
Business process simulation in the context of
enterprise engineering
Y Liu* and J Iijima

Tokyo Institute of Technology, Tokyo, Japan

Traditional business process-based discrete event simulation is not sufficiently powerful to support change-related business process
reengineering (BPR). The simulation methods are inadequate for describing large, complex systems and are difficult to change so as
to simulate new BPR designs. The limitations are caused by (1) focusing on workflow; (2) low-abstraction conceptual models; and
(3) a lack of separate opinions on design and implementation. Our research is based on enterprise engineering, a construction-based
approach, rather than workflow. By clarifying the differences between and dependencies of the ontological and implementation
models, this research proposes a generic framework for generating a modularized and component-based simulation model with
increased reusability as well as with the capacity to make controllable changes in enterprise simulation. The method is assumed to
assist BPR by reducing complexity and through its focus on enterprise engineering-based design thinking and human-centered
interactions.
Journal of Simulation advance online publication, 9 January 2015; doi:10.1057/jos.2014.35

Keywords: enterprise ontology; DEMO; conceptual modelling; business process simulation; enterprise engineering; BPR

1. Background

Business process reengineering (BPR) concerns enterprise
changes. However, many researchers have argued that the high
failure rate of many real-life BPR projects is attributable to the
lack of tools for evaluating the effects of designed solutions
before their implementation (Tumay, 1996; Paolucci et al, 1997).
On one hand, traditional process models (PMs), for example,
UML, BPMN, flowcharts and EPC, are widely used in business
process modelling. However, such models are criticized for
their weakness in inspecting and analysing business processes
(Vergidis et al, 2008). For example, these models are said to be
weak at providing the necessary means for identifying bottle-
necks and for performance analysis or for generating alternative
improved business processes in terms of specified objectives.

On the other hand, business process simulation (BPS)
(Scholz-Reiter et al, 1999) is considered a powerful tool to assist
in change analysis and effectiveness evaluation due to its ability
to measure performance, test alternatives and engage in processes
(Greasley and Barlow, 1998). On the basis of a number of
reviews (Aguilar-Savén, 2004; Netjes, 2006; Jahangirian et al,
2010), simulation for business process design and engineering is
the second most important area in simulation studies (following
only scheduling).

However, current simulation methods are weak at describing
large, complex systems. As some researches (Barber et al, 2003;
Jahangirian et al, 2010) have noted, most business process
improvement projects consider only a single process without a

holistic view of the enterprise, and complexity is increased when
small individual PMs are joined into a large hierarchical con-
struct. Thus, it is inefficient to utilize these methods in process
change analysis that concerns the entire enterprise.

Another limitation of BPS is the complexity of changing
models to simulate new designs in BPR (Greasley, 2003).
Simulation is useful in comparing ‘as-is’ and ‘to-be’ models to
validate the effects of change and ensure the completeness of the
model, but it has limited ability to design a ‘to-be’ model. Most
of the BPS literature restricts itself to comparing the before and
after conditions and provide little information on the redesign
process itself (Reijers and Liman-Mansar, 2005).

Moreover, as Valiris and Glykas (2004) noted, most of the
reengineering methodologies ‘lack the formal underpinning to
ensure the logical consistency of the generation of the improved
business process models’. This issue leads to the lack of a
systematic approach that can guide a process designer through
a series of repeatable steps to achieve process redesign. Vergidis
et al (2008) argued that ‘a structural and repeatable methodology
that could be generally applied to business process modelling and
improvement was never established’. This situation is a problem
for business process modelling as well as for BPS.

The authors consider the reasons for the limitations described
above from two aspects: (1) workflow viewpoint and (2) the low
abstraction levels in conceptual modelling.

(1) Workflow viewpointMany of the existing BPS studies take a
naive view of business processes. According to Davenport et al
(1994) and Hammer and Champy (1993), business processes are
defined as structured, measured sets of input–output activities that
produce value for a particular customer. In contrast to the

*Correspondence: Y Liu, Department of Industrial Engineering and Manage-
ment, Tokyo Institute of Technology, Ookayama 2-12-1-W9-66, Meguro-ku,
Tokyo 152-8552, Japan.

Journal of Simulation (2015), 1–17 © 2015 Operational Research Society Ltd. All rights reserved. 1747-7778/15

www.palgrave-journals.com/jos/

http://dx.doi.org/10.1057/jos.2014.35
http://www.palgrave-journals.com/jos


traditional system view, which emphasizes what is produced
from ‘a black box’, process emphasizes how things are done from
a business logic perspective (Davenport et al, 1994). Wang and
Brooks (2007) showed that the most widely used representation
technique for BPS is the flowchart (used by 63% of simulation
modellers). Other modelling methods, such as BPMN, UML and
EPC, are also widely used. All of these modelling tools are
founded on the workflow viewpoint, which aims to represent the
sequences of real-world work. Thus, the workflow-based discrete
event simulation is more widely used in BPS than is agent-based
simulation, although the latter is considered a promising method
for analysing enterprise as a social system (Siebers et al, 2010).

The advantage of the workflow viewpoint is clear: it can help
us understand how things are done in a step-by-step manner.
However, this method occasionally leads us to over analyse the
details such that we are not able to grasp the full image of the
system: It is difficult to analyse tens of A4-paper-based flow-
charts or UML models to understand why actions are performed,
what the relationships are and, correspondingly, how to make
changes that can confirm the consistency of the system
before and after. Workflow-based simulation by default has the
same problem: it occasionally delves too deeply into process
details on ‘how to?’ but is weak in analysing ‘why?’ and ‘what?’.
Moreover, models from the workflow viewpoint are typically
non-modularized but described as a sequence of activities.
Oriented from this viewpoint, it is difficult to conceive of a
systematic approach that can guide a process re-designer through
a series of repeatable steps. Meanwhile, enterprise is not con-
sidered as a whole, and human interactions are not emphasized
when considering workflow. In summary, the workflow view-
point neither reduces the complexity of modelling nor facilitates
change. Workflow-based BPS is not an adequate solution for
supporting enterprise reengineering.

