
Modular Framework for Simulation Modelling of Interaction-Rich

Transport Systems

Michal Jakob1 and Zbyněk Moler1

Abstract— The increasing penetration of information and
communication technology (ICT) in transport systems changes
the requirements on techniques and tools for transport sim-
ulation modelling. Novel ICT-powered mobility services, such
as real-time on-demand transport, rely on complex, ad hoc
interactions between different entities of the transport system.
These interactions have to be captured in the model if it is
to provide accurate representation of the modelled transport
system. Unfortunately, existing modelling tools are not well
suited for modelling such interaction-rich transport systems.
We address this problem and provide a modular simulation
framework suitable for modelling transport systems in which
ad hoc interactions and decision making play an important
role. By fully employing the agent-based modelling paradigm,
our framework provides flexibility and extensibility that cannot
be achieved by traditional approaches. More specifically, the
framework provides an extensible library of model elements
based on a unifying ontology of modelling abstractions, a high-
performance discrete-event simulation engine and suite of tools
supporting real-world deployment and utilization of imple-
mented models. We demonstrate the flexibility and effectiveness
of the framework on several specific models of interaction-rich
transport systems.

I. INTRODUCTION

The increasing deployment of ubiquitous GPS-enabled and

internet-connected devices is changing the way transport

is organized and managed. Novel ICT-powered mobility

services, such as real-time on-demand transport, peer-to-peer

car sharing or dynamically priced taxis, are on the rise. A

common feature of these services is the intensive use of

(semi-)automated, electronic communication for coordinat-

ing the use of transport resources, in order to improve the

efficiency and convenience and to reduce the financial and

environmental costs of the service. In the case of shared

collective taxi services, for example, the explicit, real-time

coordination between the riders and the provider of the

service allows using fewer vehicles and, consequently, road

space compared to when the same travel demand was served

in an uncoordinated fashion. At the same time, however,

the newly introduced coordination interactions increase the

complexity of the transport system and, consequently, make

its operation more difficult to analyze and foresee.

Simulation modelling is a well-established approach for

analyzing the behaviour of complex socio-technical sys-

tems and should therefore be also applicable for analyzing

transport systems employing ICT-powered services. Unfor-

tunately, existing simulation toolkits, partly due to their

1{jakob, moler}@agents.fel.cvut.cz, Agent Technology
Center, Faculty of Electrical Engineering, Dep. of Computer Science and
Engineering, Czech Technical University, 121 35 Prague, Czech Republic

inherent design constraints, do not support the simulation

of ICT-powered transport systems well – in particular, they

lack the support for modelling ad hoc interactions among

the entities of the transport system and the just-in-time

decision making required for participating in such interac-

tions, which are both crucial for accurately capturing the

behaviour of ICT-powered systems (in the following, we

use the general term interaction-rich transport systems for

systems in which ad hoc interactions among entities in

the system strongly affect system behaviour). Consequently,

purpose-specific simulators have to be developed for each

simulation study of ICT-enabled, interaction-rich transport

systems, which is costly.

In our work, we aim to remedy this situation by provid-

ing a simulation modelling framework, termed AgentPolis,

designed from its inception to support the modelling of

interaction-rich transport systems. Key to achieving this ob-

jective is the use of the concept of multiagent systems as the

basis of the framework’s design. Multiagent systems capture

the interaction-centricity of ICT-powered transport systems

very well – putting them in the core of the modelling frame-

work therefore minimizes the structural and behavioural gap

between the target interaction-rich system and its model.

In this paper, we present the main results of our research,

describing the four pillars of the AgentPolis framework

– ontology of modelling abstractions, library of ready-to-

use model elements, discrete-event simulation engine and

simulation tools – along with the experience of employing

the framework to implement models of five different types

of interaction-rich transport systems.

II. RELATED WORK

In the last decade, simulation modelling has become

an indispensable tool for studying the behaviour of ICT-

powered, interaction-rich transport systems. Horn et al [8]

employed an agent-based simulation, completely developed

in-house, to study operational characteristics of a multi-

modal transport system integrating scheduled and flexible

on-demand services. Demand-responsive transport systems

were also studied by Quadrifoglio et al. [12].

