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ABSTRACT

Cellular automata are often used for spatial dynamics in cell biology such as the spreading of infections
within a cell biological population. Due to the size of cell populations, efficient simulation algorithms
have received increasing attention over the last decade. Many cellular automata models are executed
synchronously. The model we study here, known as the ‘dos Santos’ HIV model, is mostly made of
deterministic transitions and a few highly probabilistic transitions. This design can be exploited to create
efficient simulation algorithm. We propose such an algorithm using an advanced random number scheme (to
efficiently perform probabilistic transitions) and performing neighborhood analysis using CPU vectorization.
The benchmarks show a significant performance increase by a factor of 2.4x in comparison to a quality
baseline implementation. We identify and propose mitigation schemes for problems in the model behavior
and simulation outputs of the many synchronous HIV models built on the dos Santos design.

1 Introduction

Over 30 million people have died from complications associated with HIV and AIDS. By the end of 2018,
it is estimated that between 32.7 and 44.0 million were living with HIV (World Health Organization 2020),
Modeling & Simulation (M&S) has been used in HIV research for several decades to understand the spread
of HIV (both within the body and across individuals) or evaluate the potential outcomes associated with
interventions. M&S is particularly useful as a first step in intervention design as it allows to predict effects
in a ‘virtual laboratory’ without causing harm to real-world individuals. Two successful modeling projects
include Kaplan’s early work, which contributed to distributing clean needles to injection drug users (Kaplan
1989), and the study directed by Granich, which strengthened the evidence base for universal testing and
immediate therapy (Granich et al. 2009).

Cellular Automata (CA) provide one of the approaches used to simulate HIV. This approach is most
commonly used to model the spread within the body, as the regular packing of cells within CA provides an
analogy to the tight packing of immune cells in lymphoid tissues which are targeted by the virus. Although
several CA models of the immune response to the virus were proposed in the early 1990s (Pandey and
Stauffer 1990; Kougias and Schulte 1990), this approach gained attention with the model in (dos Santos and
Coutinho 2001), now commonly called the ‘dos Santos model’. Part of its popularity stems from its ability
to replicate the phases of HIV infection (i.e. before the onset of AIDS) despite its apparent simplicity.

Since many stochastic in-body HIV CA models extend the structure of the dos Santos model (Precharat-
tana 2016), investigating its performance and soundness allows to examine the broader field of HIV CA.
As the simple implementations prevalent in the field are very time intensive to run, simulations of these
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Figure 1: The dos Santos model has 4 states (healthy, infected A1 and A2, dead). As A1 turns A2 over four
time steps, we break it down into four consecutive states, resulting in 7 states. Note that most transitions
are either deterministic (plain line) or have a very high probability (broad dashed line).

stochastic models often use too few runs to yield tight confidence intervals, hence results may not be entirely
replicated in future studies (Giabbanelli et al. 2019). Although these models succeed at producing realistic
average curves for viral load, we may be obtaining the right results for the wrong reasons since the models
are driven by very high rates of cell-to-cell infection (i.e. between close neighbors) unlike the real-world
mix of cell-to-cell and cell-free infections via the bloodstream (Giabbanelli et al. 2019). Recent studies
demonstrate that good performance of the dos Santos model can be achieved through just in time compilation
of Python code (Giabbanelli et al. 2020) or by using machine learning meta-models (Fisher et al. 2020).
To further improve upon these results, we need to study the model’s performance characteristics.

Our study builds on previous work in two ways:

1. We increase performance by a factor of 2.5 by performing the first in-depth performance study for
the dos Santos CA model and using algorithmic optimizations in a modern native language (Rust).

2. We examine whether the design of CA models (particularly the synchronous transitions and their
high probabilities) produces behavior that differs from real-world expectations.

The paper is structured into four parts. In Section 2, we provide a brief background on the design
and implementation of the biological CA models, including the dos Santos model. In Section 3, we
introduce our approach to profile an optimization. Based on our analysis of the technical properties of the
implementation, we propose algorithmic solutions in section 4. Finally, we reflect on the soundness of the
overall approach.

