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ABSTRACT

Recent robotic research has lead to different architectural approaches that support enactment of automatically
synthesised discrete event controllers over low-level continuous variable controllers. Synthesis promises
correct-by-construction plans from user provided high-level specifications. However, not only are mission
specifications error prone, but it is also non-trivial to understand and anticipate the emergent behaviour of
the resulting discrete-event/continuous-variable control stacks, i.e. hybrid controllers. Simulation of hybrid
control approaches to robotics can be a useful validation tool for robot users and architecture designers.
Yet, for simulations, working with discrete and continuous representations of the robot, its environment
and its mission plans is also a challenge. In this work we address this challenge showcasing a unified
DEVS-based hybrid simulation platform and modeling a fixed-wing UAV with a hybrid robotic software
architecture. We validate the approach experimentally on a typical UAV mapping mission.

1 INTRODUCTION

The fields of reactive synthesis (Pnueli and Rosner 1989), supervisory control (Ramadge and Wonham
1987) and automated planning (Nau et al. 2004) all pursue the automatic construction of strategies that
can guarantee a system goal in the context of an adversarial environment. In the context of robotics, this
synthesis can be cast as the problem of building a discrete event controller that listens to events that the robot
can sense and executes high-level commands that the robot can achieve in such a way that a mission goal
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for the robot is guaranteed. Thus, synthesis promises the automatic construction of complex operational
strategies that are guaranteed to achieve user-provided mission goals described in a high-level language.

Recent developments in reactive synthesis (e.g., Piterman et al. (2006)) are increasingly impacting
research on how cyber-physical systems (CPS) can be built in order to exploit automatically synthesised
discrete event controllers. Hybrid controllers (Kress-Gazit et al. 2009) are an emerging approach to CPS
design in which a hybrid middle-level layer serves as the interface between a low-level layer of continuous
variable controllers and a high-level layer of discrete event controllers. A key challenge in this domain
is to find adequate discrete abstractions that i) correctly model actuating and sensing capabilities of the
robot, ii) can be managed by the hybrid layer, iii) and provide sufficient flexibility to achieve a variety of
missions (DeCastro et al. 2015; Maniatopoulos et al. 2016).

In the domain of Unmanned Aerial Vehicles (UAVs), hybrid control approaches have been proposed
to support from motion and path objectives (Wei and Isler 2018; Ji and Li 2015) to task and mission
goals (Wolff et al. 2013; Zudaire et al. 2020).

Testing CPS such as UAVs is a challenging task (e.g., Dokhanchi et al. (2017)). Hybrid controllers
add the difficulty of dealing with unexpected emergent behaviour as a result of the complex interplay
between discrete event and continuous control. In addition, synthesising discrete event controllers from
user-provided specifications may mask unintended specification errors. As a consequence, techniques that
support testing and validation of such systems appear as key tools to help UAV developers and users.
Simulation of CPS, and in particular of UAVs, allows for quick development and testing of components and
frameworks. For this reason, many customizable toolkits have been adopted for simulating aircrafts (e.g.,
Gazebo, JSBSim, and FlightGear). Adapting these simulators to specific UAVs is in general a challenging
task: typically one must first correctly model all the different flight dynamics and controllers in order to
later test the developed components. In the case of ArduPilot-based drones, a simulator with Software In
The Loop (SITL) capabilities is available that simplifies modeling and simulation tasks, thus it has been
adopted by many as a testing platform (Baidya et al. 2018; Barros et al. 2016). However, in all the
aforementioned examples, it is mainly the continuous variable dynamic system that is simulated, while all
software layers (in charge of discrete and hybrid control aspects) remain as pieces of code invoked from
the simulator as external delegates, lacking a model counterpart.

In this paper we present a unified and flexible toolkit for modeling and simulation of the full stack of
controllers (discrete, hybrid and continuous) in the domain of UAVs. We showcase an application tailored
for the scenario of high-level plans on a fixed-wing UAV.

