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This paper presents a novel approach towards showing how specific emergent multi-level behaviours in agent-based
simulations (ABSs) can be quantified and used as the basis for inferring predictive models. First, we first show how
behaviours at different levels can be specified and detected in a simulation using the complex event formalism. We then
apply partial least squares regression to frequencies of these behaviours to infer models predicting the global behaviour
of the system from lower-level behaviours. By comparing the mean predictive errors of models learned from different
subsets of behavioural frequencies, we are also able to determine the relative importance of different types of behaviour
and different resolutions. These methods are applied to ABSs of a novel agent-based model of cancer in the colonic
crypt, with tumorigenesis as the global behaviour we wish to predict.
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1. Introduction

Agent-based modelling and simulation (ABMS) is used in

Complexity Science and decentralised Systems Engineering

to study the relationship between lower-level behaviours

between system components and higher-level properties or

behaviours, which ‘emerge’ from these. The agent-based

model (ABM) itself consists of specifications for different

types of agent, each of which represents a particular class or

‘species’. For each type, a set of behavioural rules is defined,

which specify how an agent should behave depending on (i)

its current state and/or past state(s); and (ii) the input it

receives from its environment (usually made up of other

agents). In a simulation of an ABM, agent instances exist in

a common environment and are able to interact with one

another, with each agent behaving according to the set of

behavioural rules defined by its type. It is from the individual

behaviours and interactions between agents that higher-level

properties and behaviours are generated; this is termed

‘emergence’ (Crutchfield, 1994; Holland, 2000; Bedau, 2003;

Deguet et al, 2006; Boschetti and Gray, 2007).

However, these higher-level properties and behaviours can

also constrain the behaviour of the base entities (‘top-down

causation’), and this can give rise to further higher-level

properties, and so on. In such cases, the system’s development

over time is restricted to a particular set of trajectories (‘self-

organisation’). Furthermore, constraining properties can

emerge at many different levels and interact with one another,

so there is no straightforward fixed hierarchy. Instead, the

system should be treated as a set of dynamic, interacting

hierarchies (Rasmussen et al, 2001) or heterarchies (Gunji and

Kamiura, 2004; Gunji et al, 2008). The mutual constraints

that properties at different levels exert on each other make

such systems difficult to analyse and predict.

In this paper, we first show how behaviours at different

levels can be specified and detected in a simulation using the

complex event formalism. We then apply partial least squares

(PLS) regression to frequencies of these behaviours to infer

models predicting the global behaviour of the system. To

validate this approach, we compare the mean predictive error

(MPE) rates obtained from models learned using real data

with those learned using randomised data. We also compare

the predictive errors of models from different subsets of the

behavioural frequencies. To the knowledge of the authors this

is the first study done towards showing how specific emergent

multi-level behaviours in agent-based simulations (ABSs) can

be quantified and used as the basis for inferring predictive

models. Our work is based on simulations of a novel ABM of

cancer in the colonic crypt, with tumorigenesis as the global

behaviour of interest.

The paper will be structured as follows. Section 2 shows

how behaviours at different levels can be specified using

complex event types (CETs) and then applies this to our

ABM of tumorigenesis in the colonic crypt. Section 3 then

briefly introduces PLS regression and shows how it can be

applied to complex event data to infer predictive models

from behaviours at different levels. Section 4 first uses MPE

of real and randomised data sets to validate the inferred
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models. We then examine differences in MPE between

models learned from different data sets representing different

sets of behaviours and different temporal resolutions.

Section 5 summarises and concludes the paper.

2. An inter-level model of tumorigenesis in the colonic crypt

In the context of ABMS, we define an inter-level model to be

a model that relates the base level behaviours in an ABM to

behaviours defined at different ‘observational’ levels. In

order to specify an inter-level model, we require

1. an ABM with a set of state transition rules (STRs)

representing behavioural rules or ‘laws’ governing the

behaviour and interactions between the modelled real-

world entities;

2. a set of explicitly specified higher-level behaviours, which

are defined in terms of both the ABM STRs and observed

state transitions, as described below; and optionally

3. a set of defined inter-dependency relationships, for

example causal, modular between the behaviours at

different levels.

