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Abstract: Pavement construction and repair history
is necessary for several pavement management func-
tions such as developing pavement condition prediction
models and developing maintenance and rehabilitation
(M&R) trigger values based on past repair frequencies.
It is often difficult to integrate M&R data with condi-
tion data since these data are often stored in disparate
heterogeneous databases. This article provides a compu-
tational technique for estimating construction and M&R
history of a pavement network from the spatiotemporal
patterns of its condition data. The technique is founded
on Bayesian and spatial statistics and searches pavement
condition data in groups of adjacent pavement sections
for evidence of repair. The developed technique was ap-
plied to a pavement network in Texas and has been found
to have a 74% precision and a 95% accuracy in estimat-
ing repair history data.

1 INTRODUCTION

Pavement management is a data-driven process that in-
volves inventory and monitoring data collection (e.g.,
pavement structure, construction history, traffic, etc.),
condition assessment (e.g., aggregation of distress data
into condition indexes), condition prediction, and plan-
ning of optimal maintenance and rehabilitation (M&R)
strategies (Shahin, 2005; Deshpande et al., 2010). Thus,
complete and accurate data are essential for a reliable
pavement management system (PMS). Unfortunately,
the process of preparing and integrating accurate and
complete pavement management data is difficult and
time-consuming since these data tend to reside in
disparate heterogeneous sources. Based on a study
of 27 transportation agencies in the United States,
Vandervalk-Ostrander et al. (2003) concluded that
“most agencies are dealing with disparate data sources

∗To whom correspondence should be addressed. E-mail: ngharaibeh@
civil.tamu.edu.

in mainframe flat files, redundant data, stovepipe man-
agement systems, and functional area barriers.” A re-
cent peer exchange of six state and local transportation
agencies reported that transportation agencies struggle
with numerous problems and challenges in integrating
their disparate data (Hall, 2006). Adams (2008) sug-
gested that data integration problems are both technical
and organizational since many of the existing informa-
tion systems and databases were developed separately
with one application in mind and using a variety of hard-
ware and software platforms. Thus, it is extremely dif-
ficult to locate and assemble information across these
many systems (Adams, 2008). The integration of con-
struction history and condition data for a pavement net-
work is one of these challenges. This article is motivated
by the need to address this challenge.

This article is concerned with estimating construc-
tion and M&R history data from pavement condition
data. Although obtaining these data from construction
records may be ideal, it may not be practical since
construction and condition data for pavement networks
are often collected separately and stored separately
in legacy databases (FHWA, 2010). As an alternative
method, this article provides a computational technique
for estimating construction and M&R history of a pave-
ment network from the spatiotemporal patterns of its
condition data. The technique is founded on Bayesian
and spatial statistics and is implemented in a Geo-
graphic Information System (GIS). To demonstrate and
validate the developed technique, it was applied to a
data set obtained from the Pavement Management In-
formation System (PMIS) of the Texas Department of
Transportation (TxDOT).

2 LITERATURE REVIEW

M&R history is necessary for several pavement
management functions such as developing pavement
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condition prediction models (see, for example, Lytton,
1987 and Wang and Li, 2011), conducting survival anal-
ysis, and developing M&R trigger values based on past
repair frequency. Several techniques have been used
for developing deterministic and probabilistic pavement
condition prediction models. In most of these model-
ing techniques, pavement age and construction history
is a key variable. The problem is that even though the
M&R data may be available, it is not easily accessible
or ready for integration. M&R data are usually gath-
ered by construction personnel and are stored in con-
struction databases (separate from PMS database). For
example, at TxDOT, pavement condition data are col-
lected and stored by a statewide data collection unit;
whereas M&R data are collected and stored by main-
tenance and construction units at the district level. Ad-
ditionally, these databases use incompatible location
referencing systems. Integrating these data has always
been a major challenge for TxDOT (Zhang et al., 2001).
Similar challenges exist in many other highway agen-
cies. For small and new pavement networks, it may
be practical to determine the missing M&R informa-
tion through manual methods such as interviewing con-
struction personnel or manually searching project doc-
uments. However, as the network expands and ages,
manual solutions turn very time- and labor-consuming.

