
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D'Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

RESTRAINING COMPLEXITY AND SCALE TRAITS FOR COMPONENT-BASED
SIMULATION MODELS

Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University
Tempe, AZ, 85281, USA

ABSTRACT

From understanding our distant past to building systems of future demand having useful simulations.
Standing in the way, however, is the twofold challenge of complexity and scale traits inherent to modeling
and simulation lifecycle. We describe these traits in view of developing discrete event models as well as
conducting experiments on them. We shed light on the concepts and methods that can help tame both
structural and behavioral aspects of modeling and simulation complexity and scale needs. We demonstrate
a realization of managing simulation executions and experiments in the DEVS-Suite Simulator supporting
parallel component-based and cellular-based agent-based models. For developing families of system-
theoretic models, we demonstrate modular, component-based structural modeling as well as state-based
behavioral modeling in the Component-based System Modeler and Simulator (CoSMoS). We conclude by
discussing future research directions focused on complexity and scale challenges facing heterogeneous
model composability for systems of systems, cyber-physical systems, and Internet-of-Things.

1 INTRODUCTION

It is well known that our world is continually growing in scale and complexity. Some early prime examples
include embedded software systems and computer networks which led to the Internet. Other examples are
manufacturing and logistics meeting the needs of societies at large. Transportation and financial systems
also have kept pace with ever more demand. In recent years, there is unprecedent ways in which engineered
systems are combined with physical worlds including humans (see Figure 1). It is, therefore, not unexpected
for scale and complexity of systems to have many fold increases. Of course, dependency of these first-order
increases results in second and higher order increases in scale and complexity. These kinds of “connected
systems” have already led to smart cities demanding driverless vehicles operating in infrastructures rich
with many kinds of sensors, actuators, and computational and physical systems.

Numerous challenges face state-of-the-art principles, methods, tools, and practices necessary for
understanding, analyzing, designing, implementing, evaluating, and operating such Cyber-Physical
Systems. Development of sophisticated individual and collective computational, physical and natural
systems depends on fundamentally new ways of thinking about modeling, simulation, model checking,
verification, and validation (Davis and Bigelow 1998) (Sargent 2005, Whitner and Balci 1989). Among
these, modeling is a principal barrier which affects simulation, model checking, and evaluation (see Figure
1). This is because data that underlies all models have to be formulated into structures and behaviors for
natural, physical, or combinations thereof. The conceptual, mathematical, and computational representation
of structure and behavior vary significantly as measured in terms of their scale and complexity traits.
Generally these intertwined traits are bound to different kinds of structures and behaviors. These traits can
also be ascribed to and essential to the models representing existing and futuristic systems of systems which
embody Internet-of-Things, Cyber-Physical Systems, and built and natural environments.

Sarjoughian

In this paper restraining complexity and scale of systems is aimed at model development lifecycle.
Software complexity and scale of simulation and model checking engines are lightly covered. Similarly
complexity and scale for developing the experiments (e.g., Experimental Frame (Rozenblit 1991)) required
for evaluating models (i.e., verification and validation) is examined from the vantage point of formal, visual,
and persistence component-based structural and behavioral modeling applied to set-theoretic DEVS
simulation (Wymore 1993, Zeigler, Praehofer and Kim 2000). These are exemplified using CoSMoS and
DEVS-Suite tools.

Figure 1: Models as the core artifacts for simulation, model checking, and evaluation activities

2 SCALE AND COMPLEXITY TRAITS

There exists descriptions for both scale and complexity. There are multiple meanings for scale. In the
context of this paper, scale refers to sizes of some system model and any parts thereof including their
relationships. As a quantitative measurement it can, for example, represent the number of parts of a model.
The number of parts may also be measured as a qualitative measurement when it becomes impossible or
impractical, for example, to count the number of parts or the number of ways the parts may interact with
one another. Complexity broadly refers to the idea that things are difficult to understand. It is related to
things being complicated and having hidden innerworkings. Computational complexity theory classifies
the degree of difficulty of finding solutions to algorithms relative to their scales. More generally
architectural complexity can be used to define physical, computational, and natural systems. It is useful to
represent architectural complexity in terms of the following six attributes:

 Frequently, complexity takes the form of a hierarchy, whereby a complex system is composed of
interrelated subsystems that have in turn their own subsystems, and so on, until some lowest level
of elementary components is reached.

