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ABSTRACT

We present the design of a hybrid control system for an Unmanned Aerial Vehicle (UAV) used for data
collection from randomly scattered wireless sensors. We postulate a restrictive scenario where a low-cost
processor is in charge of both flying the UAV and resolving data communication. This raises the need
for safe trade-off of computing resources between stability and throughput, adapting to an unpredictable
environment (wind and sensors). We designed a strategy where a supervisory controller implements an
adaptive relaxation of the sampling-period of the UAV regulation controller to favor communication tasks. To
guarantee stability under period switching we update the discrete-time control law with suitable gains. The
resulting system comprises continuous, discrete-time and discrete-event dynamics, including event-based
adaptation of the discrete-time controller. We relied on the DEVS modeling and simulation framework to
support a full simulation-based design, verification and validation process, featuring a seamless composition
of the underlying hybrid domains.

1 INTRODUCTION

Hybrid feedback loops are pervasive in Cyber-Physical Systems (CPS) that integrate algorithmic and physical
domains, as computational and physical processes influence each other. The uninterrupted operation of
CPS under quality constraints is a key requirement for the discipline of hybrid control. The overall quality
of operation for a hybrid CPS must be guaranteed in the context of unpredictable dynamic environments
including resource constraints. This can be achieved by orchestrating several self-adaptive capabilities of
the CPS, under the responsibility of modularized cooperative controllers. Yet, the very notions of quality
can differ drastically across domains. Core algorithmic concepts such as deadlocks or liveness are alien to
the world of physics, while adherence to physical first principles such as the conservation of energy are
seldom captured by computing abstractions. As a consequence, cooperative controllers are often organized
varied forms of hierarchical control structures, which split responsibilities by distributing control tasks
among well defined layers. This way, each type of controller can be designed by applying the best of breed
techniques available to that specific domain. Salient examples are e.g. model checking techniques for
the verification of software implementing discrete-event controllers, and state space analysis of dynamic
systems to design discrete-time controllers for continuous systems (Gokbayrak and Cassandras 2000).
Paradigmatic examples of interest in this work are data collection missions assigned to Unmanned Aerial
Vehicles (UAV). In these scenarios a higher layer supervisory control deals with the adaptive planning of
convenient navigation paths and tasks, while a lower layer regulation control deals with driving the forces
that maintain position, velocity and orientation of the vehicle (Karimoddini et al. 2014).
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Despite the success of this approach, new challenges arise when limited shared resources impose
restrictions that compete with each other. In order to reduce UAV costs, weight and size, a single on-board
processor can be shared. The same CPU can control both: a) the correct and stable flight of the UAV (in
the presence of perturbations, e.g. wind gusts) and b) the reliable collection of data from scattered sources
(in the presence of adverse conditions, e.g. fluctuating wireless channels). Depending on unpredictable
environmental conditions a dynamic trade off must be applied: maximize the effective throughput of data
collection while minimizing the sacrificed stability. In other words, there is a competition for CPU cycles
between the supervisory control and the regulation control. This raises the need for the co-design of
discrete-event, discrete-time and continuous controllers, i.e. a modular hybrid control design problem.

The aforementioned layered approach calls for sound methodologies to assist the design process,
allowing integrative testing of the controllers under a unified platform and in a safe way. In particular
for the case of UAVs, reducing testing risks and costs is mandatory. Modeling and simulation-driven
engineering has proven a successful strategy to support end-to-end designs of hybrid controllers (Castro
et al. 2009). We assess as essential to count on an integrative framework that supports the interconnection
of heterogeneous components in a seamless way. In this work we show how the DEVS (Discrete Event
Systems Specification) framework (Zeigler et al. 1995, Zeigler et al. 2000) provides an efficient modeling
paradigm and simulation mechanism to develop general hybrid systems.

We will present a simulation-based case study for the design, verification and partial validation of a
hybrid control system for an UAV. The validation includes flying a real hexacopter subject to controlled
maneuvers and a subsequent replication using trace-driven simulations. The vehicle is assigned with the
mission of retrieving information from wireless sensors. The UAV’s flight robustness and communication
efficiency will compete for CPU resources, which will translate into adaptive sampling periods for sensors,
controllers and actuators. Then a supervisory control will be requested to enforce the trade-off in a safe
way, and update its objectives observing that switching sampling periods could unstabilize the UAV.