The analyses presented in this paper require the first two of

these and can be used as a first step to determining whether

the third would be plausible (see Section 4.3).

2.1. Specifying multi-level emergent behaviours using CETs

In an ABS, certain organisational properties and macro-

behaviours can ‘emerge’, which have not been explicitly

specified in the agent rules. The complex event formalism

introduced below allows us to specify such behaviours as

types of ‘observation’ in simulations and is based on two

categories of emergence theory:

� Information theoretic interpretations (eg Crutchfield,

1994), which formalise the fact that emergent properties

are those that result from viewing the system at different

resolutions (distinguishable states) and scopes (compo-

nents) (see Ryan (2007) for a more detailed account of

scope and resolution). For example, a sequence of events

can be statistically significantly related to another

sequence of events (scope). Usually, only a subset of the

events in the first sequence are related to a subset of the

events in the sequence; these can be seen to form a

minimal causal structure (resolution)—other events are

then (statistically) ‘irrelevant’. Two categories of relation-

ship between CETs can be defined, which correspond to

scope and resolution:
* Part/whole (scope): One complex event type, CET1, can

be a constituent of another CET2 so that CET1 is

always observed when CET2 is observed.

* Supertype/subtype (resolution): One complex event

type, CET1, can be defined more specifically than

another CET2 so that every event that can be classified

as CET1 must be classifiable as CET2 but not

necessarily every event classified as CET2 is classifiable

as CET1 that is

CET1 � CET2

� Emergence theories addressing designed/modelled systems

(eg Bonabeau and Dessalles, 1997; Kubik, 2003), which

also take into account the fact that some behaviours are

explicitly specified while others are not. These latter

behaviours arise through interactions between the com-

ponents and are considered to be emergent. In the current

context, this corresponds to the distinction between simple

and complex events described below.

We define an event as a state transition at a defined level of

abstraction. In an ABS, events result from an agent rule

being applied; we call these simple events.

Two simple events e1 and e2 are said to be of the same type

if (a) e1 and e2 result from the same agent rule and (b) the

scope of e1’s state transition is identical to the scope of e2’s

state transition, that is for every component in which a state

change occurs in e1, there is a component of the same type in

which the same type of state change occurs in e2.

A complex event, CE, is defined as either a simple event

SE or two complex events linked by t:

CE :: SEjCE1tCE2

t denotes a set of constraints that CE2 satisfies in relation

to CE1, for example occurs ‘in the same component’, ‘at the

same time’, ‘within distance x’. Conceptually, complex

events can be thought of as a configuration of simple events

in the system space (‘space’ is meant in the general sense and

includes all the dimensions represented in the system such as

time, physical space, identity).

The type of a complex event is determined both by the

types of its constituent events and the relations that hold

between them (see Definition 1 and Definition 2). This can

be represented as a coloured hypergraph, in which the

coloured nodes stand for event types and coloured edges

stand for the different relationship types (constraints)

existing between pairs of events (Chen et al, 2007). Since

both events and relation constraints can be defined at

different levels, different hypergraphs can be drawn for the

same complex event (instance). This reflects the fact that the

same event can exemplify more than one type, depending on

the level of abstraction.

Definition 1

Complex event type (recursively defined). A complex event

type is either a simple event type (SET) or two complex events

types CET1 and CET2 satisfying a particular spatial relation,
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a relation type t with respect to each other such that the

location of CET1 entails the location of CET2 and vice:

ce :: SETjCET1tCET2

t! ðlCET1! lCET2Þ4 ðlCET2 ! lCET1Þ

Definition 2

Complex event type. Two complex events ce1 and ce2
are said to be of the same type if, for the hypergraphs

representing them Hce1¼ (Xce1,Ece1) and Hce2¼ (Xce2, Ece2):

1. every member of Xce1 has exactly one member in Xce2 that

is of the same type and vice versa; and

2. every member of Ece1 has exactly one member in Ece2 that

is of the same type and vice versa.