Taxi operations were also evaluated using simulations,

both in their standard form (e.g. [4]) or employing a real-

time taxi sharing scheme (e.g. [9], [7]). In all three cases,

model-specific simulation tools had to be developed and

used, with [4] explicitly stating that existing simulation

toolkits, including MATSim and SUMO, were not suitable

for the task. Another type of transport systems evaluated

using simulations are car sharing services. Barth et al. [3]

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 16th International IEEE Annual Conference on
Intelligent Transportation Systems. Received April 15, 2013.



evaluated a car sharing scheme under real-world conditions

of a Californian resort community, again employing an in-

house developed simulation tool.

A very interesting approach is presented by Wainer [13].

The author developed a general language for describing

simulation models that allows decoupling model description

from the simulation engine used to execute the model. The

objectives of Wainer’s work – flexibility and the ability

to rapidly develop simulation models – are similar to our

goals. His approach is, however, based on discrete-event

cellular automata and directed towards vehicle-centric low-

level traffic simulations.

A common attribute of the majority of simulations of ICT-

powered transport systems is that these simulations were

developed from scratch using general-purpose programming

languages (most often C++ or Java). There are exceptions –

[5] and [6] used the MATSim simulation framework [1] for

evaluating car sharing and collective taxi schemes, respec-

tively. Furthermore, Martinez [10] used the general-purpose

AnyLogic simulation toolkit to model a taxi sharing scheme

in Lisbon. In all of these cases, however, model developers

faced considerable difficulties expressing and implementing

required model behaviour using the chosen general toolkit;

this resulted in long development times and/or reduced

fidelity of implemented models.

III. BACKGROUND AND MOTIVATION

Although there are many differences between systems

such as collective taxis and car sharing, there are also

many elements (e.g. the concept of road networks, vehicles,

passenger demand, or coordination protocols) that are similar

and can be shared between the models of such transport

systems. Judging from the minimum use of general toolkits

for the simulation modelling of interaction-rich transport

systems, it appears that the above similarities have not been

sufficiently exploited. We believe – and, as we shall see,

this belief has been confirmed by our results so far – that

the difficulties in employing general simulation toolkits, and

the consequent lack of reuse in modelling interaction-rich

transport systems, stems from the fact that existing toolkits

do not sufficiently take into account the multiagent nature of

the ICT-powered transport systems and, consequently, fail to

provide abstractions for modelling such systems in a direct,

natural way.

Before explaining how we have solved the problem, let

us briefly introduce the very concept of multiagent sys-

tems (see e.g. [11] for an in-depth discussion). With an

acceptable level of simplification, the multiagent system can

be defined as a system composed of multiple autonomous

entities, termed agents, situated in a shared environment. The

environment represents the physical space surrounding the

agents and the agents can interact with the environment in

two ways. First, agents perform actions that modify the state

of the environment; second, in the opposite direction, agents

are informed about the state of the environment through

perceptions. We assume that the agents are endowed with

intelligence that allows them to select and execute actions

that lead to their goals. However, as the environment is one

and the agents are many, the actions of individual agents

can mutually interact and produce results that, for better

or worse, cannot be achieved by single agents alone. In

addition to such implicit interaction, agents can also interact

directly, i.e., bypassing the environment, through message-

based communication. See Figure 1 for a scheme relating

the above concepts in a high-level conceptual model of a

multiagent system.

Let us now turn attention to transport systems. In transport

systems, a large number of autonomous entities, such as pas-

sengers, drivers or transport operators, pursue their transport-

related objectives within the context of a shared and capacity-

constrained transport infrastructure. The individual entities

interact among themselves and with the transport infras-

tructure (e.g. queuing on junctions), and produce complex,

emergent global behaviours (e.g. congestion). In traditional

transport systems, interactions among entities are mostly

implicit, mediated by the transport environment. In ICT-

powered transport systems, implicit interactions are comple-

mented by explicit ICT-mediated interactions that can also

strongly affect the overall system behaviour.