2 Motivating Case Study: UAV-based data collection

The combination of UAVs with data-acquisition from sensors is not new. Examples are the monitoring of
natural phenomena such as earthquakes or volcanic activity. In (Werner-Allen et al. 2005, Werner-Allen
et al. 2006, Song et al. 2009) the collection and study of data attempts to predict the occurrence of events
and prevent human and material losses. Also emergency scenarios such as firefighting (Ollero et al. 2007)
require different types of data to be exchanged while no communication infrastructure is operative.

Inspired by these applications we consider a scenario where a number of wireless devices are randomly
scattered on a field, and we need to collect data stored in them. The exact location of each device is ignored
a priori, so we need to explore the terrain and discover nodes during the mission.

When the UAV detects a patch with new sensors, it switches to a hovering state to allow for communication
establishment and information retrieval. The UAV will hover until the transmission is completed. When
more than one node is detected it is convenient that all available information is retrieved from all sensors
within the range of coverage during the same hovering period. We shall consider that a) the same on-
board computer that executes the control algorithm which stabilizes the vehicle is also in charge of the
communication and b) the computer is a low-cost device of modest capacity.

This creates a compromise between competing tasks: one needs resources to acquire information from
nodes, while the other needs to execute the control algorithm often and fast enough to hold the vehicle in
a desired position. Wind gusts produce transient responses in the UAV’s angle. So a regulation control
is placed to counteract the effect of disturbances and keep the desired position of the UAV. We impose
that the UAV should observe a certain degree of alignment with the sensors in the land to establish an
adequate communication, being the ideal condition when the UAV’s angle is zero. When threshold angles
are surpassed due to external perturbations, the communication should be interrupted and then restored
after the transient response vanished.
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2.1 Proposed Approach: controlled trade-off between stability and communication

The approach we present here considers a supervisory controller which must be capable of: deciding how
to reduce the sampling-period of the attitude controller as a function of the number of detected sensors to
favor data acquisition and interrupting data collection while the UAV is being disturbed.

We subdivide the flight mission into stages according to the tasks (or modes) the UAV must perform.
These are: Take-off, Traveling, Hovering and Landing. A mission starts with a Take-off phase. Then,
during a Traveling phase the UAV scrutinizes the ground looking for sensors. While in Hovering, the UAV
must retrieve data from the sensors detected in the previous step. We define that Traveling and Hovering
phases are interleaved. Every mission ends with a Landing phase. The planning for an optimal coverage
of the terrain during Traveling phases are out of the scope of this work.

Then, while in Traveling stage, we request a supervisory controller to select the minimum achievable
sampling-period (imposed by the electronics of the the UAV)for the regulation controller, which will be
referred to as the nominal period h0. Using this value the UAV exhibits the maximum control robustness
to counteract wind disturbances, with controller using all CPU cycles to update the required forces. Yet,
the UAV is only able to execute flight control tasks, and no data-retrieval can be performed.

When sensors are detected, the sampling-period is relaxed (h > h0) in order to assign some CPU time
to the communication task. The more relaxed (bigger) the period is, the more available CPU cycles to
upload data (which could translate into more sensors surveyed per mission given a fixed battery lifetime).
Meanwhile, the sampling-period is also upper-bounded with h≤ h̄ by the UAV stability. In the case of a
fixed bandwidth h̄ will determine the maximum number of sensors that can be simultaneously accessed.

Within the h0 < h < h̄ interval a suitable h must be selected in order to assign the optimal proportion
of processor capacity according to the number of detected sensors. There exist guarantees that the vehicle
can remain stable under sampling-period switching, based on known results of control theory that provide
us with explicit algebraic expressions to adapt the regulation controller.

During Take-off and Landing the regulation controller uses h0 as no communication is required.

3 BACKGROUND

3.1 Hybrid Systems Modeling and Simulation with DEVS

Modeling and Simulation of hybrid systems is central to understand the behavior of discrete and continuous
dynamics interacting with each other. This is because in most cases of practical interest hybrid systems
don’t accept analytical solutions.

DEVS is a formal model description framework equipped with an abstract simulation algorithm that is
independent on the nature of the described system. It has been shown that DEVS can describe exactly any
discrete system and approximate continuous systems with any degree of desired accuracy, therefore being
capable to simulate all kinds of hybrid systems that undergo a finite amount of changes in finite intervals
of time (Zeigler, Praehofer, and Kim 2000).