1.1 Motivating Case Study

In (Zudaire et al. 2020) we presented a discrete abstraction for specifying and synthesizing mission plans
for workspaces involving hundreds of thousands discrete locations, which can be the case for open-flight
UAV missions. We provided empirical validation through real flights and also via simulations. We created
realistic simulation scenarios relying on the ArduPilot SITL-oriented simulator for the continuous aircraft
dynamics and feedback-controllers communicating to a higher-layer running the hybrid control software
deployed on the on-board processor. Although this setup correctly captures the interaction of components
in real-flight scenarios, we also found several limitations in the simulation methodology. The first is
the difficulty in modifying the default aircraft model of the SITL. An external simulator (e.g., Gazebo
or JSBSim) is required to adapt the dynamic model to our custom vehicle. A second aspect, is that in
order to run full system-level simulations, in the SITL approach multiple independent components interact
over TCP/UDP network sockets where time synchronization is treated in a best-effort manner, without a
parallel/distributed simulation mechanism. User-defined simulation speed-up parameters must be estimated
heuristically for each scenario to avoid incurring in overruns (loss of messages and derived impacts on
accuracy) which can become both a challenge and a risk when dealing with evolving software components.

Therefore, our goal is to explore a different path, resorting to a unifying formalism and tool that
permits combining all layers of models within a single hybrid simulation framework. Our hypothesis is
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that such an approach can provide a sound simulation foundations and machinery while simplifying the
typical workflow of model-based design and simulation-based testing of hybrid controllers for UAVs.

In this work we model the hybrid control architecture used in (Zudaire et al. 2020) and simulate it for
several missions taken from the literature. We show that with our unified approach we were able to achieve
simulation speed-ups up to one order of magnitude above our previous SITL-based simulation setup.

2 BACKGROUND

2.1 Hybrid Control Architectures

Hybrid control architectures (e.g., Zudaire et al. (2020) and Kress-Gazit et al. (2008)) structure the
software in three distinct layers with different control notions. Figure 1, which represents the architecture
of a simulation model, also helps with visualizing how the three software layers interact for the specific
scenario of a UAV Hybrid Control System:

• Discrete Event Layer: Here we find a high-level discrete event controller that is the output of
a synthesis algorithm. The algorithm’s input is a mission specification and discretization of the
robot’s capabilities and sensors. The controller is responsible for calling commands as they become
enabled and process any incoming events as they occur.

• Hybrid Control Layer: This layer provides the translation between the high-level discrete event
controllers and the lower-level feedback controllers and actuators, doing complex computations
when required (e.g., motion planning to avoid static and/or dynamic obstacles).

• Robot Layer: In addition to the hardware, this layer has the feedback loops for controlling
continuous variables related to movement and other capabilities (e.g., height stabilization, speed
control and payload deployment).

2.2 DEVS for M&S of Hybrid Control Systems

Modeling and simulation of Cyber-Physical Systems (CPS) involves the combined modeling of continuous
and discrete time signals and of discrete events. Continuous variables typically describe the physics
governing the system, while discrete time and discrete event variables describe the digital parts.

Continuous time systems are usually represented by sets of ordinary differential equations (ODEs) for
which the classical numerical approach is to discretize time by means of discrete-time solvers (Cellier and
Kofman 2006). Yet, the discrete time base chosen for solving an ODE does not necessarily match with
that of other clocked signals or unclocked discrete events pervasive in CPS. From the point of view of an
ODE numerical solver, any event occurring in-between discrete time steps represents a discontinuity, that
needs to be correctly and efficiently detected and solved. All discrete-time solvers (DTS) must incur in
expensive iterative algorithms to hit a discontinuity, reset their clocking and restart the simulation from
there. Although possible, this strategy does not scale well.

A dual to the traditional idea of time discretization is state-quantization. This idea was first proposed
by (Zeigler and Lee 1998) and later improved by (Kofman and Junco 2001), giving rise to the Quantized
State System (QSS) family of methods (Cellier and Kofman 2006). QSS quantizes state variables instead
of discretizing time, and solve ODEs using discrete-event approximations of continuous signals. QSS
methods approximate the state variables through discrete quanta; new integration steps can only happen
whenever a state variable deviates by a predefined amount (accuracy control) from its expected solution.
Since each new step is a discontinuity in the quantized variable –strictly speaking, a discrete event– the
method is naturally able to coexist with synchronous or asynchronous discrete signals. This class of solvers
present some advantages compared to their discrete-time counterparts, highlighting stability, convergence
and global error bounds (Kofman 2004).