 The choice of what components in a system are primitive is relatively arbitrary and is largely up to
the discretion of the observer of the system.

 Intra-component linkages are generally stronger than inter-component linkages. This fact has the
effect of separating the high-frequency dynamics of the components – involving the internal
structure of the components – from low-frequency dynamics – involving interaction among
components.

 Frequently, complexity takes the form of a hierarchy, whereby a complex system is composed of
interrelated subsystems that have in turn their own subsystems, and so on, until some lowest level
of elementary components is reached.

 The choice of what components in a system are primitive is relatively arbitrary and is largely up to
the discretion of the observer of the system.

 Intra-component linkages are generally stronger than inter-component linkages. This fact has the
effect of separating the high-frequency dynamics of the components – involving the internal
structure of the components – from low-frequency dynamics – involving interaction among
components.

Sarjoughian

Structure and behavior of any given system are two of its fundamental characteristics. Each can be
considered to have scales. Considering systems that have parts and connections, its structural scale can be
easily measured. Behavior of a system may also be quantified. A system’s primitive and compound
operations can be considered to represent its behavioral scale. Similarly, complexity applies to both
structure and behavior. Below two examples will be detailed in terms of their structures and behaviors
characterized with scale and complexity traits.

As illustrated in Figure 2, structure, behavior, scale, and complexity may relate in a variety of ways to
one another. Structural and behavioral scales may be quantitative or qualitative. Structural and behavioral
scales are usually understood to refer to countable, natural numbers. Complexity is often viewed to be
qualitative. A system can have small scale and low complexity for both its structure and behavior. Many of
today’s systems, however, have large scale and high complexity traits spanning both their structures and
behaviors. Figure 2 shows that other possibilities exist.

Figure 2: System structure and behavior characterized with scale and complexity traits

2.1 Structure and Behavior Scales

A sensor has a trivial structure – i.e., a glass tube filled with mercury and having a finite set of numbers
printed on it. This sensor can measure temperature of some material placed in a device. It has few parts and
they do not interact with another (e.g., the glass tube has no interaction with the mercury and the
measurements on the tube). It has one operation. Its structural scale can be considered to be three. Its
behavioral scale can be considered to be one.

A switch in a networked system has many parts (e.g., buffers and a router) with compositional
(sub)structures. Each switch can have several input and output ports connected in a variety of patterns (e.g.,
mesh). For such systems, structural scale refers to both the number of parts and their connections. Thus the
structural scale of the switch is high relative to that of the sensor. A switch behaves in many ways. Behavior
of the switch involves those belonging to its parts. The behaviors of these parts interact with another under
strict physical and time restrictions. Although parts such as buffers and router behave in limited number of
ways, together they produce many kinds of behaviors. The behavioral scale of switch is larger than that of
the sensor. The structural and behavioral scales of sensor and switch are considered to be small and large,
respectively.

2.2 Structure and Behavior Complexities

The sensor’s structure is simple. Its behavior is also simple. These observations is not surprising given the
sensor’s structure and behavior scales. As such sensor has trivial structural and behavioral complexity. In
contrast, the switch can have a complex structure depending on its parts and their connections to one
another. Complexity is low for a structure having very few kinds of parts and synthesized using basic
connectors in a uniform pattern such as mesh. If on the other hand the switch has many different types of
parts and they are connected in arbitrary patterns with varying kinds of connectors, complexity is high.

Sarjoughian

Behavioral complexity of the switch is complex as dispatching of packets arriving from some switches to
other switches depends on conditions of the sending and receiving switches, status of the connectors
between the switches. For example, if packets leave and arrive randomly and at different time instances,
the some packets may have to be stored for later dispatching. As the number of switches increases, the
behavioral complexity, for example, of a 10×10 network, rapidly grows. Similarly, the number and type
of connectors can cause behavioral complexity to fall or rise.

The above concepts applies to systems such as coupled human-natural systems. Relatively small
number of agents representing humans have complex individual and collective behaviors. Very large
landscapes represented as cellular automata can have simple behaviors. In the domain of Internet-of-Things,
computing platforms having tens of processors have high scale and high complexity traits. Quantifying and
qualifying these traits are especially challenging to better understand, build, and operate heterogeneous
systems. As such scale and complexity traits for developing heterogenous component models can be tamed
using state-based and activity-based behavioral modeling methods (OMG 2004), but not in a
straightforward manner using mathematical formalisms.