(2) Low abstraction levels in conceptual modelling Conceptual
modelling is regarded as the most important and difficult step, but
it is also the least investigated step in simulation, especially in
BPS. As indicated by Banks et al (2013), there are surprisingly
few books and academic papers on the subject of conceptual
models of enterprise-related simulation. Robinson (2006) defined
conceptual modelling as the ‘representation of the abstracted
world, expressed by means of diagrams and written text’.
Turnitsa et al (2010) provided an extended definition: ‘a formal
specification of a conceptualization’ and ‘an ontological repre-
sentation of the simulation that implements it’. One example of
an ontology-based conceptual model for simulation is the system
entity structure (SES) proposed by Zeigler et al (2000) and
utilized in a number of Zeigler’s discrete event simulation studies.
However, SES emphasizes only the system’s data structure. That
is, it is considered weak at describing enterprises as social
systems. Thus, it is less applicable in the context of business
processes. In contrast, most of the conceptual modelling methods
used in process-related simulation consider not the ontology level
but the implementation level of enterprise, for example, flow-
charts, BPMN, UML or onto-UML (Guizzardi and Wagner,

2012). These models do have semantic definitions of business
processes related to how systems work. They are widely used
because the simulations are entirely at the implementation levels
with which they best match. However, as was criticized in
multiple studies (Chen, 1976; Salimifard and Wright, 2001),
these models do not describe enterprise functionality, and thus
they are difficult to be used by management for decision-making
support. Moreover, there are no clear definitions of highly
abstracted enterprise ontology. These weaknesses make it diffi-
cult or impossible to apply one conceptual model in different
implementations that support the same ontology structure, as is
required in business process redesign and reengineering. Further-
more, the unstructured and non-ontological conceptual model
leads to low modularity, low reusability and uncontrollable
changes in simulation modelling, especially when the simulation
is employed for BRP.

To avoid the limitations of workflow-based business process
modelling and simulation, the authors took a construction
viewpoint on enterprise in the context of enterprise engineering
(Dietz et al, 2013).

Enterprise engineering is an integrated set of disciplines for
building or changing an enterprise, its processes and its systems
(Martin, 1995), in which an enterprise is considered an intention-
ally created cooperative of human beings with a certain societal
purpose (Dietz and Hoogervorst, 2012; Dietz et al, 2013) and
with highly organized complexity (Hoogervorst, 2009). In other
words, it analyzes enterprise as an interrelated, highly complex
social system rather than as a workflow. Enterprise engineering
considers that low BPR success rates occur when enterprise
phenomena are not comprehensively understood, and cannot
be addressed adequately, hence the nature of necessary changes
cannot be determined (Dietz et al, 2013). Furthermore, ‘an
enterprise must operate as a unified and integrated whole’ (Dietz
et al, 2013). Successful reengineering follows design thinking,
which concerns understanding the enterprise and its strategic
intentions that are to be operationalized, as well as arranging for
these to happen (Dietz et al, 2013).

The core theory related to design thinking is enterprise
ontology, Design and EngineeringMethodology for Organization
(DEMO) (Dietz, 2006). DEMO is a human-centered, highly
abstracted ontology that describes how an enterprise is con-
structed. It answers such questions as ‘What is produced?’ in its
fact model (FM); ‘Why?’ and ‘Who?’ in its construction model
(CM); and ‘How?’ in its PM and action model (AM). DEMO
assists in grasping the essence of an enterprise by looking inside
its daily activities, like an X-ray (Dietz et al, 2013). It abstracts
the real world without considering implementation details to
allow for an understanding of the essence of the system. In other
words, by defining a DEMO model, we can understand the
core, stable part of an enterprise. This higher-level abstraction
reduces the complexity of modelling social systems and aids in
understanding the strategic intentions that are to be operationa-
lized in the design phase.

An enterprise is an implementation of its ontological model,
and there could be different possible implementations for the

2 Journal of Simulation



same ontology in achieving the same goal. In most cases, BPR
relates to implement the same enterprise ontology differently.
However, ontology is not sufficient for simulation. We use
simulation to understand implementation problems such as
optimization or as-is/to-be analysis. These are closely related to
how to arrange the ontology to happen because ontology could
have different implementations in the same strategic instances.

To take advantage of enterprise ontology, the authors proposed
DEMO++ , an expanded DEMO with an implementation
model, as a conceptual modelling method for BPS. There are
two parts: ontology and implementation. The former describes
how the enterprise is constructed, and the latter describes how the
interesting part of an ontological model is implied. It is a method
for analysing, executing and evaluating business processes that
reduces the complexity in modelling and simulating large systems
but focuses on implementing the interesting part. DEMO++ is
fully modularized such that the generated simulation is entirely
component-based, with features of controllable changes and
reusability. It supports BPS, especially when simulation is used
in top-down enterprise reengineering.

The remainder of this paper is organized as follows. First,
the research design is introduced in Section 2. Then, background
knowledge on DEMO is explained with a case study in Section 3;
the expanded DEMO++ is defined in Section 4. This approach
is validated in Section 5 with a model built in AnyLogic. Finally,
a brief discussion and future work are given in Section 6.

2. Research design

Zeigler et al (2000) suggested a framework for discrete event
modelling and simulation. A conceptual model is built through
a collection of assumptions about system components and the
interactions between them, which involves some degree of
abstraction of systems operations. The operational model is the
executable model that implements the conceptual model. Our
research is designed following Zeigler’s conceptual and operation
model structures. There are three levels:

• ontology;
• conceptual models (expanded ontology with implementation);
• operation models.

At the ontology level, we use DEMO to describe the real world at
a high level of abstraction. DEMO has been proven to be able to
support discrete event systems in a number of studies (Barjis
et al, 2001; Barjis et al, 2002; Barjis, 2007, 2008, 2010).

At the conceptual level, we define a DEMO-based conceptual
model called DEMO++ that expands and integrates ontology
with implementation models.

At the operation level, we choose AnyLogic (XJ Technologies,
2009) as the execution environment to test DEMO++ . There are
different types of simulation environments. AnyLogic is selected
for its excellent user interface and hybrid simulation support
capability. Since for the purpose of enterprise reengineering and
enterprise transformation, we need to consider not only business

activities from the workflow view but also actor interactions from
the agent view and possibly the effectiveness and efficiency
of the full system from the system dynamics view to obtain the
full image of how the system works and the potential effects of
change. AnyLogic is the only simulation software with powerful
support for hybrid simulation that combines discrete events, an
agent base, system dynamics and other methods.

The entire structure is validated with a case study on
Buono Pizza.

3. DEMO

3.1. Enterprise ontology

Enterprise ontology DEMO is a core theory of enterprise
engineering. The goal is to offer a new understanding of enter-
prises such that one is able to look through the distracting and
confusing actual appearance of an enterprise into its essence
(Dietz et al, 2013).

