

SIMULATION-BASED FRAMEWORK FOR AUTOMATED TESTING OF TACTICAL
MESSAGE SYSTEMS

by

Stephanie Jarboe

Copyright © Stephanie Jarboe 2009

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE

WITH A MAJOR IN COMPUTER ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

2009

i

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an advanced
degree at The University of Arizona and is deposited in the University Library to be
made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided that
accurate acknowledgment of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by
the copyright holder.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

 November 23, 2009
Bernard P. Zeigler Date
Professor of Electrical and Computer Engineering

ii

Acknowledgements

I would like to acknowledge Dr. Bernard Zeigler, Dr. James Nutaro, Dasia Benson,

Jeffery Johnson, Dale Fulton, and all of the other people at the Joint Interoperability

Test Command who have helped me finish the research and come up with the ideas

behind this thesis. I would also like to thank them for supporting me while I was working

to get my Masters degree.

I would like to extend my heartfelt thanks to my committee members, Dr. Michael

Marcellin and Dr. Roman Lysecky without whose patience and help this thesis would

not have come to be.

I would like to acknowledge the staff at the Arizona Center for Integrated Modeling and

Simulation at the University of Arizona, who helped immensely with the research behind

this thesis.

I would like to acknowledge my husband, Matthew Jarboe, for his support during the

years and for his help with completing this thesis. I also want to thank my friends,

Melanie Yaun, Patrick Kelley, Sarah Kelley, and Brandon Smith, for putting up with the

endless amounts of homework and making me have fun occasionally.

I would also like to acknowledge my parents, who paid for my bachelors degree and

encouraged me in my love of learning and my desire to go back to school.

iii

Table of ContentsTable of ContentsTable of ContentsTable of Contents

1 Abstract .. 1

2 Introduction... 3

2.1 Overview of Context.. 3

2.2 Statement of Problem ... 7

2.3 Organization and Content ... 8

3 Background .. 10

3.1 DEVS Introduction... 10

3.1.1 Discrete EVent Simulation (DEVS).. 11

3.1.2 ADEVS and Parallel DEVS.. 15

3.1.3 Finite and Deterministic Discrete Event Simulator (FDDEVS) 17

3.2 System Entity Structure (SES) .. 18

3.3 Related Fields and Research .. 21

3.4 Early History.. 23

3.4.1 Model/Simulator/View/Control (MSVC) and the Origins of ATC-Gen 23

3.4.2 Original ATC-Gen Concept.. 26

3.4.3 ATC-Gen Evolution ... 29

3.4.4 Problems... 30

4 Approach and Description of Research... 34

4.1 First Reconfiguration ... 34

iv

4.1.1 Original Design Concept ... 34

4.1.2 Improvements over Historical Design .. 36

4.1.3 Problems... 37

4.2 Overview of Final Design .. 38

4.2.1 Final Design Concept .. 39

4.2.2 Improvements over Historical and First Reconfiguration............................ 56

4.2.3 Solutions for Problems .. 57

4.2.4 Description of Contributions .. 59

4.3 MICO Concept .. 60

4.3.1 MICO Description.. 60

4.3.2 Message Interaction Specification ... 63

4.3.3 Condition Specification.. 65

4.3.4 Ordering Specification ... 66

4.3.5 Characterizing a Message-Passing System .. 67

4.4 FDDEVS Automation .. 71

4.4.1 FDDEVS description ... 71

4.4.2 Test Case Creation using Macros ... 74

4.4.3 Test Case Generation ... 75

4.5 Final System Configuration ... 80

4.5.1 Overview of Descriptions and System Hierarchy 81

4.5.2 System Description and Hierarchy .. 81

v

4.5.3 Test Model Description and Model Hierarchy .. 83

5 Results ... 87

5.1 System Design Results ... 87

5.1.1 Handling Conditions and Message Contents... 87

5.1.2 Testing Scenarios Instead of Messages.. 88

5.1.3 Formalized Generation of Test Cases ... 88

5.1.4 Modularity and Reuse of Code, and Model Size Issues............................. 89

5.2 Automation and Test Case Generation ... 89

5.3 Testing Results ... 90

6 Conclusion.. 92

6.1 Summary and Context .. 92

6.2 Contributions and Conclusions.. 93

6.3 Future Work .. 94

7 References ... 96

Appendix A: Acronyms ...100

Appendix B: First Reconfiguration Design ... 1

Appendix C – Example implementation of Test Scenarios.. 1

1. Original ATC-Gen Model... 1

2. Reactive Mode Model ... 3

vi

Table of FiguresTable of FiguresTable of FiguresTable of Figures

Figure 1 - DEVS Specification .. 12
Figure 2 - Coupled DEVS Specification .. 13
Figure 3 - Parking Meter Example DEVS Diagram ... 15
Figure 4 - Parallel DEVS specification .. 16
Figure 5 - SES Example ... 20
Figure 6 - MSVC Design Pattern Diagram.. 25
Figure 7 - waitReceive DEVS Diagram... 27
Figure 8 - holdSend DEVS Diagram... 28
Figure 9 - Original Redesign Concept... 35
Figure 10 - Final Design ... 40
Figure 11 - ConditionChecker DEVS Diagram.. 42
Figure 12 - Acceptor DEVS Diagram .. 44
Figure 13 - WaitReceive DEVS Diagram .. 45
Figure 14 - waitNotReceive DEVS Diagram.. 47
Figure 15 - holdSend DEVS Diagram ... 49
Figure 16 - holdSendRepeat DEVS Diagram.. 51
Figure 17 - TrackSimulator DEVS Diagram .. 53
Figure 18 - Store DEVS Diagram.. 55
Figure 19 - Message Interaction Example .. 64
Figure 20 - Message Interaction Specification .. 69
Figure 21 - FDDEVS Example.. 72
Figure 22 - Mapping Concept ... 73
Figure 23 – Mapping a State to holdSend and waitReceive Primitives.......................... 74
Figure 24 - Test Case Specification Example ... 75
Figure 25 – Triple (Macro) Specification Example... 76
Figure 26 - FDDEVS Java Generation GUI... 77
Figure 27 - SES Builder GUI... 78
Figure 28 - SES Builder PES Window .. 78
Figure 29 - C++ Generation GUI... 80
Figure 30 - System Hierarchy ... 83
Figure 31 - MiddlewareConnection Coupled Model .. 84
Figure 32 - TrackHandler Coupled Model ... 84
Figure 33 - Test Case Structure.. 85
Figure 34 - Structure of Generated Example Test Case ... 85
Figure 35 - Structure of WaitForLinkTrack Test Case Portion....................................... 86
Figure 36 - Original Redesign Concept... 1
Figure 37 - Interface DEVS Diagram .. 2
Figure 38 - WaitReceiveStore DEVS Diagram.. 4
Figure 39 - HoldSend DEVS Diagram... 7
Figure 40 - Extrapolate DEVS Diagram .. 9
Figure 41 - TDCoordinator DEVS Diagram... 11
Figure 42 - Basic Correlation Scenario ... 1
Figure 43 - Reflecting the Test Model... 2

vii

Figure 44 - Correlation Coupled Model, ATC-Gen perspective 3
Figure 45 - waitReceiveJSearch DEVS Diagram.. 4

1

1111 AbstractAbstractAbstractAbstract

With the passing of time, combat systems grow and evolve. It follows then, that

testing tools must grow and evolve with the combat systems. As testing requirements

become more complex, testing systems need to change to encompass more complex

behaviors. In earlier work [5], a system was created to generate test models from an

XML rule base and run them in a distributed test environment. The system used the

Model/Simulator/View/Control (MSVC) [1] design pattern, based on the

Model/View/Control (MVC) [11] design pattern, to separate the complexities of

developing models, simulator, and distributed simulation, and to allow for the reuse of

models in a repository. This thesis takes that earlier system and expands the model

design, in order to create a new system, capable of more automated test case

generation. Creating the new system consisted of three tasks: Characterizing a

message-passing system, defining a modeling framework microarchitecture to better

handle complex test behavior, and automation of test-case creation. The formalism

developed to characterize a message-passing system is determined by the Message

Interactions, Conditions, and Ordering (MICO) inherent in a message-passing system.

The modeling framework microarchitecture defines the structure of the test cases,

based on the MICO specification determined. The combination of the MICO

specification and the structure allows for automatic generation of the final test case.

This methodology was used to generate 102 test cases that were then used to

verify the conformance of a Command and Control (C2) Program developed by the

2

Single Integrated Air Picture (SIAP) Joint Program Office (JPO) to Military Standard

(Mil-Std) 6016C. All results from test scenarios were collected and analyzed using the

Theater Air and Missile Defense (TAMD) Interoperability Assessment Capability (TIAC)

tool. The messages were verified, and the scenarios were validated, by system

analysts at the Joint Interoperability Test Command (JITC).

3

2222 IntroductionIntroductionIntroductionIntroduction

2.1 Overview of Context

Modeling and Simulation are widely used concepts. In most cases, modeling

and simulation are used to predict the behavior of a system in a situation that is too

expensive, either in money or in manpower, to perform in real life. Lately, modeling and

simulation have been widely used to predict the feasibility of possible future actions,

based on known market or situational conditions. In 2001, the Object Management

Group (OMG) put forth the Model Driven Architecture (MDA) concept. This concept

was introduced as a way to create a model of a system, and then use that model

throughout the lifecycle of the product. Eventually, that model would become the

system itself [6]. The DoD adopted that idea, which led to the mandate to implement

modeling and simulation testing tools early in the lifecycle of new systems [2][3]. One of

the projects which sprang from this decision was the Automated Test Case Generator

research project [5]. This project and its subsequent incarnations are discussed in

Section 3.4.

The system developed in this thesis is based on concepts from system theory,

modeling and simulation theory, knowledge representation theory, software design

4

patterns, and software engineering paradigms. All of these concepts are incorporated

into the design of this system.

The systems theory basis involves cybernetics particularly, and how it applies to

system design. Cybernetics is a term coined by Norbert Wiener, and is the study of

communication and control systems in living organisms and machines, in terms of

mathematical analysis [23]. The mathematical theory behind cybernetics expands into

the theory behind modeling and simulation, especially in terms of the Discrete EVent

Simulator (DEVS), and how the behavior of an overall system can be determined by the

sum of the behaviors of the parts [8]. This concept allows the system to be defined by

parts, and then verified via closure theories. Section 3.1 discusses the DEVS formalism

and Section 3.1.2 and 3.1.3 discuss some extensions of the formalism used in this

thesis.

Knowledge representation theories allow systems to be defined in terms of

structure and behavior, and in terms of the decomposition of the system. The Universal

Modeling Language (UML) is the most commonly used knowledge representation

language. UML is mostly used in programming to represent model hierarchies and has

multiple different families of visual representations of systems, both structural and

behavioral. UML is an extremely large and complex standard. Due to the complexity

and some of the limitations of the language, it is not used in this thesis. System Entity

Structure (SES) is a knowledge representation language commonly used in conjunction

with the DEVS formalism. It is smaller in terms of the rules of specification, but it has

some capabilities that are difficult in UML. In particular, formal methods have been

5

developed in SES for defining coupling of a model. These coupling definitions facilitate

in the automation process described in Section 4.4 below.

Software design patterns define abstractions that allow systems to be separated

into logical components and developed independently. The software design pattern

used in this thesis is an extension of the Model/View/Control (MVC) software design

pattern created by Krasner and Pope [11]. This extension is known as the

Model/Simulator/View/Control (MSVC) software design pattern, and is discussed in

further detail in Section 3.4.1. The separation of components in the MVC and MSVC

design patterns allow use of the Component-Oriented design paradigm.

Component-Oriented design, or Component-based Software Engineering

(CBSE) is a software engineering paradigm, similar to the Object-oriented design

paradigm. CBSE differs from Object-Oriented (OO) design in that Component-Oriented

design is based on the reuse of prior existing components while OO design is based on

the creation of systems by modeling real-world objects. CBSE relies on the creation of

generic sets of related functions in software packages or modules. These modules are

then reused over and over in different systems. The use of CSBE saves time by

allowing programmers to reuse functionality [5].

The system described in this thesis was designed to support the testing

community in their increasing needs. This system is based on an existing modeling and

simulation application. It is designed to replace the existing system by redefining the

existing system in a manner that would allow the testing of expanded capabilities, as

well as the automated creation of test cases. The testing community referred to above

6

is the community responsible for testing the behaviors of message-passing systems.

The term message-passing systems can refer to systems like internet protocols, instant

messaging standards, or web services, as well as systems like radio protocols. In the

specific terms of the system described in this thesis, the message-passing system being

tested was the Tactical Data Link, J-series (TDL-J) [12], otherwise known as Link 16.

Link 16 is a standard used to pass tactical information between participants in a region,

also known as a theater. Participants can be aircraft, ships, or ground forces. In the

past, testing of Link 16 consisted mostly of performing scripted scenarios, and then

verifying via post-analysis if the messages were created correctly and sent at the

correct time. The predecessor of this system was designed as a way to verify that

messages were correctly sent and received in real-time, rather than using post analysis.

The predecessor system proved that real-time analysis was useful and saved time, and

was therefore requested to expand its capabilities. The process of expansion led to

problems. The system described in this thesis is the proposed solution to the problems

with its predecessor.

The system is implemented and proved effective via testing against a System

Under Test (SUT) and post-test verification. The SUT tested is a C2 system developed

by the Single Integrated Air Picture (SIAP) Joint Program Office (JPO). The tests were

validated using the Theater Air and Missile Defense (TAMD) Interoperability

Assessment Capability (TIAC) tool. The validation was done via post-analysis by

collecting all messages sent by all systems. The data was then verified by Subject

Matter Experts (SMEs).

7

2.2 Statement of Problem

The Automated Test Case Generator (ATC-Gen) Test tool is a Discrete-Event

Simulation (DEVS) based system used to conduct Standards Conformance Testing of

message passing systems for the Department of Defense (DoD). The project was first

implemented as a message injector, designed to stimulate Systems Under Test (SUTs)

with messages in order to test their capabilities. It was later expanded to perform

standards conformance testing, using an Extensible Markup Language (XML) [7] rule

base to semi-automate the generation of test cases. As the project expanded, the

requirements began to include conditions that covered more than simple reception or

transmission, but the concepts on which the automation was built were never

reexamined. The project began to expand too quickly for the automation concepts, and

they were left behind. This led to many problems. These problems are described in

more detail in Section 3.4.4.

The major problem with the test case automation capability lay in the fact that the

automation software did not take into account the states a model had to transition

through, the internal behaviors that may have existed in a processing state, or the finer

details of integrating with the expanded test capabilities, in particular, interfacing with

messaging protocols. In addition, the test case automation capability did not have

sufficiently small and well-defined test case models to allow simple reuse in various,

unrelated test case situations. These deficiencies called for a redefinition of the DEVS

8

models, a redefinition of the model system, and also a redefinition of the automation

software.

The motivation behind this thesis was to redefine the DEVS models, the model

system, and the automation software for The Automated Test Case Generator (ATC-

Gen) Test tool, to improve automation process for the ATC-Gen Test Tool, to develop a

new framework for automating test cases used to test message passing systems, and

to design and implement a new software abstraction for message passing systems.