The Discrete-EVent Systems Specification (DEVS) for modeling and simulation is a formal approach to
represent discrete-events systems (Zeigler et al. 2018). It was shown that DEVS can represent any kind of
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Figure 1: Simulation model for the UAV Hybrid Control System: components and interaction.

discrete (time or event) system and approximate continuous systems with any desired level of accuracy (e.g.
using QSS integrators, which can be described as DEVS models). Thus, the DEVS formalism allows for
full modeling and simulation of both the continuous and discrete (time and event) components of a hybrid
CPS, as shown in (Pecker-Marcosig et al. 2017). PowerDEVS (Bergero and Kofman 2011) is the flagship
DEVS simulator for the QSS family of solvers, providing excellent performance features (Van Tendeloo
and Vangheluwe 2017), thus standing as a natural choice for CPS simulation.

3 SIMULATION MODEL ARCHITECTURE

Figure 1 provides an overview of the simulation model for our target fixed-wing UAV hybrid control system.
Note that the structure of the simulation model mimics that of the software architecture in (Zudaire et al.
2020) and contains the three abstraction layers discussed in Section 2.1. Here we can see the different
components that must be modeled (involving different formal paradigms) and their interactions.

For the Discrete Event Layer, we implement Finite State machines which can be straightforwardly
represented by DEVS (Wainer 2009). For the Hybrid Control Layer we leverage the PowerDEVS support
for writing custom atomic models and reused previously developed custom C/C++ libraries (Zudaire et al.
2020) and Python code (using a Python-C API). Finally, for the Robot Layer, we use the built-in component
engineering view common in tools such as Simulink, where feedback-controllers and differential equations
can be modeled by selecting and connecting simple boxes such as gains, integrators, math operators, etc.

In the following sections we explain how components in each layer were developed in PowerDEVS.
The end result of this process is the box view shown in Figure 2.

4 CONTINUOUS AIRCRAFT DYNAMICS

We use as a reference the model presented in (Azocar and Valasek 2014): a high fidelity, non-linear model
for fixed-wing aircrafts. The model consists of first-order differential Motion Equations and a set of function
structures to model the Aerodynamic forces and moments. We stress the capability of the DEVS formalism
to represent in full detail the complex non-linear continuous dynamics of an aircraft, for which we offer
details below.
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Figure 2: PowerDEVS simulation model

4.1 Motion Equations

This model consists of multiple non-linear differential equations. As an example we show one of the
rotational equations of motion relative to the moving aircraft frame:

q̇ =
q∞ ·S · c ·Cm− p · r · (Ixx− Izz)− Ixz · (p2− r2)

Iyy
(1)

Equation (1) shows the evolution of the (locally-referred) angular velocity q (Y axis), and its dependence
on several construction parameters of the aircraft (S,c, Ixx, Iyy, Izz, Ixz), the atmospheric coeficient q∞, the
aerodynamic moment Cm and other dynamic variables of the model (p,r). This equation together with
similar ones for the angular velocities p and r can be easily implemented in PowerDEVS as shown in
Figure 3a. Many of the construction parameters of the aircraft (mass, cord length c, wing surface area
S) can be measured directly from the real aircraft. Remaining parameters (i.e., the inertia tensor) were
obtained from the SolidWorks model of the vehicle shown in Figure 4a.

4.2 Aerodynamic & Propeller Model

The work in (Azocar and Valasek 2014) provides modeling relations between the aerodynamic forces
(CX ,CY ,CZ) and moments (Cl,Cm,Cn) and dynamic parameters from the aircraft (speed V , sideslip angle β ,
angle of attack α , rudder δr, aileron δa and elevator δe angles, etc.). As an example we show the relation
for the Cm moment (Y axis):

Cm =Cm0(α,β )+Cmδe
(α,δe)+

c
2V
·Cmq(α) ·q (2)

These aerodynamic relations were obtained by means of simulation using the SolidWorks model shown
in Figure 4a together with its Flow Simulation toolbox which allowed us to create flow conditions with
controlled parameters as shown in Figure 4b. The result was a table of derivatives for every Ci, such as
Cm0(α,β ), Cmδe

(α,δe) and Cmq(α) of equation (2), which were implemented in PowerDEVS as a static
function which performs a linear interpolation for every external event.
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(a) (b)

Figure 3: PowerDEVS block-oriented interface. (a) Differential Equations for equations of motion, (b)
Difference equations for Discrete-time aircraft’s roll controller.