3 MACRO MODEL DEVELOPMENT AND EXECUTION LIFECYCLE

Understanding and predicting the structure and behavior of any non-trivial system of systems require having
a process such as shown in Figure 3. At the core of this process is conceptualization as a collection of
models (abstraction) targeted toward specific goals. Reaching each goal must eventually lead to satisfying
some requirements. The models are needed for simulation and model checking. That is to say, certain
models are suitable to be implemented and validated. Implementations for some other models are suitable
for verification. Figure 3 shows each abstraction is necessarily limited in purpose. This can be simply
understood by observing, for example any mathematical specification. Each abstraction can lend itself to
one of many implementations which means the abstraction is incomplete and necessarily must be
transformed to one or more other abstractions useful for implementation. Continuing with simulation and
validation stages, developing other abstractions become necessary. Similarly, model checking and
verification demand yet some other abstractions that can satisfy their interrelated needs. It is helpful to note
modeling in Figure 3 is purely for simulation and model checking with validation and verification.

The macro level model development and execution lifecycle can be divided into two lifecycles. One
has abstraction, implementation, simulation and validation. Another has abstraction, implementation,
model checking and verification. For scalable, complex systems, these two processes individually and
together are necessary since neither is sufficient, for exploring and building Systems of Systems.

Figure 3. Model development process cycle for simulation and model checking purposes

Sarjoughian

 Model repositories supporting iterative, incremental structural and behavioral model
specification

 Formulation of experiments and their role in simulation and model checking. Detail on model
validation and verification. Brief note on accreditation of models.

 Model execution lifecycle as related to simulation and model checking algorithms. Brief note
on different computing platforms.

 Scale and complexity metrics for structural and behavioral models

4 MICRO MODEL DEVELOPMENT LIFECYCLE

Abstractions for systems can be created using figures, formal specifications, and programming languages.
These abstractions can be classified in many ways. For example, the classification shown in Figure 4
distinguishes some of the fundamental different ways of describing, specifying and implementing
abstractions. It is useful to note that the kinds of methods within and across each categories may have no
or some relationships to another. For example, a diagram could be a figure that has no (full- or semi-formal)
syntax and semantics. On the other hand implementation of a model in a programming language can be
generated from some combination of UML diagrams and DEVS formal specifications using meta-modeling
Model-Driven Architecture (MDA) and the Eclipse Graphical Modeling Framework starting from
conceptual to mathematical, to computational models. It is also important to note that to date there exist no
complete set of modeling methods that automatically can specify arbitrary behavior of systems (e.g., CPS)
with transformation from one of abstraction to another.

In effect implementations in programming languages are also models just as the conceptual and
computation models are.

Figure 4. A simple classification for modeling methods with frameworks

4.1 Formal specifications

There exist a variety of methods for specifying behavior of dynamical systems. One early method is known
as Labelled Transition System (LTS) (Keller 1976). It is specified as 〈 , , →〉 where is a set of states,
is a set of labels, and→ is a set of state transitions. The state transitions form a labeled graph consisting of→⏞ℓ where , ∈ and ℓ ∈ . To account for time, Time Automaton (TA) (Alur and Dill 1994), a

more expressive labeled graph, is proposed. Its specification is 〈 , Κ, , , 〉 where Q is a finite set of
states, Κ is a finite set of actions, is a finite set of clocks, ⊆ ×Κ× ()×℘()× is a set of
transitions with () being a set of Boolean constraints on clocks, and ∈ being an initial state. Every
edge = (, , , ,) ∈ where ∈ Κ , ∈ () is a guard condition, and is a clock reset. Yet
another method is called Discrete Event System Specification (DEVS). This specification, unlike all other
formal methods, has a concept called elapsed time. As a consequence, state changes are classified into the
distinct external and internal transition functions. The specification 〈 , , , , , , , 〉, as in

Sarjoughian

the Labeled Transition System and Timed Automaton, allows defining state transitions. In this
specification, input and output are events occurring at arbitrary monotonically time instances. There may
be some bag of output events (possibly empty) that can occur only after receipt of bag of input events
(possibly empty) . The external transition function () is specified as × → where =(,), ∈ , ∈ (), internal transition function () is specified as → , the output function is
defined as → , and time advance function () ∈ ℛ , . A state transition can be instantaneous or
take a positive finite or infinite time period. The confluent transition function defines resolving
concurrent external and internal transition function scheduling while guaranteeing legitimacy property. An
example specification for an atomic processor model called ProcessorQueue with a FIFO queue is shown in
Listing 1.