The objectives of this research project were to provide a methodology to capture the

behavior of Message Passing Systems in order to facilitate test scenario creation, to

simplify and decrease test case generation process time by applying DEVS and SES

generation methodology, to increase the modularity and code reuse in an existing

system, to formulate a new architecture for an existing system, and to provide a

methodology that allows developers to create high performance distributed real-time

systems that are extensible, flexible, interoperable, reusable, and reliable.

2.3 Organization and Content

There are four remaining sections in this thesis. The next section of the thesis

covers the background material behind the project. It has an introduction to the

concepts behind the project research, as well as a history of the predecessor projects.

The concept introduction covers three main topics: Discrete Event Simulation, System

entity structure, and testing using Discrete Event Simulation. The history section covers

9

three previous incarnations of the research project, as well as the first reconfiguration of

the original research project. The first reconfiguration failed to satisfy the requirements,

but led to the concepts behind the second, successful reconfiguration.

The fourth section of the thesis covers the research behind the project, and

discusses the contributions made. The two major topics covered in this section is the

Message Input, Condition, Ordering (MICO) concept, which is the major contribution of

this thesis, and automated generation of test cases using Finite and Deterministic

Discrete Event Simulation. These two concepts allowed the creation of a system that

met the requirements necessary for this reconfiguration.

The fifth section covers the results of the reconfiguration. It covers the result of

the automated test case generation concept, and also covers the testing done against

the SUT. However, due to the nature of the SUT, only general results may be

discussed. The sixth section is the conclusion. It summarizes the major points of the

paper, as well as mentioning future work to be done on the project.

10

3333 BackgroundBackgroundBackgroundBackground

The system in this thesis is based on a number of different theories. The

Cybernetics portion of System Theory led to the definition of the Discrete EVent

Simulation formalism (DEVS). The DEVS formalism was the theory upon which the A

Discrete EVent Simulator (ADEVS) C++ library was implemented. The ADEVS library

contains the code to implement DEVS in a C++ environment, such as this system is

implemented. The System Entity Structure is the tool used to describe the structure of

the system implemented.

The system is the extension of a long-standing research project, called the

Automated Test Case Generator (ATC-Gen) project. The Model/View/Control software

design pattern was extended as an early topic in the project, and this extension is

exploited in later versions of the ATC-Gen system. The below sections cover the

theories behind ATC-Gen as well as the early history and evolution of the ATC-Gen

research project.

3.1 DEVS Introduction

11

The DEVS [8] formalism is one of the foundation concepts on which the system

designed in this thesis is based. It is an established and widely used modeling and

simulation formalism. There are many incarnations of DEVS, but for the sake of brevity,

only the branches used in this paper are discussed in the below sections.

3.1.13.1.13.1.13.1.1 DDDDiscrete iscrete iscrete iscrete EVEVEVEVenenenentttt SSSSimulation (DEVS)imulation (DEVS)imulation (DEVS)imulation (DEVS)

In the basic DEVS formalism, model components are represented by a seven-

tuple, defined as in Figure 1. The seven-tuple is composed of sets and functions. The

set X is a set of input values, which defines what inputs the model can or will receive

and process. The set S is composed of all possible states a model can enter. The set

Y is a set of the possible output values that the model can create. The function δint, or

the internal transition function, maps the set S to itself to define the states that the

model will transition between in the absence of external input. The function δext, or the

external transition function, is a cross-product of a container, Q, and the set of inputs, X.

The set Q is the total state set, and is defined as a set of pairs, consisting of all possible

states and all possible elapsed times. The function λ maps the set of states, S, to Y,

which is a set of output values. The function ta maps the set of states, S, to , or the

set of positive real numbers from zero to infinity. Together, a seven-tuple defines a

model of a state machine and its behavior over time, including the capability to handle

inputs and the capability to output values.

12

A Discrete Event System Specification (DEVS) is a structure

M=<X,S,Y,�int, �ext,�,ta>

where

X is the set of input values

S is a set of states,

Y is the set of output values

δint: S→S is the internal transition function

∆ext: Q×X→S is the external transition function, where

Q = {(s,e)|s εS, 0 � e � ta(s)} is the total state set,

and e is the time elapsed since last transition

λ: S→Y is the output function

ta: S→ is the time advance function+

∞,0R

Figure 1 - DEVS Specification

Inputs are received on input ports, and outputs are transmitted on output ports.

The coupling of these ports defines DEVS Coupled Models. DEVS Coupled models are

formally defined as in Figure 2. This 6-tuple has analogs to the DEVS Atomic models,

allowing the system to be extended into a hierarchy. In the DEVS modeling and

simulation formalism, a set of models can be grouped into a single model, which can be

treated as a black-box and coupled to form hierarchical models. This allows for

complexity hiding and black-box reuse of atomic and coupled models. The principle of

Closure under Coupling states that, because every DEVS coupled model has a basic

DEVS model equivalent, a coupled model is a closed system that can be coupled to

other models.

13

Coupled Model Specification

DN = < X , Y, D, {Mi }, {Ii }, {Zi,j } >

X : a set of input events.

Y : a set of output events.

D : an index set (names) for the components of the coupled model.

For each i ∈D ,

Mi is a component DEVS model.

For each i ∈D ∪ self , Ii is the set of influencees of i .

For each j ∈D ∪ self ,

Zi,j : Yi � Xj is the output translation mapping

Figure 2 - Coupled DEVS Specification

As an example of a DEVS model, consider a simple system. A system can be

defined as any set of interacting entities that together form a whole. An example of this

is a parking meter. A parking meter has two states, expired and paid. The state

expired has a time-advance function of infinity, meaning that, barring the influence of

external events, the model will stay in the state expired indefinitely. With a normal

parking meter, the time advance of the paid state is not constant, but depends on the

amount of money paid into the meter. Each time a quarter has been inserted, if the

current state is expired, the state changes to paid and 15 minutes are added to the time

advance function for paid. For the sake of simplicity, only quarters are allowed as input,

and if another quarter is inserted while in state paid, it is ignored. When the time

advance function for paid ends, the state returns to the expired state, and a flag is

output called “Expired!”. The formal definition of this DEVS model is as shown below:

14

X = {?Quarter}

Y = {Expired!}

S = {expired, paid}

ta = τ(paid)=15, τ(expired)= ∞

δx(expired, ?Quarter)=(paid)

δx(paid, ?Quarter)=(paid)

δy(paid)=(Expired!, expired)

δy(expired)=(φ, expired)

The formal descriptions of models are unwieldy and not readily understandable,

so the rest of the models in this thesis will be described in terms of their input, output,

and state sets and a diagram, such as the one below. The conventions described in the

legend are used throughout the rest of the paper.

15

Expired

Paid

?QuarterExpired!

delta int

delta ext

output

input

Legend

Figure 3 - Parking Meter Example DEVS Diagram

3.1.23.1.23.1.23.1.2 ADEVS and Parallel DEVSADEVS and Parallel DEVSADEVS and Parallel DEVSADEVS and Parallel DEVS

A Discrete EVent Simulator (ADEVS) [10] is an implementation of DEVS using

the C++ programming environment. It in particular implements the extensions of DEVS

known as Parallel DEVS and Dynamic DEVS. The difference between the Parallel

DEVS formalism and the classic DEVS formalism is in two parts. First, it allows bags of

inputs to be input to the external transition function. A bag, otherwise known as a

multiset, is a set that allows multiple instances of any single object in the set. Second, it

introduces the confluent transition function, δconf. The confluent transition function

determines what happens when an internal transition and an external transition happen

simultaneously. Its purpose is to control the collision behavior when receiving external

events at the time of the internal transition

16

The first difference also leads to changes in the definitions. The function δext, or

the external transition function, is a cross-product of two containers, Q and Xb. The set

Q is the total state set, and is defined as a set of pairs, consisting of all possible states

and all possible elapsed times. Xb is a collection of bags, where a bag is a set that can

contain one or more instances of the same element. These bags are made up of

elements of X, and represent the input to the system at a particular time. The function λ

maps the set of states, S, to Yb, which is a bag of output values.

Figure 4 - Parallel DEVS specification

Parallel DEVS is the version of DEVS implemented in ADEVS, and as such, the

rest of the models in this thesis are assumed to take bags as input, and to give bags as

output. The δconf function is not explicitly described for models in this thesis, but it is

generally assumed to handle the external transition first, followed by the internal

transition.

17

3.1.33.1.33.1.33.1.3 FiniteFiniteFiniteFinite and and and and D D D Deterministiceterministiceterministiceterministic Discrete Event Simulator (FDDEVS) Discrete Event Simulator (FDDEVS) Discrete Event Simulator (FDDEVS) Discrete Event Simulator (FDDEVS)

Finite and Deterministic DEVS (FDDEVS) is a restricted version of Classic DEVS

defined such that [13]:

(1) The sets of events and states are finite,

(2) The time advance is a mapping from states to non-negative rational

numbers,

(3) There is no restriction on the occurrences of external events, and

(4) An external input event can either reschedule or continue processing.

Defining these restrictions allows many useful extensions of DEVS. One

extension, discussed in [13], is the ability to define finite reachability graphs of FDDEVS

systems. Another extension, discussed in [15], is the ability to verify behavior of a

model using the finite reachability graphs. Finally, the most useful extensions available

in FDDEVS are the XML representations of FDDEVS test cases and the subsequent

constrained English representations. These representations are the heart of the

generation process used to create models from formalized descriptions.

The XML representation captures an FDDEVS model by tagging the states, the

time advance function, the output function, the input ports, the output ports, the internal

transition function, and the external transition function. From this tagged data, a

program was written to generate FDDEVS java models. Afterwards, a program was

18

written to translate from constrained English constructs into the XML tags for each of

the elements. This allowed an FDDEVS model to be characterized in constrained

English and then generated into a Java test model. The generation capability created in

this thesis is related to this generation process.

Applying FDDEVS to the example above, the specification is almost exactly the

same. The only difference is in the following two lines:

δx(expired, ?Quarter)=(paid,1)

δx(paid, ?Quarter)=(paid,0)

The second number in the defined ordered pair defines whether or not the model

reschedules the time advance function. The internal schedule of a state s ∈ S is

updated by τ(s') if δx(s) = (s',1), otherwise(i.e., δx(s) = (s',0)), the schedule is preserved

[15]. Hence, inputting a quarter only changes the schedule if the current state is

expired.

3.2 System Entity Structure (SES)

The System Entity Structure (SES) is a formalism often used in conjunction with

DEVS to describe coupled model hierarchies. SES is a knowledge representation

scheme, which is used to organize systems and the relationships between objects in

systems. SES is used to represent decomposition, taxonomy, and coupling

relationships among the parts of a system. Decomposition is the description of the

19

component parts of a system. Taxonomy is the description of the classification of parts

of a system. Coupling relationships are descriptions of how the component parts of a

system are attached to form the system.

An SES is represented as a labeled tree with attached variables. These attached

variables must satisfy the following six axioms [16]:

1. Alternating mode: Entity is the root mode. A node and its successor node

always have the opposite modes. For example, if a node is entity, its

successor is either aspect or specialization.

2. Strict hierarchy: A label only appears once in any path of the tree.

3. Uniformity: If the nodes have the same names, they will have identical

variables and isomorphic sub-trees.

4. Valid brothers: No two brothers have the same label.

5. Attached variables: variable names must be unique in each node.

6. Inheritance: every entity in a specialization inherits all the variables,

aspects, and specializations from the parent of the specialization

SES Diagrams are composed of four types of nodes: Entity, Aspect, Multi-Aspect

and Specialization. Entity nodes represent real-world objects. Aspect nodes represent

the decomposition of an entity. The children of an aspect node represent component

elements of the Entity node above. Multi-Aspect nodes allow selection of multiple

different components, or selection of many of the same component, or some

combination of the two. The children of a multi-aspect node represent components

20

whose number can vary in different implementations of a system, or components that

can exist in different combinations in different implementations. Specialization nodes

represent the taxonomy of an entity. The children of a specialization node represent

variations of the Entity node above. The first axiom states that nodes must alternate

between Entity nodes and Aspect or Specialization nodes. Figure 5 represents an

example of an SES.

Figure 5 - SES Example

A Pruned Entity Structure (PES) is a SES in which all Specification nodes have

been “pruned’ or a single child from each Specification node is selected. The pruning

process is the selection of a child at each Specification node and the selection of the

appropriate implementation of multi-aspect nodes. This is equivalent to making all final

implementation decisions between all possible choices.

21

3.3 Related Fields and Research

Testing using DEVS-based simulation has been done by many different

researchers since DEVS was created [1][4][5][6][20][21]. Testing Message Passing

Environments is a less common topic of research, but some work has been done

towards describing formalism [18][19]. These are the two major fields to which the

topics of this thesis apply. This section covers some of the related work in the fields of

DEVS-Based Simulation and Message Passing Environment Testing.

In his doctoral dissertation, Mittal [6] covers much of the background of test case

generation. In fact, the latter portions of this thesis, on FDDEVS test case generation,

are based on work done by Mittal [6] and Hwang [16]. One of the topics covered in [6]

was how DEVS-based testing can add to the process of testing software architecture by

providing a mathematical framework to the execution process, allowing for more

formalism. This is a fundamental advantage to any DEVS-based testing system,

including the system developed in this thesis.

The paper by Hammonds and Nutaro [1] talks about the earliest predecessor or

the system developed in this thesis. It discusses the Model/View/Control design pattern

and its extension, the Model/Simulate/View/Control design pattern. These design

patterns and their combination with DEVS are what made the current system possible.

Without the separation of systems proposed in the software design patterns, the test

driver system design would be too complicated and require changes to too much code

for the reconfiguration performed in this paper to be feasible.

22

In [4], Zeigler, et.al. put forward a process to use DEVS modeling and simulation

throughout the lifecycle of a product. This paper, along with the DoD requirements in [2]

and [3], led to the requirement that modeling and simulation be integrated into all stages

of the development of DoD systems. This directly led to the creation of modeling and

simulation environments for testing systems, from which the systems described in [1]

and [5] derived support. Zeigler, et.al. [20] covers using DEVS as middleware for

testing. This paper seeks to add formalism to middleware the same way that DEVS

adds formalism to the model portion of the system developed in this thesis. The thesis

in [5] describes the system developed from the predecessor in [1] that is described in

Section 3.4.2. Shang and Wainer [21] discusses using DEVS in a real-time

environment, and discusses dynamic structure DEVS.

Bateja and Mukund [18] discuss the difficulties in testing whether a message

passing system conforms to a specification. Their paper proposes a tagging system to

solve the problem of implied scenarios. It has many constructs that correspond to

components in DEVS formalism and MICO, which is developed in this thesis. The

message passing automata used in [18] to make the message passing graphs

determinate correspond in almost every facet with DEVS message passing

environments: Each message is labeled and associated with a time, a construct similar

to the delta external function determines the next state for message-receiving

processes, and a construct similar to the delta internal function determines the next

state for message sending processes. The major difference is that the channels in [18]

are FIFO, where the ones in Parallel DEVS are determined by the order that messages

are added to the bags. In comparing the systems, it can be seen that MICO when used

23

in conjunction with DEVS solves many of the same issues as [18], while having the

added advantage of being based on DEVS, which is a well-established modeling and

simulation formalism. MICO also covers message content condition checking, which is

not mentioned in [18].

Tsiatsoulis et.al. [19] talk about message passing in parallel environments, such

as parallel computers. Their paper puts forward their product, named Ensemble, and a

methodology for testing and debugging programs using their product. Ensemble works

in a similar manner to the system developed in this thesis: Both use defined structures

to generate final models, both have constructs to model port couplings, and both use

predefined components to build the final system. Ensemble uses Colored Petri Nets to

express its specifications, while the system developed in this thesis uses DEVS coupled

models.