(a) (b)

Figure 4: (a) SolidWorks model for the aircraft, where control surfaces (ruddervators and ailerons) are
shown in red. (b) SolidWorks flow simulation output (velocity profile) for a stream of 15 ms−1 and α = 15◦.

The 10′′×6′′ propeller model was taken directly from the manufacturer’s specifications and performance
data, which provides a relation between the thrust and the engine shaft speed. Here we made a minor
simplification, ignoring the internal (very fast) dynamics of the Electronic Speed Controller present in the
real aircraft and connected its output directly to the engine shaft speed through a gain.

5 FEEDBACK-CONTROLLERS

Complex non-linear feedback-controllers are the main components of a UAV autopilot. These controllers
live in a mixed-domain, where most control laws are continuous in nature (or discretized for a fixed
time step) but with many event-driven aspects such as the waypoint guidance controller, where different
control policies are applied depending on the proximity and history of the aircraft regarding the waypoints.
Modeling sensor or actuator dynamics is similar in essence to modeling the dynamics of the aircraft. Since
these components have fast dynamics, we provide simplified Sensor and Actuator implementations.

We modeled and implemented in PowerDEVS most of these controllers exactly as in the ArduPilot control
diagrams, namely: sideslip, roll, pitch and waypoint guidance controller. We made minor modifications
to reduce development time, replacing the joint height and speed controller (i.e., Total Energy Control
System) with two independent PID controllers as shown in Figure 1.
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Except for the waypoint guidance system, we implemented the controllers using the component
engineering view of PowerDEVS which allows for fast and easy implementation. We show as an example
the roll controller implementation in Figure 3b. The waypoint guidance system was implemented in Python
and embedded within the PowerDEVS simulation, which allowed us to reuse previously developed modules.

6 HYBRID CONTROL LAYER & DISCRETE EVENT LAYER

Key components of the Hybrid Control Layer are the Iterator and Motion/Path Planner modules. They are
responsible for most of the two-way discrete/continuous conversions between the top-level Discrete Event
Controller and the low-level continuous Feedback-Controllers. We also implement an auxiliary Low-battery
Sensor showing how discrete threshold-like hybrid sensors can be easily incorporated and simulated.

6.1 Iterator

The key component of iterator-based mission plans consists of an iterator data-structure. An iterator is an
abstract data type that manages a set of cells derived though the discretization of a region (the approach is
oblivious to which discretization method is used). The iterator is initialized with a current element c set
to null. An API is provided that works similarly to high-level languages:

• has.next?: Queries if there are remaining elements in the iterator which have not yet iterated over.
If there are, it returns yes.next, otherwise returns no.next.

• remove.next: Removes the current element from the iterator and selects a new current element from
the remaining list or null if there are no more elements.

• reset: Resets the iterator inserting again all the removed elements.
• go.next: Commands the Motion/Path Planner to go to the location currently selected.

For simplicity, we model this API using the FSM shown in Figure 5b, allowing for easy integration
with the Discrete Event Controller. We implemented this behavior in PowerDEVS by translating the FSM
to a DEVS atomic model (Wainer 2009) and integrating the action remove.next into has.next? since usual
specifications of iterator-based missions involve removing (remove.next) after each has.next? (Zudaire et al.
2020). The set of cells is read from a CSV file at the beginning of the simulation. An important component
related to the iterator that we chose not to model was the location sorter, as it does not add new layers of
continuous/discrete interaction nor helps showcase new features from PowerDEVS.

6.2 Motion/Path Planner

This module is in charge of computing a sequence of waypoints that allows the aircraft to reach a
target location. The Motion/Path Planner is a hybrid dynamic submodel, interfacing mostly continuous (or
discrete-time) and discrete event submodels. The PowerDEVS implementation receives the aircraft position
and orientation consisting of QSS signals from the Robot Layer, and interfaces with the Discrete-Event
Controller, Iterator and Abort Module through discrete events.

We leveraged the fact that PowerDEVS is written in C++ to include straightforwardly, within a DEVS
atomic model, the exact same code module that runs onboard the real UAV in (Zudaire et al. 2020), which
is written in C. This module computes a Dubins Path (Song and Hu 2017) from the current to the target
location and discretizes it into a series of intermediate waypoints for the UAV. Some of the parameters of
the algorithm are the turn radius, heading and arrival direction. The latter can be set to a parallel mode
(i.e., forcing arrival directions parallel to one of the grid axis) or to a minimum distance mode (i.e., setting
an arrival direction that minimizes the flight distance). The parallel mode usually provides more orderly
flight paths while the minimum distance mode can result in shorter trajectories when the mission involves
visiting fewer locations.
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(a) (b)

Figure 5: (a) Discrete-Event Controller. (b) Iterator. Note: Dashed-lines denote controllable actions and
continuous lines uncontrollable events.