The purpose of the previous two paragraphs was to

show that ICT-powered, interaction-rich transport systems

are essentially multiagent systems. Consequently, to model

interaction-rich transport systems, the (multi)agent-based

modelling paradigm should be employed because it offers

the most direct conceptual match between the model and the

system. Unfortunately, existing transport modelling toolkits

support the agent-based modelling paradigm only to a limited

extent. Although MATSim [1], for example, uses individual-

level modelling, it treats individuals as passive data structures

whose state can only be updated synchronously by central

modules at infrequent, predefined points in time. Despite

some practical advantages, such a centralized approach con-

tradicts the nature of multiagent systems and consequently

introduces a significant modelling gap – in reality, agents in a

transport system make just-in-time decisions asynchronously

at different occasions during a day, often in reaction to

external observations or messages.

To avoid these issues, the proposed AgentPolis framework

employs the agent-based modelling approach in its full

extent. AgentPolis does not impose constraints on when and

how decision making, activities and interactions can occur

in the model, and it is therefore also suitable for modelling

ICT-powered transport systems with ad hoc interactions and

just-in-time decision making.

IV. FRAMEWORK OVERVIEW

The proposed AgentPolis framework provides abstrac-

tions, code libraries and software tools for building and

experimenting with agent-based models of interaction-rich

transport systems. More specifically, the framework consists

of the following four components:

1) Modelling abstraction ontology which provides a uni-

fying set of concepts for expressing agent-based simu-

lation models. The abstractions refine the more general

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 16th International IEEE Annual Conference on
Intelligent Transportation Systems. Received April 15, 2013.



CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 16th International IEEE Annual Conference on
Intelligent Transportation Systems. Received April 15, 2013.



Activity Description

Walk The agent walks between locations according to a
specified journey plan.

RideInVehicle The agent travels as a passenger of an individual
transport vehicle according to a journey plan.

RideOnPT The agent travels by public transport according to
a journey plan.

DriveVehicle The agent drives a vehicle according to a journey
plan.

ParkVehicle The agent parks a vehicle at or near a specified
location.

Wait The agent spends a specified time waiting.

TABLE I: Core activities in the AgentPolis framework.

Action Description

MoveVehicle Moves a vehicle across an edge of the road net-
work, taking possible congestion in the account.

MoveAgent Moves an agents across an edge of the road
network.

TeleportAgent Moves an agent instantly to a specified location.
GetInVehicle Moves a passenger into a vehicle (the passenger

will be linked with the vehicle and move auto-
matically whenever the vehicle moves).

GetOffVehicle Removes a passenger from a vehicle (unlinks the
passenger from the vehicle).

WaitForVehicle Waits until a specified vehicle arrives.

TABLE II: Core actions in the AgentPolis framework.

C. Actions

Actions provide the abstraction for modelling how agents

manipulate the environment. Each action defines the logic

determining action duration and the logic defining which

state attributes of which environment objects should be

modified as the effect of executing the action.

For example, the MoveVehicle action moves a ve-

hicle along a transport network edge by changing the

vehicle’s location from a transport network node (corre-

sponding to a junction) to another, adjacent network node.

The MoveVehicle action interacts with the queuing logic

implemented by the TransportNetwork environment

object. The state of the TransportNetwork object can

affect the duration of the MoveVehicle action and can

even make the action fail if the queue associated with the

traversed network edge is full. The list of actions currently

provided by the framework is given in Table II.

D. Sensors

Sensors process percepts from the environment and allow

agents (and their activities) to be informed about events in

simulation execution, in particular about the changes of the

environment state and the execution of action and activities..

Together with messages received from other agents, sensor

notifications provide the main trigger for starting, terminating

or changing activities executed by agents.

For example, the PositionUpdate sensor notification

is sent to the DriveVehicle activity after the vehicle

has reached a new position; after receiving the notification,

the DriveVehicle activity decides where to move the

vehicle next and invokes the next MoveVehicle action

accordingly. The list of all sensors implemented in the

framework is given in Table III.

Sensor Description

PositionUpdated Informs about a new position of a specific agent
or an environment object.

NextVehicleLoc. Informs about the upcoming next location of a
vehicle.

DrivingFinished Informs that a vehicle driver has reached the
destination specified by the plan.

WaitingFinished Informs that a specified waiting time has
elapsed.

VehicleArrived Informs that a vehicle arrived to a given node.

TABLE III: Core sensors in the AgentPolis framework.

Environ. Object Description

TransportNetworkA network of roads, railways, cycle paths and/or
pedestrian pathways with the associated queu-
ing logic.