3.4 Early History

3.4.13.4.13.4.13.4.1 Model/Simulator/View/Control (Model/Simulator/View/Control (Model/Simulator/View/Control (Model/Simulator/View/Control (MSVCMSVCMSVCMSVC)))) and the and the and the and the Origins of ATCOrigins of ATCOrigins of ATCOrigins of ATC----GenGenGenGen

The first predecessor of the ATC-Gen research project was created by Dr. James

Nutaro and Phillip Hammonds, in 2004 [1]. As mentioned above, Modeling and

Simulation (M&S) became a required portion of the development process in response to

DoD directives of the time [2][3]. The system they created in response was an

24

implementation of the Model/Simulator/View/Control (MSVC) simulator design pattern

and the DEVS formalism. The MSVC design pattern was based on the

Model/View/Control (MVC) system design pattern, used in many software programs.

MVC was created by Trygve Reenskaug and later described by Krasner and Pope [11].

It was designed to separate the business model portion of the code from the control and

the presentation in order to allow separate development, modification, and testing of

each component. In applying this model to a simulation, the pattern separated the

simulator and models from the system control and user interface.

Figure 6 shows a diagram of the MSVC design pattern. The extension to the

MVC design pattern was an abstraction of the model from the simulator in Modeling and

Simulation applications, allowing for simulators to be developed independently from the

models the simulator would run. It was envisioned as a solution to problems with

multiple distributed simulation protocols in defense-related simulation environments.

Applying the MSVC design pattern to a system allowed the protocol-specific code to be

developed independently of the models, in the View and Control components. The

independent development allowed for multiple different protocols to be developed for a

system, and then used interchangeably as needed. This led to a simple way to create a

system that could implement multiple protocols, while retaining the underlying behavior

of the models and simulator.

25

Figure 6 - MSVC Design Pattern Diagram

The system designed using the above concepts was referred to as the Joint

Utility Player. The Joint Utility Player (JUP) was a system for simulating tracks, or

platforms, over protocols such as the High Level Architecture (HLA) [9] and a North

Atlantic Treaty Organization (NATO) standard known as SIMPLE, which was used to

encapsulate TDL-J messages. The original JUP did not include any support for

modeling scenarios, but rather only for simulating the movement of objects in space,

commonly referred to as tracks. The JUP was designed to send messages at intervals

using data gathered from files. The JUP was coded using the C++ implementation of

DEVS known as ADEVS, allowing the system to keep track of simulation time. The

major purpose of the JUP was to inject positional and TDL-J messages in order to set

up scenarios for testing.

26

3.4.23.4.23.4.23.4.2 OrigiOrigiOrigiOriginal ATCnal ATCnal ATCnal ATC----Gen ConceptGen ConceptGen ConceptGen Concept

The Automated Test Case Generation (ATC-Gen) research project was intended

to expand on the testing ideas first put to practice in the JUP. The motivation was to, by

implementing message reception capabilities, make a system that was capable of

verifying scenarios independently. By creating a system that could automatically verify

if a scenario was compliant, it created test cases that could be analyzed at run-time,

rather than by post-analysis.

From the beginning, the ATC-Gen research project was designed as a repository

of separate models, which could be selected and ordered in such a way as to recreate a

test scenario. A test scenario is a series of behaviors that are expected to occur in a

real world environment, and stimulate conditions under which conformance to specific

rules in a standards document can be tested. A test case is the set of models and the

coupling between them that recreate those behaviors in the ATC-Gen Test Driver. The

ATC-Gen Test Driver is the software implementation of the concepts described in this

thesis. For the rest of the document, the term ATC-Gen will be used to refer to the

ATC-Gen System, which is implemented as the ATC-Gen Test Driver.

ATC-Gen is a message-handling system, designed to test the behavior of

sections of the Link 16 message standard [12], used by the United States military and

NATO. ATC-Gen was first conceptualized as a simple, automatable, message

27

input/output checker. Models called holdSend, waitReceive, and waitNotReceive were

put in sequential order to test the input/output behavior of a System Under Test (SUT).

An XML structure was formalized so that standards documents could be captured in

XML. The XML rules captured from the standard were fed into a program that

generated a hierarchical diagram of which rules stimulated others. Then, an analyst

would select a path including the desired rules, and either beginning in a message

reception, or ending in a message transmission. These rules would be fed into yet

another program, called the Test Model Generator (TMG). The TMG created test cases

by creating instances of existing ADEVS models known as primitives. These primitives

were so called because they encapsulated the most primitive behaviors of the message

passing system: receiving and transmitting messages. In order to model system time,

receiving messages was associated with a waiting time period, and the resulting

primitive was the waitReceive primitive. The DEVS diagram for the waitReceive

primitive is shown in Figure 7.

Passive

Waitstart

Pass

Succes
s

Message

pass

Figure 7 - waitReceive DEVS Diagram

28

 Similarly, the transmission of messages was associated with a time to hold the

message until it was to be sent, resulting in the holdSend primitive. Figure 8 shows the

DEVS diagram for the holdSend primitive. The TMG would take rules that included

message transmission, and use them to generate instances of holdSend primitives to

transmit messages to a SUT. If the rules specified a message was to be received, the

TMG would generate a waitReceive primitive.

Passive

Sendstart

Message

Figure 8 - holdSend DEVS Diagram

Test cases were created from the perspective of the SUT, in order to capture all

of the rules, and then “reflected” in order to create a proper environmental frame. The

process of reflecting was done by changing all holdSends to waitReceives, and vice-

versa. The TMG would also take the input variables into the rules and use them to

generate the message that would be output by the holdSend primitive, after the

reflection process was completed. Thus, with minimal human interaction, test cases

could be generated.

After test cases were generated, they were integrated with an existing simulator

and the Translator interface first conceived in the JUP. This system was an

implementation of the MSVC model discussed in the previous section. The View and

Control portions of the system were implemented in the Translator interface. The

29

Simulator was created using ADEVS library functions and Microsoft Foundation Class

(MFC) threading library functions. The separate portions of the MSVC system were

implemented using separate threads. The system is described in more detail in

previous work [5].

The original ATC-Gen implementation was the first incarnation that attempted to

model more complex behavior. An example of complex behavior that required testing

was correlation. A full explanation of a correlation model is covered in Appendix C,

Section 1.

3.4.33.4.33.4.33.4.3 ATCATCATCATC----Gen EvolutionGen EvolutionGen EvolutionGen Evolution

The original ATC-Gen system was very simplistic. This simplicity made

automation possible in the original system. However, it also limited what the system

was capable of. The system did not take into account the content of the messages it

sent and received. It required all data for the system, except positional data, to be

entered at compile time. As a result of this, if a message changed, the associated test

case would need to be recompiled. This made operation in real-time, or against real-

time generated data, nearly impossible. It relied upon pre-recorded positional

information, formatted into text based files. Testing the existing system against new

SUTs required interoperable behaviors, and the system limitations made adaptation

30

difficult. These requirements led to an expansion of the original capabilities of the ATC-

Gen Test Driver.

A new mode of ATC-Gen was created to deal with these new requirements,

called Reactive mode. This mode was called Reactive because the data used in the

message was taken from live data being reported by the SUT, modified, and reflected

back. This allowed the Reactive Mode ATC-Gen to run against live SUTs, without

having to code full messages at compile time.

Unfortunately, the advantages of Reactive mode were accompanied by

disadvantages. The nature of the Reactive mode and the time constraints put on its

development made the simple holdSend/waitReceive models of the past impractical.

They were replaced by longer DEVS models that encompassed entire scenarios. An

example is covered in Appendix C, Section 2.

3.4.43.4.43.4.43.4.4 ProblemsProblemsProblemsProblems

The evolution of ATC-Gen was fraught with troubles. The original automation

system did not lend itself to generation of the new Reactive Mode test cases, but time

constraints made a complete system redesign impossible. The original XML rule base

lacked metadata to describe which state changes in the XML rule sets map to actual

state changes in the ADEVS models. It lacked metadata to describe information

handling or condition checking and what state changes they may induce. The

31

formalism used to create the XML rules just could not encompass all of the changes

necessary to generate the new behaviors desired by the SUT.

Because the automation scheme could not handle the requirements for new test

cases, the system was expanded manually, by analysts coding new behaviors into

ADEVS models. The waitReceive and holdSend models on which the system was

originally built were used as templates, with additional code put in to fulfill the new

requirements levied by the new SUTs. When these were not enough, the expanded

code was itself used as templates and expanded, until the models that were supposed

to be “primitives” became nearly complete test scenarios, with an occasional holdSend

coupled to the end or a waitReceive coupled to the beginning. The models themselves

were hundreds or thousands of lines of code, and required days of work to create. Due

to the hurried nature of improvements to the system, much of the formalism and

automation of the simplified version of ATC-Gen was lost entirely.

Another problem with the Reactive Mode was size. As more specialized models

were needed to test more specific scenarios, the repository of models grew. What had

at one time been a small set of primitives became a large repository of specific

behaviors. When new test models were required, a new model was created, using an

existing model as a template. It soon became clear that, if a new method of creating

test cases was not created, the size of the repository would grow linearly with the

amount of the standard covered by test cases.

The automation capability of the simplified ATC-Gen was unable to create test

cases in the new Reactive Mode. The major reasons the former automation process

32

did not work involve the oversimplification of data in the standard. The manner in which

the XML was created did not translate directly into the test driver models as they existed

in the code. The XML rules were derived directly from the standard, and each rule was

modeled in DEVSJAVA as an atomic model. DEVSJAVA is a Java implementation of

the DEVS formalism. Representing the rules as models was misleading, however, as

the rules did not model anything other than whether their necessary input variable

appeared in the output of a prior rule. The DEVSJAVA representation created a model

of the flow of data. This creates a valid model, but it does not create the model of the

overall behavior that was desired for the Test Driver test cases. Additionally, the Test

Model Generator program turned the DEVSJAVA models into files that contained

nothing more than input and output interaction. It left all of the rules and behaviors that

were captured out of the generation process, creating such a minimalistic model that the

output was incapable of performing any necessary behavior, other than receiving and

transmitting messages.

Another problem with the automation process was that modeling one half of an

interaction was not sufficient to capture the behavior. “Mirroring” did not work, because

the transactions were not symmetrical. Different processing happened on opposite

sides, and simple mirroring left out important details. On the other hand, modeling both

sides was unnecessary. Only certain details of each side needed to be modeled.

Constraints that affect what messages were sent, data that was changed which lead to

fields in messages being changed, and input and output were all that required modeling.

The XML rules modeled a large number of rules that either did not apply to the

simulation, or were assumed not to occur due to the nature of the scenarios tested.

33

These problems made clear the need to restructure. The structure of the test

cases and the structure of the automation were unable to support the growth of the

system. This led to the research explored in this thesis. It took two revisions to come to

a final working version. The two systems conceived are detailed in the following

sections.

34

4444 ApproachApproachApproachApproach and and and and Description of ResearchDescription of ResearchDescription of ResearchDescription of Research

4.1 First Reconfiguration

The research behind this project was performed in two stages, which led to two

different redesigns. The first redesign of the code focused on the necessity to

encompass the pass or fail behavior of full scenarios, as opposed to single message

interactions. This was the requirement that made the Reactive mode so successful as

opposed to its earlier counterpart, alongside the ability to create messages at real-time.

Taking the specified scenario behavior as central, the design was created as specified

in the following section.

4.1.14.1.14.1.14.1.1 Original Design ConceptOriginal Design ConceptOriginal Design ConceptOriginal Design Concept

The first redesign of the code attempted to solve some of the problems and

limitations inherent in the evolutionary process that ATC-Gen underwent. This attempt

to redesign the system used modular message-handling models connected to a single

coordinator, which was tasked with retaining the state memory for each test model. The

state memory kept track of the scenario, and the current state of the test case in respect

35

to the scenario. The approach allowed for more reuse of code per test model than

previous designs, while retaining a central controller for inter-message interaction. The

design called for a repository, consisting of a set of message handlers and a family of

test coordinators with the ability to select their necessary set of message handling

components.

The original redesign concept used the concepts inherent in the Reactive mode

extension to ATC-Gen, in that the information in the messages was to come from

incoming messages. These incoming messages would be reflected back to the sending

SUT, with positions extrapolated from the received position based on the time elapsed

between reception and transmission.

TDcoordinator

J3X-WR
store

J72-WR
store

WR
store

HS

Extra-
polate

Interface

Experimental Frame

Figure 9 - Original Redesign Concept

36

The first proposed design was a modular version, rather than a serially-coupled

one. Figure 9 shows the design of the system, minus the port interfaces. The models

are described in detail in Appendix B: First Reconfiguration Design. The system

revolves around a central coordinator, called TDcoordinator, which is responsible for the

scenario behavior. The system was designed to have a repository of TDcoordinator

models for each scenario to be tested. Coupled to the input of TDcoordinator were a

set of models inherited from a model known as waitReceiveSend. This model family

was supposed to fill the role of “reflector”, by combining the waitReceive behavior of

earlier models with the creation of new messages from received messages of the

Reactive Mode. On the other side, a model known as holdSend was designed to

capture all the models forwarded by the TDcoordinator model, send to the Extrapolator

all those messages needing extrapolated positional information, and then to send all

messages at the appropriate time. The Extrapolator model took received messages

and updated the positional information with extrapolated positional information based on

received time versus projected send time. The interface model was a placeholder for

the Translator model in the system, and the Experimental Frame was a DEVS model

designed to verify that the model behaved as expected.

4.1.24.1.24.1.24.1.2 Improvements over Improvements over Improvements over Improvements over Historical DHistorical DHistorical DHistorical Designesignesignesign

The modular Test Driver was a feasible solution to many of the problems facing

ATC-Gen. It behaved in the same manner as the prior code, and fulfilled the same

37

requirements as the prior code, as per experimentation with different Experimental

Frame models. In addition, it allowed the reuse of message-handling code through

inclusion of modular test models, rather than reusing code via copying into multiple,

different test cases. It separated the sending and receiving of messages from the test

case specific coding requirements by having a centralized model for each test case. By

doing this, it reduced the overall size of the models.

The first reconfiguration also formalized many concepts that the original design

had overlooked. Particularly, it emphasized the importance of the entire scenario in

determining whether a test case passed or failed. In the original design of the

automation, only message reception was used to determine whether a test case passed

or failed. If the messages were received as expected, the test case was assumed to

have passed. This did not allow for conditions, such as the number of messages

received or the value of fields. As such, these conditions either had to be coded later by

hand, or ignored. The first reconfiguration solved that issue, but not in an optimal way.

The first configuration also had many problems, which are discussed in the next section.

4.1.34.1.34.1.34.1.3 ProblemsProblemsProblemsProblems

After implementing the preliminary design, problems were found with the model.

The models did not allow for modular interchanging of test condition checking. The

models inherited from waitReceiveSend implemented the testing of conditions on

38

incoming messages. As such, they had to either include any possible condition that

could be tested for compliance in its specific message, which required hundreds of lines

of code, or had to be rewritten for specific conditions. This violated one of the

requirements that led to redesigning the code, that of modularity for reuse.