6.3 Discrete Event Controller & Auxiliary Modules

We modeled typical iterator-based controllers synthesized for missions described in (Zudaire et al. 2020).
We purposely reduced the number of model states for these controllers to facilitate its manual implementation
in PowerDEVS, given the proof-of-concept nature of the current approach. Yet, the automatic generation
of DEVS models from FSM specifications of controllers is possible (a full integration of the controller
synthesis algorithms with generators of DEVS models for PowerDEVS will be the subject of future work).

In Figure 5a we show an example of a simplified controller for a mission that consists of visiting all
the locations in the iterator and aborting the mission either because there are no remaining locations to
visit or a low battery (low.bat) event occurs.

For testing purposes we modeled a very simple Low-battery Sensor as a step function that generates
a low.bat event at predefined timestamps. We modeled the Return To Launch (RTL) Module to command
the Motion/Path Planner to return the aircraft home, i.e. to a known user-defined (x,y) coordinate.

7 SIMULATION RESULTS

We first report on the assessment of the simulation model for the Robot Layer. We then report on the
inclusion of the remaining layers and a mission run to cover a simple rectangular area with no obstacles nor
no-fly zones. This mission is a classical example of the typical mapping application for an UAV, and at the
same time represents a kind of mission that makes good use of an iterator-based planning approach (i.e.,
universally quantifiable locations). We assume a discretization of the coverage area into a set of rectangular
non-overlapping cells of 50m×50m.

7.1 Model Validation

In this section we aim to show the realism achieved for the Robot Layer. We use logged data from a real
flight of the UAV executing a find mission as described in (Zudaire et al. 2020) (see Mission video (2019))
and fed the flown waypoints to the Waypoint Guidance Controller in the PowerDEVS simulation, setting
the speed and height references with appropriate values.

We selected two sections of the mission to show both straight and turning paths. Without any modification
or adjustment to the simulation we obtained the results shown in Figure 6a and Figure 6b. A great degree
of similarity is observed between the real and simulated UAV trajectories, where the maximum difference
observed was of 12 m. We note that the modeling assumptions and simplifications made for the speed and
height controllers (described in Section 5) did not impact significantly in the accuracy of the simulated
path (both speed and height references are kept constant during both the real and simulated flights).

Given the purpose of this work, we believe that further model validation is not required. However,
validation of the inner parts of the Robot Layer (e.g., the Continuous Aircraft Dynamics) can easily be done
by replacing the inputs to the corresponding block with the respective measured inputs from the real flight
in a open-loop fashion (special care must be taken to select short enough time-windows, as the non-linear
dynamics of a fixed-wing aircraft are very unstable as described in (Cook 2013)).
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(a) (b)

Figure 6: (a) First section validation. (b) Second section validation. In both, real and simulated paths are
shown in purple and green respectively, red marks are the waypoints and the acceptance radius is ≤ 40m.

7.2 Coverage Mission

In Figure 7 we show the trajectory of a simulated mapping mission. Between two consecutive locations,
multiple waypoints are generated by the Motion/Path Planner. Locations were fed to the iterator in a
zig-zag order emulating the behaviour of the sorter component described in (Zudaire et al. 2020). Note
that after every straight line, the Motion/Path Planner computes a looping trajectory (with a 65 m turn
radius) to correctly arrive at the next line of locations with an arrival direction parallel to the grid axis.
Also, once the aircraft reaches the final location and in absence of a next location to feed the Motion/Path
Planner, the Discrete-Event Controller directs a return to home through an rtl command. Albeit simple,
this mission demonstrates the correct behavior of the full Hybrid Control System in a simulated scenario.

Figure 8 depicts a variation of the previous mission, where a low.bat event may be generated by the
Low Battery Sensor at one point of the simulated trajectory. Upon receiving the event, the Discrete-Event
Controller sends an rtl command forcing the aircraft to turn right to return to home. This mission demonstrates
how other non-movement related modules may be added into the model with minimal variations in the
model architecture (see Figure 1) and minimal impact in the simulation performance.