2 Background: Design and Optimization of CA Models in Cell Biology

A cellular automaton is a discrete model in three ways: cells are updated at discrete time steps, the space
is discretized into a regular tiling (such as a grid or a hexagonal tiling), and cells are in discrete states. The
rules to update the cells can involve probabilities (hence creating a stochastic model), time (e.g., infected
cells will die at the next step), or the states of neighbors (e.g. being next to an infected cell makes it
possible to pass on virion). Models without probabilistic transitions are deterministic, while those with at
least one such transition are stochastic. All CA for HIV are synchronous, which means that cells are all
updated at the same time by using a copy to store their future states before committing them.

CA used to model other biological systems, such as cancer growth, typically use asynchronous syn-
chronization (Deutsch et al. 2005; Metzcar et al. 2019). This introduces new possibilities for optimization,
such as finding efficient means to iterate through the cells or selecting a random neighbor (Poleszczuk
and Enderling 2014). A common approach to improving performances a cellular automaton is to leverage
their ‘embarrassingly parallel’ update step. Parallelization has been done many times in CA (Salguero
et al. 2019), including by running them over GPU-based implementations (Rybacki et al. 2009). Other
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improvements have leveraged the trade-off between runtime performance and memory footprint, for instance
by using memoization algorithms that exploit spatial regularities (Gosper 1984; Caux et al. 2010).

The dos Santos model and its successors stand out among biological models for three defining char-
acteristics: transitions are mostly step-based, very high probabilities are used in stochastic transitions, and
only the transition from ‘healthy’ (or variations thereof) to ‘infected’ involves neighbors. The structure
of the dos Santos model (Figure 1) consists of four main states (healthy, infected A1, infected A2, dead)
where deterministic transitions occur either at constant time intervals (e.g., A1 turns into A2 after 4 steps, A2
turns into dead in the next step) or are driven by very high probabilities (e.g., dead cells are replenished by
the system with 99% probability). The dos Santos model has inspired many derived models, which often
consist of adding states and accompanying transitions to explore key concepts such as viral reservoirs (Shi
et al. 2008), therapy (González et al. 2013), or adherence to treatment (Rana et al. 2015).

This ‘line of models’ perpetuates several design choices such as step-based transitions and tends to be
faithful to the initial model even in the parameter values. For instance, the dos Santos model uses 4 steps to
go from A1 to A2. This was still the case for models published up to 15 years later (González et al. 2013;
Rana et al. 2015; Precharattana et al. 2010; Moonchai and Lenbury 2016). Similarly, the 99% probability
of replacing a dead cell by a healthy one was still in effect 16 years later (Golpayegani et al. 2017).

Although some HIV CA models are occasionally created entirely from scratch and hence bear no
resemble to the dos Santos model (Hillmann et al. 2017), the fact that a robust line of research inherits the
dos Santos design and parameter values suggests that our findings can generalize to a class of HIV models.

3 Understanding the Efficiency via Profiling

We have instrumented an implementation of the model as well as created multiple synthetic benchmarks
to investigate specific aspects of the algorithm. The implementation is done in Rust, a modern native
language. For the performance measurements we use the Criterion library (Version 0.3). Measurements
were done on a Workstation with an Intel Xeon E5-1630 v4 CPU using rust 1.41. The code, benchmarks,
and scripts to produce the plots can be found at https://git.informatik.uni-rostock.de/tk3811/wsc20 ca.

3.1 Storing and Iterating Over Model States

Each cell in the model may be in one of 7 states (Healthy, Acute with τ ∈ {0,1,2,3}, Latent, Dead). We
store these states in one byte. Although fewer bits may be used, the small gain in space would be at the
expense of increased computations to pack/unpack states. To support compiler-based optimizations, we
store states in a contiguous (one dimension) array, which supports fast read/write operations.