Researchers have estimated pavement age based on
current condition and assumed the performance curves
(Lee et al., 1993; Dewan and Smith, 2003; McNinch
et al., 2008). Although the utilized performance curve
is different in each case, all of these methods estimate
construction and M&R history (i.e., pavement age) on
a section-by-section basis. Estimating the age of a pave-
ment section solely based on its own condition has some
limitation. First, pavement projects often span over mul-
tiple pavement sections. Thus, a pavement section that
might be in good condition may receive an overlay
(for instance) if its adjacent sections are in poor con-
dition and need to be repaired. The second, and per-
haps more important limitation, is that pavement condi-
tion data are highly noisy. Current collection methods,
automated (Ying and Salari, 2010; Lajnef et al., 2011)
and manual (e.g., observing video or still images or con-
ducting manual field surveys), introduce variability into
the data. This variability can be due to human error,
weather conditions during the field survey (e.g., direc-
tion and the angle of sunlight, moisture on the pavement
surface, and temperature that temporarily heals cracks),
and other factors (Prakash et al., 1994; Daleiden and
Simpson, 1998; Rada et al., 1998; Smith et al., 1998;
Larson et al., 2000; Wolters et al., 2006; Bogus et al.,
2010). The technique presented in this article helps
to address these limitations by recognizing spatial and
temporal patterns in pavement condition data.

Spatial data analysis has been used widely in vari-
ous areas of civil engineering, such as construction engi-
neering and management (Lee and Adams, 2004; Cheng
et al., 2005; Jie and Caldas, 2008; Jia and Wang, 2010),
transportation engineering (Li et al., 2007; Vlahogianni
et al., 2007; Wang and Kockelman, 2009), water pipeline
condition assessment (Adachi and Ellingwood, 2009;
de Oliveira et al., 2011), and hydrology (Olivera and
Maidment, 1999; Olivera, 2001; Olivera et al., 2006;
Cho and Olivera, 2009). In PMS, spatial data analy-
sis has been used to cluster pavement sections based
on condition uniformity for project segmentation (Yang
et al., 2009) and contracting (Kim et al., 2010) purposes,
and for identifying uniform regions for performance
modeling purposes (Mishalani and Koutsopoulos,
2002). Many agencies use GIS for generating maps and
reports and linking multiple data layers. This article
combines spatial data analysis and Bayesian statistics to
develop a computational technique for the imputation
of missing or inaccessible PMS data (specifically con-
struction and M&R history).

3 DEVELOPED TECHNIQUE

3.1 Rationale for the developed technique

Traditionally, probability is defined for a random event
as the relative frequency with which an event occurs in
a set of repeated trials. However, in the case of miss-
ing M&R history, unknown parameters do not origi-
nate from random experiments. Instead, there is un-
certainty arising from having insufficient information
and not from randomness. As a result, traditional prob-
ability concepts are not suitable for addressing this
particular problem. To deal with such problems,
Bayesian statistics interpret uncertainty as a result of in-
sufficient information and interprets probability as the
apparent validity of a hypothesis based on the state of
knowledge. The details of Bayesian statistics are well-
documented in many textbooks (see, for example, Bol-
stad, 2007).

To deal with noisy pavement condition data, this
method allows for collecting evidence of repair by con-
sidering the condition data of a group of adjacent pave-
ment sections, rather than a single one.

3.2 Technique parameters

In this article, we take advantage of observations from
close proximity to estimate the probability of repair. To
compute the probability that a repair action has been
performed on L adjacent pavement sections, as shown
in gray color in Figure 1, the following parameters are
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CI1
Δ1

Fig. 1. Data used to calculate the probability that a repair
action has been performed on a group of L adjacent

pavement sections.

used in conjunction with Bayes’ formula:

• Condition of the pavement sections (CI1 to CIL)
prior to receiving repair action: Pavement sections
with a lower condition rating are more likely to re-
ceive a repair action than those in better condition.

• Magnitude of increase or decrease in condition rat-
ing (�1 to �L): A 20-point increase in a 0–100 con-
dition index is more likely to be a result of repair,
and not just data error, in comparison to a rating
increase of two points, for instance.

• Number of sections with increased and decreased
condition rating (from year to year): The probabil-
ity that a group of sections indeed received a repair
action increases as more sections within that group
have improved condition rating. In other words,
if the condition ratings of many adjacent sections
have improved, it is more probable that these sec-
tions indeed received an M&R; compared to an-
other group of adjacent sections where the condi-
tion ratings of only a few sections have improved.

• Length of group of adjacent sections (L): Due to
practical contract letting considerations, pavement
projects tend to have a minimum length. Thus, it is
more likely to have a project applied to five 0.5-
mile sections, for instance, than to have a pave-
ment project applied to one 0.5-mile section. Note
that this length parameter is expressed here in
terms of number of adjacent pavement sections
(not miles).

The total number of possible projects T with length L
in the range of [Lmin, Lmax] in a roadway that consists of
N pavement sections is calculated using Equation (1).
As shown in this equation, T increases linearly with N.
So, even for large roadway networks, the problem re-
mains tractable.

