duration for a traveller to pass an
intersection under a normal traffic condition. Other notations and
variables are self-explainable by their names. The traveller agent
model can be expressed in DEVS as follows:

XM= {(p, v)|p∈ InPorts, v∈Xp} with InPorts= {‘travelTime’,
‘queryState’}, XtravelTime= {RoadID/IntID, leavingTime/NULL},
and XqueryState= {queryValue};

264 Journal of Simulation Vol. 8, No. 4



YM= {(p, v)|p∈OutPorts, v∈Yp} with OutPorts= {‘update
State’, ‘outState’}, YupdateState= {add/remove/delay, RoadID/
IntID}, and YoutState= {outValue};

δext((phase, σ, inport), e, (p, v))=
(phase, σ, p, value(v)) if p= queryState
(‘onRoad’, c) if p= travelTime and v= (IntID, NULL)
(‘onRoad’, leavingTime) if p= travelTime and v= (IntID,

leavingTime)
(‘onInt’, c) if p= travelTime and v= (RoadID, NULL)
(‘onRoad’, travelTime) if p= travelTime, v= (RoadID,

leavingTime) and
travelTime<ΔtAC+ΔtDC

(‘AC’,ΔtAC) if p= travelTime, v= (RoadID, leavingTime)
and

travelTime⩾ΔtAC+ΔtDC
δint((phase, σ, travelTime), e, (p, v))=

(‘CS’, (travelTime−ΔtAC−ΔtDC)) if phase= ‘AC’
(‘DC’,ΔtDC) if phase= ‘CS’

δcon(s, ta(s), x)= δext(δint(s, 0, x))
λ(phase, σ, inport, RoadID/IntID)=

(outState, value(v)) if inport= queryState
(updateState, IntID) if phase= ‘DC’
(updateState, RoadID) if phase= ‘onInt’
(updateState, (addPort, RoadID)) if phase= ‘offRoad’

ta(phase, σ)= σ
With AB-DES framework described above, we are able to use

event-based scheduling instead of time-step-based method to
execute the simulation in a hybrid simulation space, which
includes a transportation network and a continuous space. Since
agents are travelling on the transportation network, roads and
intersections are the places where agent interactions occur.
Agents communicate with each other through road and intersec-
tion models. This AB-DES model maintains necessary agent
interactions to guarantee the correctness of the simulation logic.
This model also has a low communication cost because interac-
tions and events that do not cause state changes of other agents
are avoided.

3.4. Simulation coordinator

The Simulation Coordinator model serves as the root coordinator
in the Parallel DEVS formalism. It is the parent of all the
travellers, roads, and intersections. The Simulation Coordinator
maintains a global event list and handles the communication and
interaction between travellers and the network. The global event
list stores the scheduled events of the agents and the times at
which the events are to occur. The scheduler algorithm in the
Simulation Coordinator selects the next event from the global
event list and executes it. If a traveller sends a message to request
communication with others or if an event occurs and affects other
travellers’ states, the Simulation Coordinator will handle the
information exchanges and schedule/reschedule corresponding
events.

The Simulation Coordinator maintains all the necessary events
and interactions among the agents and between the agents and the

environment. This allows the model to execute without using the
time-step scheduling method.

4. Performance evaluation

Most existing evacuation models are problem-specific and
scenario-specific; they have different settings, assumptions, and
scalability, in addition to being implemented using different
platforms. All these diverse factors make performance compar-
ison across different evacuation models almost impossible. In
many cases, such a model-speed comparison attempt does not
reveal the full potentials of different models that are designed for
different scenarios. As such, the objective of this section is to
illustrate the benefits of the AB-DES approach over the pure ABS
approach.

We implement the AB-DES model under Java SE 7 Update 1.
We compare the performance of this AB-DES model with a pure
ABS evacuation model (Zhang et al, 2009), which is equivalent
to the AB-DES model except that it applies the time-step
scheduling method. The pure ABS model is implemented using
Java under Repast framework, an agent-based modelling library
(Repast, 2009). The AB-DES model and the pure ABS model
are equivalent in the sense that they both model the same travel
agent behaviours with identical inputs and they are implemented
using the same programming language. Hence, the two models
are comparable in both the simulation result and computational
performance. The experiments are performed on a PC with an
Intel Core 2 Due 2.4 GHz CPU and 2GB of memory.