Vectorization is an optimization where a program uses CPU specific instructions that can handle multiple
data chunks in one step. This is a type of instruction level parallization also known as Single Instruction
Multiple Data (SIMD). For improvements in the vectorization we use the ndarray (version 0.13) library/crate
which provides a matrix abstraction that we use for the implementation of our algorithms. Readers more
familiar with Python than with Rust may think of this abstraction as similar to numpy, albeit more closely
integrated into the language.

We use the ndarray zip operator to iterate over the grid. Neighborhood checks are done via iterations
based on indexes1.

Note that this baseline implementation is not a naive one, as that would lead to unrealistically low
performances. Our baseline implements a CA with several techniques including making an efficient use
of the memory and optimizing the iteration schemes.

1By default this would not necessarily be fast in Rust. All typical array access via indices are bound-checked at runtime.
This was circumvented for this implementation by using unsafe code.

https://git.informatik.uni-rostock.de/tk3811/wsc20_ca
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Figure 2: The simulator output is shown by counting healthy and dead cells (a) and the number of cells
that have the same state as the cell to their left (b). The throughput is shown in two configurations: very
high quality random numbers (c), or low quality but faster to compute (d). All runs use 10 replications
and a grid of 1500×1500 cells. Step-averaged data including errors can be found in Table 1.

3.2 Performance Metric

Our performance metric is the number of cells updated per second, given in million elements per second
(Melem/s). We will be measuring this throughput at each step, as well as averaged across the whole 600
steps that are already conducted in an HIV CA simulation. Not included in this metric is the time for
calculating observables like the counts for each cell state.

3.3 Synthetic Benchmark and Maximum Theoretical Throughput

To identify the maximum theoretical throughput that our machine can achieve, we create a synthetic
benchmark consisting of an array randomly filled with states S1,S2, ..., which we replace using simple rules
such as S1→ S5 and S5→ S2. This is the most minimal and simple version of this type of simulation model
and implementation. The throughput we get for this benchmark is the limit no traditional implementation
could surpass. Of course there are more advanced works, that do not need to access the entire system, like
Memoization (Gosper 1984), but those are beyond the scope of this paper.

In a second variant of the benchmark we make optimal code generation a little harder for the compiler
by introducing a state Snull. This state is not created initially and none of the other states transitions to
it, but its transition rule is very complex requiring change of a global state, similar to a random number
generator or a counting mechanism. This limits the kind of optimizations a compiler and CPU can perform,
like vectorization.
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This already has a tremendous influence on the performance. For the first we get a rate of 788 Melem/s
whereas the second yields only 156 Melem/s. We should stress again that the only difference between
these two benchmarks is a state transition rule, that is never fired.

For the purposes of comparison we have created a synthetic benchmark with all identical cells, applying
the same hard to vectorize kernel that yielded 156 Melem/s earlier we now get more than 1470 Melem/s.
This is because the CPU can optimize at runtime for identical data. The increased mixing of the system
therefore leads to slower performance.

A few of the transitions in the dos Santos model happen depending on probabilities. To understand
the impact of these stochastic transitions on performances, we consider an extreme case in which half of
all transitions are stochastic. We modify the synthetic benchmark model accordingly. Naturally this raises
the question of how the random numbers are generated. We consider two cases, one with rusts default,
very high quality cryptographically secure ChaCha block cipher random number generator and one using
the much faster Xoroshift random number generator. For these model implementations we get rates of 83
Melem/s and 134 Melem/s respectively.

The difference between the easy and hard to vectorize throughput already is an indication, that memory
access is likely not the limiting factor for the performance of this computational problem (i.e. its compute
and not memory bound). To confirm this we run a series of tests where we modify our synthetic benchmarks
as such: In between the states of the dummy model we interweave counters that are incremented on every
access. We use different data types to test for the memory limit. Results (Figure 3) show the effect of
caches for the smaller grid sizes, but for a larger amount of cells and larger counters we run into the
memory limit. This limit however is very far from the domain applicable here, as our memory load is very
small. Shown are the results for the minimal synthetic benchmark. For any real model implementation, the
transition rules are more complex and therefore putting even less strain on memory throughout. Therefore
in the following we can focus on optimization for computational throughput.