T =
L=Lmax∑

L=Lmin

(N − L+ 1) = �L× N − �L(�L− 1)
2

(1)

where �L = Lmax − Lmin.
For example, for a hypothetical roadway that consists

of 10 pavement sections (see Figure 2), the total number
of possible projects with L = 5 (i.e., project consists of
five pavement sections) is equal to N − L + 1 = 6.

N=10

1
2

3
4

5
6

Fig. 2. Six possible boundaries for a project spanning over
five sections of a roadway that consists of 10 sections.

To determine the probability that a section was re-
paired, it is necessary to compute the probabilities of
all possible M&R projects which the section is part
of. The probability of an M&R project is discussed
in the next subsection of this article and is expressed
as the probability of repair for a group of contiguous
sections.

Finally, all sections are ranked in a decreasing or-
der based on their calculated probability of repair. The
highest ranked sections are selected so that the total
length of selected sections equals to the average annual
portion of the highway network that receives repair. It
should be noted that the portion of network that re-
ceives repair and the project length range can vary from
agency to agency, and thus should be determined based
on the agency’s past experience. For example, an agency
might, on average, repair 10% of its pavement network
every year and the project length might range from 2 to
5 miles.

3.3 Probability of repair for a group of contiguous
sections

This subsection presents a method for computing the
probability that any given contiguous group of pave-
ment sections has received repair in any given year.

By substituting the above-mentioned parameters,
Bayes’ formula is written as follows:

P(R|CI1, . . . , CIL,�1, . . . �L, L) =
P(CI1, . . . , CIL,�1, . . . ,�L|R) × P(R|L)

P(CI1, . . . , CIL,�1, . . . �L) (2)

where
R: The event of receiving an M&R action.
CIi: Condition index of the ith pavement section in

the group.
�i: Magnitude of increase or decrease in condition

rating for the ith section.
P(R|CI1, . . . , CIL, �1, . . . , �L,L): Probability that a

group of L sections received an M&R action in a given
year, given that the CI and � values for all sections in
the group and the group length (L) are known.



4 Saliminejad & Gharaibeh

P(CI1, . . . ,CIL, �1, . . . , �L|R): Probability that a
group of L sections have CI1 to CIL and �1 to �L val-
ues, if, in fact, it received an M&R action in that year
and it is of length L.

P(R|L): Probability that the group of sections has in-
deed received an M&R action in a particular year, given
that it has a length L. This probability function is con-
structed based on the total length of the group of pave-
ment sections considered (i.e., without knowing the CI
and � values of the pavement sections).

P(CI1, . . . ,CIL, �1, . . . , �L): Probability that L adja-
cent pavement sections have condition index values of
CI1 to CIL and that these values will increase or de-
crease by �1 to �L in the next year.

To apply Equation (2) to PMS data, a number of
checks and transformations are made, as described in
the following paragraphs.

Transformation 1: The probability of the product of
a number of statements can be expressed by Chain rule
(Koch, 2007). Thus, the prior probability of having a re-
paired group of sections with prerepair condition index
of CI1 to CIL and postrepair � of �1 to �L can be ex-
panded as follows:

P(CI1, . . . , CIL,�1, . . . �L|R)

= P(�L|CI1, . . . CIL,�1, . . . ,�L−1, R)

× P(�L−1|CI1, . . . CIL,�1, . . . ,�L−2, R)

× · · · × P(�1|CI1, . . . CIL, R)

×, P(CIL|CI1, . . . CIL−1, R)

× · · · × P(CI2|CI1, R) × P(CI1|R) (3)

When a pavement section receives repair action R,
the increase or decrease in its CI value (i.e., �) de-
pends primarily on the prerepair CI value and repair
type. A data set from Texas (see Section 4 of this ar-
ticle) showed that the CI of nearly all repaired sections
changes to 100 after an M&R is applied, making �i =
100−CIi. For example, if an overlay is applied to a sec-
tion with an existing CI of 75, � will be 100 − 75 = 25
and if an overlay is applied to another section with CI of
90, � = 100 − 90 = 10. Also, CIi is independent of CIj

(see Transformation 2) and consequently �i is indepen-
dent of CIj since �i = a−CIi, where a is a constant that
depends on the repair type. Finally, since CIi and CIj are
independent, �i and �j would also independent.

It can be shown (Koch, 2007) that if statements A and
C1 to Ck are independent, then the probability that “A
is true, given the conditions C1, . . . ,Ck and B are true”
is equal to the probability that “A is true, given that the
condition B is true.” Mathematically,

P(A| C1, . . . , Ck, B) = P(A| B) (4)

Based on Equation (4) and the fact that �i is indepen-
dent of CIj and �j, it is possible to simplify some terms

of Equation (3), as follows:
For i = 1 to L:

P(�i |CI1, . . . CIL,�1, . . . �i−1, R) = P(�i |CIi , R) (5)

Transformation 2: To be able to justify this transfor-
mation, an investigation of possible spatial correlation
between the condition ratings of neighboring sections
is warranted. There are different methods for repre-
senting spatial dependency in geostatistical data. How-
ever, the primary tool to investigate spatial dependency
is semivariogram as defined in Equation (6) (Schaben-
berger and Gotway, 2004).