2.2. ABM STRs and SETs

The ABM on which our analyses are based aims to model

tumorigenesis in the colonic crypt as a function of

Adenomatosis Polyposis Coli (APC) mutation rate, with

only one agent type representing the crypt cells. Due to space

constraints, the full set of STRs is not given here, but the

STRs reflect the following biological observations when the

APC mutation is present:

1. The cell always divides symmetrically Morrison and

Kimble (2006).

2. Fitness increases, with a greater effect lower down in the

crypt (due to greater levels of the surviving protein)

(Boman et al, 2004); the effect is also greater when both

alleles are mutated.

3. Migration time increases, that is cells move slower so they

are more likely to accumulate (Lamprecht and Lipkin,

2002; Aoki and Taketo, 2007); the effect is greater when

both alleles are mutated.

4. cMyc is activated (if not already).

5. If cMyc is activated, migration time increases at a greater

rate (Krobath et al, 2007) (this is modelled by making it

equivalent to the rate when both APC alleles are

mutated).

6. If Wnt is activated, polyp formation is stimulated

(this is modelled by allowing the cell to accu-

mulate, that is does not have to compete with other

cell(s) occupying a location) (Fodde et al, 1994;

Oshima et al, 1995; Sansom et al, 2004; Andreu et al,

2005).

7. There is an increased probability of Wnt acti-

vation. This is based on the observation that

APC mutated cells behave as if the Wnt-signalling

pathway is constantly stimulated (Giles et al, 2003;

Ilyas, 2005).

Table 1 shows the SETs that are used for specifying CETs

representing the higher-level behaviours of interest (see

Table 2 and Table 3).

Table 1 Table showing simple event types (SETs) associated different state transition rules and their biological significance (the
biological behaviour represented). Note that not all the SETs of the ABM are shown, only those found in the specified CETs

Simple event type Biological significance

Asymmetric division (ASD) Asymmetric cell division
Symmetric division (SD) Symmetric cell division
InsertNew (IN) A daughter cell is inserted at a particular location in the crypt
Migrate (MG) Cell migrates upwards in the crypt
MutateAPC1 (MAPC1) One allele of APC is mutated
Activate WNT spatial (SACTW NT) Wnt signalling activated by spatial signals
APC activate WNT (APCACTW NT) Wnt signalling activated due to APC mutation
Compete (C) Competition between a pair of cells

Table 2 Table defining complex event types for mechanisms associated with APC mutation contributing to tumorigenesis

Complex event type Specification in terms of simple event types or subtypes

MD Either (subtype) MSD or (subtype) MAD
MSD MAPC1 o[sameCell]SD
MAD MAPC1 o[sameCell]AD
MWD Either: (subtype) MWDS or (subtype) MWDA
MWDS (MAPC1||[sameCell, stem]APCACTWNT) o[sameCell]SD
MWDA (MAPC1||[sameCell, stem]APCACTWNT)o[sameCell]AD
MSWD Either: (subtype) MSWDS or (subtype) MSWDA
MSWDS MAPC1o[sameCell]SACTWNTo[sameCell, stem, mutated]SD
MSWDA MAPC1o[sameCell]SACTWNT o[sameCell, stem, mutated]AD
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2.3. CETs for the mechanisms underlying APC
mutation-driven tumour development

Although the relationship between APC mutation rate and

tumorigenesis is linear, there is more than one mechanism

underlying this relationship. Each of these mechanisms is

effectively a behavioural ‘motif’, which can be formulated as

a CET. We can distinguish between two categories of

mechanisms believed to contribute to tumorigenesis:

1. Mechanisms directly associated with the APC mutation,

which arise as a result of the altered behaviour of

individual mutated cells, as defined in Table 2; and

2. Clonal interaction mechanisms, which are by definition

higher-level characterisations of cell agent behaviour.