3.4 Results for our baseline implementation

Our baseline implementation has a throughput of about 76 Melem/s, which is about 10% of the theoretical
maximum as established by the synthetic benchmark (Figure 2), and already about half of the more
reasonable harder to vectorize benchmark.

The performance of baseline implementation changes throughout the model run. The first steps show
extreme model behaviors. After that, performances increases for 200 steps, then decrease again.

After the first few steps (which show extreme model behavior, performance increases, then after about
200 steps decreases. We can explain this by looking at the simulation behavior (Figure 2). Initially, we
have many health cells (Figure 2(a)–top), each of which requires an expensive neighborhood check. Later,
there are fewer healthy cells, hence performances improve. However, after about 220 steps, performances
degrade again even though the number of healthy cells (as well as all other cells) remains constant.

This behavior can be understood by examining the heterogeneity in the simulation (Figure 2(b)). Initially
the system is quite well ordered and homogeneous, as measured by the percentage of cells whose left
neighbor has the same state. These are particularly easy to execute efficiently by the CPU.

Using faster (but lower quality) random numbers leads to a throughput of about 91 Melem/s in
comparison to 76 Melem/s before.

4 Algorithmic Performance Improvements

Results in the previous section have established that randomness and branching intensive code (e.g.
neighborhood checks) are the limiting factors for performances in our implementation. In this section, we
present three optimizations to improve performances: avoiding the over-generation of random numbers,
reducing the number of conditional checks when looking at the states of neighboring cells, and a combination.
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Figure 3: Throughput of different synthetic benchmarks for different number of cells. The different lines
correspond to different data sizes. There is a different peak throughput due to different computational
optimization, with 64bit integers shown in red as fastest due to the optimal native support and 256 bit
integers requiring two separate operations. For some larger per cell memory needs we can see how CPU
caches are no longer able to provide a performance boost when considering larger number of cells. For
smaller per cell storage however even RAM memory rates are sufficient. The separation at 10MB (vertical
dashed line) is consistent with the size of this CPUs L3 Cache.

4.1 Random Number Calculation via Geometrical Distribution

In the traditional implementation of this CA model, the random numbers are sampled for every cell. For
example, every dead cell requires the computation of a probability p H to decide whether it is replaced
with a healthy one. Our analysis of the rates used specifically in this model (Figure 1) reveal that stochastic
events are either very rare (p is close to zero) or very likely (p almost one). Calculating the random
probability for every cell is very costly. To lower this cost, we note that events are all independent, but
follow the same Bernoulli process. For example if we have an event with p = 0.997, a negative sample will
occur on average only about every 333 samples. The number of negative samples between two positive
samples follows the Geometric distribution. We only need to calculate one sample of that distribution
(using a standard library) and then count until we have reached this number of occurrences. This works
well for both very high as well as very low probabilities, as for those the number of avoided random number
calculations is the highest.

4.2 Neighborhood checks via Matrix addition

Encoding the neighborhood checks using addition instead of iteration and equality checks has already been
presented in the literature (Giabbanelli et al. 2020). However, these checks were still performed on demand.
That is, a cell was first checked to know whether it was healthy, and then the addition was performed.

In the early phase of the simulation, most cells are healthy. To calculate the newly infected cells,
all cells in the neighborhood of each cell are being tested. To optimize this calculation, we introduce
vectorized additions. For that we take the entire grid as a matrix and add the eight shifted variants (for the
Moore neighborhood) and add them to this matrix. These additions are very cheap, as we can use highly
optimized (and vectorized) linear algebra libraries.