Another problem with this design was in the TDCoordinator code. The

TDCoordinator models were overly large, as they implemented too much of the original

code per model. The TDCoordinator implemented the behavior to verify that messages

were received in the correct order, as well as the code to create new outgoing

messages. This meant that, for each test case, a different TDCoordinator would be

required, each implementing many of the same code lines, in particular the lines

necessary to modify and forward messages. This violated the requirement for code to

be reusable in ways other than copying sections of code.

The non-modularity of the code contradicted the requirements for automation.

The reuse of code in multiple models by copying and the fact that so much of the code

needed to be copied in order to make useful test cases violated one of the major

requirements of the redesign. The size of the models inherited from waitReceiveStore

and of the TDCoordinator violated the requirement for small, reusable models. In all,

the problems made automation very difficult, and the system was deemed a failure to

meet requirements.

4.2 Overview of Final Design

39

The second stage of research led to the final design of the project. This time,

instead of focusing on the scenario as a central idea, the design attempted to go back to

the origins of ATC-Gen, by focusing on the message interaction as separate models.

This meant revisiting the concept of holdSend models and waitReceive models. The

original holdSend and waitReceive models satisfied the requirement for small, modular

code. However, they failed in two areas: allowing the testing of message conditions,

and testing of scenario-wide behavior. This led to the creation of the Message

Interaction, Condition checking, Ordering (MICO) concept, described in Section 4.3.

The design based on this concept is described in Section 4.2.1 below.

4.2.14.2.14.2.14.2.1 Final DesignFinal DesignFinal DesignFinal Design Concept Concept Concept Concept

The original design split the workflow into three sections: a set of waitReceive(s),

a centralized processing unit, and an output. The final revised design splits the

workflow into a sequence of waitReceive(s) and holdSend(s), and a set of processing

modules. This allows more reuse of code, because the modules allow for the condition

checking to be separated from the input/output. A few abstractions were used to make

this system more modular and less protocol-dependent than other ATC-Gen models.

First of all, every other version of ATC-Gen relied on messages that were either defined

inside of models or hard coded and passed to models. This system took all message

processing out of the models and put it into an external module. In this way, the model

size was greatly reduced, since all the models needed to do was pass around copies of

40

messages that were created elsewhere. Also, the MICO concept allowed the scenario

to be abstracted into three separate portions. By separating these portions, the test

case specific code was taken out of the reusable models and relegated to test case

specific models named ConditionChecker, Acceptor, and HierarchySequence.

HierarchySequence is not shown in Figure 10 because it is the coupled model that

encloses the sequence of waitReceive(s) and holdSend(s). Another advantage of

separating the test case specific code is that the size of the ConditionChecker is

reduced since it only needs to implement the code used in a particular test case, rather

than any possible conditions that may need to be checked for a particular message.

WR/ WN
R, etc.

WR/ WN
R, etc.

HS?HS?

Stor
eTADIL
HoldSendExtrapolator

ConditionChecker

C1 C2

C3 C4

Interface

Translator (C++ DLL)

Acceptor

Figure 10 - Final Design

INTERFACE MODEL

41

The Interface model shown in Figure 10 is the same in both the original and

revised designs. This Interface model encapsulates the translation between a

Translator Activity and the test models. In the final implementation, this model is

replaced by DEVS Activity models, which allow for an interface between real-time

message passing protocols, such as Mil-Std 6016C Link 16 and Distributed Interactive

Simulation (DIS). Each protocol implemented in ATC-Gen has a separate Activity, and

one or more Activities may be present in a test case.

CONDITIONCHECKER MODEL

X = {inStart, inStop, inQueryCondition}

Y = {outCondition}

S = {Passive, Ready, SendCondition}

The ConditionChecker Model contains all the behavior that exemplifies the

differences between the ATC-Gen as first modeled and the ATC-Gen as it exists

currently. The ConditionChecker allows more granularity of behavior than the minimal

input-output pairs implemented in the first incarnation of ATC-Gen.

The Condition Checker is a model that checks conditions and decides whether

the model will proceed based on the outcome of the test. The types of conditions tested

in this new implementation of ATC-Gen include message reception, message field

values as compared to expected values, and timing constraints. Conditions can have 4

42

possible outcomes: Pass, Fail, Critical Fail, or Stop. Pass indicates that a condition

passed, and is used with waitReceive, waitNotReceive, and holdSend models. Stop

indicates that, although a prior condition may have passed, the condition no longer

holds, and the model will not proceed. It is used with the holdSendRepeat model to

indicate that the model should stop its periodic transmissions. Fail indicates that a

condition involved in standards conformance failed, but that the test case as a whole is

not corrupted by the failure and may continue. Critical Fail indicates that a condition

necessary for the validity of the test case failed, and that all subsequent models are no

longer valid, requiring the test case to end. The ConditionChecker model is a test case

specific model, so a different copy will exist for each test case. Currently, this model is

created in a template-based fashion. The model described in this section is the

template model.

Passive

ReadyinStart

outCondition

SendConditioninStop

inQueryCondition

Figure 11 - ConditionChecker DEVS Diagram

The ConditionChecker model starts in state Passive. The input inStart is

accepted in state Passive and puts the model in state Ready. The states Passive and

43

Ready have a time advance of infinity. The inputs inQueryCondition and inStop are

accepted in state Ready. The input inQueryCondition puts the model in state

SendCondition. The input inStop puts the model in state Passive. The state

SendCondition has a time advance of zero. The state SendCondition outputs the

condition on port outCondition and goes into state Ready.

ACCEPTOR MODEL

X = {inStart, inPassFail}

Y = {outStop}

S = {Passive, Ready, Finished}

The Acceptor model is the analog to the TDCoordinator model in the original

design. The purpose of the Acceptor model is to test the scenario for compliance, print

test conditions to the console, and to do any inter-module coordination that is found to

be necessary. This model is test case specific, and each test case has its own copy of

this model. Currently, this model is created in a template-based fashion. The model

described in this section is the template model.

44

Passive

ReadyinStart

outStop

Finished

inPassFail & Finished models
= Total Models

Figure 12 - Acceptor DEVS Diagram

The Acceptor model starts in state Passive. The input inStart is accepted in state

Passive and puts the model in state Ready. The states Passive and Ready have a time

advance of infinity. The input inPassFail is accepted in state Ready. If a scenario has

ended, the input inPassFail puts the model in state Finished. The state Finished has a

time advance of zero. It outputs outStop and goes into state Passive.

WAITRECEIVE MODEL

X = {inStart, inMessage, inCondition}

Y = {storeMessage, outQueryCondition, outPassFail}

S = {passive, storeMessage, QueryCondition, inWaitCondition, inWaitMessage,

sendPassFail}

45

The waitReceive model is something of a reversion back to the origins of ATC-

Gen, where the only behaviors modeled by test models were transmission and

reception of messages. The waitReceive model contains the code necessary to test an

incoming message for a) Message Type and b) Time Constraints. The model would

also contain the code to save the received message by sending it to Store with a

PlatformState value and a storage key.

Passive

inWaitMes
sage

inStart

outPassFail
sendPassFail

inMessage

storeMessage

QueryCondition

inWaitCondition

storeMessage

outQueryCondition

Figure 13 - WaitReceive DEVS Diagram

The waitReceive model starts in state passive. The input inStart is accepted in

state passive and puts the model into state inWaitMessage. The state inWaitMessage

has a time advance equal to a configuration parameter. The input inMessage is

accepted in state inWaitMessage and puts the model in state storeMessage. If no input

is received, state inWaitMessage goes to state sendPassFail. The state storeMessage

has a time advance of zero. It outputs the message received on the storeMessage port

and then goes into state QueryCondition. The state QueryCondition has a time

46

advance of zero. It outputs a condition query on the outQueryCondition port and then

goes into state inWaitCondition. The input inCondition is accepted in state

inWaitCondition and puts the model in state sendPassFail. The state inWaitCondition

has a time advance of 1.0. If no input is received, state inWaitCondition goes to state

sendPassFail. The state sendPassFail has a time advance of zero. It outputs the

condition of the model on the outPassFail port and then goes into state passive.

WAITNOTRECEIVE MODEL

X = {inStart, inMessage, inCondition}

Y = {storeMessage, outQueryCondition, outPassFail}

S = {passive, storeMessage, QueryCondition, inWaitCondition, inWaitMessage,

sendPassFail}

The waitNotReceive Model is the opposite of the waitReceive Model. The

waitReceive model tests if a certain type of message is received in a time period. The

waitNotReceive model tests whether a) a certain type or b) any type, of message is not

received in a time period. The waitReceive model would contain the code necessary to

test an incoming message for a) Message Type and b) Time Constraints. However,

these would be used as fail criterion instead of pass criterion. In terms of

implementation, the only difference between the waitReceive model and the

waitNotReceive model is the default value of the condition passed from the model when

47

a message is not received. The waitNotReceive model has a default value of Pass

rather than a default value of Fail.

Passive

inWaitMessage

inStart

outPassFail
sendPassFail

inMessage

storeMessage

QueryCondition

inWaitCondition

storeMessage

outQueryCondition

Figure 14 - waitNotReceive DEVS Diagram

The waitNotReceive model starts in state passive. The input inStart is accepted

in state passive and puts the model into state inWaitMessage. The state

inWaitMessage has a time advance equal to a configuration parameter. The input

inMessage is accepted in state inWaitMessage and puts the model in state

storeMessage. If no input is received, state inWaitMessage goes to state sendPassFail.

The state storeMessage has a time advance of zero. It outputs the message received

on the storeMessage port and then goes into state QueryCondition. The state

QueryCondition has a time advance of zero. It outputs a condition query on the

outQueryCondition port and then goes into state inWaitCondition. The input inCondition

is accepted in state inWaitCondition and puts the model in state sendPassFail. The

state inWaitCondition has a time advance of 1.0. If no input is received, state

48

inWaitCondition goes to state sendPassFail. The state sendPassFail has a time

advance of zero. It outputs the condition of the model on the outPassFail port and then

goes into state passive.

HOLDSEND MODEL

X = {inStart, inStop, inMessage, inCondition}

Y = {outQueryCondition, outQueryMessage, outMessage, outPassFail}

S = {passive, inWaitMessage, inWaitCondition, sendPassFail, sendMessage,

QueryCondition, QueryMessage}

The holdSend model models the transmission portion of the original ATC-Gen

behavior. The holdSend requests conditions to be checked before it processes a

message, and then requests Store to create a new message, either using data

determined by the configuration of the system, or using data from a previously received

message associated with the positional data of the message to be created.

49

passive

inWaitCondition
inStart

outQueryCondition

QueryCondition

sendPassFail

outPassFail

QueryMessage

inCondition

inWaitMessage

sendMessage

outMessage

inMessage

outQueryMessage

Figure 15 - holdSend DEVS Diagram

The holdSend model starts in state passive. The input inStart is accepted in

state passive and puts the model in state QueryCondition. The state QueryCondition

has a time advance equal to the hold time defined at configuration. It outputs a

condition query on port outQueryCondition and goes into state inWaitCondition. The

state inWaitCondition has a time advance of 1. The input inCondition is accepted in

state inWaitCondition and puts the model into state QueryMessage. If no input is

received, it goes into state sendPassFail. The state Query Message has a time

advance of zero. It outputs a message query on port outQueryMessage and goes into

state inWaitMessage. The state inWaitMessage has a time advance of 1. The input

inMessage is accepted in state inWaitCondtion and puts the model into state

sendMessage. If no input is received, it goes into state sendPassFail. The state

sendMessage has a time advance of zero. It outputs a message on port outMessage

50

and goes into state sendPassFail. The state sendPassFail has a time advance of zero.

It outputs the condition of the model on port outPassFail and goes into state passive.

HOLDSENDREPEAT MODEL

X = {inStart, inStop, inMessage, inCondition}

Y = {outQueryCondition, outQueryMessage, outMessage, outPassFail}

S = {passive, sendMessage, FirstWait, RepeatTime, inWaitMessage,

inWaitCondition, QueryMessage, QueryCondition, SendPassFail}

The holdSendRepeat model is used when a message needs to be sent at regular

intervals. In Link 16, this model usually corresponds to track updates, which are sent

periodically. The behavior that makes this model desirable can be modeled by a set of

holdSend models in sequence, but the holdSendRepeat model can send a message an

indeterminate amount of times, which makes it very useful. Also, because real-time

testing behavior is often not exactly the same as the model behavior, being able to base

the number of repetitions of a message on other factors than a predetermined number

of models being coded is important.

51

passive

FirstWaitinStart QueryCondition

inWaitCondition

outQueryCondition

sendPassFail

outPassFail

QueryMessage

inCondition

inWaitMessage

sendMessage

outMessage

inMessage

outQueryMessage

RepeatTime

Figure 16 - holdSendRepeat DEVS Diagram

The holdSendRepeat model starts in state passive. The input inStart is accepted

in state passive and puts the model in state FirstWait. The state FirstWait has a time

advance equal to the first hold time defined at configuration. It goes into state

QueryCondition when its time advance elapses. The state QueryCondition has a time

advance of zero. It outputs a condition query on port outQueryCondition and goes into

state inWaitCondition. The state inWaitCondition has a time advance of 1. The input

inCondition is accepted in state inWaitCondition and puts the model into state

QueryMessage. If no input is received, it goes into state sendPassFail. The state

QueryMessage has a time advance of zero. It outputs a message query on port

outQueryMessage and goes into state inWaitMessage. The state inWaitMessage has a

time advance of 1. The output inMessage is accepted in state inWaitCondition and puts

the model into state sendMessage. If no input is received, it goes into state

52

sendPassFail. The state sendMessage has a time advance of zero. It outputs a

message on port outMessage and goes into state RepeatTime. The state RepeatTime

has a time advance equal to the second hold time defined at configuration. It goes into

state QueryCondition when its time advance elapses. The state sendPassFail has a

time advance of zero. It outputs the condition of the model on port outPassFail and

goes into state passive.

TRACKSIMULATOR

X = {inStart, inStop, inQueryPosition}

Y = {outPosition}

S = {Passive, Ready, SendPosition}

The TrackSimulator model controls the timing for the track motion models, as

well as allowing access to positional information. This model implements a system for

generating synthetic tracks, described in [17]. It takes queries from the Store model and

returns positional information. This is the equivalent of the extrapolator class in the

Reactive mode, but the positional information involved is read from Script files, included

in the system configuration. Each script file represents the positional information of one

track, and the Simulator model has a map of tracks, each identified by a code. This

code is referred to as the Internal ID, and is how the system associates positional

information with holdSend type and waitReceive type models.

53

Passive

ReadyinStart

outPosition
SendPositioninStop

inQueryPosition

Figure 17 - TrackSimulator DEVS Diagram

The TrackSimulator model starts in state Passive. An input inStart is only

accepted if the state is Passive, and puts the model in state Ready. The Passive and

Ready states both have a time advance of infinity. The inputs inQueryPosition and

inStop are allowed in state Ready. The input inStop puts the model into state Passive.

The input inQueryPosition puts the model into state SendPosition. The state

SendPosition has a time advance of zero. It outputs outPosition and goes into the state

Ready.

STORE

X = {inStart, inMessage, inQueryMessage, inStop, inPosition}

Y = {outQueryPosition, outMessage}

S = {Passive, QueryPosition, InWaitPosition, SendMessage, Ready}

54

The Store model holds records of incoming and outgoing messages. The Store

model is responsible for logging and creating the messages that are received by

waitReceive type models or transmitted by holdSend type models. Logging is the

process of collecting and organizing data for the purpose of data verification and

records keeping.