PTStops A list of public transport stops or stations.
Attractor A location acting as a destination for trips with

specific purpose (i.e. schools, offices, shops
etc.).

Vehicle A vehicle that can move along a transport
network (car, bus, tram, train etc.).

TABLE IV: Core environment objects in the AgentPolis

framework.

E. Environment Objects

The environment models the physical context in which

agents are situated and perform their activities. In the Agent-

Polis framework, the environment is decomposed into and,

consequently, represented as a collection of environment

objects, where each environment object represents a fragment

of the modelled physical reality and its associated state.

The state of an environment object is represented by its

attributes and it can only be changed by actions or by the

object’s internal update logic. Environment objects notify

agents through sensors about changes in their state.

For example, the TransportNetwork environment ob-

ject represents a transport network (road, cyclepath, footpath

or railway). It consists of a graph of junctions and connect-

ing network segments with associated queues and update

logic for modelling congestion. The queue is used by the

MoveVehicle action to determine how much time a vehi-

cle needs to move along the respective network segment. The

list of the environment objects provided by the AgentPolis

framework is given in Table IV.

F. Queries

Queries are used by agents to obtain information about the

state of the environment. Queries read, filter or aggregate

but do not change the state of any environment objects.

In contrast to sensors, queries are invoked by the agents

(or, typically, by activities)2. Although not strictly necessary

– calls to queries could be replaced with direct calls to

respective environment objects – queries improve encapsu-

lation by providing a layer that hides environment’s internal

implementation from agents.

For example, given an agent identifier, the

AgentPosition query returns the position of the

2Queries can therefore be viewed as information pull requests, while
sensors correspond to information push requests.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 16th International IEEE Annual Conference on
Intelligent Transportation Systems. Received April 15, 2013.



Query Description

AgentPosition Returns the current position of an agent or an
environment object.

PTStopPosition Returns the position of a (public transport) stop
or station.

TABLE V: Core queries in the AgentPolis framework

����� �����

����	
�����

��	�����
�

��������

����	
������
�����
����	
������
�����

����	
������
�����

����
	

��������

����
	

��������

����
	

��������

����
	

����
�����
�
���

����
�����
�
���

Fig. 3: Simplified architecture of AgentPolis models.

agent as the identifier of the transport network node on

which the agent is located. The list of queries implemented

in the framework is given in Table V.

G. Communication Protocols

Communication protocols are the abstraction for mod-

elling inter-agent communication by means of message pass-

ing. At the moment, the framework core only provides

simple protocols: 1-to-1 messaging and 1-to-many

messaging. Additional, more complex protocols (e.g.,

tendering and auctions) have, however, been implemented

as part of application-specific models (see SectionVII).

H. Reasoning Modules

As part of their behaviour, agents may need to make

decisions that require executing complex algorithms. In the

AgentPolis framework, such algorithms can be encapsulated

into reasoning modules and reused in different activities.

At the moment, the only reasoning module provided in the

framework core is the JourneyPlanner module. The module,

given an origin and destination location and time constraints,

finds a shortest-duration journey plan that can subsequently

be executed by framework activities. Additional reasoning

modules have been implemented as part of application-

specific models (see Section VII).

Figure 3 shows how all modelling abstraction relate to

each other in AgentPolis simulation models.

VI. SIMULATION ENGINE AND TOOLS

The library of model elements and the underlying ontology

of modelling abstractions form the fundamental part of the

AgentPolis framework. Additional functionality is, however,

required for practically using developed models as part of

simulation-based evaluation and decision making processes.

To this end, the AgentPolis framework provides software

components supporting the whole modelling lifecycle from

importing real-world data, executing simulation models and

analyzing and visualizing simulation results.

A. Data Import Tools

To facilitate the incorporation of real-world data into

AgentPolis models, the framework provides data importers

for converting external datasets into framework’s internal

data models. At the moment, the framework supports import-

ing data in the OpenStreetMap (OSM)3 and General Transit

Feed Specification (GTFS)4 formats, including the automated

cross-referencing between both formats (e.g., mapping of

public transport stops that appear both in OSM and GTFS

files). This way information about road, cyclepath and foot-

path networks, public transport routes and timetables and

(basic) land use can easily be incorporated in AgentPolis

models. Files imported by the framework tools are checked

for consistency in order prevent the hard-to-trace errors

caused by invalid data during simulation execution.