We use a widely tested network, the Sioux Falls network, to
evaluate the performance of our AB-DES model. The Sioux Falls
network is good for examining data and debugging models
(Bar-Gera, 2001). Figure 7 shows the structure of the Sioux Falls
network. The square node is the destination. All circle nodes are
the original evaluation source sites. The triangle nodes represent
the intermediate transit sites. All the links have a single lane in
each direction. Each experiment has the same number of traveller
agents who enter the network from the origins and go through
the nodes one by one. The Dijkstra’s shortest path algorithm is
applied to generate the route for traveller agents. The simulation
ends when all the agents have reached the destination.

For all the experiments, the evacuation time is measured using
a virtual simulation time unit. Therefore, the absolute value of
this evacuation time is not of interest. Instead, we are interested in
the difference of the virtual times between the AB-DES and ABS
models, that is, the percentage of saving brought by the AB-DES
model. To be comparable, the free flow travel time of each road
segment are also set to be equal in both models. For example, if a
traveller needs 15 min to go through a certain road in the pure
ABS model, it also needs the same time to pass through the road
in the AB-DES model. ABS and ABDES share the same free
flow travel time.

In traffic simulation, it is crucial to select an appropriate
number of replications to achieve a good balance between
available resources versus acceptable results, especially for

B Zhang et al—On the modelling of transportation evacuation 265



emergency simulation. There are a number of methods for
selecting an appropriate number of replications to handle the
randomness caused by different random numbers used (Diaz-
Emparanza, 1996; Ahmed, 1999; Toledo et al, 2003; Mundform
et al, 2011).

In this paper, to deal with the random variation of simulation
results, we apply the method in Burghout (2013) to determine the
number of required replications. We first set the initial number of
replications to 20 and computed the average travel times of these
20 replications. A 0.05 level of significance is used and the
estimated numbers of required replications for all simulated
quantities are between 14 and 19 in both ABS and AB-DES.
Therefore, we concluded that 20 replications is a reasonable
number for our experiments.

In the AB-DES model, the travel time of each road is
computed using a typical link performance function (Sheffi,
1985) shown in Figure 8. The free flow travel time is the time
duration needed to pass through a road segment when there is no
other vehicle on the road. When the traffic load on the road is
relatively low, the travel time may still be close to the free flow
travel time. The travel time increases slightly when about 40% of
the road’s capacity is taken. As the vehicle flow continues to
increase, especially when the traffic load is close to the road
capacity, the road travel time increases significantly.

We first compare the simulation results of both models. The
network clearance time and the average evacuation time are used
as indicators for result comparisons. The network clearance time
is the time duration from the beginning of the simulation until all
agents have evacuated. The average evacuation time is the
average value of all agents’ individual evacuation time.

Figures 9 and 10 show, the network clearance time and the
average evacuation time under different agent populations,
respectively. Roughly speaking, the two simulation models
produce similar evacuation results, showing their equivalence.
The slight difference between the evacuation times is due to using
different random numbers and different ways of computing the
travel times in the two models. In the ABS model, each traveller
agent is scheduled to move toward the destination according to
the evacuation route and traffic conditions at each time step. The
travel time of each agent is therefore obtained through several
time steps. In the AB-DES model, traveller agents use the link
performance function to estimate the travel time on each road and
advance to the next stage directly. Because the agents are not

Figure 7 Sioux Falls network.

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

M
ul

ti
pl

es
 o

f 
F

re
e 

F
lo

w
 T

ra
ve

l T
im

e

Percent of Occupied Road Capacity

Figure 8 A typical link performance function.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2000 4000 6000 8000 10000

N
et

w
or

k 
C

le
ar

an
ce

 T
im

e

Agent Population

ABS AVG ABS LB ABS UB

AB-DES AVG AB-DES LB AB-DES UB

Figure 9 Network clearance time versus agent population.

0

1000

2000

3000

4000

5000

6000

7000

8000

2000 4000 6000 8000 10000

A
ve

ra
ge

 E
va

cu
at

io
n 

T
im

e

Agent Population

ABS AVG ABS LB ABS UB

AB-DES AVG AB-DES LB AB-DES UB

Figure 10 Average evacuation time versus agent population.