For the purpose of logging, it is desirable to log the time and type of all messages

associated with a given track. There needs to be a method of associating records of

differing message type, but the same track, where a PlatformState message could be

stored or retrieved using a key. Store implements this with a map, which uses the

Internal ID associated with the track as a key. Each message received and each

message sent is stored in the map, with a time tag noting when the message was sent

or received. A public function exists in the ADEVS model to print the contents of this

map to an output file.

In order to make Store able to handle multiple message queries, it has a queue

that stores message queries. If this queue is not empty when the model goes from

state SendMessage to state Ready, or state InWaitPosition to state Ready, it instead

goes to state QueryPosition for the next message in the queue, and the query is deleted

from the queue. However, for simplicity, this is left out of the diagram, as is the

inMessage input.

55

Passive

ReadyinStart

outQueryPosition

QueryPosition

inStop

inQueryMessage

InWaitPosition

SendMessage inPositionoutMessage

Figure 18 - Store DEVS Diagram

The Store message starts in state passive. An input inStart is only accepted if

the state is Passive, and puts the model in state Ready. The Passive and Ready states

both have a time advance of infinity. The inputs inMessage and inStop are allowed in

all states but passive. The input inMessage does not cause any state changes, it only

stores any messages received on that port into a message queue for logging. The input

inStop puts the model into the passive state. The input inQueryMessage is accepted in

state Ready, and puts the model into state QueryPosition. State QueryPosition has a

time advance of zero, and it outputs outQueryPosition and goes into state

InWaitPosition. State InWaitPosition has a time advance of 1.0. If no input is received,

it goes into state Ready. The input inPosition is accepted in state InWaitPosition, and

puts the model into state SendMessage. The state SendMessage outputs outMessage

and goes into state Ready.

56

4.2.24.2.24.2.24.2.2 Improvements over Improvements over Improvements over Improvements over Historical and FHistorical and FHistorical and FHistorical and First irst irst irst RRRReconfigurateconfigurateconfigurateconfigurationionionion

The final design of the test driver is in many ways superior to the previous

implementations. The design is much more modular. It hails back to the original ATC-

Gen, in that the major message handling code is in sequentially coupled holdSend and

waitReceive models. It then expands upon this by abstracting the contents of the

message away from the code that handles sending and receiving messages. By

separating the contents from the handling, it allows the handling code to be reused

without modification. In fact, the final code is such that only the ConditionChecker and

Acceptor models require code changes in order to support a multitude of different test

cases. The Store model requires only loading information differences. The Test

Sequence primitive models require no coding changes, only configuration information.

The separation of contents from handling also has another benefit. The size of

the primitive models is significantly smaller than the waitReceiveSendJSearch model or

comparable models from the Reactive Mode ATC-Gen. The Reactive Mode test cases

averaged around 250 lines of code, with the longest being 440 lines. The new test

cases average around 200 lines of code, with the longest being 239 lines. In addition,

there are only four primitive models, and all of the behaviors necessary can actually be

modeled using only two of the four. In comparison, there is a primitive for each different

behavior scenario to be tested in the Reactive Mode ATC-Gen, a total of 18. This

meant that, as new scenarios were created to be tested, the size of the repository would

57

grow linearly. With the new system, no growth of the repository is necessary, although

a few new primitives may be introduced to simplify complicated behaviors.

The automation for the final design is based on a completely different concept

than the original ATC-Gen automation. The original ATC-Gen automation relied on

translating the document directly into XML rules, then finding paths through the rules

and generating test cases from those sequences. The automation behind this design

relies a little more heavily on Subject Matter Experts. The generation is still based on

tracing paths through the rules of the standard; however these rules are combined with

the analyst’s familiarity with the behavior behind the paths, and the scenarios related

with testing behavior. As such, a little more in-depth knowledge is necessary for the

preloading portion of the automation process. However, the preloading process is much

faster than the previous preloading process, and also includes much more scenario

information than the previous process. It includes most of the data that was left out in

the previous automation process, and can include more, given time and formalization.

The new automation process is discussed more in detail in section 4.4 below.

4.2.34.2.34.2.34.2.3 Solutions for Solutions for Solutions for Solutions for PPPProblemsroblemsroblemsroblems

The test condition checking models solve many of the issues with the previous

designs. They contain only the condition checking necessary for a given test case,

which makes them smaller in coding size than the models suggested in the first

58

redesign. They also have the ability to be formalized, which makes it possible to

automate the creation of the ConditionChecker files. Also, since many conditions are

similar, the code used to check a condition may be reused in many test cases.

The solution to the issues caused by the TDCoordinator model in the first

redesign is split into two parts: the Store model and the Acceptor model. The Store

model contains all of the message creation and logging code, which was in the

TDCoordinator in the first redesign. The Acceptor model contains all the scenario

testing code, which verifies that the order of messages received and sent is as

expected, and handles pass/fail behavior. The Store model is a backbone model, which

can be reused in every test case. The Acceptor model contains all test case specific

behavior, and as such may be different for different test cases. Also, a new capability of

FDDEVS automation allows for test scenario generation, and the Acceptor model can

be generated based on this capability.

The automation portion of the new system also solves problems with the old

automation process. The old automation portion was designed to create test cases

without the intervention of analysts. As such, it did not take into account analysts’

knowledge of how the system worked. This oversimplified the models and made testing

of deeper behaviors impossible. Also, the XML representation of rules was faulty for

many of the reasons mentioned in section 3.4.4. The new automation capability

leverages analysts’ knowledge by taking analyst-created scenarios, translating them in

to a formalized FDDEVS description, and then creating the system. This process is

discussed further in section 4.4.

59

Overall, this design seems to be successful in addressing the problems with the

previous design. It adds the ability to automate testing of message conditions and

scenario ordering that the original system lacked. It reduces the size of models while

increasing their ability to be reused. Also, most importantly, it adds the formalism that

the evolved version of ATC-Gen had lost, which is how it supports automation of test

cases. The research of this thesis resulted in a system that successfully meets the

requirements set out at the beginning of the project.

4.2.44.2.44.2.44.2.4 Description of ContributionsDescription of ContributionsDescription of ContributionsDescription of Contributions

The system upon which this thesis was based takes advantage of the many

benefits gained through abstracting code into separate portions, connected solely

through interfaces. This thesis takes one of the portions, the model portion, and applies

another layer of abstraction, thus allowing for reuse of broad categories of behavior.

This abstraction makes automation of the system possible in ways that the earlier

versions of ATC-Gen could never implement. The concept behind this abstraction is a

new way of looking at testing message passing systems, called Message Interaction,

Condition checking, Ordering (MICO). MICO allows a message passing system to be

fully characterized in terms of the messages sent or received (Message Interaction), the

message conditions required for test case pass or fail behavior (Condition checking),

and the expected sequence of the messages, as it applies to system behavior

(Ordering). Also, this thesis applies a new method of test case generation, developed in

60

conjunction with Dr. Bernard Zeigler. This method generates ADEVS code, using sets

of three keywords, referred to as triples. Each of these triples represents a certain

behavior that commonly occurs in the course of a test scenario, such as the

transmission or reception of a message. By coupling the code generated from these

triples, multiple defined behaviors can be executed, allowing a full test scenario to be

generated using a minimal amount of operator input. The final system is more fully

defined, and the test cases are faster and easier to generate, than previous

implementations of this research project.

The major contributions of this thesis are to introduce MICO as a methodology to

describe message-passing systems for automation and testing, to develop a method

using FDDEVS to automate the development of complex, distributed, real-systems, and

to develop a new framework for a simulation-based message passing system standards

conformance test system.

4.3 MICO Concept

4.3.14.3.14.3.14.3.1 MICO DescriptionMICO DescriptionMICO DescriptionMICO Description

MICO stands for Message Interactions, Condition (or Condition Checking), and

Ordering. MICO does to the Model portion of the MSVC design pattern what the MSVC

design pattern does to system design: It separates behaviors into separate entities with

61

defined interfaces, so that each behavior can be implemented autonomously from every

other behavior. This means that once a behavior is defined, it can be reused as many

times as necessary to perform a task. This also means that, if a behavior changes, only

the entity that changed needs to be recoded. This allows for a high percentage of reuse

of code, as well as extensive modularity.

MICO is useful because it separates message interaction testing into three

separate parts. This allows each of the parts to be formalized and automated. MICO is

a new approach because it applies DEVS modeling and simulation to the

characterization and testing of Message Passing systems, a problem that has not

received as much attention [19].

4.3.1.14.3.1.14.3.1.14.3.1.1 Origin of MICOOrigin of MICOOrigin of MICOOrigin of MICO

MICO originated as a result of the failed attempt to redesign ATC-Gen in a

modular way. The need for separation was inspired by the problems found when

attempting to create the waitReceiveSend-derived classes and the TDCoordinator.

Each attempted implementation had its own inherent problems, and each of these

problems required its own separate solution.

The problem inherent in creating the waitReceiveSend-derived classes was that

the classes attempted to include the checking of message-internal conditions. This

required that the classes either contain all possible conditions that could be necessary

62

to test, or that the classes include only the conditions necessary for a specific test case.

The possible solutions for this problem included repositories for each message type,

containing possible sets of conditions, or separate implementation of each class for

each message and each condition necessary to be tested in a test case. Both of these

solutions required repetition of large amounts of code that would need to be inserted

into each implementation or member of a repository. The amount of time and code

necessary to implement any of these options made the idea of including the condition

checking in the model responsible for receiving messages unfeasible. This led to the

concept of separating the condition checking portion of a test case from the reception or

transmission of a message. The Condition Checking portion of MICO comes from these

problems.

The problem inherent in the TDCoordinator was that it attempted to encompass

too much of the behavior of the model. The TDCoordinator concept was first originated

because the Reactive Mode models brought to light the need to verify pass or fail

behavior for an entire scenario, rather than for a single message interaction. In the

Reactive Mode implementation, the primitives had grown in size for two reasons. One

reason was that conditions were added that required testing. The other reason was that

the order of messages became a necessary part of the test, and if the correct messages

were received in the wrong order, the scenario failed even if all of the message

interaction models passed. This behavior was partially covered in the original ATC-Gen

through the coupling, but sophisticated handling, such as console output of failure

conditions or overall test scenario pass/fail behavior was unsupported, and unexpected

real time testing behaviors could cause the system to incorrectly pass when it had

63

actually failed, and vice versa. Thus, the system needed to include a portion to cover

scenario behavior. The major duty of this portion was to test that messages in

interactions were received in the correct order. The Ordering portion of MICO handles

this duty.

4.3.1.24.3.1.24.3.1.24.3.1.2 DDDDifferenifferenifferenifferencescescesces from from from from Earlier ATCEarlier ATCEarlier ATCEarlier ATC----GenGenGenGen Concept Concept Concept Concept

The first ATC-Gen concept characterized scenarios based on the transmission

and reception of message. This characterization is equivalent to the Message

Interaction specification of the MICO concept. The first ATC-Gen concept also captured

some of the ordering behavior of a model through stimulating models through coupling.

This corresponds to portions of the Message Ordering specification of MICO, although

is far less complete. The coupling only allows for messages to depend on the reception

or transmission of other messages. It does not capture the full behavior of a scenario,

and does not allow for automated pass/fail behavior as the MICO concept does. The

first ATC-Gen concept did not support condition checking of any sort. The Condition

Checking specification of MICO fills this gap by specifying what conditions must be

tested.

4.3.24.3.24.3.24.3.2 Message Message Message Message InteractionInteractionInteractionInteraction SpecificSpecificSpecificSpecificationationationation

64

The Message Interaction Specification defines what messages a particular

system is supposed to send or receive. Message interactions occur between two

systems in a message-passing system. The Message Interaction Specification is from

the perspective of one of the two systems. Each message sent by a system is mapped

to a HoldSend model, and each message received by a system is mapped to a

WaitReceive model.

The Message Interaction specification handles two things. First, it is responsible

for characterizing what messages are sent or received by a participant in a given test

scenario. Second, it is responsible for the timing associated with a particular message.

This timing can be either universal, i.e., starting at the beginning of a test scenario, or

local, i.e., starting after another message interaction completes.

SUT ATC-Gen

J32

J32

J32

J32

J72

J70
SUT

Perspective

– SUT sends

two J32

messages

and one J72

message

ATC-Gen

Perspective

– sends two

J32

messages

and one J70

message

Figure 19 - Message Interaction Example

The message interaction specification consists of a set of message interactions.

A message interaction consists of a message, which, depending on the system, can be

65

characterized by type, by port, or by some other criterion, an originator, a destination,

associated expiration time, and time mode indicator. The expiration time indicates

either when a message is scheduled to be sent, or how long it takes to send a message

after a given stimulus, depending on the timing mode. The time mode indicator is 0 if

the time mode is universal and 1 if the time mode is local. Figure 19 shows an example

of a Message Interaction specification. The example is the RemoteTNDrop scenario

used in earlier examples. As shown by the arrows, the specification from the

perspective of the SUT is three messages sent, two J32 messages and one J72

message, and three messages received, two J32 messages and one J70 message.

From the perspective of the ATC-Gen, the specification is the opposite. Because of

this, only one specification is necessary, but the resulting test depends on the

perspective. The timing specification is left out of the example.

4.3.34.3.34.3.34.3.3 Condition SpecificationCondition SpecificationCondition SpecificationCondition Specification

The Condition Specification allows for the testing of message contents and their

affect on the behavior or state of the message-passing system. By separating the

Conditions from the Message Interactions, the primitive models (HoldSend,

WaitReceive) can be reused for different messages/test cases. The Messages can be

separated from their internal data, removing the test-case specific code from the

primitives. This reusability enables the test case generation to be automated quickly

and with much less effort than a non-separated Test Model.

66

A Condition can be one of two things: Either a field in a sent/received message

equals a predefined variable, or a precondition on which the message depends is

satisfied. Message field testing requires prior knowledge of the required value or a

method of making the required value available to the system at either configuration time

or run time. Due to the nature of the standard being tested in this system, specific

examples of field conditions cannot be included in this thesis. Preconditions usually

come from the standard to which the model is being tested. For example, in order to

perform correlation on a track, the track must have sufficient resolution. If this

precondition is not met, the test case cannot proceed.

4.3.44.3.44.3.44.3.4 Ordering SpecificationOrdering SpecificationOrdering SpecificationOrdering Specification

The Message Ordering Specification allows scenarios as a whole to be tested for

pass/fail behavior. Message Ordering specifies if the sequence of behaviors occurs in

the correct order, allowing for Pass/Fail behavior to be determined. Message Ordering

also specifies what behavior should occur before and after a particular Message

Interaction. In particular, a message may depend on a sequence of previous and

following actions. The reception or transmission may change the state of a model such

that another message that would otherwise be correct becomes incorrect. In contrast,

Message Interaction specifies what the message is, who the message is from, and to

whom the message is sent.

67

Message Ordering is implemented using two methods: Stimulus of test models

via coupling and enforcement via the Acceptor model. The coupling method is inherent

in Coupled DEVS models, and controls to which starting point a particular inStart point

is connected. In order to start the system as a whole, two ways of starting were

included in the system. The first way was a starter model which has no behavior but to

output a start message on its outStart port. The second way was to receive a start

message from the Interface, or the middleware protocol, allowing for a SUT to control

when the test case starts. Enforcement using the Acceptor model is for the purpose of

verifying scenario behavior for Pass or Fail. For scenarios where the Message

Interaction specification is the same but the scenario is different, the only way to

characterize the difference is with the Message Ordering specification. The Acceptor

model is designed to receive notifications of completion from message handling

primitives, including an indication of whether the associated message conditions passed

or failed. From those notifications, the Acceptor model is responsible for verification of

the scenario as a whole.