DEMO was founded based on ψ theory, which considers
an organization an interaction of individual social subjects.
A subject ‘enters into and complies with commitments regarding
the products/services that they bring about in cooperation’
(Dietz and Hoogervorst, 2014). A product is an independently
existing fact (eg, ‘pizza order #002 has been delivered’). Subjects
bring about products by performing production acts (or Pacts for
short). Meanwhile, subjects enter into and make commitments
towards each other regarding products by performing coordina-
tion acts (Cacts for short). The effects of Cacts/Pacts are called
Cfacts/Pfacts. Cacts and Pacts occur in universal patterns
called transactions. A transaction involves two subjects, an
initiator who generates a request and an executor, who produces
products (Dietz and Hoogervorst, 2014). Transactions are the
elementary (essential) organizational building blocks of enter-
prises (Perinforma, 2012). Enterprises have dozens of different
processes, such as for production, purchasing and logistics.
Despite their different natures, they all share the same underlying
transaction patterns, with similar coordination and production
routines (Dietz et al, 2013). A basic transaction pattern is
described in Figure 1. A coordination process begins when an
initiator ‘requests’ (rq) a product. The executor responds to the
request by ‘promising’ it (pm) and then produces it. After he/she
‘states’ (st) that the product has been produced, in response to this
event, the initiator ‘accepts’ (ac) the produced product. The four
intentions (rq, pm, st, ac) are basic steps for a successful trans-
action. The effect of each intention leads to some state change of
the world, for example ‘proposition requested’, ‘result produced’
(Dietz and Hoogervorst, 2014).

To obtain a full image, the ontological model of an organiza-
tion is divided into four sub-models that describe different aspects
of the complete model (Figure 2). The CM, located at the top of
the triangle, is the most concise, describing how transactions
and actor roles are composed to construct a system; PM describes
the detailed causal relationships and constructions in processes;
FM describes the objects and facts related to the process; and

Y Liu and J Iijima—Business process simulation in the context of enterprise engineering 3



AM describe the action rules for actor roles. With these models,
DEMO proposes a consistent, coherent, concise, comprehensive
and essential (C4E) representation.

Details of the DEMO aspect models are explained by analys-
ing a real-life pizza shop in the following subsections.

3.2. Case description: Buono Pizza

Buono, a pizza shop, is located in a small city in Japan, with one
manager, Mr. Inoue, and four young adults on a part-time basis.

They use an order-taking system to help manage the orders.
Thirty percent of the orders are taken by phone, 60% are from the
Internet and only 10% are directly handled at the store counter.
For all three methods, ordering takes a minimum of 1 min, 3 min
on average and occasionally up to 5 min.

The order is entered in the IT system, an empty box is pulled
and a label with the customer’s name, address, order and phone
number printed on it is applied to the box (this duration is
included in the ordering time). Normally, an available worker
reads the waiting orders in the IT system and prepares the pizza
dough. This step takes an average of 2 min. The staff will then
add the requested toppings; this step takes an average of 3 min.
This step can only be performed if the table is available; the table
can fit four pizzas. Three ovens are available. Baking takes 6min,
and the time to place the pizza in the oven is negligible.

When the pizza exits the oven, it rests on the packing table.
An available worker takes the pizza and puts it in the box with the
label printed on it. This step takes an average of 1 min. Then, an
available deliverer will deliver the prepared pizza to the custo-
mer’s location and receive the payment. Buono’s delivery area is
within a driving distance of 10min (5–10min one way). The four
staff members in the store can do all of the work, but at least one
staff person always remains in the store.

As a courtesy, if the wait time from placing the order to
delivery is more than 30min, Buono will provide a free pizza in
your next order.

However, Mr. Inoue found that too many customers were not
receiving their orders within 30min (more than 20%). Therefore,
it was necessary to find possible solutions to reduce the free
pizza requirement. He hoped that simulation could provide some
advice.

3.3. DEMO construction model

In DEMO, every transaction is of some type, called a transaction
type (T for short). Each T involves two actor roles, who are
authorized to commit or produce the facts generated by the
transactions. An actor role acts as either the initiator or executor
of a transaction (cf Section 3.1). Actor roles are either elementary
or composite: elementary actor roles (A for short) are actor roles
within the system of focus, and they can be the executors of
only one transaction type; composite actor roles (CA for short)
represent actor roles that are not focused. A composite actor role
can execute more than one Ts. Ts and related actor roles (A and
CA) are described in the organization construction diagram
(OCD) of the DEMO CM. As shown in Buono’s OCD
(Figure 3), we abstracted four transaction types—T1, T2, T3 and
T4. A1 (the order completer) is an elementary actor role as
the executor of T1 and the initiator of T2, T3 and T4. CA1
(the customer) is a composite actor role because his/her behaviour
is out of the scope of focus. Transaction types and actor roles are
connected by links. There are two types of links: An initiator link
is a link from an initiator (source of the link) to its transaction
type (the target of the link), represented as a line. An example is
the link from CA1 to T1 shown in Figure 3. An executor link is a
link from a transaction type (the source of the link) to its executor
(the target of the link), represented as a line with a black diamond
at the end. An example is the link from T1 to A1, shown in
Figure 3.

Figure 1 Basic transaction pattern.

Figure 2 DEMO aspect models.

4 Journal of Simulation



Transactions of the same type regard products of the same
type, called product type (P for short). Transaction type and the
corresponding product types are described in the transaction
product table (TPT) of the CM. As shown in Buono’s TPT
(Table 1), there are four product types, P1, P2, P3 and P4, defined
according to the four transaction types.

Aggregate transaction type (AT for short) represents a transac-
tion type that belongs to the system environment. With Buono,
an aggregate transaction type AT1 contains map information
that is obtained externally for delivery. All of the generated facts
(cf Section 3.1) are stored in either Ts or ATs. These Ts and ATs
are information banks. The actor roles can access the information
banks to set information. Links between actor roles and informa-
tion banks are called information links, for example, the link
between A3 and AT1. Initiator and executor links can both serve
as information links.

3.4. DEMO process model

CM briefly describes how an organization is constructed. The PM
located below the CM in Figure 2 describes transaction details as
well as how they are interrelated.

In the PM, transactions are expanded into transaction patterns,
in which the routines and effects of acts (described as facts) are

defined. There are three types of transaction patterns: basic,
standard and complete.

A basic transaction pattern (cf Section 3.1) describes the
simplest ‘happy path’ to accomplishing a transaction, including
the following intentions: rq, pm, st and ac.