γ (dij) = 1
2

Var[CIi − CI j ] (6)

where dij is the distance between the geometric centroid
of two pavement sections i and j; CIi and CIj are the
CI values of pavement sections i and i, respectively; and
γ is the semiovariagram of pavement sections i and j,
which depends only on the distance between sections i
and j.

Generally, if there is a spatial dependency in a vari-
able, the semivariogram will have an increasing pattern
as the distance increases, ultimately approaching its sill
asymptotically. This pattern occurs in a spatially depen-
dent variable since as the distance increases, the vari-
ance also increases.

Semivariogram plots were generated for the condi-
tion index of randomly selected roadways of differ-
ent classifications (Farm-to-Market road, State High-
way, and Interstate Highway) using condition data from
Texas for 2 years (2009 and 2010). Figures 3 and 4 show
semivariogram plots for State Highway 79 (SH-79) and
Interstate Highway 45 (I-45), as examples (remaining
plots are not shown here for brevity). Each point in
these plots is computed based on the condition index
of a pair of sections. The distance extends from 0.5 mile
(representing the distance between the centers of two
adjacenet 0.5-mile sections) to 25 miles (representing
the distance between the centers of two 0.5-mile sec-
tions that are 25 miles apart). Due to the large number
of data points, quantiles are shown as bars instead of
points. Hollow points in these figures represent outlier
data.

The semivariograms shown in Figures 3 and 4 are
highly fluctuating and cyclic. This pattern indicates that
there is no significant spatial dependency in the con-
dition index data. [Note that the condition index in
these plots is TxDOT’s 0–100 distress score (DS)]. This
finding is not surprising because of the influence of lo-
cal factors (such as changes in traffic at intersections,
variability in subgrade condition, variability in drainage
condition, variability in construction quality, etc.) on
pavement condition. It should also be mentioned that



A technique for imputing pavement repair data 5

Fig. 3. Condition index semivariogram for Highway SH-79 in
2010.

Fig. 4. Condition index semivariogram for Highway I-45 in
2010.

more than 70% of the sections have DS = 100. This
leads to similarities in the conditions of sections located
far from each other. This is reflected in the cycles and
fluctuations of the semivariogram. The CI in this data
set (i.e., DS) is biased toward 100 since it does not ac-
count for all distress types, severity levels, and density.
For example, even if several types of distress exist in
the pavement; as long as they are of low density, DS re-
mains at or near 100. Detailed information about this
condition index, and several other pavement condition
indexes, is provided in Gharaibeh et al. (2010).

Since no strong spatial correlation exists between the
CI of pavement sections in the network (i.e., sections

are spatially independent in terms of CI values), it is
possible to make the following simplifications:

For i = 1 to L:

P(CIi |CI1, . . . , CIi−1, R) = P(CIi |R) (7)

After replacing Equation (3) with the simplified
terms shown in Equations (5) and (7), the final priori
probability can be computed as follows:

P(CI1, . . . , CIL,�1, . . . ,�L|R) =
L∏

i=1

P(�i |CIi , R)

×
L∏

i=1

P(CIi |R) (8)

Similarly, the normalizing part of Equation (2) can be
simplified as follows:

P(CI1, . . . , CIL,�1, . . . ,�L) =
L∏

i=1

P(�i |CIi )

×
L∏

i=1

P(CIi ) (9)

By applying Equations (8) and (9) to Equation (2),
the equation for computing probability of repair for
a group of contiguous sections can be expressed as
follows:

P(R|CI1, . . . , CIL,�1, . . . ,�L, L) = P(R|L)

×
L∏

i=1

P(CIi |R)
P(CIi )

×
L∏

i=1

P(�i |CIi , R)
P(�i |CIi )

(10)

where
L: Number of 0.5-mile pavement sections in the

group.
P(R|L): Probability that a given group of adjacent

pavement sections receives a repair action, given that
the total length of that group of sections is L (and with-
out knowing the sections’ condition).

P(CIi|R): The percentage of repaired sections that
have CI = CIi.

P(CIi): The percentage of all sections that have CI =
CIi.

P(�i|CIi,R): The percentage of repaired sections with
� = �i that have CI = CIi.

3.4 Probability of repair for any given section

Suppose that section X can potentially be part of n
M&R projects and the probabilities of these projects
(computed using Equation 10) are P1 to Pn. Then,
the probability that section X has been repaired
in any given year (P(X)) can be calculated using
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Equation (11).