CETs representing such mechanisms are defined in

Table 3.

In each simulation, different pathways can be active to

different degrees. To track each of them, we measure the

frequency of events corresponding to different simple and

CETs.

3. PLS regression analysis of complex event frequencies

Partial Least Squares (PLS) (Geladi and Kowlaski, 1985) is a

method for constructing a predictive model when the

relationships between variables are complex or ill-under-

stood; for example, some may be collinear, some may be

non-linearly related. Rather than trying to understand the

underlying relationships between variables, however, the

main purpose of PLS is to construct a model that is able to

predict a set of outcomes (responses), given a set of input

variables (factors). In our studies, we use PLS to construct

models that are able to predict the degree at which a system-

level behaviour (tumorigenesis) occurs, given occurrences of

lower-level behaviours (CET occurrence frequencies). This is

summarised in Figure 1.

PLS works by projecting to a latent structure. Latent

variables (the underlying factors that account for most of the

variation), X and Y, are extracted from the factors F (in this

case the CET frequencies) and the responses R (in this case

the higher-level behaviour), respectively. X is then used to

predict Y, and then the predicted Y is used to construct

predictions for R.

Least squares is the procedure of finding the best fitting

curve to data, such that the error of the sum of the squares of

the points offset from the curve is minimised. In the process

of the optimisation of least squares regression we seek a

vector w such that it solves

min
w

8Xw� y82

where X contains as rows the feature vectors of the samples

and y contains the outputs.

We are able to consider a more general multivariate

regression by taking w and y to be matrices and the norm to

be the Frobenius norm

min
w

8XW� Y82F

Frobenius norm

min
W

8XW� Y82F

Principal Component Analysis (PCA) (Pearson, 1901) is

the process of examining the direction of maximum variance

within the data. We seek linear combinations of the data that

preserves the characteristics of the data while finding

directions with maximum variance.

The PCA can be solved by the following optimisation

problem

maxw w0X0Xw

subject to 8w8 ¼ 1

where 8w8 is the first eigenvector and X is centred (ie the

origin is moved to the centre of the mass of X). We consider

the usage of the features returned from PCA. Using the first

k eigenvectors of X0X as our features and leaving the outputs

Y unchanged. This translates into two stages; performing

PCA and regressing in the feature space given by the first k

principal directions and then minimising the least square

error between the projected data and the response. This is

also known as Principal Component Regression (PCR). Let

X¼VR0U0 be the Singular Value Decomposition (SVD)1 of

X, therefore the data matrix is now represented as XUk

where Uk contains the first k columns of U. We describe the

Table 3 Table defining complex event types for clonal interaction mechanisms contributing to tumorigenesis

Complex event type Specification in terms of simple event types or subtypes

CC C[sameClone, differentCell]
CCWIN Either (subtype) CCMIG or (subtype) CCINS
CCLOSE C||[sameClone, differentCell]IN or C||[sameClone, differentCell]MG
CCINS C||[sameClone, differentCell]IN
CCMIG C||[sameClone, differentCell]MG

1The Singular Value Decomposition (SVD) is a widely used technique to
decompose a matrix into several component matrices, exposing proper-
ties of the original matrix. Using the SVD, we can determine the rank of
matrix, quantify the sensitivity of a linear system to numerical error, or
obtain an optimal lower-rank approximation to the matrix.
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least squares solution, which will be used in our experiments.