266 Journal of Simulation Vol. 8, No. 4



uniformly distributed among the roads when travelling, some
road segments may be quite congested. From the link perfor-
mance function in Figure 8, we can see that the travel time
increases rapidly when the road payload is close to its capacity.
This could cause the estimated travel time longer than the actual
travel time in the ABS model when the agent population is large.
However, on average, the link performance function fits the
actual travel time well. Therefore, the average evacuation times
of both models are very close to each other as the agent
population increases. Overall, given an identical simulation input,
both models generate similar results. This also validate our AB-
DES model.

Because the AB-DES model employs an event scheduling
approach, each state update is an event by definition. To be
comparable, in the ABS model, we consider an action taken by
each agent at each time step as an event. Figure 11 shows the
number of events and CPU time of the ABS model in changes of
agent populations. As the number of agents increases, both the
number of events and CPU time increase quadratically, while, in
the AB-DES model, the number of events and CPU time only
increase linearly as shown in Figure 12. The two models show a
significant difference in their runtime performances. As to the
CPU time, ABS model increases from about 900 s to 24 000 s,
while the AB-DES model only increases linearly from 14 s to
70 s. Similarly, the number of events of the ABS model increases
from about 3 million to 70 million while that of the AB-DES

model only increases from 35 thousand to 174 thousand. The
difference is expected to increase as more agents are simulated.

It can be seen from Figure 13 that the total number of events in
the ABS model is 80 times as many as that of the AB-DESmodel
when the agent population is 2000. This number linearly
increases to about 400 times when there are 10 000 agents in the
network. The ratio of the CPU time of the ABS model to that of
the AB-DES model reveals a similar pattern. When the agent
number is 10 000, the AB-DES model is 350 times faster than the
ABS model. At this trend of increasing, the runtime performance
difference between the two models is expected to increase as
more agents are simulated.

In the AB-DES model, the main computational cost during the
occurrence of an event includes selecting the event with the
smallest time label from the global event list and executing the
selected event. If the total number of traveller agents is N, the cost
of selecting an event is in the order of O(N). After an event is
selected, the agent’s next state and occurrence time are computed
based on its current state using the state transition functions
described in previous sections. If the agent is travelling on a road,
it only needs to communicate with the agent directly ahead to
avoid collision. Since we use a queuing mechanism to keep track
of the agents in the transportation network, the communication
can be done at a constant time. If the agent is going to enter a road
from an intersection or enter an intersection from a road, it just
needs to communicate with the road or intersection to check the
space availability. In either case, the communication cost is
constant. Therefore, the execution of the selected event usually
takes constant time. However, some events may trigger a delay
on other agents’ event times and/or reschedule their events, which
cause an additional O(N) time. Nevertheless, this situation does
not happen frequently. Therefore, the average cost of executing
an event in the AB-DES model is O(N).

In the ABS model, the event is the action taken by each agent
at each time step. The execution process includes checking road
condition, adjusting travel speed, and moving forward according
to the route. When checking the road condition and adjusting
speed, an agent needs to interact and communicate with other
agents. The main computational cost lies in checking the status of
other agents travelling on the same road as the current agent in
order to adjust the current agent’s travel speed and to avoid
collisions. We assume there are m roads of single lanes for each
direction in the network. The average number of traveller agents

0

5000

10000

15000

20000

25000

30000

0

10000

20000

30000

40000

50000

60000

70000

80000

2000 4000 6000 8000 10000

C
P

U
 T

im
e 

(s
ec

on
ds

)

N
um

be
r 

of
 E

ve
nt

s 
(t

ho
us

an
ds

)

Agent Population

Num of Events CPU Time

Figure 11 Number of events and CPU time of ABS.

0

10

20

30

40

50

60

70

80

0
20
40
60
80

100
120
140
160
180
200

2000 4000 6000 8000 10000

C
P

U
 T

im
e 

(s
ec

on
ds

)

N
um

be
r 

of
 E

ve
nt

s 
(t

ho
us

an
ds

)

Agent Population

Num of Events CPU Time

Figure 12 Number of events and CPU time of AB-DES.

0
50

100
150
200
250
300
350
400
450

2000 4000 6000 8000 10000

R
at

io
s 

of
 A

B
S 

ov
er

 A
B

-D
E

S

Agent Population

Number of Events CPU Time

Figure 13 ABS/AB-DES ratios.