AgentPolis models can incorporate additional categories of

data, such as socio-demographic data or origin-destination

matrices representing travel flows. However, as no estab-

lished standards exist for these data categories, importers for

such datasets are scenario-specific and need to be developed

or customized for each model.

B. Simulation Engine

Simulation engine for executing AgentPolis simulation

models is an essential part of the framework. The AgentPolis

framework employs the discrete event simulation (DES)

approach [2] in which the operation of the target system

is modelled as a discrete sequence of events in time. Each

event occurs at a particular instant in time and marks a

change of state of the system. Between consecutive events,

no change in the system is assumed to occur; thus the

simulation can directly jump in time from one event to the

next, which makes it computationally more efficient than

the time-stepped approach that is mostly used in transport

models.

In AgentPolis models, events provide the low-level causal

link between actions, model updates and sensor invocations.

Whenever an agent executes an action, the action inserts an

event into the event queue; the event has a state update logic

attached specifying which environment objects should be up-

dated as the effect of action execution. The state update logic

is executed only after the simulation time corresponding to

the duration of the action has elapsed. The modification of

the environment state caused by the update logic triggers

sensor notifications which are received by agents (activities);

the agents (activities) can consequently react by invoking

further actions, thus closing the model update loop.

The AgentPolis uses the discrete event-queue implemen-

tation provided by the Alite5, a general purpose lightweight

toolkit for building multiagent systems. A screenshot of a

running AgentPolis simulation is given in Figure 4.

3http://openstreetmap.org
4https://developers.google.com/transit/gtfs/

reference
5http://alite.agents.cz

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 16th International IEEE Annual Conference on
Intelligent Transportation Systems. Received April 15, 2013.



Fig. 4: High-level view of a running AgentPolis simulation

model. Road (black), pedestrian (grey), tram (yellow) and

metro (red) networks and UrbanCitizen (green) and PTDriver

(yellow) agents are shown. Simulation events are depicted in

the overlay window.

C. Result Reporting, Analysis and Visualization Tools

Recording simulation progress and results is a neces-

sary part of simulation execution. To this end, AgentPolis

provides a customizable logging mechanism employing the

Java event bus programming concept that allows detailed

recording of low-level simulation events (e.g. the start and

end of the execution of activities and actions). From the

recorded events, higher-level, aggregate performance metrics

can be calculated and visualized using a customizable re-

porting pipeline. The pipeline is based on the open-source

GIS software stack employing the PostGIS6 spatially en-

abled database and the OpenGeo7 interactive geovisualiza-

tion framework. Powerful aggregation and filtering functions

can easily be specified using the spatial extension of the SQL

language supported by PostGIS. Together, these tools allow

analysing and browsing simulation results at different spatial

and temporal resolution.

The current version of the AgentPolis framework can be

obtained from http://agentpolis.org.

VII. EXAMPLE MODELS

We have successfully used the AgentPolis framework to

implement several simulation models. The models cover a

wide range of interaction-rich transport systems differing in

a number of important characteristics, including the type

and number of agents, the complexity of agent decision

making, the type and number of transport modes present

and the complexity of agent-to-agent interactions. The basic

information about the implemented models is given in VI –

below we describe each model in more detail.

6http://postgis.net
7http://opengeo.org

Model # agents Types of agents

Multimodal mobility 10
5 − 10

7 Urban citizen, PT driver,
Driver

Ridesharing 10
2 − 10

3 Passenger, Driver, Dispatcher

Dynamic pricing 10
2 Passenger, Driver

Fare inspection 10
4 − 10

5 Passenger, Inspector

Parcel logistics 10
2 Dispatcher, Van driver

TABLE VI: List of implemented AgentPolis models with the

overall number and the types of agents used.

A. Multimodal Urban Mobility

The multimodal urban mobility model is the most com-

prehensive and the largest model built using the AgentPo-

lis framework, covering areas up to thousands of square

kilometres and simulating populations of up to millions

of inhabitants. Employing the activity-centric approach, the

model aims to reproduce traffic flows in a multimodal urban

transport system. The model is similar in purpose and scope

to other activity-based mobility models but it is internally

implemented in the fully agent-based way – this gives

it the benefits associated with the agent-based approach,

in particular the ability to model within-the-day decision

making and to include ICT-powered mobility services relying

on ad hoc inter-agent interactions in activity models.