A system modeled with DEVS is described as a modular and hierarchical composite of submodels,
each of them being behavioral (atomic) or structural (coupled). Sumbodels interact by means of events
sent through input/output ports. A DEVS Atomic model is defined by the following tuple:

A = {S,X ,Y,δint ,δext , tA,λ}

where S is the set of internal states, X is the set of accepted external events, and Y is the set of available
outputs. Four dynamic functions define behavior: tA(s) : S→ R+

0 is the lifetime of each state s ∈ S. After
tA(s) units of time an internal state transition δint : S→ S is triggered (assuming no external input events
arrived). δext(s,e,x) : S×X ×R+

0 → S is the external state transition function that is triggered when an
input event arrives, with 0 ≤ e < tA being the elapsed time in a given state. Every time a new state s′ is
selected with δint or δext, a new tA(s′) is calculated and the elapsed time e is reset. Finally, λ (s) : S→Y is
the output function that can be invoked to send output events only when an internal transition is triggered.
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An external transition is triggered every time an input in X is received. This change is performed
instantaneously. On the other hand, the output function is executed when tA has elapsed since last event.
Simultaneously, an internal transition is produced.

A DEVS Coupled model interconnects atomic and coupled components together thorough their in-
put/output ports. It can be described by the following tuple:

C = {X ,Y,D,EIC,EOC, IC,Select}

where: X and Y are sets of input and output evens respectively, D is the set of components names, IC
is the set of internal couplings among members of D, EIC is the external inputs coupling relation (set of
couplings between external input ports and internal components) and EOC is the external output coupling
relation. Select is a tie-breaking function to assign execution priorities when two or more internal or
external transition functions are scheduled for the same simulation time.

The DEVS formalism is closed under coupling (i.e., any hierarchical coupling of DEVS atomic and
coupled models defines an equivalent atomic DEVS model).

For practical modeling and simulation we adopted PowerDEVS (Bergero and Kofman 2010), an open-
source simulation toolkit based on the DEVS formalism that is particularly oriented to hybrid systems.

DEVS Graph (Zeigler et al. 1995) is a graph-like language to describe the behavior of DEVS atomic
models in a visually intuitive way. Each state s ∈ S is indicated by a bubble with its name and lifetime, and
arcs connecting bubbles denote state transitions. Dashed lines indicate internal transitions and solid lines
indicate external transitions. The condition that must be satisfied by an input signal In to trigger an external
transition when carrying a value val is indicated as: In?val. An output can only be produced after a state
the lifetime has elapsed. An output of a val value on an Out port is indicated as: Out!val. We will use this
notation to depict discrete-event behavior in Section 6.1 for supervisory controllers. The implementation
of a DEVS model in PowerDEVS departing from a DEVS Graph diagram is straightforward.

3.2 Stability Analysis

Let x(t) ∈ Rn be a state vector whose evolution is described by a linear time-invariant system with input
u(t) ∈ Rm, more precisely:

ẋ(t) = Ax(t)+Bu(t), (1)

where A ∈ Rn×n and B ∈ Rn×m are the state and input matrices, respectively. If we sample x(t) by taking
values at t = kh for k ∈N, where h > 0 is the sampling-period and assuming that u(t) is constant between
samples, then equation (1) can be discretized as follows:

x(k+1) = Φ(h)x(k)+Γ(h)u(k) (2)

with x(k) = x(hk), Φ(h) = exp(Ah) ∈ Rn×n and Γ(h) =
∫ h

0 exp(Aτ) dτ B, where exp : Rn×n→ Rn×n is the
matrix exponential. To control the system behavior we use state-feedback, that is u(k) = K(h)x(k), where
K(h) ∈Rm×n is the state-feedback gain which depends on the sampling-period h. So closed loop equation
is given by:

x(k+1) =
(

Φ(h)+Γ(h)K(h)
)

x(k) (3)

The behavior of the state is determined by the closed-loop matrix ΦCL(h) = Φ(h)+Γ(h)K(h). Considering
a finite set of admissible sampling-periods 0 < h0 < · · · < hN , we have a family Σ =