Both no.next and low.bat are state-dependent discrete events that might appear at any time on a continuous
time base depending on several factors (such as the region already covered, environmental conditions, etc.).
Such events impose discontinuities to the numerical solution of the underlying differential equations in the
system that are treated transparently from the modeling perspective (i.e., no special care is required when
modeling) and efficiently from the simulation perspective (the DEVS-based QSS solver detects correctly
the discontinuity at the exact timestamp with negligible computational cost).

8 DISCUSSION AND RELATED WORK

The simulation of UAVs and their associated missions can be approached in several ways, resorting to varied
available toolkits. Some are typically used as a backend that simulates the continuous variable dynamics
of the robots (e.g., Gazebo, JSBSim, ArduPilot), which are later interfaced with external middleware for
robotic applications (such as ROS (Sagitov and Gerasimov 2017)) or Mission Planners (e.g., MAVProxy).

It was recently reviewed in (Hentati et al. 2018) that no single UAV-specific tool allows for implementing
the full hybrid system; while some tools are intended for flight dynamics simulation, others focus on flight
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Figure 7: Coverage mission. Figure 8: Mission with a low-battery alarm.

planning simulation. This can be seen as a natural split, a consequence of the inherently different concerns
that dominate in the discrete and continuous domains.

Yet, when resorting to interfacing heterogeneous tools, coherent time management and event synchro-
nization among simulators (or between a simulator and external piece of code) becomes a key issue and a
challenge, impacting both on simulation accuracy and simulation performance.

In fact, in our previous experiences using an interfaced MAVProxy+ArduPilot SITL strategy for the
full hybrid controller, synchronization losses between processes and threads kick in at a 7× speed-up factor
(7 times faster than the real flight time) even when processor usage is never higher that 70% for each
core on a Linux i7 3.5 GHz 12 GB laptop. This means for example that discrete events such as the arrival
at a location (arrived) occurs when the simulated UAV is already several meters past the arrived location,
leading to the Motion/Path Planner calculating a trajectory with wrong data that later causes the UAV to
completely miss its next target location.

In this context, co-simulation middleware are usually a reliable solution, as they provide sound time
and event synchronization guarantees in a tool-agnostic fashion: it is only required that the set of connected
simulators implement the proper co-simulation interfaces. Salient technologies in this area are FMI
(Functional Mock-up Interface) and HLA (High Level Architecture). Note that ROS (Sagitov and Gerasimov
2017), the popular Robot Operating System for interconnecting modules in robotic applications, is neither
a co-simulation middleware nor an operating system with scheduling guarantees. Examples for ArduPilot-
based UAVs are FlyNetSim (Baidya et al. 2018) (a middleware to interface ArduPilot with the ns-3 network
simulator) and (Barros et al. 2016) that considers HLA to link SITL/ArduPilot with the Ptolemy toolkit.

Meanwhile, general-purpose all-in-one toolkits, such as Matlab/Simulink, offer the possibility of
integrative hybrid simulation of UAVs by means of collections of proprietary plug-ins (or toolboxes) such
as the Aerospace Blockset, FlightGear and/or StateFlow. They are expected to interact relying on the Matlab
core engine that is in charge of resolving the synchronization of continuous, discrete time and event-based
signals. In this case the algorithms that handle such orchestration are not available as they are part of a
commercial product. For a comparison between Matlab/Simulink and JSBSim for flight dynamics please
refer to (Cantarelo et al. 2016).

A crosscutting aspect present in all these tools is that they use time slicing-based integration algorithms
to approximate the solutions of the continuous parts. This represents as a second challenge: the correct and
efficient treatment of complex interactions between discrete events and the discrete time approximations
of continuous variables (i.e., the numerical solutions of differential equations). In this context, the arrival
of a discrete event represents a discontinuity that calls for expensive iterative algorithms to correctly
re-synchronize the discrete and continuous parts.
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Quantization-based integration algorithms such as QSS stand as naturally suitable for such hybrid
setting (see Section 2.2) as they solve differential equations by means of sequences of discrete events. See
(Migoni et al. 2012) for a comparison between time slicing vs. state-quantization in the context of hybrid
systems. QSS typically outperforms time slicing solvers in systems with very frequent discrete events.