P(X) = 1 −
n∏

i=1

(1 − Pi ) (11)

Finally, all pavement sections in the network are
ranked in a decreasing order of probability of repair
(P(X)) and repaired sections are identified such that the
total length of these sections equals the annual portion
of the network under repair. This input parameter (i.e.,
annual portion of network under repair) can be readily
obtained from the agency’s past experience or historical
data (see application discussed in the next section of this
article).

4 APPLICATION OF THE DEVELOPED
TECHNIQUE

This section discusses the probability density functions
(PDFs) required by Equation (10) based on actual data
from the Beaumont District of TxDOT. To ensure the
applicability of these distributions to pavement net-
works in other TxDOT districts, these PDFs are used to
impute M&R history data in the Bryan District. These
districts were used in this study due to their similari-
ties in size (i.e., both districts have similar lane-miles of
roadway) and location (both districts are located in east-
central Texas). But first, an overview on TxDOT PMS
(called PMIS) is provided.

4.1 Pavement management in Texas

TxDOT is divided into 25 Districts and each District
includes 6–17 counties. Different highway types exist
within each county. For pavement management and
data collection purposes, TxDOT divides each high-
way into a number of sections with an average length
of half a mile. TxDOT classifies its pavements into
10 types: continuously-reinforced concrete, jointed con-
crete reinforced, jointed concrete unreinforced, thick
asphalt concrete, intermediate asphalt concrete, thin as-
phalt concrete, composite, concrete overlaid, flexible
overlaid, and thin-surfaced flexible base. Furthermore,
each pavement type is classified based on the most re-
cent M&R activity received. These M&R activities in-
clude heavy rehabilitation (HR), medium rehabilitation
(MR), light rehabilitation (LR), and preventive mainte-
nance (PM).

Each pavement type has its own distress types. For
example, asphalt pavement has seven distress types
(shallow rutting, deep rutting, patching, failures, block
cracking, alligator cracking, and longitudinal cracking).

The percentage of the area or length of the section
which is affected by each distress type is recorded as the
density of that distress (Q). Q values are converted to

utility values using Equation (12) and then aggregated
into a DS using Equation (13), which is an overall con-
dition index of the pavement section. Additional infor-
mation about this condition assessment method can be
found in Gharaibeh et al. (2010).

Ui = max
(
0, 1 − αe−( ρ

Qi
)β )

(12)

where Ui is the utility value for distress type i, Qi is the
density of distress type i, and α, β, and ρ are the util-
ity coefficients defined based on pavement and distress
types. These factors are always positive.

DS = 100
n∏

i=1

Ui (13)

where DS is the distress score of a pavement section (0–
100 scale), n the number of existing distress types, and
Ui the utility value for distress type i.

Since α, β, and ρ are positive, Ui values will always
be in the range of [0,1], according to Equation (12).
As a result, the multiplication of any number of Ui’s
will also be in the range of [0,1]. Consequently, DS is
guaranteed to be in the range of [0,100] according to
Equation (13).

Pavement condition data are stored directly in
the PMIS database although maintenance and repair
project data are stored in separate databases. In the
PMIS database, pavement sections are identified (ref-
erenced) by a unique address which is a combina-
tion of district name, county name, highway name,
and beginning and end reference mile markers. On the
other hand, M&R and construction databases identify
projects by a code (called control-section-job or CSJ)
and an approximate location on the roadway. Also,
in many cases, the repair year and specific work type
are missing. Additionally, some routine maintenance
projects are done by in-house forces and thus are not
recorded in the database at all. Thus, it is very difficult
to integrate construction and repair history with condi-
tion data from these databases.

Pavement condition data are collected annually by
a vendor. However, TxDOT collects “audit” condition
data on about 5% of the network for validation pur-
poses. To assess the variability of the collected condi-
tion data, standard deviation of error is calculated with
the assumption that the true DS value is the average
of the audit and vendor values. The DS standard de-
viation of error for all TxDOT roads was calculated
as 5.8%, 7.5%, 8.2%, and 6.5% for years 2007–2010,
respectively.

A random error with the standard deviation of 5–10 is
significant in the sense that it can mask the natural year-
to-year deterioration of a pavement section and even
show a false improvement in condition. This rationale
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Fig. 5. Sections with improved condition in Bryan District
from 2009 to 2010.

was used by the Virginia DOT to assign a maximum
acceptable level of variability in distress data: “Data
variability for each data element must be smaller than
the year-to-year change in that element” (Flintch and
McGhee, 2009).