{
ΦCL

i

}
i=1,...,N of

subsystems, where = ΦCL
i = ΦCL(hi), i = 0, ...,N. Thus, the evolution of x(k) is a function of the active

subsystem in Σ, which is time-dependent. Then, equation (3) can be seen as a linear autonomous Discrete-
Time Switched System (DTSS) (Liberzon 2012):

x(k+1) = Φ
CL
σ(k)x(k) (4)
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where σ : N→{0, . . . ,N} is a piecewise constant function, which defines the switching sequence. In our
case study the switching function σ is defined according to whether the UAV is retrieving data and the
number of sensors. It is mandatory to guarantee the stability of the overall system for any possible switching
sequence. In a switching system the stability of each individual subsystem is not a sufficient condition. As
it was stated in (Narenda and Balakrishnan 1994) the commutativity between every pair of matrices in Σ

ensures that a common quadratic Lyapunov function (CQLF) exists, and then the stability of the switching
system is guaranteed. In (Felicioni and Junco 2008, Felicioni et al. 2010) the authors use this result to
design adaptive control laws that guarantee stability for any arbitrary switching sequence σ(k). We shall
rely on this result to adapt sampling periods dynamically with stability guarantees.

4 CONTINUOUS UAV MODEL AND DISCRETE REGULATION CONTROLLER

An UAV can be described as a rigid-body with six degrees of freedom (6−DOF). In particular for a
multi-rotor vehicle, the position and its orientation are coupled. More specifically, to modify the lateral
position of the vehicle it is necessary to modify its attitude. In fact, the attitude of the multi-rotor is the
main variable to control, once the attitude is stabilized it is possible to control the vehicle position and
eventually reject disturbances.

The state vector x(t) ∈ R6 specifies the attitude of the vehicle: x =
[
φ , φ̇ ,θ , θ̇ ,ψ, ψ̇

]T as seen in
Figure 1, where φ , θ and ψ are the pitch, roll and yaw angles, respectively. This rigid-body is subject to
forces and moments: u =

[
Fx,Fy,Fz,τφ ,τθ ,τψ

]T . The dynamic equations which describe its movement are
obtained by considering Euler-Newton equations (5)-(7) where F is the vector of forces (control input), M
the moments vector (control input), V is the velocity of the vehicle, ω the angular velocity, m is the mass
of the UAV and I is the inertia matrix. These quantities are expressed in the (non-inertial) vehicle frame.
However, given the attitude of the vehicle (φ ,θ ,ψ) it is possible to refer the velocity of the UAV and its
position in an inertial frame.

 φ̇

θ̇

ψ̇

=

 1 sin(φ)tg(θ) cos(φ)tg(θ)
0 cos(φ) −sin(φ)
0 sin(φ)

cos(θ)
cos(φ)
cos(θ)

ω

(5)

mV̇ =−ω×V+F (6)

Iω̇ =−ω× (Iω)+M (7)

LEFT FRONT

REAR RIGHT

y

x

z

φ θ

ψ

Figure 1: Quadrotor attitude.

This is a simplified model that does not take into account the behavior of actuators and sensors, but
is good enough for the application studied in this work. For small angles near hovering, i.e. φ ' 0, θ ' 0
and ψ ' 0, the non-linear model given in equations (5)-(7) can be linearized. Moreover, the multi-rotor
attitude dynamical model can be decomposed into three decoupled dynamical subsystems, one for each
attitude angle, see Figure 1. For each of these angles we have the following model:

ẋ(t) =
[

0 1
0 0

]
x(t)+

[
0
b0

]
τ(t)

where b0 = 1/I corresponds to the inverse of the inertia and τ(t)∈R is the torque in the corresponding axis.
State x(t) ∈ R2, represents the angle and angular velocity in the corresponding axis, for instance for roll
angle, x= [φ , φ̇ ]. Following the ideas of Subsection 3.2, this model can be discretized. For each subsystem, a
state-feedback controller is designed, such that: τ(k) =K(hi)x(k), with K(hi) =

[
K1(hi) K2(hi)

]
∈R1×2.
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Therefore, discrete-time closed-loop dynamics for each sampling-period hi = 0, ...,N is given by:

x(k+1) =

[ 1 hi

0 1

]
+

 b0h2
i

2
b0hi

K(hi)

 x(k) = Φ
CL
i x(k) (8)

Considering the different flight modes, the family of closed-loop matrices Σ =
{

ΦCL
0 , . . . ,ΦCL

N

}
should

be stabilized for arbitrary switching. During a mission, a UAV acts as a data-mule and as it moves forward
in its path it will be establishing communication with a different number of ground sensor nodes.