4.3.54.3.54.3.54.3.5 CharacterizingCharacterizingCharacterizingCharacterizing a a a a MMMMessessessessageageageage----Passing SPassing SPassing SPassing Systemystemystemystem

MICO is a general concept and can be applied to message passing systems

other than the one used in this thesis. As an example, this section will characterize a

simplistic Message Passing System in terms of the message passing behavior and the

MICO specifications.

68

When characterizing a system, the most concrete step is to define the

components. This is done in this system by employing the DEVS formalism to develop

models and coupling. The next step is to define the set of messages. This can be done

by message type, or in systems that have no defined message types, it can be done by

port. Once the system has been defined on these levels, the MICO specification can be

created.

The example system is as follows: Two routers are setting up a secure

connection. The protocol for the negotiation begins with a greeting. If the greeting is

accepted, a greeting reply is returned. If it is not, no message is sent back and the state

times out. After the greeting reply is sent, a password message is sent. If the password

is correct, a password acknowledgement is sent. If the password is incorrect, a Nack is

sent. If a password acknowledgement is sent, the system is in a connected state and

the system ends with a pass. If a nack is received or the state times out, the system

ends with a fail.

The MICO system specification for the system starts with specifying the players.

In this case, there is a service requestor and a service provider. The messages sent by

the system are greeting, greeting reply, password, password acknowledgement, and

nack. The first message has universal time and sends at time zero. The other

messages are all assumed to have local time and one second of processing time. The

Message Interaction specification is as shown in Figure 20. The messages are

specified in a five-tuple, where the first element is the message type, the second is the

transmitter, the third is the recipient, the fourth is the expiration time, and fifth and final

69

is the time mode indicator. A time indicator of 0 indicates universal time and a time

indicator of 1 indicates local time.

Service
Requestor

Service
Provider

Greeting

Greeting Reply

Password

Password ACK

(Greeting, Service Requestor,
Service Provider, 0, 0)

(Greeting Reply, Service Provider,
Service Requestor, 1, 1)

(Password, Service Requestor,
Service Provider, 1, 1)

(Password ACK, Service Provider,
Service Requestor, 1, 1)

Figure 20 - Message Interaction Specification

The condition specification is dependent on perspective. From the Service

Provider side, the conditions specify when a received message meets conditions, and

when to send a message. For this system, the conditions are:

1.) If the Greeting is formatted correctly and the name in the Greeting is in the

authorized users list, the reception passes.

2.) If a passed Greeting is received, send a Greeting Reply

3.) If the Password received matches the name received in the last Greeting

message, the reception passes

4.) If a passed Password is received, send a Password ACK

70

If the given conditions are not met, the reception or transmission fails. From the

Service Requestor side, the messages themselves are not tested, but the following

conditions are tested:

1.) If the system is started correctly, send a Greeting

2.) If a Greeting Reply is received, the reception passes

3.) If a Greeting Reply was received, send a Password

4.) If a Password ACK is received, the reception passes

Finally, the Message Ordering specification includes the scenario conditions. As

mentioned above, the system passes if all the messages are received in the order

shown in Figure 20. If any variations occur, the system as defined fails. However, not

every system is as simple as this, and sometimes many variations may lead to passing

behavior. The Message Ordering specification has 3 cases, 1 pass and 2 fail.

Case 1: Messages are sent and received as in Figure 20.

 (TX, Greeting, 0)

 (RX, Greeting Reply, 1)

 (TX, Password, 2)

 (RX, Password ACK, 3)

Case 2: Incorrect Password

 (TX, Greeting, 0)

 (RX, Greeting Reply, 1)

 (TX, Password, 2)

71

 (RX, NACK, 3) - Fail

Case 3: Invalid User Name

 (TX, Greeting, 0)

 (RX, NULL, 0) - Fail

The specification fully characterizes the example message system. All pass and

fail behavior is defined, as well as the conditions for each transmission and reception. If

this system were to be defined in the system in this thesis, the Message Interaction

specification would translate into waitReceive and holdSend models, the Condition

specification would translate into ConditionChecker models, and the Message Ordering

specification would translate into Acceptor models.

4.4 FDDEVS Automation

4.4.14.4.14.4.14.4.1 FDDEVS descriptionFDDEVS descriptionFDDEVS descriptionFDDEVS description

When automation of the test cases was first discussed, it was thought that the

test cases could be broken into sections, each of which could be described using

FDDEVS-constrained English. As discussed in Section 3.1.3, FDDEVS is a restricted

version of classic DEVS. One of the positive aspects of FDDEVS is that the well-

definedness of the specification has allowed for FDDEVS models to be automated very

72

simply. At first, the automation was done using an XML specification, and then later, a

constrained English specification was defined. An example of a constrained English

FDDEVS specification is given below.

ATCGenStartUp: to start hold in sendTruthDataDISPDU for time 0 !
ATCGenStartUp:after sendTruthDataDISPDU then output Truth !
ATCGenStartUp: from sendTruthDataDISPDU go to waitForNoJ32TN !
ATCGenStartUp: hold in waitForNoJ32TN for time 12 !
ATCGenStartUp: when in waitForNoJ32TN and receive Link go to
sendFAILJ32TNAMatch !
ATCGenStartUp: hold in sendFAILJ32TNAMatch for time 0 then output PassFail and
go to passive !
ATCGenStartUp: passivate in passive !
ATCGenStartUp: from waitForNoJ32TN go to waitForJ32TNAMatch !
ATCGenStartUp: after waitForNoJ32TN then output PassFail !
ATCGenStartUp:hold in waitForJ32TNAMatch for time 12 !
ATCGenStartUp: when in waitForJ32TNAMatch and receive Link go to
sendPASSJ32TNAMatch !
ATCGenStartUp: after sendPASSJ32TNAMatch output PassFail and go to passive !

Figure 21 - FDDEVS Example

However, the FDDEVS models generated using the automation schemes are

meant to be atomic models. While these atomic models can be coupled to form a

system, what was desirable for this system was to map FDDEVS specifications into pre-

existing models. In order to do this, the concept in Figure 22 was created.

73

sinit ial

s0s1

s3

C[sinitial]

C[s0]
C[s1]

C[s3]

Collection of components

that represent all

functionality of associated

state

Activation of components

associated with target state

by starting state of

transition

Inactivation of

components by
components within the

same collection

Simulation of DEVS atomic model involves representing each state by a collection of
components that implement its particular input, state transition, and output
functionality.

Figure 22 - Mapping Concept

As the figure shows, the states in an FDDEVS were mapped to a set of message

primitive models. Each of the states has functions that map the state transition: the

delta int, delta ext, and delta conf. As shown in Figure 23, a mapping was developed

that modeled a state using a waitReceive model for each message received in the delta

ext state transition, and a holdSend for the delta int transition. This mapping required

additional ports be added to the primitives, namely inStop, outStart, and outStop.

However, this mapping assumed the simplistic version of the waitReceive primitive from

the original ATC-Gen. Due to the actual final implementation of the waitReceive model,

the use of an additional holdSend model and the addition of the said ports was

unnecessary. The behavior was instead handled by the outPassFail message, which

handled state transitions by outputting either a pass message or a fail message.

74

sinitial

s0s1

tax y

inStart outMesssageholdSend(ta,y)

waitReceive(ta,x)

inStart

inStop

inStart

C[s0]

outStart

outStart

outStop

C[sinitial]

C[s1]

inStart

inStop

inStart

inStop

inStart

inStop

inStart

inStop

outMesssage

y

inMesssage inMesssage

x

Inactivation of holdSend if

input is received within

the allowed time window.

Figure 23 – Mapping a State to holdSend and waitReceive Primitives

In the final model, an expected external input was modeled by a waitReceive

primitive, and an expected output of a message to the interface was modeled by a

holdSend primitive. The stimulus behavior that moves between states is handled using

the outPassFail port. These allow the system to be implemented as described in the

system overview section above, but to be created automatically using FDDEVS

constrained English specifications.

As more test cases were characterized, sections of similar behavior were found

to occur regularly. This led to a new idea to speed up the characterization of test cases

by mapping the FDDEVS-constrained English descriptions of portions to macros with

three portions. These were called triples throughout the test case characterization

portion, and are described below.

4.4.24.4.24.4.24.4.2 Test Case Creation using MacrosTest Case Creation using MacrosTest Case Creation using MacrosTest Case Creation using Macros

75

In order to make the characterization of test cases as easy as possible on the

analysts, similar portions of behavior were classified and turned into macros. These

macros were named according to their behavior, and were implemented as three

arguments. The first argument was the name of the macro. The second argument was

the desired name of the generated model. The third argument was the message to be

handled by the given portion. The remainder of this section is an example of the test

case generation process.

4.4.34.4.34.4.34.4.3 Test Case GenerationTest Case GenerationTest Case GenerationTest Case Generation

The scenario generated in this example is called X. It is as described. The first

step in generating a scenario is to characterize the scenario into steps. This is done by

a Subject Matter Expert (SME) analyst. The output of this step is a numbered list of

steps that define the scenario. An example of this is shown in Figure 24.

0. Configure SUT for Mil Std 6016C chg1 default rule set.

1. Inject air truth track TN A into the SUT.[DIS, J 3.2a]

Observe the SUT produces a L16 track TN A for the truth Track.

2. Send a remote TDL L 16 track TN B into the SUT with the exact location and essential

information (but higher TN) as TN A, such that it will correlate.

Observe the correlation and drop track of the remote track TN B. Verify number of

correlation tests counted by ATC-Gen and in the SUT log file (LDDM). [J 3.2b, J 7.2, J 3.2b, J

7.0 (0)]

3. Drop all tracks. [DIS, J 7.0 (0)]

Figure 24 - Test Case Specification Example

76

Next, the characterization is translated into triples. These triples are the macros

discussed earlier, and represent a particular behavior as captured in an FDDEVS

constrained English representation. Examples of these triples are:

SendTruthUponStart, SendMessageOnLink, SendTwice, WaitNotReceivePass, and

WaitReceivePass. In the example, the translation to triples is as shown in Figure 25.

StartTruthUponStart, SendTruth, DISEntityState !

WaitReceivePass, WaitForLinkTrack, J32 !

RepSendMessageOnLink, RemoteTrack, J32 !

WaitReceivePass, WaitFor2ndLinkTrack, J32 !

WaitReceivePass, WaitForCorrNotification, J72 !

SendMessageOnLink, SendDropTrack, J70 !

Figure 25 – Triple (Macro) Specification Example

The triples are input into a premade Excel spreadsheet. This spreadsheet is put

into a directory along with a few pre-generated files which serve to direct the automation

software in its creation of files. Then, the generation software is started. The FDDEVS

generation suite has a few different parts. It has a portion that generates models in a

Java implementation of DEVS called DEVSJAVA. It has a portion that generates

models in ADEVS. It also has a portion that generates model hierarchies from SES

specifications. The first step of generation is to start the Java code generator. This

Graphical User Interface (GUI) is shown in Figure 26.

77

Figure 26 - FDDEVS Java Generation GUI

The Java generating GUI has six operation buttons, two file/folder selection

buttons, four tool buttons, and two log-related buttons. After running the GUI, the first

step is to select the folder where the models will be generated, which is the folder the

spreadsheet mentioned earlier is in, and to select the spreadsheet. Next, a series of

buttons are pressed to capture the spreadsheet data, create FDDEVS definitions of

models from the macros, and create models from the FDDEVS constrained English

definitions.

The SES tool is then used to create a Pruned Entity Structure (PES) which is a

pruned implementation of a generic SES. The pre-generated files take care of the

78

creation of the PES, and the only steps necessary to create it from the tool is to open a

generated file, hit a button to process the file, create the PES, update the PES, and then

close the SES tool. Figure 27 shows the SES GUI. Figure 28 shows the PES created

for the example in the SES GUI.

Figure 27 - SES Builder GUI

Figure 28 - SES Builder PES Window

79

After the PES is created, the Java GUI is reopened and the hierarchy of models

that form structure of the system are generated from the PES. After this step, the

models are created in a Java-based simulation language known as DEVSJAVA. The

next step is to add the coupling between the sections created through the macros. After

the coupling is added, the system is specified. At this point, the system can be viewed

and the message interactions simulated in the Java environment. Examples of the

visualization tools are shown in the model hierarchy section below.

The next part of the generation is to generate the C++ version of the models.

The C++ generation GUI is shown in Figure 29. It has many of the same buttons as the

Java generation GUI, and works in much the same way. It also stores the captured

spreadsheet data in the same place, so once data is captured by one, it can be used by

both. The generation of the C++ files is performed by hitting a series of buttons, which

generate the Atomic C++ models, create the model hierarchy which forms the structure,

and create the coupled models formed using the mapping concept discussed in Section

4.4.1.

80

Figure 29 - C++ Generation GUI

After the files are generated, they are put into a Microsoft Visual Studio 2008

project. This project is checked by an analyst to verify correctness. At this point, the

ConditionChecker and Acceptor models are modified by hand. This is because the

ConditionChecker and Acceptor models have not yet been characterized to the point of

automation. This is a future direction of this research project. Finally, the project is built

and the configuration files are created. The result is a testable executable that can be

run against a SUT.

4.5 Final System Configuration

81

4.5.14.5.14.5.14.5.1 Overview ofOverview ofOverview ofOverview of Description Description Description Descriptions and s and s and s and SystemSystemSystemSystem Hierarchy Hierarchy Hierarchy Hierarchy

In the system implementation, the code is broken into two projects. One project

contains the backbone of the code and all of the communications mechanisms. This

part is described in the System Description section below. The other project contains a

repository of Test Cases, each with its test case specific code and each built into its

own executable. An example of one of these test models, based on the generated

example from section 4.4.3, is described in the Test Model Description section below.

The system is connected through coupled ports. The Test Model Description section is

contained in a portion of the System Description, as mentioned below. The system as a

whole is described according to its parts.

4.5.24.5.24.5.24.5.2 System DescriptionSystem DescriptionSystem DescriptionSystem Description and Hierarchy and Hierarchy and Hierarchy and Hierarchy

The system as a whole consists of the different abstractions of the MVSC design

pattern mentioned in section 3.4.1 above. This section describes the portions of the

system and how they correspond to the concepts mentioned earlier in the paper.

The Model portion of the design pattern consists of the components described in

section 4.2. The model portion has been described in detail, and so a detailed

description will be left out of this section. The Model portion connects to the Simulator

82

through a simulator interface, and connects to the View and Controller through models

called Activities, which implement the protocol interfaces.

The Simulator in this system is a simulated real-time ADEVS simulator. This

means that it runs on discrete time, but schedules events using the system clock of the

computer it is running on. It is implemented hierarchically, by adding the coupled

models to a tree structure and simulating atomic models through one interface, and

coordinating between coupled models through another interface. This is a hierarchical

implementation of a DEVS simulator, as discussed in [8].

The View and Control portions are implemented in models called Activities.

Activities are interfaces between a discrete-time modeling and simulation environment

and a real-time environment, such as the High Level Architecture (HLA) simulation

environment. In this system, three protocols are implemented, SIMPLE, HLA, and DIS.