In a perfect data set, DS of all sections in the network
should increase upon receiving a repair action. Other-
wise, it should stay constant or decrease with time. In
such a data set, temporal patterns in condition data are
sufficient to impute missing M&R data without consid-
ering the spatial patterns of the data. However, such a
perfect data set does not exist since, as discussed ear-
lier, pavement condition data are noisy and contain er-
rors. Figure 5 shows changes in DS of pavement sections
from 2009 to 2010 in TxDOT’s Bryan District.

Dark segments in this map represent pavement sec-
tions with improved condition from 2009 to 2010. This
improvement can either be due to receiving an M&R
action or due to an error in the condition data. As dis-
cussed earlier, pavement sections receive M&R in the
form of projects. These projects are applied on a num-
ber of adjacent pavement sections and it is unlikely to
have a project that consists of only one half-mile pave-
ment section. For example, in fiscal year 2009 in the
Bryan District, the average project length was 7.2 miles
and 95% of projects had a length greater than 2 miles.
Thus, one can conclude that the clusters of dark sec-
tions represent project boundaries, while scattered sin-
gle dark sections are likely to be erroneous condition
data.

For example, Figure 6 shows the historical DS val-
ues for a pavement section located on roadway FM0060

Fig. 6. Temporal variation in DS of an example pavement
section (Brazos County, Roadway FM0060 starting at 0636

+00.5).

Fig. 7. P(R|L): Percentage of projects with various length
values.

(starting at mile marker 0636 +00.5) in Brazos County.
This section has not received any repair in years 2007–
2010, and thus the changes in DS values are strictly
due to errors in the data. The developed method allows
for dealing with this data set so that accurate inference
about M&R history can be made.

4.2 Determining technique parameters

The distribution of project lengths completed by the
Beaumont District of TxDOT in 2009 is shown in
Figure 7. This distribution is considered as background
information and represents P(R|L) in Equation (10).

The other PDFs for the Beaumont District data set
are shown in Figures 8–11. It should be noted that in
Figures 8 and 9, the percentage of sections with DS =
100 are 65.4% and 44.2%, respectively. These values are
much higher than the other bars and thus are noted sep-
arately in these graphs. P(DS = 100|R) = 44.2% means
that 44.2% of the sections that have been repaired in
2010 had a DS of 100 in 2009. The percentage of sections
that have a DS value of 100 in 2009 and were repaired
in 2010 is 6.8% (313/4,637 = 6.8%). These percentages
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Fig. 8. P(DS): Percentage of sections with each DS value.

Fig. 9. P(DS|R): Percentage of repaired sections with each
DS value.

raise the question: Why were so many sections with
DS = 100 repaired? Possible explanations include:

1. A pavement section with DS = 100 is not necessar-
ily in perfect condition, as DS does not account for
all distress types, severity levels, and densities.

2. Due to economy-of-scale and other practical rea-
sons, M&R actions are normally applied to a group
of sections and not to isolated individual sections.
Thus, sections with DS = 100 may be repaired only
because the neighboring sections needed to be
repaired.

3. Condition data contain inherent errors that cannot
be eliminated completely.

Fig. 10. P(�|DS): Percentage of sections with each � value
in each DS category.

Fig. 11. P(�|DS,R): Percentage of repaired sections with
each � value in each DS category.

It should be mentioned that the DS, by definition, is
a continuous variable. However, it is normally recorded
as a rounded value for practical reasons, as presented in
Figures 8–11. For example, in Figure 8, the bar of DS =
90 represents the PDF of a DS range of [89.5, 90.5) and
at the same time it represents P(DS = 90).

Table 1 shows a 3.5-mile stretch of pavement (com-
posed of seven half-a-mile sections), as an example cal-
culation. In this example, CI is TxDOT’s DS. The DS
values are obtained from the pavement management
database. � is computed as � = 100−DS (assuming that
the repair action increases DS to 100). PDF values for



A technique for imputing pavement repair data 9

Table 1
Numerical example of key calculations of the developed

technique

Section
number (i) CI � P(CI) P(CI|R) P(�|CI) P(�|CI,R)

1 96 4 0.94% 1.11% 65% 100%
2 100 0 65.43% 44.16% 87% 84%
3 90 10 2.38% 3.53% 55% 79%
4 100 0 65.43% 44.16% 87% 84%
5 99 1 4.27% 3.71% 65% 70%
6 94 6 1.05% 2.04% 57% 64%
7 98 2 1.91% 2.60% 64% 86%

each section are obtained from frequency distribution
graphs presented in this section (Figures 8–11).

The length of this group is 3.5 miles and accord-
ing to the distribution shown in Figure 7, P(R|L) =
14.38%. By applying the parameters shown in Table 1 to
Equation (10), the probability that this group of pave-
ment sections has received an M&R action between
the two conductive data collection years is calculated to
be 88%.