As it was mentioned in Section 3.2, ensuring stability for the system under arbitrary switching sequence
is equivalent to asking for closed-loop matrices in Σ to be pairwise commutative. This approach can be
easily applied by means of the algebraic equations:

K1(hi) =−4K1(h0)/ξ , K2(hi) = 2(h0K1(h0)−nh0K1(h0)−2K2(h0))/ξ (9)

with n = hi/h0 and ξ =−4+(n−1)b0h0(nh0K1(h0)+2K2(h0)). Notice that, in order to calculate K(hi)
for every i = 1, ...,N, we require to known K(h0). Of course, K(h0) should be such that ΦCL(h0) is stable.

In Figure 2 we can see how the adaptive discrete-time controller is connected to the UAV. Figure 3
shows our implementation of the system in PowerDEVS, using the adaptation law given in eq. (9).

Figure 2: Schematic of the continuous UAV system
and the adaptive discrete-time/event controller.

Figure 3: System model in PowerDEVS.

We will stress on the necessity of adapting the vehicle control law in a context of switching sampling-
period with the following simulated example. Let h0 = 5 ms, h1 = 40 ms, h2 = 290 ms and the switching
sequence σ followed by sampling-period: h0 over h0, then h1 for h1 and finally h2 during h2. The sequence
is repeated over time. If we do not conduct any adaptation, i.e. retain controller gains for h0 called nominal
gains hereafter, the result is an unbounded growth of the state values, i.e. an unstable system (see Figure 4).
The matrix ΦCL(h0)Φ

CL(h1)Φ
CL(h2) has an unstable eigenvalue. Yet, each sampled subsystem is stable.

5 VALIDATION EXPERIMENTS

5.1 Experiments Performed with the UAV

In this section, we analyze a test carried out with an hexacopter (see Figure 5) emulating a flight mission.
This vehicle uses an autopilot called ChoriCopter. For this experiment we defined h0 = 5 ms, h1 = 15 ms
and h2 = 25 ms. In Figure 6 we can see the switching sequence followed by the sampling-period driving the
regulation controller. The UAV starts in Take-off mode and then switches to Traveling mode (both with h0)
following a predefined path to collect data. At 26 s the UAV detects a group of N2 sensors. Thus, it evolves
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Figure 4: Continuous-state unstable behavior under sample-time switching.

to Hovering mode and the supervisory controller assigns h2 to the controller. Once data-retrieval is finished
after about 15 s the UAV returns to Traveling and the supervisory controller switches the sampling-period
back to h0. Around 58 s the vehicle detects a group of N1 sensors and then jumps to Hovering again. In
accordance with this value, the supervisory assigns h1. The cycle of Traveling and Hovering modes with
different sampling-period is repeated.

As it can be noticed from Figure 6, switching signal has some spurious glitches. This is due to some
packets missed in the communication between the UAV and the computer used to monitor the experiment.

The measured roll angle can be seen in Figure 7a. While in Hovering the angle reference is null whereas
the current angle is not. This bias is could be attributed to the lack of integral action in the regulation
controller. The glitches around 22 s are related to the transition between Take-off and Traveling modes.

Figure 5: Hexacopter used in the experimental
tests.
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Figure 6: Manually-imposed sampling-period.

5.2 Trace-Driven Simulation Validation

We used experimental data recorded during the tests in the previous section to validate our model implemented
in PowerDEVS. We took the angle reference and sampling-period signal traces to drive the simulation
model. Figure 7b illustrates the resulting curves. Measured and simulated data are overlapped to check
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the degree of accuracy. The simulated angle follows the measured reference closely. However, measured
and simulated roll angles differ in an offset. Even without capturing this effect in our model, we conclude
that the approximation is quite acceptable for our purposes.

(a) Measured roll angle and moment.
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Figure 7: Evolution of measured and simulated θ(t) during an experiment.

6 SUPERVISORY CONTROL DESIGN: DISTURBANCE REJECTION VS. COMMUNICATION
EFFICIENCY

The strategy followed here to implement the trade-off mentioned in Section 2 increasing the sampling-
period of the vehicle controller, when needed, so as to have more time to acquire information. The amount
of time necessary to execute the control task Tctrl is determined by the CPU and is a fixed value. The
sampling-period used during the Traveling stage, when no data is being collected, equals this value. A
sampling period is divided into one part when the CPU is devoted to execute control task and the remainder
where it is used to collect data. The ratio between these two times is the data communication efficiency
ηdata. If we limit the time while the UAV is collecting data not to waste energy, we will need to enlarge
the sampling period so as to collect a bigger amount of data. The previous trade-off is then expressed as
the relation between the sampling-period and its part devoted to data acquisition.