A standard transaction pattern considers both the ‘happy
path’ and exceptions, in which the transaction may be stopped or
redone. In addition to the basic transaction pattern, there are
four new intention types: {decline (dc), quit (qt), reject (rj), stop
(sp)}. As described in Figure 4, a transaction begins when its
initiator requests a product. The executor responds to the request
with a decision on whether to promise or decline the request
following some action rule (cf Section 3.6): If a request is
declined, the process will enter a negotiation stage, and as a
result of negotiation, the initiator can choose to re-request or to
cease cooperating. The situation is the same when a statement is
rejected by the initiator: the executor can choose whether to
restate or stop the process (Dietz, 2006). In transaction patterns,
a link from an act (source of the link) to a fact (target of
the link) is called a fact link, indicating that one fact is the effect
of the act, represented as a line. A link from a fact (source of the
link) to an act (target of the link) is called a response link,
indicating that an act is the reaction to the fact, represented as an
arrow line.

A complete transaction pattern concerns not only the ‘happy
path’ and exceptions but also cancellations of request, promise,
state and accept. To simplify the problem, we use the standard
transaction pattern to define the possible states of a transaction in
this research.

Moreover, in the PM, the waiting and causal relationships
between transactions are described in the process structure
diagram (PSD) shown in Figure 5.

Waiting relationship indicates the conditions of an act. As
represented in Figure 5, acts (expressed as small rectangles) of a

Figure 3 Buono Pizza’s OCD.

Table 1 Buono Pizza’s Transaction Product Table

Transaction type Product type

T1 order completion P1 order has been completed
T2 order preparing P2 order has been prepared
T3 order delivery P3 order has been delivered
T4 order payment P4 order has been paid

Y Liu and J Iijima—Business process simulation in the context of enterprise engineering 5



transaction type may need to wait for some facts (expressed as
small circles) to be created. For example: the act ‘execution of
order delivery’ (T3/ex) must wait for the fact ‘pizza preparation
accepted’ (T2/aced). The waiting relationship is represented by a
dashed arrow from fact (source of the link) to act (target of the
link), called the waiting link.

Causal relationship indicates that a fact causes another
transaction type to be initiated. As represented in Figure 5, when
the order for completion is promised (T1/pmed), new transaction
types T2 (order preparation), T3 (order delivery) and T4 (order
payment) are initiated. Causal relationships are represented by an
arrow from fact (source of the link) to act (target of the link),
called the causal link. In the PSD, acts and facts are described
only when there are causal or waiting relationships between

them. The others are hidden within transaction type as part of the
transaction pattern.

3.5. DEMO fact model

The PM takes the process and state view when analysing an
organization. The FM, located at the same level as the PM,
describes a different aspect: the object and fact structures
represented in the object fact diagram (OFD). As shown in
Figure 6, an object is an identifiable individual component.
Objects are always of some type, called object type (O for short).
For example, in the case of Buono, ‘Order’, ‘Person’ and ‘Pizza’
are the object types. A relationship between object types is called
a fact type. In the example, a fact type between ‘Order’ and
‘Pizza’ is ‘order O contains Pizzas P’. An instance of fact type
expresses an elementary state of the world. Fact type is repre-
sented as an OO link in the OFD.

When an object type is related to a transaction’s production
process, it is connected with the responding product type,
representing possible stages of the object type. For example,
‘Order’ is involved in all four production processes, T1, T2, T3
and T4. Thus, the possible stages of ‘Order’ are P1, P2, P3 and
P4, meaning that an order must be prepared (P2), delivered (P3),
paid for (P4) and then completed (P1). This relationship is
represented as the OP link in the OFD.

3.6. DEMO action model

An AM located at the bottom of the triangle shown in Figure 2
describes action rules. An action rule is expressed as a crispie.
Crispies are founded on finite automaton theory (Hopcroft et al,
2006), which entails a finite set of states and a finite set of state
transitions.

With crispies, the world is in some state at every point of time.
State (S) is defined as a set of facts including both Cfacts and
Pfacts. At any moment, the crispie releases an agenda (tasks to
perform), each item on which is a pair, for instance, c, t, where
c is an instance of Cfact (eg, T3(o)/ rqed) and t is the settlement
time, at which point the creator will expect the event to be
responded to by a crispie (eg, tT3rq). The crispie responds to the
event by evaluating a particular function, called a rule base (R).
The evaluation result is a set of reactions to the Cfact (Dietz,
2006). An example of an AM for actor role A3 is as follows:

WHEN Order Delivery for Order (o) is requested,
IF it can be promised,
THEN promise Order Delivery for Order (o)

WHEN Order Delivery for Order (o) has been promised,
IF map has been prepared,
THEN execute Order Delivery for Order (o) and

State Order Delivery for Order (o)

Action rules are defined for each actor role. The entire
enterprise is a crispie net constructed by actor roles.

Figure 4 Standard transaction pattern.

Figure 5 PSD of Buono Pizza.

6 Journal of Simulation



4. DEMO++

DEMO++ is an ontology-based conceptual model for simula-
tion. Following Zeigler’s framework (2000), DEMO++ is
designed as a hieratical structure of components. The meta-
model of DEMO++ is represented in Figure 7. There are two
parts in DEMO++ : ontology and implementation:

Ontology (in the left of Figure 7) describes the ontology of an
enterprise: (1) transaction types; (2) causal and waiting relation-
ships between transaction types; (3) initiators and executors of
transaction types; (4) information banks; and (5) information
access between actor roles and information banks. In ontology,
the components on transaction types (T), aggregate transaction
types (AT), object types (O), elementary actor roles (A) and
composite actor roles (CA) are defined.

Implementation (in the middle of Figure 7) describes the
implementation of ontology by considering how the execution
steps of ontological acts are defined, how they are related to
resources and what is the cooperation delay of ontology in the
real world. In implementation components on resource type (R)
and ActorRoleComponent are defined.

Both ontology and implementation are contained and con-
nected in the componentMain (in the right of Figure 7).

Each component contains ports, including both an input port,
through which the component can obtain events or information,
and an output port, through which the component can send
events or information to the others. The inter connection (IC)
is a connection between the output and input ports through
which components are connected so they can communicate.
The external input connection (EIC) is a connection between
the input ports of hieratical components through which the
obtained event or information could be transferred from a
component to its subcomponents. The external output connec-
tion (EOC) is a connection between the output ports of

hieratical components through which generated events or
information can be sent out.

4.1. Ontology

O (Object type). O is a component of object type whose state
will be changed by transactions. It follows the concept of object
type in DEMO with the definitions shown in Figure 7 (O). With
Buono, three objects are defined (cf Figure 6). The object
‘Order’ is described in Figure 8 for illustration.