In the following we obtain the least squares regression

problem

min
B

8XUkB� Y82F ¼ min
B

8VS0U0UkB� Y82F

where we are able to multiply by an orthogonal matrix V0 as

this does not effect the norm, giving

min
B

8V0VS0U0UkB� V0Y82F ¼ min
B

8S
0

kB� V0Y82F

Rk is the matrix containing the first k columns of R and

similarly let Vk contain the first k columns of V. We find that

�S
0

kB ¼ V0Y

B ¼ �S�1k V
0

kY

Where �Sk
�1 is the symmetric square matrix containing the

first k columns inverse of Rk.

Following the SVD of X we find that Vk¼XUk
�Sk
�10,

allowing us to express B as

B ¼ �S�2k U
0

kX
0
Y

Showing that the components are computed as an inner

product between the features and the data matrix weighted

by the inverse of the eigenvalues, the critical measure of the

different coordinates is their covariance with the data matrix

X0Y suggesting that rather than seeking directions that give

maximum variance we should seek direction that maximise

the covariance.

4. Validating and comparing models learned from

different data sets

In our studies, models were inferred from the following data

sets:

1. APC and clonal dominance (CD): APC mutation rate and

initial CD (not CETs).

2. Clonal interaction CETs overall: The total frequencies of

clonal interaction CETs, as defined in Table 3.

3. Mutation-driven CETs overall: The total frequencies of

mutation-driven CETs, as defined in Table 2.

4. CETs overall: The total frequencies of both clonal

interaction CETs and mutation-driven CETs.

5. CETs 300ts: The frequencies of both clonal interaction

and mutation CETs extracted at nine 300-time step

intervals from time step 0 to time step 2100.

6. SETs 300ts: The frequencies of the 27 SETs (see Table 1)

extracted at nine 300-time step intervals from time step 0

to time step 2100.

7. Both CETs and SETs 300ts: The frequencies of both the

specified CETs and the SETs extracted at 300-time step

intervals, giving 302 independent variables (IVs) in total.

For each data set, 100 different models were learned from

80-simulation subsets of 100 simulations, with the remaining

ABM + fixed parameter settings

PLSLearned model

APC mutation rate + inital
conditions + randomness

Test data

Tumorigenesis

Tumorigenesis

Specified
CETs

time

Training data

Sim i
Sim i

Sim k

Sim m
Sim j

Sim l

Simi

CETA

XAi

XEtestXDtestXCtestXBtestXAtestSimxst

XBi XCi XDi XEi

XAj XBj XCj XDj XEj

XAk XBk XCk XDk XEk

XAl XBl XCl XDl XEl

XAm XBm XCm XDm XEm

CETB CETC CETD CETE

CETA CETB CETC CETD CETE

Simj

Simk

Siml

Simm

Figure 1 Outline of method used to infer predictive models from CET frequencies. The colonic crypt ABM and fixed parameter
settings generate a set of simulations. Differences in the CET frequencies between simulations are due to differences in APC mutation
rate, simulation initial conditions, and randomness throughout simulations. CET frequencies are used as the input observations for
learning the predictive model using PLS. The learned model can then be used to predict tumorigenesis from CET frequencies.
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20 simulations used as the test sample to test the predictive

validity of the learned models. The MPE for each model is

the mean of the discrepancies between the values (for the

tumorigenesis measures) predicted by the inferred model

given the event frequencies of the test sample, and the actual

values observed in the test sample.

4.1. Validating models learned from real against
randomised data set models

For each 80-simulation subset, we inferred two models: one

from real data, and the other from randomised data, and

calculated their respective predictive errors. The means of

the MPEs across models were then calculated for models

learned from each data set. Figure 2 shows that for all data

sets, the PLS models learned from real data had lower

predictive error rates than those learned from randomised

data sets, and the results of t-tests between real and random

data models confirm that in all cases, the difference is

significant (p¼ 0.001, two-tailed).

4.2. Comparing models learned from different data sets

Table 4 shows the MPEs for the models learned from the

different model sets (where each model set contains the

models learned from a particular data set) and the sizes of

the data sets in terms of number of independent variables.