We discussed already that we can’t use always the minimum value for sampling-period Tctrl because
with this value no data can be collected. But, why don’t we always use the maximum value, h̄i? The
reason is that disturbance rejection in this case is the worst that can be achieved.

The UAV is required to remain hovering collecting data for a time T̄ , no matter how many sensors the
UAV can communicate to. This time limit is set in order to rationalize energy consumption, and is valid
only in the absence of disturbances. Otherwise it will take longer than T̄ to collect a same amount of data.

Once a communication protocol between the UAV and the sensors is defined, the bandwidth BW
gets fixed. Thus, the time needed to collect all data by a group of N sensors is given by (10),
where Lmsg is the message length and Ttx < T̄ . During this time the CPU is exclusively devoted to
data acquisition, and the remainder T̄ − Ttx is used for the vehicle controller execution. The number
of sampling periods that fit within T̄ is nmsg ∈ N0, and it is calculated as in (11). This is the num-
ber of executions of the vehicle controller conducted while performing the overall data transmission.

Ttx =
NLmsg

BW
(10) nmsg =

T̄ −Ttx

Tctrl
(11) hi = Tctrl +

Ttx

nmsg
(12)
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The sampling-period for the regulation controller is obtained from the expression in (12). This value
represents the minimum sampling-period needed to collect all data in time T̄ . If the sampling-period were
longer than this all data could be gathered in a shorter time but at the expense of being less robust to
disturbances. Finally, the portion of a single hi devoted to data acquisition is given by Tmeas = hi−Tctrl .

As it was already mentioned, the data communication efficiency is the ratio between the fraction
of the sampling period used for data collection and the sampling-period itself. But on the other hand,
it is also the quotient between the time during which the UAV is required to be in hovering and Ttx:
ηdata = Tmeas/hi = T̄/ttx. Its value is bounded by 0 ≤ ηdata ≤ η̄data < 1, since the sampling-period is
limited by Tctrl ≤ hi ≤ h̄i. Finally, the expression in (13) relates sampling-period with the number of sensors
N. Since hi is upper bounded by h̄i, then this value determines N̄. Let ξ = T̄ BW/Lmsg, then

hi =

{
Tctrlξ/(ξ −N) if 0≤ N ≤ N̄
Tctrlξ/(ξ − N̄) otherwise

(13)

6.1 DEVS Model Specification

The DEVS Graph corresponding to the Transient Detector is shown in Figure 8a. This block acts as an
interface between continuous and discrete states. The input of this detector is the UAV angle, whereas
its output is a binary signal indicating whether the UAV is undergoing a transient response. This output
feeds the Supervisory Controller. The Transient Detector starts in the out state, indicating that deviation
from hovering is outside preestablished bounds set by L limit and U limit parameters, respectively. The
state remains in out until a new angle information lies within bounds. In that case, an external transition
is triggered and the state jumps to wait. There, it waits for a predefined stabilization time δ after which
an internal transition is triggered, changing its state to in and outputting an IN TRAN signal. If while in
the wait state the angle input falls outside bounds, an external transition would jump back to out state
but producing an OUT TRAN output. Once in the in state, it remains there while the angle is inbound.
Otherwise, an internal transition would switch state to out and produce an OUT TRAN output.

This controller was implemented as a DEVS coupled model. It consists of an in/out band detector,
made of two comparators, and the Transient Detector itself which is a DEVS atomic model.

(a) Transient response detector (b) Supervisory controller

Figure 8: Communication and processing resources allocator unit.

Figure 8b exhibits the DEVS Graph representing the Supervisory Controller. It is defined by a DEVS
atomic model with two inputs and one output. First input corresponds to the signal provided by the
Transient Detector to decide weather angle conditions are suitable to collect data. Through the other input
the controller receives the number of detected sensors. For the present case, this can take values: 0, N1 or
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N2. Every time a group of sensors is detected, an input to this atomic model is produced. The supervisory
controller then decides which sampling-period should be used: h0, h1 or h2 and outputs this value through
its corresponding output port.