• name is the full name of the object type (eg, ‘Order’);
• type indicates the short form of the type name (eg, ‘O’);
• properties are obtained from the properties or related fact types

defined in the OFD.
• phases and transitions are defined on the left side of Figure 8,

a state transition diagram. Phases are an object’s possible
stages. Derived from the OPLink in OFD, there are four phases
for the object type ‘Order’: P1, P2, P3 and P4. These phases
indicate that an order must be prepared, delivered and paid for
before it can be completed. Transition is the phase change.

T (Transaction type). T is a component of transaction type that
is derived from the transaction type (cf Section 3.3) in DEMO.
According to the meta-model (T in Figure 7), the following
must be defined for each transaction type, as shown in Figure 9
(table Transaction):

• type is the transaction type (eg, T1);
• name is the description of the transaction type (eg, ‘Order

completion’ for T1);
• initiator and executor follow the DEMO definitions;
• object is the related objects.

Figure 6 OFD of Buono Pizza.

Y Liu and J Iijima—Business process simulation in the context of enterprise engineering 7



A transaction type is considered not only a set of acts but also a
collection of generated facts in the information bank. Information
banks need to be defined for each transaction, including cBank
and pBank:

• cBank contains all of the Cfacts generated by the transaction
type. Each bank item is a type of fact, defined as a tuple
< type, status, time> (also called a factum), indicating
whether an instance of this Cfact type has been settled (status
is true) or not and the settlement time t. For example,
< rqedT1, true, t1> means that Cfact instance ‘rqedT1’ was
settled at time t1.

• pBank contains all of the Pfacts generated by the transaction
type. pBank items are formatted in the same manner as
cBank items.

Following DEMO’s standard transaction pattern, a state transition
pattern is defined for each T, as shown in Figure 9. There are two
types of states and two types of transitions between states
defined:

• ActS: indicating the state of acting, represented as a rectangle.
In DEMO, acts are abstracted ontological concepts. To combine

Figure 7 Meta-model of DEMO++ .

Figure 8 Object type component ‘order’.

Figure 9 Transaction type component ‘T1’.

8 Journal of Simulation



ontology with implementation, each ActS in DEMO++ is
related to a processor. As presented in Figure 9 (table ActS),
the processor is the corresponding actor role who takes
responsibility for making decisions and implying the ontolo-
gical act. Ontology can either be expanded into implementa-
tion or not, depending on whether resource utilization,
communication flows or other operation-related details must
be examined. The shift is controlled by the Boolean property
callProcessor: a ‘true’ means the ontological act will be
processed with a feedback of generated results after some
delay. According to the DEMO AM, an automaton can
process ahead only when all of the state conditions are
satisfied. Base contains the status of all Cfacts and Pfacts
necessary to perform an act. An act can be performed only
when all items in its ‘base’ are satisfied. Base items are
formatted as factum. For example, the required state condi-
tion for act pmT1 is ‘T1 has been requested’. This condition
is represented as a base item < rqedT1, true, t1> of ActS
‘pm_dc’. By using the base, we can check the multiple state
conditions required to perform an act.

• FactS indicates the state after an act is performed, called the fact
state and represented as a circle. For FactS, we must update the
effects of an act with a number of functions, including: update
banks of the transaction type, update the states of related
objects, and add new transaction instances if necessary.

• TransitionFtoA is a transition from FactS to ActS. It is
triggered when all of the items in the act’s base are true;

• TransitionAtoF is a transition from ActS to FactS. It is
triggered by a particular message.

All transaction types are modelled following a state transition
pattern, with different names, types, initiators, executors, objects,
banks and bases for ActS, and reactions for FactS.
Several types of ports are defined for transaction types

corresponding to different types of links in DEMO:

• Port type i: Input and output port, connected to the initiator.
• Port type e: Input and output port, connected to the executor.
• Port type w_: Input port, connected to other transaction types

(derived from the waiting link).
• Port type o_: Output port, connected to other transaction

(derived from the waiting link and causal link).
• Port type i_: Input port, connected to transaction types (derived

from the causal link).
• Port type info: Input and output port, connected to the actor

roles that can access this bank.

AT (Aggregate transaction type). AT is derived from DEMO
aggregate transaction types. It is used as an information bank
when an actor requests external information. As represented in
Figure 7 (AT), only bank is defined. Here, bank shares the same
meaning as pBank in T: it contains the facts.
AT is connected with the actor role through port type info:

• Port info: Input and output port, connected to the actor roles
who can access this bank.

Actor role (A and CA). Actor role is a bridge that connects
ontology with implementation, as shown in Figure 7 (Actor-
Role). At the ontological level, actor role describes responsi-
bilities and authorities, whereas at the implementation level,
actor role defines the details of executing ontological acts.
In other words, as the initiator or executor of a transaction, the
actor role is defined as the processor of the ontological acts for
implementation.
Through ports, actor roles are linked with transactions as the

processors of corresponding acts or with information banks as
information users. There are three types of ports defined for
actor role:

• Port type i: Input and output port, linked with the transactions
initiated by it.

• Port type e: Input and output port, linked with the transactions
executed by it.

• Port type info: Input and output port, linked with the
information bank.

4.2. Implementation

In implementation, DEMO is expanded with implementation
details: ActorRoleComponent and Resource. The meta-model of
implementation is given in Figure 7.

ActorRoleComponent. ActorRoleComponent indicates the
subcomponents of an actor role who defines the implementation
details, including the following:

• ExecutionStep: The blocks for describing business process
details. For example, for actor role A1 (Figure 10), implemen-
tation process pmT1 is defined, describing how to promise,
what the required resources (Staff) are for keeping the promise,
and what steps (Order Taking) must be taken to complete this
coordination.

• SeizeResource: A block for seizing resources if necessary.
• ReleaseResource: A block for releasing resources if necessary.

R (Resource type)

• R is utilized in transactions. There are two types of resources:
operator (an actor who takes responsibility) and operand
(utilized by the operator). Both can be seized or released by
the actor role. We define the actor plays actor role through this
seize-release resource procedure. Seize an operator resource
indicates that the actor role is played by this type of resource.