Later on we can iterate over the entire grid without the need to use any complex access patterns, as
we have already computed the neighborhood for every cell, which minimizes branching. Branching is as
we have seen in the synthetic benchmarks, detrimental to optimal throughput. In branched code, the CPU
has trouble was branch prediction and vectorization can be less efficient.

This optimization is expected to be the most helpful in the first third of the simulation where there still
are many healthy cells.
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Random Numbers Simulator prob. transitions thrput [Melem/s] setup in %

high quality baseline every time 76.4±0.1
geometric distr. 108.0±0.2

matrix add every time 88.9±0.5 9.8±0.5
geometric distr. 131.8±1.1 14.5±0.7

delayed random n/a 182±3 27.6±0.7
high speed baseline every time 91.1±0.1

geometric distr. 109.5±0.2
matrix add every time 126±1 13.7±0.7

geometric distr. 148±2 16.5±0.7
delayed random n/a 186±2 24.6±0.8

Table 1: Average throughput of the different simulators and their configurations configurations. Setup time
is the time doing matrix adding as well as the random transition for the delayed random variant. Taken
from 10 replications at 1500x1500 cells with errors showing standard error of mean. The behavior of
efficiency through the model run can be found in Figure 2.

4.3 Delayed random

Our third optimization in a way combines the first two presented. To improve vectorization and execution
speed we need to minimize branching. One type of branching we have is checking at the random transitions.
Even if we do not need to compute a new random number (using the geometric distribution) we still might
need to alter a counter and check if its zero.

In this third optimization we remove all stochastic transitions, by rounding the probabilities to one or
zero. Together with the matrix addition optimization outlined above this implementation has almost no
branching. Only if we have a healthy cell, we need to check if the already computed neighborhood sum
is larger than the threshold. We have not found a way to remove this check as well.

Simply removing stochastic transitions would significantly alter model behavior. Therefore we need
to find a way to reintroduce these rare events where stochastic tests would have failed. Here we exploit,
that the number of times such a test pass/fail follows the binomial distribution. After a step has been
executed, we then visit a number of cells sampled from the correct binomial distribution and reverse the
step. Therefore the optimization is still exact and not approximate.

4.4 Results for the Proposed Three Optimizations

We have implemented the optimizations presented above and the results can be found per step in Figure 2
and in step averaged form in Table 1.

Reducing the number of random numbers improves the baseline speed by 40% if high quality random
number generators are used and by 20% if the fast random number generators are used. As expected this
optimization mainly affects the beginning of the simulation where healthy and dead cells (i.e. those that
need random numbers) make up a majority of the cells. When using the high quality random numbers,
this optimization even outperforms the matrix add optimization.

Using the matrix addition for the environment checks also improves performance with throughput rates
of up to 148 Melem/s. Again this also mainly affects the first third of the simulation where there are
very many healthy cells that need to check their environment. In the later stages of the simulation this
optimization only slightly improves upon the baseline. Performing this matrix addition takes only about
15% of the runtime, and therefore not a large contribution to runtime, even though potentially more work
than is strictly needed is performed.
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The delayed random calculation where random transitions are added afterwards is again a lot faster
than the optimizations presented above. It reaches speeds in excess of 400 Melem/s leading to an average
throughput of about 186 Melem/sec. Performance mainly goes down with increased mixing in the system.
Performing the delayed random calculation as well as using matrix addition for the testing the neighborhood
takes about 25% of the total runtime, so still the main iteration loop is dominant.

4.5 Alternative Approaches

Modeling studies rarely report negative results, and HIV CA studies are no exception. However, it is
important to know which other approaches could be attempted and the results that they lead to. Some
of the results are negative in our context (e.g., no throughout improvements) but would be of interest in
other cases (e.g., better bandwidth utilization). By disclosing these alternatives, we thus limit the risk that
future teams will devote energy to approaches that were not fruitful. Other teams may be interested in
some of the approaches below as they do lead to improvements other than throughput, which is the main
consideration for this paper.