The Supervisory Controller starts in trv h0 state (Traveling phase defined in Section 2.1). Depending
on the number of sensors detected, N1 or N2, the state jumps to dat h1 or dat h2 respectively. Before
reaching these states, the corresponding sampling-period computed with (13) is outputted. The Supervisory
Controller will remain in either dat h1 or dat h2 while the UAV is collecting data, for t1

col or t2
col units

of time. In absence of disturbances, these variables equal T̄ . Otherwise, if a disturbance is experienced
strong enough to take the angle out of bounds, an external transition to no dat state is produced. When the
Transient Detector indicates that deviation from hovering is considerable then data acquisition is stopped.
After resuming from no dat, the acquisition in either dat h1 or dat h2 continues for the difference between
T̄ and the elapsed time before the transient took place. In this case, the time needed to collect all stored
data gets longer. Once all the information is acquired, an internal transition is produced and the supervisory
state jumps back to trv h0, with sampling-period h0.

The Supervisory Controller in Fig. 8b is formally defined as a DEVS atomic model Superv Ctrl =
{S,X ,Y,δint ,δext , ta,λ} whose pseudocode can be seen in Table 1.

S : {trv h0,pre h1,pre h2,dat h1,dat h2,no dat,sigma}
X : {(nmbr sensors,{N1,N2}) ;

(transient,{IN T RAN,OUT T RAN})}
Y : {(samp time,{h0,h1,h2})}
δint(s) : if (s == pre h1){ // Internal Transition

s = dat h1;
h = h1;
sigma = Tbar;}

else if (s == pre h2){
s = dat h2;
h = h2;
sigma = Tbar;}

else if (s == dat h1) {
s = trv h0;
h = h0;
sigma = INF;}

else if (s == dat h2) {
s = trv h0;
h = h0;
sigma = INF;}

δext(s,e,x) : if (x.port == 0){ // External Transition
if ((s == trv h0)&&(*xv == N1)){

s = pre h1;
sigma = 0;}

if ((s == trv h0)&&(*xv == N2)){
s = pre h2;
sigma = 0;}}

if (x.port == 1){
if ((s == dat h1)&&(*xv == 0)){

elapsed h = e;
s = no dat;
sigma = INF;}

if ((s == dat h2)&&(*xv == 0)){
elapsed h = e;
s = no dat;
sigma = INF;}

if ((s == no dat)&&(*xv == 1)){
if (h == h1) {

s = dat h1;
sigma = Tbar - elapsed h;}

if (h == h2){
s = dat h2;
sigma = Tbar - elapsed h;}}}

λ (s) : if (s == pre h1){ // Output
y[0] = h1;}

else if (s == pre h2){
y[0] = h2;}

else if ((s == dat h1) || (s == dat h2)){
y[0] = h0;}

else if (s == trv h0){
y[0] = h0;
sigma = INF;}

return Event(&y,0)
ta(s) : return sigma // Time advance

Table 1: Pseudocode for the Superv Ctrl DEVS Atomic Model.

Figure 9 illustrates the resulting overall hybrid DEVS model structure. The Supervisory Controller
Unit for Resources Allocation at the top has an input to receive the number of detected sensors. The
output port of this block is connected to the Continuous Dynamic block at the bottom. Through this
connection the current sampling-period is sent to the adaptive discrete-time regulation controller. This is
also an event-based signal. The output from the Regulation Controller is the continuous moment applied
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to the UAV by the actuators. The tilt angle, which is also a continuous signal, is connected to the Transient
Detector. Finally, the transient detector output is also an event-based signal.

7 SIMULATION RESULTS

We performed tests on the model of Figure 9 considering the values shown in Table 2. The data collection
efficiency is bounded by 0≤ ηdata ≤ 0.8. Figure 10 illustrates the sampling-period in (13) for N ∈ [0,10].
With these parameters, groups of sensors larger than 5 saturate the sampling-period.

Figure 9: Continuous Dynamic and Su-
pervisory Control Units for Resource
Allocation with Stability Constraints.
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Parameter Value
BW 1.25 kbps
Lmsg 1kb
T̄ 5 s
Tctrl 5 ms
h̄i 25 ms
N1 3
N2 5
U limit 0.2 rad
L limit −0.2 rad
δ 1 s

Table 2: Parameter values
used for testing.

7.1 Verification in Absence of Disturbances

Figure 11a illustrates the results of this simulation. The UAV starts Traveling. At t = 10 s it detects a
group of N2 sensors. It takes T̄ to collect all data from them in Hovering stage. After finishing, the UAV
switches to Traveling again. At t = 25 s, the vehicle detects N1 sensors. It switches to Hovering and takes
T̄ again to collect all data. After that, it travels between 32.5 s and 60 s. At t = 60 s and 85 s, N2 and N1
are detected respectively. Each switching of sampling-period is followed by the execution of the adaptation
algorithm (9) for the regulation controller.