Technically, the model utilizes most of the core AgentPolis

model elements with the UrbanTraveller lifecycle being

the basis of the agents representing the population of the

modelled region. An overview of the main model elements

used in the multimodal mobility model as well as in the other

example models is given in Table VII.

B. Real-time Ridesharing

The real-time ridesharing model has been implemented

for studying the performance of ridesharing services under

different deployment conditions. The model comprises three

types of agents: vehicle drivers (corresponding to drivers of

collective taxis, flexible buses or shared private vehicles),

passengers of the ridesharing service, and the dispatcher,

who matches passengers with drivers and vehicles. While the

dispatcher agent is completely new, the driver and the passen-

ger agents largely reuse the core AgentPolis activities. New,

model-specific logic consists of the negotiation protocol used

to arrange shared trips and the associated decision logic on

the side of participating agents. Extension on lower-level of

the model, i.e. actions and sensors, were not required.

In its basic configuration, the ridesharing model only

employs hundreds of agents directly participating in the

modelled ridesharing service. Thanks to its fully agent-based

design, it is, however, possible to combine the ridesharing

model with the multimodal urban mobility model and to

study interactions between ridesharing services and other

mobility modes and services. See Table VII for the list of

model elements used in the model.

C. Auction-based Dynamic Taxi Pricing

The dynamic taxi pricing model has been implemented for

studying the effect of auction-based dynamic pricing of taxi

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 16th International IEEE Annual Conference on
Intelligent Transportation Systems. Received April 15, 2013.



Abstraction Element M
u

lt
im

o
d

a
l

m
o

b
.

R
id

es
h

a
ri

n
g

D
y

n
a

m
ic

p
ri

ci
n

g

P
a

rc
el

lo
g

is
ti

cs

F
a

re
in

sp
ec

ti
o

n

Activities

Walk • • • •
RideInVehicle • • ⋄
RideOnPT • •
DriveVehicle • • • •
ParkVehicle •
Wait • • • • •
DriveTaxi +
PatrolInStation +
PatrolInVehicle +

Env. Objects

TransportNetwork • • • • •
PTStops • •
Attractor •
Vechile • • • • •
Warehouse +
DeliveryPoint +
VehicleInspectArea +
StationInspectArea +

Actions

MoveVehicle • • • • •
MoveAgent • • • • •
TeleportAgent •
GetInVehicle • • • •
GetOffVehicle • • • •
WaitForVehicle • • • •
RideInTaxi +
TaxiWaitForJob +
LoadParcel +
UnLoadParcel +
UnLoadParcel +
InspectPassengers +
ExistInspectArea +
EnterInspectArea +

Sensors

PositionUpdated • • • • •
NextVehicleLoc. • • • • •
DrivingFinished • •
WaitingFinished • • • • •
VehicleArrived • • • •
PassengerInSight +
InspectorInSight +

Queries
GetAgentPosition • • • •
GetPTStopPosition •

Protocols
1-to-1 Messaging • • •
Auction +

Reasoning JourneyPlanner • • • •
modules EuclideanAStar +

DistanceTripFinder +

TABLE VII: The use of model elements in the example

AgentPolis models. Core elements printed using normal font;

newly added in italics. (• reused core element, ⋄ modified

core element, + newly added model element).

services. In contrast to the previous model, the modelled

dynamic taxi pricing scheme relies on peer-to-peer inter-

actions and only contains two types of agents: passengers

and taxi drivers. Similarly to the ridesharing model, the

taxi pricing model reuses a large part of framework’s core

model elements, with the majority of newly developed code

concerning the auction protocol and the associated decision

logic. In contrast to the ridesharing model, new activities

related to travelling by taxi were added. Again, the taxi

pricing model can be combined with the multimodal urban

mobility model to study mutual interactions. See Table VII

for the list of model elements used in the model.

D. Urban Parcel Logistics

The urban parcel logistics model has been implemented

for studying the performance of parcel delivery services.