As the model has mostly a single path of transition (Healthy then various levels of In f ected then
Dead), we implemented a buffer free variant of the simulation. However this has only reduced memory
and bandwidth usage and neither of them are currently limiting performances. In practice, this sometimes
even reduced performances due to a more complex environment check.

We have examined whether vectorization could be applied locally at the neighborhood level, i.e.
vectorizing the neighborhood check every time we encounter a healthy cell. However, due to the small
neighborhood tested (a Moore of 8 neighbors) as well as the irregularity of the pattern alignment in memory,
this decreased performances. Note that there have been attempts to expand the neighborhood of HIV CA
models to account for both proximal (cell-to-cell) and more distal (cell-free) infections (Giabbanelli,
Freeman, Devita, Rosso, and Brumme 2019). In such cases, the larger neighborhoods may be better
candidates for explicit vectorization.

The dos Santos model seeks to replicate the first two phases of HIV in the absence of any treatment.
Individuals thus necessarily have a larger proportion of infected cells later in the simulation (which would
not necessarily be the case if therapy was modeled). Given that almost all neighborhoods contain an
acutely infected cell in later parts of the dos Santos model run, we assessed the potential of optimizing the
neighborhood look-up. For that, we created a lookup data structure that was a quarter of the size of the
system, with each entry containing the sum of four cells. By checking in the lookup structure first, most
neighborhood iterations could be avoided, however accessing the structure itself had a similar overhead,
resulting in no speedup. This does not check the neighborhood explicitly, but if any of the four cells contain
the an infectious cell, that needs not to be done.

5 Soundness of the CA approach

The performance of simulation algorithms is important as an efficient simulation algorithm is necessary to
conduct extensive experiments with a simulation model. Designed Experiments help us understand how
a model responds or identify which (combinations) of parameter values are most important. By shedding
light on the behavior of the model, such experiments contribute to building trust in the model’s ability to
provide useful answers for its intended application context.

Another essential expectation to build trust is that the simulation algorithm correctly implements the
approach. However, another aspect of soundness is whether the approach is appropriate for the system and
application context. The former requires comparing the simulation results of different simulation algorithms,
which forms an intrinsic part of any performance study, independently whether exact or approximate, spatial
or non-spatial simulation algorithms are evaluated(Jeschke et al. 2011).

It is well known, that synchronously updated cellular automata are problematic for many real world
simulation applications(Schönfisch and de Roos 1998). Therefore, cellular automata models that simulate
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Figure 4: A change in the parameter PHIV only affects the first few steps of the model. This is an artefact
of the methodology.

tumor growth use an asynchronous updating scheme instead: “These methods [cellular automata] usually
update the lattice sites in a random order to reduce grid artifacts” (Metzcar et al. 2019). This is in contrast
with the dos Santos model, where (emphasis added) “in one time step the entire lattice is updated in a
synchronized parallel way, according to the rules described below” (dos Santos and Coutinho 2001). If a
cellular automaton with a regular grid is executed synchronously (as is the case with the dos Santos line),
some directions are favored over others. This leads to the known problem of anisotropic behavior (Schönfisch
1995): a direction-dependent speed of information spread throughout the system, usually favoring diagonals.
In addition, fixed time steps in simulations as typical for cellular automata execution can introduce further
errors. Therefore, fixed time steps should usually only be used if the system itself is one of regular steps.
A discussion can be found in the literature, for example in Appendix 1A of (Law 2007).

5.1 Manifestation in this particular model

Let us now have a look at the particularities of this specific model (and its close relatives) to investigate
whether some of these problems also apply here. The behavior of our model consists of 3 Phases. Initially
the the entire system goes through the complete cycle of infected, dead, and then again healthy, since about
one in twenty cells is infected. Here we already have a particular artefact of the synchronous update, that
is, that this spread basically dies out immediately. If we were to alter this initial infection proportion from
5% to 95% or 0% the model behavior after the first few step would not change at all. The rest of the
trajectories remain the same. This can be seen in Figure 4.