Discussion on implementing ontology. Figure 10 describes the
implementation model of A1 (the order completer) and A2 (the
baker) at Buono. For A1, two different implementations are
available for promising the ‘order complete’: at the window or
by phone, which requires staff resources, or through the online

Y Liu and J Iijima—Business process simulation in the context of enterprise engineering 9



ordering system, which has no resource requirement. For A2,
the detailed execution process of preparing the pizza is defined:
stretching, topping, baking and packing, with resource
requirements.
Ontology could be implied differently. The key factors of

different implementations are concluded from the following two
aspects:

(1) Who plays the actor role?
Actors are an organization’s resources. The actor playing the
actor role is represented as an actor role’s seizing one type of
resource (operator) if necessary. As described in the actor–
actor role mapping in Table 2, one type of actor (resource)
can play different ontological actor roles: at Buono, any staff
member can play all three elementary actor roles, A1, A2 and
A3. Meanwhile, one actor role can be played by different
actors (resources): for example, if there are two types of staff
members in the store, staff type one can perform only the
duties inside the store, such as taking orders and preparing
pizza; staff type two responds by delivering the pizza. Then,
we can define another implementation plan: staff type one

can play actor roles A1 and A2, and staff type 2 can play
actor role A3, as shown in Table 3.
Actor–actor role mapping explains how humans interact by
playing actor roles. Although the ontology remains the same,
different human interactions during implementation will
affect the effectiveness of communication in cooperation
and resource utilization and hence the entire process. In our
method, it is simple to change the actor–actor role mapping
plan to illustrate the effects of different implementation plans
in the simulation model.

(2) How to play the actor role?
Implementation relates to how to apply ontology in an
enterprise; we can have different implementation plans for

Figure 10 Examples of implementation models.

Table 2 Actor–actor role mapping table plan one

Actor Actor role

A1 Order
completer

A2 Order
preparer

A3 Order
deliverer

Stuff A A A

10 Journal of Simulation



the same ontological design. As illustrated in Figure 10, there
are two implementations defined for A1, corresponding to
the same ontological act pmT1.
In reality, all of the possible implementation plans could
be defined independently in the corresponding actor roles,
so we can choose different approaches to compare the effects.
The changes are controlled: implementation changes will not
affect the ontological level, and the ontological changes will
not affect implementation if it is not necessary. For example,
all of the execution phases within T2 could be outsourced to
other companies. In this situation, we only need to change
the implementations within A2, with no change to the
ontological model. Similarly, if we need to enable customer
payment through the Internet using a credit card, it is not
necessary to wait for delivery to be accepted (acedT3) to
request the payment (rqT4). We can change the ontological
model to make ‘acedT3’ a condition of ‘exT1’ instead of

‘rqT4’. However, this ontological change does not change
the implementation of any acts.

4.3. Main

Main contains both ontological and implementation components,
with inter-connections (ICs) between the components defined.

An example of component ‘Main’ for Buono is given in
Figure 11. Component ports are connected by ICs. ICs between
transaction types are derived from the PSD’s causal and waiting
links. ICs between transaction types and actor roles are derived
from the OCD initiator, executor and information links. ICs
between actor role and aggregate transactions are derived from
the OCD information link.

4.4. Mapping with DEMO concepts

DEMO++ follows the enterprise engineering concept, with
separate design and realization phases. The ontology describes
the core, stable essence of an enterprise, whereas the implementa-
tion model describes how to bring the essence into reality.
DEMO++ focuses on not only workflow but also the human
aspects of cooperation. It is modularized so that all changes are
controllable for the purpose of reengineering.

All of the ontological components are derived from
DEMO. The mapping is concluded and listed in Table 4. This
mapping process could be semi-automatically completed
using the MDD4MS framework, as presented in previous

Figure 11 Example of main component.

Table 3 Actor-actor role mapping table plan two

Resource Actor role

A1 Order
completer

A2 Order
preparer

A3 Order
deliverer

Stuff type 1 A A
Stuff type 2 A

Y Liu and J Iijima—Business process simulation in the context of enterprise engineering 11



research (Cetinkaya et al, 2011; Cetinkaya et al, 2012; Liu
and Iijima, 2014).

5. Simulation in AnyLogic

The simulation based on DEMO++ was conducted in
AnyLogic. The main model is represented in Figure 12, follow-
ing Main component in DEMO++ .

Object type ‘Order’ shows the possible states of this object
type, which are shared by all instances. When we examine one
instance of ‘Order’, for example, the instance ‘o5’ is represented

by a rectangle in Figure 12, and its state transition chart is as
presented in Figure 13: At the moment, this object is in state ‘P2’,
which is related to transaction T2.

Figure 14 shows the state transition pattern of transaction type
T1. At the moment, the instance T1 (o5) is in ‘exT2’, meaning
that order (o5) is in preparation. The implementation model of
exT2 is defined in actor role A2, including stretching, topping,
baking and packing (Figure 15).

On the basis of the description of the Buono Pizza case,
we establish experimental parameters, as shown in Figure 16.
The simulation result (Figure 17) shows that with the current
number of resources and processes, approximately 25% of
customers wait for more than 30min to receive their pizzas. By
optimization (Figure 18), we find that this percentage could be
greatly reduced if there were six staff members and four vehicles
available. This observation suggests that Buono’s problem is
mainly a function of resource allocation. Because they were
already using an online ordering system, no significant changes
were required in their business processes.

6. Discussion and future research

The only unchanged thing is change itself. However, traditional
BPSs are inadequate for describing complex systems; it is
difficult to change models to simulate reengineering, and the
reengineering process cannot be repeated because of the lack
of systematic approaches. These limitations are caused by using
the workflow viewpoint and by the low abstraction levels in
conceptual modelling, as well as by indistinguishable opinions on
design and implementation. These concerns are limitations not
only in BPS but also in BPR.

Enterprise engineering is a promising research area for its
complexity-reducing capability, design thinking viewpoint and
human-centered interaction. Enterprise engineering makes reen-
gineering modularized and controllable. It takes enterprise as a
whole and investigates its core structures with separate design
and implementation. Meanwhile, it follows a human-centered
viewpoint, considering the social aspect of enterprise as well as
its processes. However, the advantages of enterprise engineering
have not been fully investigated in simulation for enterprise
reengineering. A DEMO-based Petri net model (Dietz and Barjis,
2000) explained how we can use ontology as an executable
model. However, ontology only is not sufficient for enterprise
reengineering simulation because many of the changes are related
to implementation. The main problem for those who use
enterprise ontology in their work is how to connect ontology
with implementation.