The view portion is implemented as console output that allows the tester to view what

messages are sent and received. The controllers are in charge of controlling the

protocol behaviors. The Activity models mediate passing messages between the

simulation environment and the protocol environment.

An overview of the hierarchy of the system is shown in Figure 30. The

LegacyActivityManager and RTSim_Activity are ADEVS 2.1 wrappers that facilitate

communication between the protocol classes, which are the classes derived from

Activity, and the Test Case classes, which are described in the next section. Messages

are passed between the LegacyActivityManager class and the RTSim_Activity class,

and also between the protocol classes and the Translator, which is a separate dll

83

containing all of the protocol implementation code. This system is the backbone upon

which the test cases run.

Activity

LegacyActivityManager

SIMPLE_Activity DIS_Activity HLA_Activity

Translator

RTSim_Activity

Test Case

Figure 30 - System Hierarchy

4.5.34.5.34.5.34.5.3 Test Model DescriptionTest Model DescriptionTest Model DescriptionTest Model Description and Model Hierarchy and Model Hierarchy and Model Hierarchy and Model Hierarchy

The test model contains the backbone model and the test cases. Test cases are

made up of the MICO-specified portions, the hierarchical models, and the main model,

which is responsible for connecting all of the pieces and creating the executable. The

backbone model is made up of the Store model and the TrackSimulator model, which

are coupled into a model called the TrackHandler, and the interface to the Activity

classes, which is coupled into a model known as MiddlewareConnection. Figure 31

shows the structure of the MiddlewareConnection coupled model.

84

SIMPLE_Activity

DIS_Activity

MiddlewareConnection

Starter

inLink

inTruth

outStart

outLink

outTruth

Figure 31 - MiddlewareConnection Coupled Model

Figure 32 shows the structure of the TrackHandler coupled model. The diagram

is an example of the output of the DEVSJAVA viewer. The TrackSimulator model is

named TrackGenerator in the Java version of the code.

Figure 32 - TrackHandler Coupled Model

Figure 33 is the equivalent of the Test Case box in Figure 30 above. It is the top-

level view of the structure of a test case. It includes the TrackHandler model shown in

Figure 32, the MiddlewareConnection model shown in Figure 31, and the TestModels

model. The TestModels model is the test case specific portion of the code, and as such

is different for each given scenario.

85

Figure 33 - Test Case Structure

Figure 34 shows an example of the contents of the TestModels model. This

example was generated from the FDDEVS macro specification in Figure 25. It shows

each macro generated into a portion of a test case.

Figure 34 - Structure of Generated Example Test Case

Figure 35 shows the structure of one of the portions of the models inside the

TestModels model. This is the level at which the MICO specification of the test case

86

comes into play. Each portion of a test case has an associated Message Logic, which

contains the Message Interaction code, a ConditionChecker, which contains the

Condition code, and an Acceptor, which contains the Message Ordering code.

Altogether, these hierarchical models make up the structure of the system.

Figure 35 - Structure of WaitForLinkTrack Test Case Portion

87

5555 ResultsResultsResultsResults

5.1 System Design Results

The system in this thesis was designed to resolve the issues with previous

versions. These issues and the resulting resolutions are discussed in the sections

below.

5.1.15.1.15.1.15.1.1 Handling Conditions and Message ContentsHandling Conditions and Message ContentsHandling Conditions and Message ContentsHandling Conditions and Message Contents

The original ATC-Gen did not test message contents. The only conditions tested

in the original ATC-Gen were reception or transmission of messages. The expanded

capabilities of the Reactive Mode allowed message contents and other conditions to be

tested, but did not allow for them to be generated. All message content tests had to be

coded into large scenario-testing models.

This system makes generation of condition checking a reasonable possibility. It

was not implemented at the time of this thesis, due to the complexity and number of

conditions to be formalized. However, the mechanisms exist to make condition

88

checking automated, and the condition checking in this system was implemented using

templates, which lowers the amount of code to be created by hand.

5.1.25.1.25.1.25.1.2 Testing Scenarios Instead of MessagesTesting Scenarios Instead of MessagesTesting Scenarios Instead of MessagesTesting Scenarios Instead of Messages

The original ATC-Gen tested the transmission and reception of messages. This

required that a test case be characterized in terms of the messages passed and

received. The automation process developed to generate test cases left out important

behavioral information.

The new system characterizes testing not on the level of the messages sent and

received, but on the level of the scenario. This takes into account the state changes

that reception or transmission of a particular message can have on the system as a

whole. This allows scenarios to pass or fail based on the overall behavior, rather than

the reception or transmission of a single message. This version more correctly models

the behavior of a message passing scenario being modeled.

5.1.35.1.35.1.35.1.3 Formalized Generation of Test CasesFormalized Generation of Test CasesFormalized Generation of Test CasesFormalized Generation of Test Cases

The original ATC-Gen had a formalized generation process. However, as the

system evolved, this process was lost and replaced by a copy-paste recreation method.

89

This evolutionary process left the Automated Test Case Generator without an

automated generation capability.

The system developed in this thesis combines the original formal generation

process with new concepts in order to generate test cases that have more depth of

condition and ordering testing than the original ATC-Gen test cases. The final

generation process developed in this thesis is also easier and faster than the original

generation process.

5.1.45.1.45.1.45.1.4 Modularity and Modularity and Modularity and Modularity and Reuse of Code, and Model Size IssuesReuse of Code, and Model Size IssuesReuse of Code, and Model Size IssuesReuse of Code, and Model Size Issues

The major motivating factor of redesigning the ATC-Gen system was to create a

system that was modular, reused large portions of code, and reduced the size of the

model primitives. This system does all of these things. The test cases are created

using small, pre-existing message primitives. The portions of code corresponding to

creation of messages are reused in every system by including the Store module. There

no longer exist any model primitives that require copying and pasting hundreds of lines

of code to function. This system successfully satisfies the motivating requirements

behind this project.

5.2 Automation and Test Case Generation

90

It took approximately 3 months to generate and perform the final calibration step

to complete all of the test cases. In all, 74 test cases were generated using the

FDDEVS triples methodology. In addition, 23 test cases were created from existing test

cases and 5 test cases were created by hand. In total, 102 test cases were created and

run against the SUT.

The amount of time necessary to generate a new test case completely by hand

proved the superiority of this test case creation system against the previous Reactive

Mode. On average, a new Reactive Mode test case takes 1-2 days of work to

complete. On average, a new system test case required 2-6 hours. In the worst case, it

is still a reduction of more than half.

The generation process itself took approximately a half an hour per test case. In

addition, the preloading and post-processing stages took between 3 hours per test case

and 12 hours. The worst case time of 12 hours was mostly due to analyst

miscommunication leading to redesign of test cases, and even the worst case was only

one and a half days, which is less than the upper limit of the average time of the

Reactive Mode. Overall, redesigning the system for ease of test case creation and fast

test case generation was successful.

5.3 Testing Results

91

Due to the classification levels of this system, the experimental results cannot be

shown. However, without discussing proprietary information, the following results can

be mentioned.

The SUT that the system developed in this thesis was run against was a C2

program developed by the Single Integrated Air Picture (SIAP) Joint Program Office

(JPO). The testing took two weeks, and a total of 102 tests were run. Final test case

results were: 85 passed, 15 failed, and 2 partially passed. The testing was successful,

and detected a number of issues that cannot be discussed in this paper.

92

6666 ConclusionConclusionConclusionConclusion

6.1 Summary and Context

The ATC-Gen research project had many incarnations prior to this thesis. Each

was useful at the time it was created. However, the uncontrolled evolution from a

formal but limited system into a broader but unformalized system made the further

development of the system problematic. Solutions were needed for testing message

contents and order. The system designed in this thesis introduced the MICO concept

as a method to characterize message passing systems. This concept helped formalize

methods to generate test cases with message content testing and scenario ordering

testing. The FDDEVS formalism was used to create tools that allowed the generation of

test cases. These test cases were developed faster and with less effort than the test

cases in previous implementations of ATC-Gen, while allowing for the generation of

more in-depth testing of message contents and scenario ordering. The final system

was generated in less time than previous incarnations. The system was verified using

the TIAC blah and then tested against a SUT. Over 100 test cases were generated and

run against a SUT. Final test case results were: 85 passed, 15 failed, and 2 partially

passed. Overall, this design is an improvement over previous incarnations of the ATC-

Gen research project and the research project successfully fulfilled the requirements.

93

6.2 Contributions and Conclusions

The major contributions of this thesis are the MICO concept and the FDDEVS

generation environment. The MICO system applies DEVS formalism to Message

Passing systems, and gives a basis for formalism of testing. It allows characterization

of Message Passing systems so that test case generation can be abstracted into

separate, well-defined portions. It allows further characterization which allows for future

automation. The final system developed based on the MICO concept is more easily

and more fully automated than any incarnation of the ATC-Gen research project that

existed before.

The FDDEVS automation software allows for the fast, easy characterization of

scenarios, and the fast, formal generation process of test cases. Using triples, test

cases can be characterized faster and with less analyst effort than previous systems.

Using the generation software, the principles of FDDEVS, SES, and MICO are applied

to create a system that is well-defined and easily understandable. The final product

gives the ability to generate full test cases in a matter of hours, where test case

generation used to take days with previous versions of the ATC-Gen software.

The system developed in this thesis successfully met the requirements defined at

the start of the research project. It introduced the MICO concept as well as the

FDDEVS generation software. It tests message conditions and contents in a more

formal manner than previous implementations. It tests for scenario behavior without

94

excessively long primitive models. It implements a formalized test case generation tool.

It consists of modular, reusable code, and is implemented with reasonably sized

models. The system implements all of the defined requirements.

The test case automation methodology combines DEVS and SES formalisms to

allow the efficient and hierarchical creation of structured test scenarios. The MICO

concept allows message passing systems to be characterized in a way that allows for

separate development of the message interaction, conditions, and ordering of

messages. The final system developed based on the MICO concept is more easily and

more fully automated than any incarnation of the ATC-Gen research project that existed

before

6.3 Future Work

At the current time, only the Message Interaction portion of the code is generated

automatically from the FDDEVS specifications. The scenarios that encompass pass/fail

behavior are generated in the process, but this information is not used to generate code

for test cases. Work is being done to use this scenario description to automate

generation of the Ordering portion of a test case, in the form of the Acceptor model.

The final form of the Acceptor model should allow test cases to be determined as a

pass or fail automatically by the system.

95

In addition, characterizations of the types of conditions that commonly appear in

test cases are being discussed. If conditions can be characterized in a general manner,

automation of the Condition checking portion of the code, the ConditionChecker model,

can be done in the future. When both the Condition portion and the Message Ordering

portion of the MICO specification can be automated, truly automated test case

generation will be possible.

96

7777 ReferencesReferencesReferencesReferences

[1]. Nutaro, J., Hammonds, P.; “Combining the Model/View/Control Design Pattern

with the DEVS Formalism to Achieve Rigor and Reusability in Distributed

Simulation”. JDMS, Vol. 1, Issue 1, April 2004 Page 19-28

[2]. “Technology for the United States Navy and Marine Corps, Becoming a 21st-

Century Force: Volume 9: Modeling and Simulation” (1997), National Academy

Press. Page 2000-2035

[3]. “Modeling and Simulation in Manufacturing and Defense Acquisition: Pathways to

Success” (2002), National Academy Press.

[4]. B.P. Zeigler, D. Fulton, P. Hammonds, J. Nutaro, “Framework for M&S-Based

System Development and Testing in Net-centric Environment,” ITEA Journal of

Test and Evaluation, Vol. 26, No. 3, 2005.

[5]. Eddie Mak, Saurabh Mittal, Moon Ho Hwang, James Nutaro, "Automated Link 16

Testing using DEVS and XML", submitted to Journal of Defense Modeling and

Simulation (JDMS), accessed at

http://www.acims.arizona.edu/PUBLICATIONS/PDF/AutomatedTestingPaper.pdf

97

[6]. Mittal, S., “DEVS Unified Process for Integrated Development and Testing of

Service Oriented Architectures”, Thesis, University of Arizona,

http://www.acims.arizona.edu/PUBLICATIONS/PDF/Thesis_Mittal.pdf

[7]. “Extensible Markup Language”, http://www.w3.org/XML/Core/, last accessed July

16, 2009

[8]. B.P. Zeigler, H. Praehofer, T.G. Kim, “Theory of Modeling and Simulation,”

Academic Press, 2000.

[9]. “High Level Architecture Run-Time Infrastructure RTI 1.3-Next Generation

Programmer’s Guide Version 5”, Defense Modeling and Simulation Office.

[10]. Nutaro, J., “Adevs: A Discrete EVent System simulator”,

http://www.ornl.gov/~1qn/adevs/. Last accessed July 26, 2009.

[11]. Krasner, G., Pope, S., "A Description of the Model-View-Controller User Interface

Paradigm in the Smalltalk-80 system," Journal of Object Oriented Programming,

Vol. 1, No. 3, pp. 26-49, 1988.

[12]. MIL-STD-6016C, Change 1, “TACTICAL DATA LINK (TDL) 16, MESSAGE

STANDARD”. Department of Defense.

[13]. Hwang, M.H., Zeigler, B.P., “A Reachable Graph of Finite and Deterministic DEVS

Networks”, Proceedings of 2006 DEVS Symposium, Huntsville, Alabama, USA,

April, pp 48-56.

98

[14]. Hwang, M.H., Zeigler, B.P., “A Modular Verification Framework Based on Finite &

Deterministic DEVS”, Proceedings of 2006 DEVS Symposium, Huntsville,

Alabama, USA, April, pp 57-65.

[15]. M.H. Hwang, ``Generating Finite-State Global Behavior of Reconfigurable

Automation Systems: DEVS Approach``, Proceedings of 2005 IEEE-CASE,

Edmonton, Canada, Aug. 1-2, 2005

[16]. J.W. Rozenblit and Y.M. Huang, “Rule-Based Generation of Model Structures in

Multifaceted Modeling and System Design,” ORSA Journal on Computing, Vol. 3,

No. 4, Fall 1991

[17]. Nutaro, J.; Jarboe, S.; Zeigler, B.; Fulton, D.; “A Method for Generating Synthetic

Air Tracks”, Distributed Simulation and Real-Time Applications, 2008. DS-RT

2008. 12th IEEE/ACM International Symposium on 27-29 Oct. 2008 Page(s):245 –

251

[18]. Bhateja, P.; Mukund, M.; “Tagging Make Local Testing of Message-Passing

Systems Feasible” Software Engineering and Formal Methods, 2008. SEFM '08.