Listing1: A parallel atomic DEVS processor model with queue

Both Timed Automaton and DEVS are grounded in the concept of encapsulating behavior of a system
within a component having strict input modularity. The concept of component in DEVS and more generally
System Theory, unlike TA, also requires strict output modularity. Each of these modeling methods
expressed as a mathematical structure has its own operational semantics which we refrain from describing
here. Nevertheless, the main point to keep in mind is that such mathematical structures must be
complemented with execution algorithms that can account for ordering of state transitions subject to input,
state, output such that their encompassing mathematical structures are legitimate w.r.t. the cause-effect
principle, concurrency, and monotonic passage of time.

A key observation to make is that encapsulation and I/O modularity are key in taming scale and
complexity traits. This is possible because both the size (i.e., scale) and details (i.e., complexity) for the
input, state, transition, output, and timing parts can be individually formalized. This leads to taming scale
and complexity arising among these parts. In other words, the complexity of the sets, functions, and
relationships that define mathematical structure can be restrained. Scale and complexity of component’s
structure (sets) and behavior (functions and relationships) are controlled.

The above models serve as basic parts that can be assembled to specify composite (aka as coupled and
networked) models. Considering a set of LTS, they can be coupled with another as 〈(Α) ∈ , 〉 whereΑ is a finite set of LTS assigned to a set of concurrent processors , and ⊆ ∏ ∈ is a set of global
final states. It is important to note that communication between LTS is abstracted to a set of channels
between processors defined as (,), , ∈ . In the DEVS formalism atomic models can be

Sarjoughian

hierarchically coupled. Such digraph models have strict tree hierarchy where every leaf node is an atomic
model and all other models are coupled models. The mathematical structure for parallel coupled DEVS
model is defined as 〈 , , , { ∈ }, , , 〉 where and are input and output event
bags, is a finite set of unique names for the components contained in the , ∈ the set of all unique
atomic and coupled models contained in the , and , , are external input coupling, internal
coupling, and external output coupling, respectively. As in the parallel DEVS atomic model, behavior of
coupled models is governed with its own execution algorithm in combination with that of the DEVS atomic
model execution algorithm.

Returning to the scale and complexity traits, they can also be ascribed to coupled model’s structure and
behavior. Considering the DEVS coupled model, structure refers to its parts, inputs, and output, and
hierarchical structure. Its behavior refers to its couplings as the behavior of coupled models is the result of
input to input, output to input, and output to output event exchanges. The number of atomic and coupled
models, levels of hierarchy, and couplings constitute structural scale and complexity. The number and
frequency of event exchanges along with the content of events constitute behavioral scale and complexity.

In the following complexity and scale traits are detailed in terms of the structures and behaviors of
parallel atomic and coupled DEVS models. Given the universality of DEVS relative to LTS, and DEVS,
These concepts and principles apply to LTS and TA due to the relative higher expressiveness of DEVS. A
system suitable for particularizing structure and behavior from scale and complexity vantage point (see
Figure 2) is a hierarchical coupled model that has one processor with queue (i.e., shown
in Listing 1) and a flat coupled model called Experimental Frame (). This model has one Generator
() model and one Transducer () model. The former generates tasks at fixed
time intervals. The latter measures Turnaround (TA) and Throughput (TH) for the processor. The structure
and behavior specified for this so-called Experimental-Frame-Processor () with its atomic and coupled
models contain all the elements formalized for any DEVS atomic and coupled models.

4.2 Structural specification

The concepts of component and composition modeling are the basis for realizations of numerous
frameworks and tools. These are necessary since mathematical specifications such as those in the previous
section are too abstract to be automatically transformed to representations that are closer to implementation
in programming languages. This can be seen by examining, for example, the DEVS formalism. Developing
a simple model (e.g., EFP) quickly becomes impractical if its scale and/or complexity increases.
Considering scale, it is easy to see as the number of atomic and coupled models grow, it becomes more and
more difficult to know whether the model is constructed correctly. This is not unexpected since
mathematical formulations do not simply lend themselves to, for example, identifying inconsistencies in a
hierarchical coupled DEVS model. Furthermore, in general, it is important to develop a family of models
through incremental and/or iterative steps where, for example, a model of a processor is initially developed.
This model then may be specialized to two different kinds. One kind processes received tasks in a FIFO
discipline while another processes the same tasks in LIFO discipline. This trivial scenario quickly
overwhelms the process of model development that requires having alternative compositions for hierarchal
coupled models on atomic models.