B Zhang et al—On the modelling of transportation evacuation 267



on each road would be N/2m. Because the current agent needs to
check the other agents on the road it is on, the time complexity is
O(N/2m)=O(N/m). In most cases, the total number of agents, N,
is much larger than the number of roads m. Hence, the time
complexity of the ABS model is approximately O(N), with m
neglected when N is much larger.

In general, the runtime of a simulation can be expressed by the
product of the time per event and the total number of events.
Although the time complexities per event of both models are at
the same level, the runtime performance of the AB-DES model
greatly outperforms that of the ABS model due to the significant
difference in the total number of events. For example, when the
agent population is 10 000, the number of events in the ABS
model is about 400 times more than that of the AB-DES model
because the AB-DES approach can reduce a large number of
updates by skipping unnecessary agent interactions.

Figure 14 shows the percentage of prediction errors, that is, the
number of prediction errors divided by the number of events
during a whole simulation. As the agent population increases, the
percentage only grows slightly from 5 to 6.8%. The performance
of this rather simple and straightforward prediction method seems
satisfactory. Although a more accurate prediction method could
reduce this error, it is likely to require a higher computational
cost, which would offset the benefits it brings.

Although animation is not a required component for a simula-
tion model to execute correctly, it is a useful way of verifying and
validating a simulation model. The AB-DES model trades some
animation capability for a higher performance. In particular, it is
not straightforward for the AB-DES model to generate smooth
animation because the model proceeds by events (ie, it skips
some of the updates that can make the animation smooth). Extra
computations (ie, additional updates) are needed to generate
smooth animation. In contrast, the ABS model executes actions
and interactions of agents step by step and is able to provide a
high-level detail of animation. The animation capability is one of
the advantages of ABS method.

5. Conclusion

Despite its broad applications and capability in modelling com-
plex systems, the conventional ABS approach usually suffers
from the limitation of the time-step update mechanism, in

particular when the environment is a continuous space. On the
other hand, the DES method is relative efficient but could be
inflexible in modelling and capturing autonomous behaviours of
entities. This paper employs an event-based update mechanism to
significantly speed up the corresponding ABS model while
maintaining the same agents’ cognitive capabilities and keeping
a high model fidelity. Although hybrid ABS and DES models
have been proposed in the literature, this model differs from
existing ones in that it is a fully integrated AB-DES model that
allows a hybrid continuous and discrete space environment and
uses a network structure to keep track of agents and their
interactions. This reduces the communication cost among agents.
The coordinate-based continuous space gives the flexibility in
representing real traffic situation and modelling various evacua-
tion scenarios. The flexible cell structured transportation network
allows the model to skip unnecessary updates that would
otherwise be needed in conventional ABS models. As shown in
the computational results, this approach can significantly reduce
the CPU time, in particular, when the system is highly congested
with a large number of agents in the network. Computational
results show that the AB-DES model achieved a huge reduction
in both the total number of events and CPU time as opposed to its
ABS counterpart.

Like most traffic flow models, the speed of this model is a
function of the model resolution, that is, a finer resolution would
require a longer time to simulate. As mentioned in Section 4, this
model has a resolution at the vehicle level. One can increase (or
decrease) this resolution to speed up (or slow down) the model.
Therefore, to circumvent this artefact, we compare the model
speed relative to the pure ABS model instead of focusing on the
absolute model speed. The relative saving in the event numbers is
also used as a performance evaluation for the AB-DES approach.

While it would be interesting to compare the performance of
the present model with other models should there exists one that
also employs a hybrid continuous and discrete space environment
(which could not be found), this paper makes no claim on the
proposed model having the fastest execution speed. In fact, the
model can run faster if the prediction method is improved, see
future work below. The objective of this paper is to illustrate the
integration of ABS and DES to achieve minimum event updates
with high model fidelity and flexibility by allowing a continuous
and discrete space environment.

As for future work, first, the prediction method in the AB-DES
model could be improved. Although the current prediction
method works well for the current experiments, the percentage
of prediction errors still increases slightly as more traveller agents
are simulated. Prediction errors can cause extra events and
increase the total runtime. Although accurate prediction methods
can reduce the total number of events, the extra computation for a
better prediction method may not be justified. Therefore, one
needs to balance the accuracy and cost of prediction when
developing a better prediction method. Second, more traffic
behaviours and evacuation strategies, such as lane-changing
behaviour, can be incorporated to make the model more realistic.
Finally, although the objective of this paper is to illustrate the

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2000 4000 6000 8000 10000

P
er

ce
nt

ag
e

Agent Population

Predict Error Rate

Figure 14 Prediction error percentage over event number.