5 RESULTS AND DISCUSSION

Using Equations (10) and (11) in conjunction with the
PDFs plotted in the previous section, the probability
that an M&R action has been applied is calculated for
each section in the network. Then, the sections are
sorted based on this probability. These calculations are
implemented in ArcGIS using the Python coding lan-
guage. Finally, the sections with the highest probability
of being repaired are picked so that the sum of their
lengths is equal to a predefined portion of the total
length of the highway network. In this analysis, a 10%
portion is used since, on average, TxDOT repairs 10%
of the network annually. This input parameter (i.e., net-
work repaired portion, hereafter abbreviated as NRP)
should be determined based on the agency’s past expe-
rience or historical data.

Each section classified by the developed method falls
in one of four classes: True Positive (TP), True Nega-
tive (TN), False Positive (FP), and False Negative (FN).
Thus, the precision and accuracy of this binary classifi-
cation method can be defined as follows:

Precision = TP
TP + FP

(14)

Accuracy = TP + TN
TP + TN + FP + FN

(15)

where

Fig. 12. Estimated M&R projects (dark segments) versus
actual M&R projects (thick gray segments) in Bryan District.

TP: The number of sections that have been correctly
classified as repaired.

TN: The number of sections that have been correctly
classified as not repaired.

FP: The number of sections that have been incorrectly
classified as repaired.

FN: The number of sections that have been incor-
rectly classified as not repaired.

Precision represents the effectiveness of the method
in correctly detecting repaired sections. Accuracy, on
the other hand, is the proportion of true results (both
TP and TN), in the whole population of pavement sec-
tions in the network. It represents the veracity of the
developed method.

To measure effectiveness of the developed method,
the Beaumont District PDFs are used to estimate re-
pair projects in a different district (the Bryan District).
The Bryan District highway network consists of 7,090
sections (3,600 miles). A total of 74% of the sections
that were classified by the developed spatial-Bayesian
technique as repaired were actually repaired in 2010; in-
dicating that precision of this technique has 74% pre-
cision. The accuracy in this case was 95%, indicating
that 95% of all sections in the network were classified
correctly. Predicted versus actual repaired sections are
shown in Figure 12 (thick gray segments represent ac-
tual M&R projects and dark segments represent M&R
projects estimated by the developed technique).

The sensitivity of the developed method to the NRP
input parameter is shown in Figure 13. Note that NRP
was varied between 1% and 20% since it is unlikely that
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Fig. 13. Sensitivity of the accuracy and precision of the
developed method to the NRP input parameter.

a highway agency will repair more than 20% or less
than 1% of its network in any given year. This figure
shows that accuracy ranges between 90% and 95%, with
a maximum accuracy achieved at an optimum NRP of
10%. This optimum value of NRP occurs since as NRP
increases, the number of TPs increases, but at the same
time, the number of FPs also increases (as more TNs
change to FPs). However, the number of FPs increases
at a faster rate than the number of TPs; resulting in a
decreased precision with increased NRP.

Limitations of the developed method and possible
causes of error in the results include:

1. Systematic error in the CI data: More than 60%
of falsely classified (FP and FN) sections are those
with deteriorated condition (i.e., lower CI value)
after they have been repaired, or those with in-
creased CI values without receiving M&R. This in-
dicates that the CI data for these sections are likely
to be erroneous.

2. Inability of the CI to reflect the true condition of
the pavement: For example, TxDOT’s DS does
not account for pavement skid resistance and some
individual distress types. In such situations, the
agency may make repair decisions based on con-
dition indicators that are not accounted for in the
CI.

3. Presence of small projects: The calculated proba-
bility of repair for short projects can be highly sen-
sitive to error in the CI data.

4. Nonrepresentative or inaccurate prior informa-
tion: Low-quality prior information can lead to
inaccurate prior probability distribution functions
and consequently reduce the accuracy and preci-
sion of the developed method.

Fig. 14. M&R projects estimated solely based on
improvement in DS on a section-by-section basis (dark

segments) versus actual M&R projects (thick gray segments)
in Beaumont District.

5. The derivation of Equation (11) implicitly assumes
that the various project probabilities are indepen-
dent of each other. This simplifying assumption
can be violated since M&R projects can share com-
mon pavement sections. To account for this depen-
dency, further research would be needed in mod-
eling the covariance structure of M&R projects.

The accuracy and precision of the developed method
can be improved by addressing the above limitations
and sources of error. However, reducing systematic er-
ror in the CI data has the greatest impact on the effec-
tiveness of the developed method.