7.2 Verification by Considering Disturbances

Figure 11b shows the same experiment but now carried out in the presence of disturbances. These are
represented by momentum pulses which emulate a sudden wind gust. We simulate the influence of three
different disturbance durantions and amplitudes.

Disturbances appear at 5 s, 63 s and 87 s (and last until 7 s, 66 s and 92 s) while the vehicle regulation
controller is using h0, h2 and h1 respectively. That means that the first and second data acquisition (Hovering)
phases (between 10 s and 15 s and between 25 s and 30 s) are performed without being altered by wind.
Disturbances cause a transient response in the angle of the UAV. Depending on the intensity of the gusts, the
angle response can escape from the stability band limited by U limit and L limit, making the supervisory
controller to stop data acquisition. These limits are shown in Figure 11b with dotted lines. Once the angle
returns within the band for a time longer than δ the supervisor decides to resume data acquisition. The
effects of disturbances in the third and fourth acquisitions are clearly seen in Figure 11b (upper pane)
where the width of the hovering periods vary according to the strength and length of each disturbance.

On the one hand, it can be concluded that the bigger and longer the disturbance the longer the time used
to collect all data. On the other hand, the higher the sampling-period, the less robust to a same disturbance
the system becomes, which imply bigger transient response amplitudes and longer settling times.
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Figure 11: sampling-period during acquisition.

This highlights the necessity to relax the vehicle controller sampling-period only when necessary and
no more than strictly required.

8 CONCLUSIONS AND FUTURE WORK

We presented a modeling and simulation-assisted design of a hybrid supervisory controller for an unmanned
aerial vehicle (UAV) used for data collection from randomly distributed wireless sensors. In our study the
UAV requires to adapt scarce processor capacity allocation under competing cyber-physical constraints:
stability vs. data communication. A supervisory control layer resorts to sampling-period relaxation of the
vehicle regulation control layer. To guarantee stability under switching of sampling-periods, we consider
a control law adaptation that allows to calculate and update safe control gains.

From a methodological point of view, the study required to reason about the problem at three different
system levels or domains: continuous, discrete-time and discrete-event. The continuous dynamics of the
UAV physics are modelled with differential equations. A discrete-time proportional-derivative controller
is implemented so as to fly the UAV and stabilize it while hovering in the presence of disturbances. Two
kinds of discrete events are considered, which are driven by unpredictable dynamics: the sudden detection
of a new number of sensors and the intervention of wind gusts.

We proposed a control mechanism to trade-off processor resources between stability and communication
constraints. We also established bounds in the angle of the UAV to consider it in a acceptable position to
enable the communication. The combinations of these dynamics yield unpredictable sequences of discrete
events. The strategy based on adapting the sampling-period of the regulation controller created the need
for guaranteeing stability under period switching. Thus, depending on discrete-event dynamics, we adapted
the discrete-time dynamics that control the stability of the continuous dynamics.

We successfully followed a modeling and simulation-driven engineering approach relying on the DEVS
framework to support the composition of hybrid domains in a seamless way. We achieved model continuity,
designing the system iteratively and incrementally. We smoothly used the same DEVS models and simulator
to a) verify the hypothesis of potential destabilization of the continuous system under certain sampling-
period switching sequences , b) validate the continuous model under switching conditions by flying a real
hexacopter, recording responses and driving simulations with the recorded traces, c) design an event-based
control strategy to adapt the discrete-time controller with stability guarantees, and d) verify some scenarios
where varying number of sensors and wind conditions create competition for processor resources.

As our design is a proof-of-concept there is room for several improvements to consider as future work.
One option consists of adding a time limit to be used when the supervisory control is in the no dat state



Pecker Marcosig, Giribet, and Castro

so that, if reached, this controller would choose a lower sampling-period and thus reduce the number of
sensors to be read simultaneously. This action would improve disturbance rejection on the one hand, but
on the other hand would increase the time needed to collect all the data from the sensors. Hence, the
supervisory controller should select a subgroup of sensors from the group. The improved aim would be
not to waste time trying to collect all data from a group of sensors since they might have some degree
of spatial correlation. Another important variable to take into account is remaining battery charge, which
could be included in the decisions of the supervisory controller. finally, as the number of states of the
supervisory controller increases, it is worth exploring automatic controller synthesis techniques that can
guarantee desirable features such as deadlock-free operation or liveness properties.
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