The proposed DEMO++ is a conceptual model that expands
and combines ontology with implementation in the context of
enterprise engineering to assist in BPS. It concerns not only the
abstracted essence of enterprise but also its implementation.
In DEMO++ , business process is controlled in its ontology;
decision making and implementations are called for only when
necessary during implementation. The separately defined core and

Table 4 DEMO++ and DEMO mapping table

DEMO++ DEMO Implementation

Main t t
AT AT
A&CA A&CA
IC Causal link

Waiting link
Information link
Initiator link
Executor link

T ActS Standard
transaction
pattern

FactS
Transition FtoA
Transition AtoF

Port type i InitiatorLink.
target (CM)

Port type e EexcutorLink
.source (CM)

Port type o_ CausalLink
.source (PM)
WaitingLink
.source (PM)

Port type i_ CausalLink
.target (PM)

Port type w_ WaitingLink
.target (PM)

Port type info InformationLink
(CM)

cBank/pBank AM

AT Port type info InformationLink
(CM)

A&CA Port type info InformationLink
(CM)

Port type i InitiatorLink
.source (CM)

Port type e EexcutorLink
.target (CM)

O O Object (FM)
property property (FM)

OOLink (FM)
state product (FM)

ActorRole
component

Actor role
component

R Resource type

12 Journal of Simulation



implementations reduce the complexity of modelling complex
systems and make simulation models more flexible and agile.

Meanwhile, DEMO++ -based conceptual models make
changes controllable. In some situations, the ontological model
itself must be changed. These are always fundamental changes in

BPR; in most cases, the changes only involve providing an
alternative implementation plan for the same ontological objec-
tive. Regardless of the change types, the changes are within
certain components.

Compared with traditional workflow-based business process
modelling and simulation methods, DEMO++ is not only a way
of simulating but also a way of analysing. This method can be
well connected with management for analysing problems, seek-
ing solutions and evaluating alternative plans for enterprise
reengineering.

Another contribution of this research is considered from the
practice standpoint. By clarifying the differences and dependen-
cies between the ontological and implementation models, our
methodology proposed a generic framework for generating a
modularized, component-based simulation model with increased
reusability. The proposed components were developed as an
AnyLogic DEMO++ library and can be reused in other
DEMO++ based simulations.

A limitation of this research is that we used the standard
transaction pattern in describing transactions. However, in certain
real-world cases, we would need to simulate exceptions, such as
cancel and redo. The standard transaction would need to be
expanded to a complicated transaction pattern (with decline,
reject and cancellation) to make the simulation more realistic
and comprehensive.

Although the DEMO++ AnyLogic components are useable,
we still need to create the simulation model manually, with many

Figure 12 Main of Buono Pizza.

Figure 13 State transition diagram of order instance ‘o5’.

Y Liu and J Iijima—Business process simulation in the context of enterprise engineering 13



Figure 14 Transaction pattern of transaction T1.

Figure 15 Implementation phase of exT2.

14 Journal of Simulation



repeated modification tasks. On the basis of the meta-model
given in this research and on previous studies (Liu and Iijima,
2014), we will convert a semi-automatic transformation tool from
DEMO to DEMO++ to an AnyLogic model to reduce the
complexity of simulation modelling based on DEMO++ in our
future research.

In reality, pizza is mainly related to resource allocation issues.
These are quite simple and traditional problems that can also be

easily solved by process-based simulation models. This case was
only utilized to explain the basic concepts of DEMO++ . In the
context of enterprise engineering, DEMO++ can provide more
ability than mere simulation. It is better at analysing and
simulating complex business processes and cooperation that the
other traditional simulation models cannot well support. Improv-
ing this method further by applying it in real-world BPR projects
is also planned as our next research target.

Figure 16 Experimental parameter setting.

Figure 17 Simulation result.

Y Liu and J Iijima—Business process simulation in the context of enterprise engineering 15



References

Aguilar-Savén RS (2004). Business process modelling: Review and frame-
work. International Journal of Production Economics 90(2): 129–149.

Banks C, Filho JP, de Moura J and Santini B (2013). Framework for
specifying a discrete-event simulation conceptual model. Journal of
Simulation 7(1): 50–60.

Barber KD, Dewhurst FW, Burns RLDH and Rogers JBB (2003).
Business-process modelling and simulation for manufacturing man-
agement: A practical way forward. Business Process Management
Journal 9(4): 527–542.

Barjis J (2007). Automatic business process analysis and simulation
based on DEMO. Enterprise Information Systems 1(4): 365–381.

Barjis J (2008). The importance of business process modeling in software
systems design. Science of Computer Programming 71(1): 73–87.

Barjis J (2010). Collaborative, participative, and interactive modeling
and simulation in systems engineering. In: Wainer GA (ed). Proceed-
ing: Spring Simulation Multi-conference 2010. SCS Publishing
House: San Diego, CA, pp 119–124.

Barjis J, Dietz JLG and Liu K (2001). Combing the DEMOmethodology
with semiotic methods in business process modeling. In: Liu K,
Clarke RJ, Andersen PB and Stamper RK (eds). Information,
Organisation and Technology; Studies in Organizational Sementics,
Springer: Dordrecht, The Netherlands, pp 213–246.

Barjis J, Dietz JLG and Galatonov T (2002). Language based require-
ments engineering combined with Petri nets. In: Halpin T, Siau K and
Krogstie J (eds). Proceedings of the Seventh CAiSE/IFIP-WG8.1
International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design EMMSAD’02 (in conjunction with
CAiSE’02),Microsoft Research: Toronto, pp 1671–1678.

Cetinkaya D, Verbraeck A and Seck MD (2011). MDD4MS: A model
driven development framework for modeling and simulation. In:
Proceedings of the 2011 Summer Computer Simulation Conference
Den Haag, the Netherlands, Society for Computer Simulation Inter-
national San Diego, CA.

Cetinkaya D, Verbraeck A and Seck MD (2012). Model transformation
from BPMN to DEVS in the MDD4MS framework. In: Proceeding
TMS/DEVS ’12 Proceedings of the 2012 Symposium on Theory of
Modeling and Simulation—DEVS Integrative M&S Symposium.
Society for Computer Simulation International San Diego, CA:
Orlando, FL.

Chen P (1976). The entity-relationship model: Towards a unified view
of data. ACM Transactions on Database Systems 1(1): 9–36.

Davenport TH, Young E and Stoddard DB (1994). Reengineering:
Business change of mythic proportions? MIS Quarterly 18,
(Issues&Opinions: Myths About Reengineering) pp. 121–127.

Dietz JLG (2006). Enterprise Ontology. Springer: Berlin Heidelberg.
Dietz JLG and Barjis J (2000). Petri net expressions of DEMO

process models as a rigid foundation for requirements engineering.
In: ICEIS 2000. INSTICC: Stafford, UK, pp 267–274.

Dietz JLG and Hoogervorst JAP (2012). The principles of enterprise
engineering. In: Albani A, Aveiro D, and Barjis J (eds). EEWC
2012, LNBIP 110. Springer: Delft, The Netherlands, pp 15–30.