268 Journal of Simulation Vol. 8, No. 4



integration of ABS and DES to achieve an efficient evacuation
model and to allow a hybrid space, validating this model is one
important future work. For example, we can analyse hurricane
data, population data, and calibrate the model using household
decision making and timing data (Hasan et al, 2011, 2013; City-
Data, 2012; Zhang, 2012).

References

Ahmed K (1999). Modeling drivers’ acceleration and land changing
behavior. PhD thesis, ITS Program, Massachusetts Institute of
Technology, Cambridge, MA.

Bar-Gera H (2001). Transportation network test problems. Available at
http://www.bgu.ac.il/ ~ bargera/tntp/, accessed 18 June 2011.

Becker M et al (2006). Agent-based and discrete event simulation of
autonomous logistic processes. In: Borutzky W, Orsoni A and
Zobel R (eds) Proceedings of 20th European Conference on Model-
ling and Simulation, Bonn, Sankt Augustin, Germany, pp 566–571.

Bham G (2011). A simple lane change model for microscopic traffic
flow simulation in weaving sections. Transportation Letters: The
International Journal of Transportation Research 3(4): 231–251.

Burghout W (2013). A note on the number of replication runs in
stochastic traffic simulation models. Available at http://citeseerx.ist.
psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.216
.7465, accessed 1 November 2013.

Chan WKV (2010). Foundations of simulation modeling. In: Cochran JJ
(ed). Encyclopedia of Operations Research and Management
Science. Wiley: New York, USA.

Chan WKV, Son Y-J and Macal CM (2010). Agent-based simulation
tutorial—simulation of emergent behavior and differences between
agent-based simulation and discrete-event simulation. In: Johansson
B, Jain S, Montoya-Torres J and Yücesan E (eds) Proceedings of the
2010 Winter Simulation Conference, Baltimore, Maryland, USA,
pp 135–150.

Chiu Y-C, Zheng H, Villalobos JA, Peacock W and Henk R (2008).
Evaluating regional contra-flow and phased evacuation strategies for
Texas using a large-scale dynamic traffic simulation and assignment
approach. Journal of Homeland Security and Emergency Manage-
ment 5(1): 1–29.

City-Data (2012). Miami, Florida. Available at http://www.city-data.
com/city/Miami-Florida.html, accessed 18 February 2012.

Diaz-Emparanza I (1996). Selecting the number of replications in a
simulation study. Working Paper 1996-1. Available at SSRN: http://
ssrn.com/abstract=1582 or http://dx.doi.org/10.2139/ssrn.1582,
accessed 1 November 2013.

Dubiel B and Tsimhoni O (2005). Integrating agent based modeling into
a discrete event simulation. In: Kuhl ME, Steiger NM, Armstrong FB
and Joines JA (eds) Proceedings of 2005 Winter Simulation Con-
ference, Orlando, Florida, USA, pp 1029–1037.

Gambardella LM, Rizzoli AE and Funk P (2002). Agent-based planning
and simulation of combined rail/road transport. Simulation Transac-
tions of the Society for Modeling and Simulation International
78(5): 293–303.

Gazis DC, Herman R and Potts RB (1959). Car-following theory of
steady-state traffic flow. Operations Research 7(4): 499–505.

Gipps PG (1986). A model for the structure of lane-changing decisions.
Transportation Research Part B 20(5): 403–414.

Hackney J andMarchal F (2009). A model for coupling multi-agent social
interactions and traffic simulation. Proceedings of 88th Annual Meet-
ing of the Transportation Research Board, Washington DC, USA.

Hamacher HW and Tjandra SA (2002). Mathematical Modelling of
Evacuation Problems: A State of the Art. Springer-Verlag Berlin:
Berlin.

Hasan S, Mesa-Arango R and Ukkusuri SV (2013). A Random-
parameter hazard-based model to understand household eva-
cuation timing behavior. Transportation Research Part C
27: 108–116.

Hasan S, Ukkusuri SV, Gladwin H and Murray-Tuite P (2011).
A behavioral model to understand household level hurricane evacua-
tion decision making. ASCE Journal of Transportation Engineering
137(5): 341–349.