The concept of having a disciplined approach to developing families of models instead of adopting ad-
hoc approaches adversely affect structural scale and complexity model development traits. It is
straightforward to observe that even though modularity of atomic and coupled models components (i.e.,
input/output ports and couplings) is necessary, it is insufficient when specialized structures (i.e.,
components having alternative input/output ports and couplings and parts) is also needed. The CoSMoS
unified visual, logical, and persistence modeling framework supports lessening structural model
development scale and complexity traits. Both of these traits can be seen in the EFP model shown in Figure
5(a). The tree and component views together enable modelers to develop one or more kinds of EFP models.
These visualized models are guaranteed to conform to the Parallel DEVS formal models. Moreover, it is

Sarjoughian

important to note that visual and persistence representations corresponding to logical representation have
different structural scale and complexity characteristics. For example, as depicted in Figure 5(a), in the
component view ports and couplings are straightforward to develop visually (there are no crossings of
couplings, components are placed diagonally) compared with SimView in DEVS-Suite (ACIMS 2016) (see
Figure 5(b)) and other similar modeling frameworks such as Anylogic (Anylogic 2017), CD++ (Wainer
2002), MS4 Me (Seo, et al. 2013), DEVS design process (Maleki, et al. 2015), and Ptolemy II (Ptolemaeus
2014). However, only one atomic model or one coupled model with its immediate parts can be seen in the
component view and specializations cannot be seen, but the tree view supports viewing multiple families
of models.

Since all models belonging to a family are individually stored in a relational database it is easy to know
individual structural metrics of any component. For the ExperimentalFrame model, it has two components,
three (one input and two output) ports, and four (one EIC, two IC, and one EOC) couplings. An alternative
model for the ProcessorQueue can be one that can process multiple tasks simultaneously. Three basic schemes
are Multiserver, Pipeline, and Divide&Conquer which are specializations of a coordinator having common
input/output ports and certain functionalities such as producing outputs as shown in Figure 5(a).

Another important need for model development is to consider every concrete atomic and coupled
models to have meta-models. In CoSMoS, Template Model, Instance Template Model, and Instance Model
concepts are introduced. The Template Model is defined to be either primitive or composite with
input/output ports. Every Composite Template Model has hierarchy of length two. The Instance Template
Model allows any Composite Template Model has hierarchy of length greater than two and specifies
multiplicity for Instance Models. The Instance Model defines instantiations of Instance Template Models.
These models conform to system-theoretic strict modular, component-based models. For DEVS,
requirements such as absence of direct-feedback in all models is checked and barred. These instance models
are generated by modeler selecting specializations for both primitive and composite Instance Template
Models.

The concepts underlying the CoSMoS framework are essential in developing families of Instance
Models that share common Template Models as well as Instance Template Model. A close examination of
the framework should reveal the role it plays in retraining scale and complexity traits far beyond developing
models for target simulators and/or model-checkers. A fundamental and unique capability of the framework
is that models are stored separately in database, XML, and programming code. All Instance Models are
generated automatically and are guaranteed to be unique in database, XML, and implementation code. The
CoSMoS tool (see Figure 5(a)) supports generating partial code for DEVS-Suite. Once the implementation
code for the models are completed, they can be simulated.

(a) Component System Modeler (CoSMoS) (b) DEVS-Suite: Simulator & Model-checker

Sarjoughian

Figure 5. Complementary frameworks and tools for component-based modeling

The partially generated parallel DEVS simulation models (referred to as Simulatable models) via the
CoSMo modeling framework require having Non-Simulatable models. The essential difference between
these kinds of models is that simulatable models, unlike non-simulatable, strictly conform to the DEVS
formalism and execution algorithms.

The UML suite of modeling diagrams (e.g., class and component diagrams) are foundational for DEVS-
Suite or other simulation engines. Example models for DEVS-Suite are bag, hashmaps, and queue. The
Non-Simulatable models are integral for developing design and implementation of the elements (e.g., state
set S, internal transition function , time advance function s and composition of hierarchical models
belonging to the atomic and coupled models.