The model comprises two types of agents: van drivers and

dispatchers. Because of its focus on the transport of goods

rather than people, the model lies outside the main focus

of the AgentPolis framework and, consequently, provided an

interesting test of the flexibility of the framework’s design.

The framework has passed the test successfully – although

the model required the implementation of several model-

specific elements at the environment level, these elements

could be expressed using the AgentPolis abstractions. Specif-

ically, we added depots and delivery locations as new types

of environment objects together with actions and sensors

related to parcel loading and unloading. See Table VII for

the list of model elements used in the model.

E. Public Transport Fare Inspection

Finally, the fare inspection model has been implemented

for studying the effectiveness of different strategies for con-

ducting ticket inspection patrols in public transport networks.

The model takes travel demand, ticket options and inspector

patrol schedules as the input and produces inspection and

fare evasion statistics as the output. Different passenger and

fare evasion strategies, including the ability of passengers to

avoid inspection through learning and communication, are

modelled. The model uses two types of agents: passengers

and ticket inspectors. The implementation of the model

reused a significant portion of the core AgentPolis elements

but also required the addition of a number of elements related

to performing ticket inspections. See Table VII for the list

of model elements used in the model.

Because of their strong reliance on modelling ad hoc

interactions and just-in-time decision making, security mod-

els, such as this one, are another important category of

interaction-rich transport systems that can benefit from the

fully agent-based modelling supported by the AgentPolis

framework.

F. Additional Models

We are currently considering the implementation of

models of other ICT-powered transport systems, including

demand-responsive fleets of driverless cars, peer-to-peer car

sharing and smart parking schemes. We are confident that

in their implementation, similarly to the models already

implemented, it would be possible to reuse a large number

of AgentPolis core model elements and that the extensions

and additions required would be expressible using the ab-

stractions of the modelling ontology.

VIII. DISCUSSION

The positive experience with the development of several

models confirmed the viability of the fully agent-based

approach, and the AgentPolis framework in particular, to

modelling interaction-rich transport systems. The five models

implemented represent a diverse set of models, each testing

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 16th International IEEE Annual Conference on
Intelligent Transportation Systems. Received April 15, 2013.



the flexibility of the framework in a different way. The

framework proved capable of supporting models with a low

number of computationally intensive agents (e.g. ridesharing

or parcel logistics) as well as models with millions of

lightweight agents (multimodal urban mobility). The latter is

important because it shows that the higher flexibility of the

fully agent-based approach does not come on the expense of

degraded runtime performance of fully agent-based models.

Furthermore, despite the diversity of the implemented mod-

els, the ratio between the reused and the newly developed

code remained good, with the newly developed code mostly

focusing on the logic specific to each model. Although

is some cases significant extensions were necessary (in

particular for parcel logistics and fare inspection models),

they were easily accommodated by the framework.

There are still a number of open issues, though. The

development of AgentPolis models remains a non-trivial task

and requires model developers with good software design

and implementation skills. In some cases, there are multiple

ways in which a certain behaviour can be expressed in the

framework but only some of them allow the model to fully

leverage the strengths of the framework and its tools. At

the moment, the modeller can refer to the example models

for guidance on which abstractions should be employed for

which purposes; in the future, we plan to make such guidance

explicit in a set of model design patterns.

The above issue is also related to the fact that the simula-

tion logic concerning a certain fragment of the modelled phe-

nomena typically cuts across several modelling abstractions

(in particular activities, actions, sensors and environment

objects); the implementations of these abstractions thus need

to be kept consistent, which is not easy. Although such

a mutual dependency problem cannot be fully solved and

affects all extensible simulation platforms, there are ways

in which the burden on the modeller can be reduced and

which we consider for the future versions of the framework.

A more usual way to address the dependency problem is

to provide a set of well-defined and encapsulated extensions

points, which would reduce the need to modify core model

elements and consequently shield the developer from having

to understand their exact interdependencies. This approach

would be particularly efficient if the scope of the framework

is narrowed. Focusing, e.g., solely on modelling on-demand

mobility services (such as ridesharing) would allow fixing

the majority of lower-level model elements; the model de-

veloper would then only implement higher-level model logic

governing the arrangement of rides but not their actual exe-

cution. In a longer run, the maintainability and extensibility

of the framework could be improved by employing more

modular programming abstractions – such as traits or lambda

expressions – available in some progressive programming

languages now and coming to Java in a near future.