Hu XL, Muzy A and Ntaimo L (2005). A hybrid agent-cellular space
modeling approach for fire spread and suppression simulation. In:
Kuhl ME, Steiger NM, Armstrong FB and Joines JA (eds) Proceed-
ings of the 2005 Winter Simulation Conference, Orlando, Florida,
USA, pp 248–255.

Kagaya S, Uchida K, Hagiwara T and Negishi A (2005). An application
of multi-agent simulation to traffic behavior for evacuation in earth-
quake disaster. Journal of the Eastern Asia Society for Transporta-
tion Studies 6(303): 4224–4236.

Lammel G and Nagel K (2009). Multi agent based large-scale evacuation
simulation. Proceedings of 88th Annual Meeting of the Transporta-
tion Research Board, Washington DC, USA.

Lee S, Pritchett A and Goldsman D (2001). Hybrid agent-based
simulation for analyzing the national airspace system. In: Peters
BA, Smith JS, Medeiros DJ and Rohrer MW (eds) Proceedings
of 2001 Winter Simulation Conference, Arlington, VA, USA,
pp 1029–1037.

Lindell MK, Lu J-C and Prater CS (2005). Household decision making
and evacuation in response to hurricane Lili. Natural Hazards Review
6(4): 171–179.

Lu Q, George B and Shekhar S (2005). Capacity constrained routing
algorithms for evacuation planning: A summary of results. In:
Medeiros CB, Egenhofer MJ and Bertino E (eds) Proceedings of
2005 International Symposium on Advances in Spatial and Temporal
Databases, Angra dos Reis, Brazil, pp 291–307.

Moridpour S, Sarvi M and Rose G (2010). Lane changing models: A
critical review. Transportation Letters: The International Journal of
Transportation Research 2(3): 157–173.

Muller JP (2009). Towards a formal semantics of event-based
multi-agent simulations. Multi-Agent-Based Simulation IX 5269(9):
110–126.

Mundform DJ, Schaffer J, Kim M-J, Shaw D and Thongteeraparp A
(2011). Number of replications required in Monte Carlo simulation
studies: A synthesis of four studies. Journal of Modern Applied
Statistical Methods 10 (1), article 4. Available at http://digitalcommons
.wayne.edu/jmasm/vol10/iss1/4, accessed 1 November 2013.

Ntaimo L, Zeigler BP, Vasconcelos MJ and Khargharia B (2004).
Forest fire spread and suppression in DEVS. Simulation-
Transactions of the Society for Modeling and Simulation Interna-
tional 80(10): 479–500.

Pelechano N, O’Brien K, Silverman B and Badler N (2005). Crowd
simulation incorporating agent psychological models, roles and
communication. Proceedings of 2005 International Workshop on
Crowd Simulation, Lausanne, Switzerland.

Perez E, Ntaimo L, Bailey C and McCormack P (2010). Modeling and
simulation of nuclear medicine patient service management in DEVS.
Simulation-Transactions of the Society for Modeling and Simulation
International 86(8–9): 481–501.

Repast (2009). Repast home page. Available at http://repast.source
forge.net, accessed 5 March 2009.

Sheffi Y (1985). Urban Transportation Networks: Equilibrium Analysis
with Mathematical Programming Methods. Prentice-Hall: Engle-
wood Cliffs, NJ.

Sun Y and Hu XL (2008). Partial-modular DEVS for improving
performance of cellular space wildfire spread simulation. In: Mason
SJ, Hill RR, Mönch L, Rose O, Jefferson T and Fowler JW (eds)
Proceedings of 2008 Winter Simulation Conference, Vols 1–5,
Miami, Florida, USA, pp 1038–1046.

B Zhang et al—On the modelling of transportation evacuation 269

http://www.bgu.ac.il/�&#x0007E;�bargera/tntp/
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&#x00026;type=pdf&#x00026;doi=10.1.1.216.7465
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&#x00026;type=pdf&#x00026;doi=10.1.1.216.7465
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&#x00026;type=pdf&#x00026;doi=10.1.1.216.7465
http://www.city-data.com/city/Miami-Florida.html
http://www.city-data.com/city/Miami-Florida.html
http://ssrn.com/abstract=1582
http://ssrn.com/abstract=1582
http://dx.doi.org/10.2139/ssrn.1582
http://digitalcommons.wayne.edu/jmasm/vol10/iss1�/�4
http://digitalcommons.wayne.edu/jmasm/vol10/iss1�/�4
http://repast.sourceforge.net
http://repast.sourceforge.net


Toledo T et al (2003). Calibration and validation of microscopic traffic
simulation tools: Stockholm case study. Transportation Research
Record 1831(1): 65–75.