In (Camus et al. 2018) the authors adopt a strategy for hybrid CPS modeling and simulation resorting
to DEVS and QSS while considering also co-simulation using the FMI standard.

As mentioned in Section 2.2, PowerDEVS (Bergero and Kofman 2011) is a natural option to use
DEVS with QSS. As with most DEVS-based tools, libraries of reusable components can be developed for
discrete event, discrete time and continuous simulation. Like in the Matlab/Simulink case, it represents
an all-in-one approach, avoiding extra layers of communication among heterogeneous controllers, or the
adoption of an extra middleware for co-simulation. This aspect eliminates potential risks of synchronization
mismatches and reduces simulation overheads due to extra communication delays. Also, the correct and
efficient orchestration of events is granted by the DEVS abstract simulator, which implements a well-known
formalism. In (Pecker-Marcosig et al. 2017) we used PowerDEVS to simulate a hybrid controller (matching
the layers of Figure 1) that stabilizes a UAV for data collection from ground sensors, but without modeling
a path plan nor individual movements between patches of sensors.

Regarding performance, in our approach simulation speed-up is mainly limited by the hardware resources
and by the efficiency of the underlying DEVS core engine. As a given real system admits many possible
DEVS models, modeling decisions can affect also performance such as the degree of modularity and levels
of hierarchy adopted. In this work we privileged model readability by a one-to-one mapping between
DEVS modules an their real system’s counterparts. This comes at the price of extra messaging impacting
performance. Yet, even in this setting where performance is not a modeling goal, we achieved a 50× speed-up
with room for performance improvements by applying standard techniques such as model flattening.

In Table 1 we show a comparison of a non-exhaustive set of commonly used UAV-related simulators
for several relevant aspects, showing the main features of our approach.

9 CONCLUDING REMARKS AND FUTURE WORK

In this paper we presented a unified and flexible DEVS-based toolkit for modeling and simulation the full
stack of a hybrid control architecture (discrete, hybrid and continuous) targeted for a fixed-wing UAV. We
then validated this tool against logged data from a real flight and simulated a typical high-level mapping
mission, returning home after an rtl command.

Our simulator built on PowerDEVS is capable of managing all dynamics (discrete event, discrete time
and continuous) involved in the hybrid system. We simulated from differential equations representing
continuous dynamics of the aircraft on the bottom using QSS integrators to the FSM for the discrete event
controller on the topmost layer, going through the different control notions. Either by linking a graphical
representation of DEVS atomics or describing its behavior in a written manner, both approaches rely on
well established formal guarantees provided by the formalism. To the best of our knowledge this is the

Table 1: Comparison of simulators for UAV-related applications. Aspects: Native 3D Animation, Integration
Algorithm, Licensing, Hybrid Simulation capabilities, ROS Integration, Block-oriented, Unified.

Simulator 3D Anim. Integ. Alg. Licensing Hybrid Sim. ROS Integ. Block-or. Unified

Gazebo X DTS Apache ×* X × X**
JSBSim × DTS LGPL × ×* × ×
Simulink X** DTS Proprietary X X X X
ArduPilot × DTS GPL × X × ×

PowerDEVS × QSS LGPL X X X X
(*) by default. (**) not generally used this way.
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first time that a highly detailed model of an UAV and its associated discrete-event and continuous variable
controllers is built under the DEVS formalism.

We presented a non-exhaustive list of general-purpose robot and UAV simulators and some useful
middleware technologies to interconnect different tools so as to cover all the layers required for hybrid
control. Our unified approach allows for simulation speed-ups of up to one order of magnitude above our
previous middleware-based simulation setup. An additional benefit of the choice of a single simulator that
can provide strong simulation performance paves the way for running on-board in-flight simulations. We
aim at running faster than real-time simulations on a modest processing hardware, allowing for in-flight
evaluation of alternative mission outcomes and selection of planning options based on simulation outputs
(e.g., predict potential mission failures and deploy a fallback plan).

Finally, its modular design leaves room for several improvements and the incorporation of additional
features, such as an energy-consumption model, as well as automatic detection of critical remaining battery
for the aircraft. Wind models might also be incorporated to test the effect of wind gusts on a mission/flight-
plan and the interplay between the aircraft and its environment. Additionally, we hope to achieve full
integration between the synthesis algorithm in (Zudaire et al. 2020) and PowerDEVS.
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