Paired t-tests comparing the MPEs for the different model

sets showed differences between every model comparison

(p¼ 0.001, two-tailed). The following observations were

made:

� The data set for the clonal interaction CETs performs

better than that for mutation-driven CETs (t¼ 9.365),

suggesting that among the specified CETs, those repre-

senting clonal interactions are more dominant than those

representing mutation-driven behaviours in determining

the degree of tumorigenesis.

� The data set with both mutation-driven CETs and clonal

interaction CETs (t¼ 10.217 and t¼ 3.343, respectively)

performs better than either alone, suggesting that the

specified mutation-driven CETs still have significant

effects on the degree of tumorigenesis.

� The data set for SETs performs between than that for

CETs (t¼ 21.093). This is consistent with the idea that the

SET set contains higher resolution information.

� For CETs, the data set with greater temporal resolution

(CETs 300ts versus CETs overall) performs better

(t¼ 17.255), suggesting that the higher temporal resolu-

tion gives us additional information.

� The data set with both SETs and CETs performs better

than either the SET set or the CET set on its own

(t¼ 21.093 and t¼ 39.695, respectively), suggesting that

the higher-level behaviours specified in the CETs give us

additional information that is not contained in the SETs

alone.

� The MPE for models learned from APC mutation and

initial CD are relatively low. In terms of data efficiency,

these models perform best, since only two independent

variables are used.

4.3. Interpretation of MPE differences

In the complex systems framework, differences between

MPEs can be given a number of different interpretations. If

DS1 and DS2 are two model sets containing models learned

from two different data sets with different observation types

(CETs), the fact that MPEDS1 oMPEDS2 for phenomenon

X can be given several different interpretations, for example,

that the types of input observations of DS1 are better

indicators of: (i) the ‘causes’ of X (which is itself subject to a

number of different interpretations; for example Williamson,

2007; Pearl, 2000); (ii) lower-level processes or states

underlying X; or (iii) X itself. Validation of one or more

explicit models describing the interdependency relations

between the observation types (eg causal, modular), such

as structural equation models or Bayesian nets would be

required to determine the plausibility of different interpreta-

tions. However, by establishing the significance of the

building blocks of such explicit inter-level models, PLS

analysis gives an indication as to whether such explicit

models are worth pursuing at all.

Table 4 Table showing mean predictive errors and standard deviations of the models learned from the different data sets. The size of
each data set is also given

Data set Mean pred.
error

Mean pred.
error randomised

Mean
difference

SD SD
randomised

SD
difference

No.
IVs

APC and CD 0.80144 4.65264 3.85120 0.12372 0.63137 0.58944 2
Clonal interaction CETs overall 0.98023 4.68417 3.69948 0.21170 0.64342 0.70927 5
Mutationdriven CETs overall 2.08583 4.71405 2.76500 1.00772 1.65530 1.14076 9
CETs overall 0.92283 4.71631 3.81141 0.11180 0.69374 0.71220 14
CETs 300 ts 0.74734 4.87059 4.12325 0.09124 0.69643 0.69782 98
SETs 300 ts 0.54860 5.16293 4.61432 0.07858 0.74636 0.73826 189
CETs 300 SETs all ts 0.37663 5.03825 4.66162 0.05008 0.72304 0.71908 287
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5. Summary and conclusions

In this paper, we have introduced novel methods for

analysing ABSs and applied these to a biological ABM of

tumorigenesis in the colonic crypt. CETs were specified to

represent behaviours at different levels of abstraction and

then used as input data for learning predictive models using

PLS regression. The learned models could then be used to

predict tumorigenesis, a higher-level system behaviour from

lower-level behaviours (the specified CETs). Analysis of the

MPEs of models learned from different sets of CETs

provided a means of determining the relative importance

of different types of behaviours and possible interactions

between behaviours. This can provide the first step towards

explicit modelling of the interdependencies between beha-

viours at different levels.
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