Dietz JLG and Hoogervorst J (2014). Theories in Enterprise
Engineering Memorandum 5: The PSI Theory. Working Paper,
http://www.ciaonetwork.org/uploads/eewc2014/EE-theories/TEEM-5
PSI v2.pdf.

Dietz JLG et al (2013). The discipline of enterprise engineering.
International Journal of Organisational Design and Engineering
3(1): 86.

Figure 18 Optimization result.

16 Journal of Simulation

http://www.ciaonetwork.org/uploads/eewc2014/EE-theories/TEEM-5 PSI v2.pdf
http://www.ciaonetwork.org/uploads/eewc2014/EE-theories/TEEM-5 PSI v2.pdf


Greasley A (2003). Using business-process simulation within a business-
process reengineering approach. Business Process Management
Journal 9(4): 408–420.

Greasley A and Barlow S (1998). Using simulation modelling for BPR:
Resource allocation in a police custody process. International of
Operations &Production Management 18(9/10): 978–988.

Guizzardi G and Wagner G (2012). Tutorial: Conceptual simulation
modeling with onto-UML. In: Proceedings of the 2012 Winter
Simulation Conference, IEEE: Berlin, Germany.

Hammer M and Champy J (1993). Reengineering the Corporation.
Nicolas Brealey: London.

Hoogervorst JAP (2009). Enterprise Governance and Enterprise
Engineering. Springer: Diemen, The Netherlands.

Hopcroft JE, Motwani R and Ullman JD (2006). Introduction to
Automata Theory, Languages, and Computation, 3rd edn, Addison-
Wesley: Boston, MA.

Jahangirian M, Eldabi T, Naseer A, Stergioulas LK and Young T (2010).
Simulation in manufacturing and business: A review. European
Journal of Operational Research 203(1): 1–13.

Liu Y and Iijima J (2014). Automatic model transformation for enterprise
simulation. In: Aveiro D, Tribolet J and Gouveia D (eds). EEWC
2014. Springer: Funchal, Portugal.

Martin J (1995). Using the Seven Principles of Enterprise Engineering to
Align People, Technology and, Strategy. American Management
Association: New York.

Netjes M (2006). Business process simulation—A tool survey. In:
In Workshop and Tutorial on Practical Use of Coloured Petri Nets
and the CPN Tools. CPN’05: Aarhus, Denmark.

Paolucci E, Bonci F and Russi V (1997). Redesigning organisations
through business process re-engineering and object-orientation.
In: Proceedings of the European Conference on Information Systems,
IEEE: Cork, UK.

Perinforma APC (2012). The Essence of Organisation. Sapio Enterprise
Engineering: Leidschendam, The Netherlands.

Reijers HA and Liman-Mansar S (2005). Best practices in business
process redesign: An overview and qualitative evaluation of success-
ful redesign heuristics. The International Journal of Management
Science 33(58): 283–306.

Robinson S (2006). Conceptual modeling for simulation: Issues and
research requirements. In: Proceeding WSC ’06 Proceedings of the
38th conference on Winter simulation, Winter Simulation Confer-
ence: Monterey, CA, pp 792–800.

Salimifard K and Wright M (2001). Petri net-based modelling of
workflow systems: An overview. European Journal of Operational
Research 134(3): 664–676.

Scholz-Reiter B, Stahlmann HD and Nethe A (1999). Process Modelling.
Springer: Berlin Heidelberg.

Siebers PO, Macal CM, Garnett J, Buxton D and Pidd M (2010).
Discrete-event simulation is dead, long live agent-based simulation!
Journal of Simulation 4(3): 204–210.

Tumay K (1996). Business process simulation. In: Proceedings
of the 1996 Winter Simulation Conference, IEEE: Coronado, CA,
pp 93–98.

Turnitsa C, Padilla JJ and Tolk A (2010). Ontology for modeling and
simulation. In: Proceedings of the 2010 Winter Simulation Con-
ference, IEEE: Baltimore, MD, pp 643–651.

Valiris G and Glykas M (2004). Business analysis metrics for business
process redesign. Business Process Management Journal 10(4):
445–480.

Vergidis K, Tiwari A and Majeed B (2008). Business process analysis
and optimization: Beyond reengineering. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews)
38(1): 69–82.

Wang W and Brooks RJ (2007). Empirical investigations of conceptual
modeling and the modeling process. In: Proceedings of the 2007
Winter Simulation Conference, IEEE: Washington DC, pp 762–770.

XJ Technologies (2009). AnyLogic home page, http://www.xjtek.com/,
accessed 5 December 2012.

Zeigler BP, Kim TG and Praehofer H (2000). Theory of Modeling and
Simulation. 2nd edn. Academic Press: San Diego, CA.

Received 12 July 2013;
accepted 28 October 2014 after two revisions

Y Liu and J Iijima—Business process simulation in the context of enterprise engineering 17

http://www.xjtek.com/

	Business process simulation in the context of enterprise engineering
	1. Background
	2. Research design
	3. DEMO
	3.1. Enterprise ontology
	3.2. Case description: Buono Pizza
	3.3. DEMO construction model

	Figure 1Basic transaction pattern.
	Figure 2DEMO aspect models.
	3.4. DEMO process model

	Figure 3Buono Pizza&#x02019;s�OCD.
	Table 1 
	3.5. DEMO fact model
	3.6. DEMO action model

	Figure 4Standard transaction pattern.
	Figure 5PSD of Buono�Pizza.
	4. DEMO�&#x0002B;�&#x0002B;�
	4.1. Ontology
	O (Object type)
	T (Transaction type)


	Figure 6OFD of Buono�Pizza.
	Figure 7Meta-model of DEMO�&#x0002B;�&#x0002B;�.
	Figure 8Object type component &#x02018;order&#x02019;.
	Figure 9Transaction type component &#x02018;T1&#x02019;.
	Outline placeholder
	AT (Aggregate transaction type)
	Actor role (A and CA)

	4.2. Implementation
	ActorRoleComponent
	R (Resource type)
	Discussion on implementing ontology


	Figure 10Examples of implementation models.
	Table 2 
	4.3. Main
	4.4. Mapping with DEMO concepts

	Figure 11Example of main component.
	Table 3 
	5. Simulation in AnyLogic
	6. Discussion and future research
	Table 4 
	Figure 12Main of Buono�Pizza.
	Figure 13State transition diagram of order instance &#x02018;o5&#x02019;.
	Figure 14Transaction pattern of transaction�T1.
	Figure 15Implementation phase of�exT2.
	Figure 16Experimental parameter setting.
	Figure 17Simulation result.
	A7
	Figure 18Optimization result.