Then there is a second phase, of regular patterns in the system. Here some cells randomly turn sick.
Taking the infected cell as origin, waves of infection propagate through the system. However due to the
mostly deterministic nature of the transition, the cells all get healthy again after one iteration of the cycle
as shown in Figure 1. This is because the waves are very stable and therefore the dead cells form a barrier
shielding the healthy cells from becoming infected again. Only rarely (as exploited by us for performance
purposes), transitions do not take place due to stochastic sampling.

On the very rare occasion, a transition does not take place multiple steps in a row, i.e. a cell remains
healthy while its surroundings are infected, we transition into the third phase, the random noise phase.
This cell will be infected at the same time its surrounding cells become healthy. Those cells in turn get
infected, turn this particular cell healthy and so on, therefore the infection can not die out at this point.
This is again an artefact of the synchronous update with high probabilities. This artefact will then serve
as a contiguous source of infection waves in the system, of irregular shape. Leading to a more and more
random phase, which is the steady state. This artefact has already been described by the original authors.

Another question is how sensitive the behavior of the model is to changes in its size. The system is
simulated for 600 steps. For larger systems, like 1000x1000, a transition at one end of the system can
not affect a cell more than 600 cells away, since it has a maximum reach of 1 grid cell per time-step.
Here, increasing the system size seem to serve merely as a means to average multiple potential trajectories.
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Figure 5: Larger system sizes do not change behavior, but lead to a convergence of individual runs due to
spatial averaging. We compare a grid of n×n cells varying n between 200 and 1200. The percentage of
healthy cells is plotted both for the individual runs as well as their average.

A system of 600x600 cells with periodic boundary condition will have the exact same average behavior
as a system with 60000x60000 cells, although a recent publication assumed differently to apply machine
learning (Fisher et al. 2020).

5.2 Discrete event-based simulation as a solution

Discrete event-based simulation appears as a natural remedy to counter balance the problems introduced
due to synchronous, step-wise computation of the cellular automata. Approaches such as Cell-DEVS and
similar (Zeigler 1982; Wainer 2014) exploit the potential of discrete event simulation for cellular automata
type models. They offer the possibility to explicitly associate with states sojourn times, and thus, have
a natural notion of time and can easily be adapted to arbitrary networks beyond grids. We have tried
to implement the dos Santos Model as a discrete event simulation using exponential distributed sojourn
times, as well as explicit delays. Whereas the conceptual translation appears straight forward, the resulting
model behavior however differs significantly. Instead of the initial infection immediately dying out, we
transition directly to the stable random state phase, where we have random mixing of all model states.
Regular structures that shield infected cells from becoming sick do not occur when allowing transitions in
continuous time.

Another indication that the observed behavior is the result of the synchronous, step-wise update rather
than the model is the question what happens if we reduce the step-size. One would expect if the time step
is reduced from one week to one day and the probabilities per step accordingly adapted to receive the same
results. However, the smaller probabilities per time step allow for the wave fronts to be interrupted. As a
consequence they dissolve quickly. Thus the second phase of the observed behavior will not occur.

6 Conclusion

We have taken the established dos Santos Cellular Automaton Model and assessed its execution characteristics
from a performance standpoint. We implemented and tested some algorithmic variants that surpass the
performance of an already optimized implementation for these type of CA models by a factor of up to
2.4. A crucial ingredient of the achieved speedup has been separating the model into a small stochastic
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part and a large deterministic part. The expensive deterministic part maps well onto vector execution of
the CPU for this compute bound problem.

Analyzing the behavior of the model revealed several problems. Retrospectively we see, that the very
characteristics we exploited to increase performance (synchronicity of execution with very rare stochastic
variations within the model) are the same ones that also invalidate (or at least raise significant doubt on)
the soundness of the approach. None-the-less we believe that our research has provided an interesting
performance study which additionally emphasizes the importance of analyzing model characteristics and
soundness not only of the algorithm but also of the approach.
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