Figure 14 shows estimated projects using the section-
by-section method. In this method, the estimation of re-
pair history is done solely based on each section’s condi-
tion history from 2009 to 2010 (i.e., ignoring condition of
neighboring sections). In this way, 10% of the sections
with the highest DS increase are estimated to have re-
ceived an M&R action. This results in a prediction pre-
cision of 47%; which is much lower than the 74% preci-
sion of the developed spatial-Bayesian technique.

To quantify the effect of considering spatial pat-
terns on the robustness of this data imputation method,
an artificially error-free pavement condition data set
was manufactured. Then, a normally distributed ran-
dom noise in the DS with average of zero and stan-
dard deviation of σ was introduced to the data set. The
precision of the developed spatial-Bayesian technique
and the section-by-section method (which ignores the
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Fig. 15. Precision of spatial-Bayesian and section-by-section
methods versus standard deviation of error in pavement

condition.

spatial patterns in condition and repair data) for esti-
mating past M&R projects was computed and plotted in
Figure 15.

Figure 15 shows how the precision of both meth-
ods decreases as the standard deviation of error in the
pavement condition data set increases. The nonmono-
tonic trend of the spatial-Bayesian method in this plot,
as opposed to the monotonic trend of the section-by-
section method, can be attributed to the PDFs and the
interactions among this prior information. Also, the
spatial-Bayesian method is not 100% precise even if
no error is present in the condition data. This is be-
cause of the effect of prior information about project
length (i.e., project length PDF). For example, an iso-

lated single 0.5-mile section might have been repaired
and its DS increased (and thus should be classified as an
M&R project in itself), but the spatial-Bayesian method
considers this information unlikely because the project
length prior PDF shows that 0.5-mile M&R projects are
very unlikely. Similar situations can occur for very long
projects (also considered to be unlikely based on project
length PDF).

The precision of the spatial-Bayesian method remains
stable (ranging between 70% and 85%) up to a DS stan-
dard deviation of error of 10 DS points. This behav-
ior suggests that a 10% error in the condition data is
a critical point where the method is no longer stable. As
discussed earlier (see Section 4.1), σ usually ranges be-
tween 5 and 10 DS points. On the other hand, the preci-
sion of the section-by-section method decreases steadily
as the error level in DS increases.

Predicted versus actual repaired sections for σ = 0,
5, 10, and 15 using the spatial-Bayesian method and
the section-by-section method are shown in Figures 16–
19. As shown in these figures, for σ>10, the section-
by-section method approaches a random estimation of
M&R projects (as can be seen in the dotty map). How-
ever, for spatial-Bayesian method, the results remain
fairly consistent. These comparisons indicate that the
developed technique is fairly robust.

6 SUMMARY AND FUTURE RESEARCH

Pavement M&R data and condition data are often
stored in disparate heterogeneous databases that are

Fig. 16. Predicted versus actual repaired sections for σ = 0: (a) using the spatial-Bayesian method and (b) based on DS increases.
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Fig. 17. Predicted versus actual repaired sections for σ = 5: (a) using the spatial-Bayesian method and (b) based on DS increases.

Fig. 18. Predicted versus actual repaired sections for σ = 10: (a) using the spatial-Bayesian method and (b) based on DS
increases.

difficult to integrate (especially legacy databases). A
GIS-based Bayesian method has been developed for
imputing construction and M&R history of a pavement
network by recognizing spatial and temporal patterns
in pavement condition data. Traditionally, the focus has
been on temporal patterns in condition data (i.e., pave-
ment condition versus age relationships), which tend to
be highly noisy. The developed technique searches for
evidence of repair in groups of adjacent pavement sec-

tions, rather than a single section at a time. This arti-
cle shows that combined spatial and temporal patterns
in condition data can be used for estimating the con-
struction and M&R history of pavement networks more
accurately. Analysis of error in pavement condition rat-
ing data from Texas showed a standard deviation of er-
ror ranging from 5 to 10 points (for a 0–100 condition
index). For this range of error in condition data, the
developed technique has 74% precision in estimating
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Fig. 19. Predicted versus actual repaired sections for σ = 15: (a) using the spatial-Bayesian method and (b) based on DS
increases.

repair data. The primary sources of classification er-
ror in the developed method include systematic error
in condition data, inability of the condition index to re-
flect the true condition of the pavement, presence of
small projects, and use of nonrepresentative or inaccu-
rate prior information. The accuracy and precision of
the developed method can be improved by addressing
these sources of error.

This work has broader implications including the im-
portance of robustness in pavement management mod-
els due to the high error level associated with pavement
condition data. Determining the required robustness for
these models as a function of data set error/noise level
and desired model precision can be a subject for future
research work. Finally, further work would be needed to
explore how the developed method can be implemented
in practice to assist transportation agencies in their data
integration efforts.
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