Sixth IEEE International Conference on 10-14 Nov. 2008 Page(s):171 – 180

[19]. Tsiatsoulis, Z.; Cotronis, J.Y.; Floros, E.; “Testing and debugging message passing

applications based on the synergy of program and specification executions”

Parallel and Distributed Processing, 1999. PDP '99. Proceedings of the Seventh

Euromicro Workshop on 3-5 Feb. 1999 Page(s):196 - 203

99

[20]. Zeigler, B.P.; Sarjoughian, H.S.; Sunwoo Park; Nutaro, J.J.; Lee, J.S.; Cho, Y.K.;

“DEVS modeling and simulation: a new layer of middleware”, Active Middleware

Services, 2001. Third Annual International Workshop on 6 Aug. 2001 Page(s):22 -

31

[21]. Hui Shang; Wainer, G.A.; “Dynamic Structure DEVS: Improving the Real-Time

Embedded Systems Simulation and Design”. Simulation Symposium, 2008. ANSS

2008. 41st Annual 13-16 April 2008 Page(s):271 – 278

[22]. Manuel C. Salas and B.P. Zeigler, AutoDEVS: A Methodology for Automating M&S

Software Development and Testing of Interoperable Systems, submitted to Journal

of Defense Modeling and Simulation (JDMS)

[23]. Dictionary.com, “Cybernetics,” in The American Heritage® New Dictionary of

Cultural Literacy, Third Edition. Source location: Houghton Mifflin Company, 2005.

http://dictionary.reference.com/browse/Cybernetics. Available:

http://dictionary.reference.com. Accessed: August 31, 2009

100

Appendix A: Appendix A: Appendix A: Appendix A: AcronymsAcronymsAcronymsAcronyms

ATC-Gen - Automated Test Case Generator

ADEVS - A Discrete EVent Simulator

C2 - Command and Control

DEVS - Discrete EVent Simulator

DIS - Distributed Interactive Simulation

DoD - Department of Defense

FDDEVS - Finite and Deterministic DEVS

HLA - High Level Architecture

JITC - Joint Interoperability Test Command

JPO - Joint Program Office

JUP - Joint Utility Player

MICO - Message Interaction, Condition-checking, Ordering model

Mil-Std - Military Standard

MSVC - Model/Simulator/View/Control

101

MVC - Model/View/Control

PES - Pruned Entity Structure

SES - System Entity Structure

SME - Subject Matter Expert(s)

SUT(s) - System(s) Under Test

TAMD - Theater Air and Missile Defense

TDL-J - Tactical Data Link, J-series

TIAC - TAMD Interoperability Assessment Capability

TMG - Test Model Generator

XML - eXtensible Markup Language

1

Appendix B: First Reconfiguration DesignAppendix B: First Reconfiguration DesignAppendix B: First Reconfiguration DesignAppendix B: First Reconfiguration Design

The system designed First Reconfiguration consisted of the following models:

TDcoordinator

J3X-WR
store

J72-WR
store

WR
store

HS

Extra-
polate

Interface

Experimental Frame

Figure 36 - Original Redesign Concept

INTERFACE

X = {inPlatformState, inJMsg, inStart, inStop}

Y = {outJMsg, outPlatformState}

S = {passive, Listen, PlatformStateToJMsg, JMsgToPlatformState}

The interface model represents the interface between the testing models and the

real-world protocols on which the messages to be tested are sent and received. These

2

are modeled externally by a class called JMsg, and they are translated to internal

objects inherited from a class called PlatformState. The Interface can take in a

message of type JMsg from the Experimental Frame and send out a message of type

PlatformState to all instances of WaitReceiveStore. It can also take a message of type

PlatformState bag from HoldSend and send out a message of type JMsg to the

Experimental Frame.

Passive

Listen
inStart

JMsgToPlatformState

PlatformStateToJMsg

inPlatformState

outJMsg

inJMsg

outPlatformState

inStop

Figure 37 - Interface DEVS Diagram

The interface model starts in state passive. An input inStart is only accepted if

the state is passive, and puts the model in state Listen. The passive and Listening

states both have a time advance of infinity. Inputs inPlatformState, inJMsg, and inStop

are accepted in state Listen. Input inPlatformState puts the model in state

PlatformStateToJMsg, inJMsg puts the model in state JMsgToPlatformState, and inStop

puts the model in state passive. The input inStop is accepted in state

3

PlatformStateToJMsg and causes a transition to state passive. PlatformStateToJMsg

has a time advance of zero, and takes a PlatformState bag from HoldSend, transforms

it into a JMsg bag, and outputs it on outJMsg to the Experimental Frame. The input

inStop is accepted in state JMsgToPlatformState and causes a transition to state

passive. JMsgToPlatformState has a time advance of zero, and takes a JMsg from the

Experimental Frame, transforms it into a PlatformState, and outputs it to all

WaitReceiveStore instances or inherited instances.

WAITRECEIVESTORE

X = {inPlatformState, inStart, inStop}

Y = {outPlatformState, outControl}

S = {passive, wait, Processing}

The WaitReceiveStore model is the base class for reception processing classes.

It receives messages from Interface, tests them against a criterion, and, if they pass,

creates two outputs, one containing the message for transmission and one containing

control information, to the TDCoordinator.

4

Passive

wait
inStart

Processing

inPlatformState

inStop outPlatformState

outControl

Figure 38 - WaitReceiveStore DEVS Diagram

The WaitReceiveStore model starts in state passive. An input inStart is only

accepted if the state is passive, and puts the model in state wait. The passive and wait

states both have a time advance of infinity. Inputs inPlatformState and inStop are

accepted in state wait. Input inPlatformState puts the model from state wait into state

Processing and input inStop puts the model from state wait into state passive.

Processing has a time advance of zero, and takes a PlatformState from Interface,

checks a condition or otherwise processes the message, and outputs it to

TDCoordinator, along with an accompanying Control message.

 J3X

X = {inPlatformState, inStart, inStop}

Y = {outPlatformState, outControl}

5

S = {passive, wait, Processing}

The J3X model inherits from the WaitReceiveStore class. All inputs, outputs, and

states behave the same, with the exception of what is done during the Processing state.

In J3X, Processing stores, processes, and transmits an incoming PlatformState only if it

is a J3X message.

 J70

X = {inPlatformState, inStart, inStop}

Y = {outPlatformState, outControl}

S = {passive, wait, Processing}

The J70 model inherits from the WaitReceiveStore class. All inputs, outputs, and

states behave the same, with the exception of what is done during the Processing state.

In J70, Processing processes an incoming PlatformState only if it is a J70 message. If

the incoming J70 matches certain criteria, the message is passed to the TDCoordinator.

Otherwise, it is ignored.

6

 J72

X = {inPlatformState, inStart, inStop}

Y = {outPlatformState, outControl}

S = {passive, wait, Processing}

The J72 model inherits from the WaitReceiveStore class. All inputs, outputs, and

states behave the same, with the exception of what is done during the Processing state.

In J72, Processing stores, processes, and transmits an incoming PlatformState only if it

is a J72 message. If the incoming J72 matches certain criteria, the message is passed

to the TDCoordinator with a Control message of true. If not, the message is passed to

the TDCoordinator with a Control message of false.

HOLDSEND

X = {inPlatformState, inExtrapolate, inStart, inStop}

Y = {outPlatformState, outExtrapolate}

S = {passive, waitInit, wait, send, Extrapolate}

7

The HoldSend model receives a message from the TDCoordinator and holds it

until time for transmission. The time to transmission is determined from the Mil-Std

6016C document on which the system is based. The standard defines that all systems

should send their messages at intervals. An interval of 12 seconds is chosen for the

HoldSend model. The HoldSend is also responsible for passing the time received and

time to send to the Extrapolate method for positional extrapolation, and putting the

extrapolated position into the message to be sent.

Passive

waitInit
inStart

outPlatformState

wait

Extrapolate

send

outExtrapolate

inPlatformState |

inExtrapolate

inPlatformState(J3X)

inPlatformState

inStop

Figure 39 - HoldSend DEVS Diagram

The HoldSend model starts in state passive. The passive state has a time

advance of infinity. An input inStart is only accepted if the state is passive, and puts the

model in state waitInit. The waitInit state is the same as the wait state, with the

exception that its time advance is determined by the coupling class, with a default of 2

seconds. The waitInit state goes into the wait state. Inputs inPlatformState and inStop

are accepted in state wait. The wait state has a time advance of 12.0, and goes into a

8

wait state. Input inPlatformState puts the model from state wait into state Extrapolate if

PlatformState is of type J3X or into send if it is not, and input inStop puts the model from

state wait into state passive. Extrapolate has a time advance of zero, and takes a J3X

from Interface, and outputs it to the Extrapolate model. The send state has a time

advance equal to the time remaining before wait would otherwise end, and takes a

PlatformState from Interface, puts it into a bag, and sends it to the Interface model.

EXTRAPOLATE

X = {inExtrapolate, inStart, inStop}

Y = {outExtrapolate}

S = {passive, Wait, Extrapolate}

The Extrapolate model receives a set of positional data, a time received, and a

time to send from HS, and outputs the extrapolated position at the time to send to HS.

Since this system was only to be used for verifying behavior, no actual calculations

were implemented in the Extrapolator model.

9

passive

Wait
inStart

inStop
Extrapolate

inExtrapolate

outExtrapolate

Figure 40 - Extrapolate DEVS Diagram

The Extrapolate model starts in state passive. An input inStart is only accepted if

the state is passive, and puts the model in state Wait. The passive and Wait states both

have a time advance of infinity. Inputs inExtrapolate and inStop are accepted in state

Wait. Input inExtrapolate puts the model from state Wait into state Extrapolate and

input inStop puts the model from state Wait into state passive. The input inStop is the

only input accepted in state Extrapolate. Input inStop puts the model from state

Extrapolate into state passive. Extrapolate has a time advance of zero, and takes a

PlatformState from HoldSend, manipulates the positional data, and outputs it to

HoldSend.

TDCOORDINATOR

X = {inStart, inMsg, inControl}

10

Y = {outPlatformState}

S = {passive, wait, waitForMessage, waitForControl, sendJ3X, sendJ70, fail,

succeed}

The TDCoordinator model receives messages from WaitReceiveStore models,

tests for behaviors, and outputs messages to HoldSend. The behavior tested depends

on what tests the model implements. For the basic WaitReceiveSendJSearch model in

the RemoteTNDrop scenario, it tests if 2 or more J3X are received and sent before a

J72. However, it also includes a state that sends a J70 Drop Track report, which was

modeled separately in the previous test cases. This illustrates that TDCoordinator is

designed to encapsulate entire scenarios, rather than portions of scenarios. The

TDCoordinator also tests for fail cases, such as receiving a J70 before a J72, receiving

an incorrect J72, and receiving less than 2 J3X before a J72.

11

passive

waitinStart waitForMessage

waitForControl

inControl

inMsg

sendJ3X

sendJ70 fail

succeed

messageCount < 2 & msg = J72 |

msg= J70 |

control = false

msg= J3X & control = true

msg= J3X & control = true

outPlatformState(J3X)

outPlatformState(J70)

Figure 41 - TDCoordinator DEVS Diagram

The TDCoordinator model starts in state passive. An input inStart is only

accepted if the state is passive, and puts the model in state wait. The passive and wait

states both have a time advance of infinity. The input inStop is accepted in all states.

Input inStop in any state but passive puts the model from into state passive. Due to the

complexity of this model, the inStop inputs are omitted in the figure. Inputs inMsg and

inControl are accepted in state wait.. Receiving input inMsg in state wait checks the

message type, processes the message by type, and puts the model from state wait into

state waitForControl, if the processing succeeds. If the processing fails, the model

passivates in fail. Input inControl in state wait checks the control message and puts the

model from state wait into state waitForMessage if the processing succeeds. If the

processing fails, the model passivates in fail. State waitForControl has a time advance

of 0.1, and accepts an input inControl. Input inControl in state waitForControl checks

12

the control message and puts the model from state waitForControl into state sendJ3X if

the processing succeeds and the message is a J3X, or into state sendJ70 if the

processing succeeds and the message is a J72. If the processing fails, the model

passivates in fail. The state waitForMessage has a time advance of 0.1 and accepts an

input of inMsg or inStop. Input inMsg in state waitForMessage checks the incoming

message and puts the model from state waitForMessage into state sendJ3X if the

processing succeeds and the message is a J3X, or into state sendJ70 if the processing

succeeds and the message is a J72. If the processing fails, the model passivates in fail.

The state sendJ3X has a time advance of zero. It takes a received J3X and outputs it to

the HoldSend model. The model sendJ3X goes into state wait when its time advance

elapses. The state sendJ70 has a time advance of zero. It takes a received J72, and

outputs a J70 to the HoldSend model. The model sendJ70 goes to state succeed when

its time advance elapses.

1

Appendix C Appendix C Appendix C Appendix C –––– Example implementation of Test Scenarios Example implementation of Test Scenarios Example implementation of Test Scenarios Example implementation of Test Scenarios

1. Original ATC-Gen Model

SUT ATC-Gen

J32

J32

J32

J32

J72

J70

Figure 42 - Basic Correlation Scenario

Correlation is the process by which two Control Units, units in a Link 16 system

with the capability to report tracks, resolve that an object seen by both is in fact the

same object. In this system, the basic model for correlation was developed as a set of

message interactions, as shown in Figure 42. From the perspective of the SUT, this

test case required that, while the SUT was periodically sending J32 Track Report

messages, it would expect to receive two J32 Track Report messages. On each

reception, it would test criteria for correlation. Reception of the second J32 Track

Report message would trigger a correlation, if the tests passed, causing the SUT to

send a J72 Correlation message. The SUT would then wait for a J70 Drop Track

message to indicate that the correlation resolved successfully and the other system

2

would stop sending updates on the track. After the generation reached this point, the

model still needed to undergo the “reflection” described earlier. The reflection is done

as in Figure 43 [5]. All waitReceives become holdSends, and all holdSends become

waitReceives. This resulted in a scenario that would cause the SUT to behave in a

manner as described in the standard.

Figure 43 - Reflecting the Test Model

The final resulting model is shown in Figure 44. The first holdSend model sends

a J3X Track report, then triggers the second holdSend model. The second holdSend

model sends a second J3X Track report, then triggers the waitReceive. The

waitReceive waits for a J72 Correlation report, then sends a pass message to the

external model. When a holdSend that ouputs a J70 drop track message is coupled to

the pass output of the coupled model in Figure 44, this scenario is named

RemoteTNDrop in the terminology used by the analysts. It is the basic test case used

throughout this paper as an example, as well as being the commonly used proof of

concept test case.

3

waitReceive

start pass

Message

holdSend

start pass

MessageholdSend

start pass

Message

start

pass

Message

Message

Figure 44 - Correlation Coupled Model, ATC-Gen perspective

The external box encapsulating the coupled model is the interface with the

simulator and the message protocols. In relation to the MSVC design pattern described

in the above section, the coupled model in the figure represents the Model portion. In

the implementation of the system, it is coupled to an interface to the Simulator portion,

and an interface to the message protocol implementation, which is where the View and

Control portion is coded.

2. Reactive Mode Model

In the Reactive Mode implementation of the code, the correlation example

described in the last section became a model known as waitRecieveSendJSearch. This

model is shown in Figure 45.

4

Passive

Wait
start

Pass

J3XRecv
J3XMessage

pass

Success

J72Message

pass

J3XMessage

Figure 45 - waitReceiveJSearch DEVS Diagram

The model waitReceiveSendJSearch encompasses all the behavior in the

previous coupled model. It has a state to keep track of the number of J3X track update

reports received, called J3XRecv, which also reflects the message and outputs a J3X

based on the received J3X message. It has a state called Success which keeps track

of the receipt of a J72 Correlation message, and takes the place of the waitReceive

model in the previous coupled model. It takes a start input to put the model into wait, in

the same way as the coupled model before. It expects messages as input and creates

messages as output, in the same manner as the coupled model. It also creates a pass

message when the model is complete, in the same manner as the coupled model. If a

J70 drop track is coupled to the pass model, the scenario is once again the

RemoteTNDrop scenario mentioned in the last section. In all ways, this model

encapsulates the behavior of the previous coupled model.