At the moment, the AgentPolis framework provides the

strongest support and guidance for modelling the environ-

ment and agent-to-environment interactions. The support

for modelling agent behaviour, on the other hand, remains

relatively basic, with activities and reasoning modules as

the only supporting abstractions. This is partly intentional

because of the large diversity of agent behaviours and the

notorious difficulty to provide a flexible set of abstractions

for programming general agent behaviour. That said, we aim

to improve the support for behaviour modelling by providing

simple yet proven behaviour programming abstractions such

as (hierarchical) finite state machines.

IX. CONCLUSIONS

We have developed a modular framework for the imple-

mentation of simulation models of interaction-rich transport

systems. The framework fully adopts the agent-based mod-

elling paradigm, which makes it very versatile and capable

of modelling systems with complex ad hoc interactions and

just-in-time decision making. We have used the framework

to implement models of five different transport systems. The

positive experience obtained has confirmed the effectiveness

of the fully agent-based approach in general and the Agent-

Polis framework in particular in quickly building models of

different kinds of interaction-rich transport systems.

REFERENCES

[1] M. Balmer, K. Meister, M. Rieser, K. Nagel, and K. W. Axhausen.
Agent-based simulation of travel demand: Structure and computational
performance of MATSim-T. In TRB Conference on Innovations in

Travel Modeling, 2008.
[2] J. Banks, J. S. Carson, B. L. Nelson, D. M. Nicol, et al. Discrete-

event system simulation. Pearson Prentice Hall Upper Saddle River,
NJ, 2005.

[3] M. Barth and M. Todd. Simulation model performance analysis of a
multiple station shared vehicle system. Transportation Research Part

C: Emerging Technologies, 7(4):237–259, 1999.
[4] S.-F. Cheng and T. D. Nguyen. Taxisim: A multiagent simulation

platform for evaluating taxi fleet operations. In Proceedings of the

2011 IEEE/WIC/ACM International Conferences on Web Intelligence

and Intelligent Agent Technology-Volume 02, pages 14–21, 2011.
[5] F. Ciari, M. Balmer, and K. W. Axhausen. Concepts for large-

scale carsharing system: Modeling and evaluation with agent-based
approach. In Transportation Research Board 88th Annual Meeting,
number 09-1888, 2009.

[6] F. Ciari, M. Balmer, and K. W. Axhausen. Large scale use of collective
taxis. Technical report, ETH, Eidgenössische Technische Hochschule
Zürich, IVT, Institut für Verkehrsplanung und Transportsysteme, 2009.

[7] P. M. d’Orey, R. Fernandes, and M. Ferreira. Empirical evaluation
of a dynamic and distributed taxi-sharing system. In Proceedings of

the 15th International IEEE Conference on Intelligent Transportation

Systems (ITSC), pages 140–146, 2012.
[8] M. Horn. Multi-modal and demand-responsive passenger transport

systems: a modelling framework with embedded control systems.
Transportation Research Part A: Policy and Practice, 36(2):167–188,
2002.

[9] E. Lioris, G. Cohen, and A. de La Fortelle. Overview of a dynamic
evaluation of collective taxi systems providing an optimal perfor-
mance. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pages
1110–1115. IEEE, 2010.

[10] L. M. Martinez, G. Correia, and J. Viegas. An agent-based model
to assess the impacts of introducing a shared-taxi system in lisbon
(portugal). In Proceedings of the 7th International Workshop on Agents

in Traffic and Transportation, 2012.
[11] F. Michel, J. Ferber, A. Drogoul, et al. Multi-agent systems and

simulation: a survey from the agents community’s perspective. Multi-

Agent Systems: Simulation and Applications, 2009.
[12] L. Quadrifoglio, M. M. Dessouky, and F. Ordóñez. A simulation study

of demand responsive transit system design. Transportation Research

Part A: Policy and Practice, 42(4):718–737, 2008.
[13] G. Wainer. Developing a software toolkit for urban traffic modeling.

Software: Practice and Experience, 37(13):1377–1404, 2007.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 16th International IEEE Annual Conference on
Intelligent Transportation Systems. Received April 15, 2013.