Wagner G (2004). AOR modelling and simulation: Towards a general
architecture for agent-based discrete event simulation. In: Giorgini P,
Henderson-Sellers B andWinikoff M. (eds.) Agent-Oriented Informa-
tion Systems, Springer-Verlag: Berlin, LNAI 3030, pp. 174–188.

Wainer G (2006). ATLAS: A language to specify traffic models using
Cell-DEVS. Simulation Modelling Practice and Theory 14(3):
313–337.

Warden T, Porzel R, Gehrke JD, Herzog O, Langer H and Malaka R
(2010). Towards Ontology-based Multiagent Simulations: The
PlaSMA Approach. In: Bargiela A, Azam Ali S, Crowley D,
Kerckhoffs EJH (eds) 24th European Conference on Modelling and
Simulation (ECMS 2010). European Council for Modelling and
Simulation, Kuala Lumpur, Malaysia, pp 50–56.

Wu S, Shuman L, Bidanda B, Kelley M, Sochats K and Balaban C
(2008). Agent-based discrete event simulation modeling for disaster
responses. Proceedings of 2008 Industrial Engineering Research
Conference, Vancouver, Canada.

Zeigler BP, Praehofer H and Kim TG (2000). Theory of Modeling and
Simulation, 2nd edn. Academic Press: New York.

Zhang B (2012). Agent-based discrete-event simulation and optimization
of regional transportation evacuation. PhD dissertation, Department

of Industrial and Systems Engineering., Rensselaer Polytechnic
Institute, Troy, NY.

Zhang B, Chan WKV and Ukkusuri S (2011). Agent-based discrete-
event hybrid-space modeling approach for transportation evacuation
simulation. In: Jain S, Creasey RR, Himmelspach J, White KP and
Fu M (eds) Proceedings of 2011 Winter Simulation Conference,
Phoenix, Arizona, USA, pp 199–209.

Zhang B, Ukkusuri S and ChanWKV (2009). Agent-based modeling for
household level hurricane evacuation. In: Rossetti MD, Hill RR,
Johansson B, Dunkin A and Ingalls RG (eds) Proceedings of 2009
Winter Simulation Conference, Austin, Texas, pp 2778–2784.

Zhou YH, de By R and Augustijn EW (2006). Explorative research
on methods for discrete space/time simulation integrated with the
event-based approach and agent concept. In: Wu H and Zhu Q (eds)
Proceedings of Geoinformatics 2006: Geospatial Information Tech-
nology, Bellingham, pp D1–D11.

Zou N, Yeh S-T and Chang G-L (2005). A simulation-based emergency
evacuation system for ocean City, Maryland during hurricanes.
Transportation Research Record 1922(1): 138–148.

Received 15 June 2013;
accepted 14 January 2014 after one revision

270 Journal of Simulation Vol. 8, No. 4


	On the modelling of transportation evacuation: an agent-based discrete-event hybrid-space approach
	1. Introduction
	2. Modelling approach
	2.1. Simulation architecture

	Figure 1Model framework with agents and a hybrid�space.
	2.2. Transportation network modelling
	2.3. Traveller agent modelling

	Figure 2Structure of road atomic model for a single-lane road: (a) schematic view road; (b) logical structure (in-1 and out-1 represent the two ends of a lane entering and exiting a road, so are ports in-2 and out-2; queryState and outstate are communicat
	Figure 3Structure of intersection atomic�model.
	Figure 4Structure of traveller agent�model.
	3. DEVS expression
	3.1. Road model

	Figure 5Moving within a�road.
	Figure 6Entering a road from off-road.
	3.2. Intersection model
	3.3. Traveller agent model
	3.4. Simulation coordinator

	4. Performance evaluation
	Figure 7Sioux Falls network.
	Figure 8A typical link performance function.
	Figure 9Network clearance time versus agent population.
	Figure 10Average evacuation time versus agent population.
	Figure 11Number of events and CPU time of�ABS.
	Figure 12Number of events and CPU time of AB-DES.
	Figure 13ABS&#x0002F;AB-DES ratios.
	5. Conclusion
	Figure 14Prediction error percentage over event number.
	A6