The DEVS-Suite as a simulator supports code development using IDEs such as Eclipse. The Model-
Façade-View-Controller software architrave style. This simulation engine provides generic atomic and
coupled models with three and component views. As in CoSMoS, it provide a kind of component view and
animation. Hierarchical white/black box coupled models with atomic model components can be configured
to display state information as well as animating message exchanges between any two atomic and/or
coupled models. Although the simulation engine execution engine is scalable (e.g., executing many
thousands of implemented models), its scale and complexity traits from the standpoint of developing
families of models incrementally and iteratively (i.e., Template Model → Instance Template Model →
Instance Model cycle) are weak. Although not shown in Figure 5, the simulator is equipped with TimeView
supporting run-time generation of basic and superdense time trajectories through independent tracking of
input and output ports for any number of atomic and coupled models (Sarjoughian and Sundaramoorthi,
Superdense time trajectories for DEVS simulation models 2015). As such this simulator lends itself to
retraining scale and complexity simulation model execution, experimentation and debugging.

It is also important to note that Model Driven Architecture principle lends itself quite well for further
restraining scale and complexity through meta-model abstraction levels known as M3, M2, M1, and M0. A
realization of the DEVS-Suite (called EMF-DEVS (Sarjoughian and Markid, EMF-DEVS modeling 2012))
for structural modeling has been proposed and developed using Eclipse different Ecore models that enforce
DEVS constraints (e.g., input data type matching for the external transition function , detecting
input/output coupling mismatches, and direct feedback). An advantage of Ecore M1 and M2 meta-models
include a disciplined approach to domain-specific abstraction that are extended from their respective
domain-neutral meta-models. The MDA provides a stronger basis for generating M0 models. There exist
some important similarities and differences between DEVS-Suite, CoSMoS and EMF-DEVS concepts,
architecture, design, implementation, and capabilities. As described above, each of these satisfies certain
structural scale and complexity needs. A comprehensive discussion on the totality of these pertaining to
meeting these needs, however, is beyond the scope of this paper.

4.3 Behavioral specification

Behaviors for dynamical systems may be defined through mathematics, programming languages, and visual
notations. Each has its own benefits. Visual notation is more attractive, particularly for domain experts who
may not prefer the other approaches. Coding may be preferred by those who find solving problems through
trial and error. Yet other may find necessary to ground their thoughts in mathematics. Although code is the
end result, as systems grow in scale and complexity, coding alone is considered insufficient since it is
impractical to develop simulation models for non-trivial systems from ground up.

Considering DEVS, behavior for any atomic model is defined through , , , and
functions. For coupled models, behavior is defined through the , , and couplings. In CoSMoS,
the modelers can visually develop couplings which can be automatically translated to source code for the
DEVS-Suite simulator.

Sarjoughian

The UML Statecharts and Activity diagrams are standardized visual notation for specifying a system’s
behavior, particularly functions such as those in atomic DEVS models. At the heart of the Statecharts is the
notion of discrete states and the transitions between any two states. Parallel DEVS, unlike, UML Statecharts
explicitly accounts for time. UML Statecharts, however, has a rich visual notation. Neither DEVS nor
Statecharts is concerned with persistence modeling (i.e., storing and accessing models) as defined in
CoSMoS. Similarly, the behavioral specifications lacking in atomic and coupled DEVS formal
specifications are fulfilled using foundational UML Activity diagram provide concepts and constructs.

4.3.1 Statecharts specification

The CoSMoS framework is recently extended to support DEVS Statecharts (Fard and Sarjoughian 2015).
It uses the Eclipse EMF, an MDA-based platform supporting independent software application
development from which platform specific code can be generated. EMF distinguishes between meta-models
and concrete models. A meta-model describes the structure of the concrete model. Therefore, a concrete
model conforms to its meta-model. EMF framework allows creating, storing, and using the meta-model
using XMI and languages including Java annotations, UML, and XML Schema. This framework is used in
Graphical Modeling Framework (GMF) which provides basic entities for creating graphs consisting of
nodes, links, and labels. It can be used to define special types of graphs, such as Statecharts. GMF includes
wizards for generating intermediary graphical tools and mapping definitions based on an initial meta-model
(EMF Ecore), as well as runtime code (R. C. Gronback 2009).

Figure 6: DEVS Statecharts for ProcessorQueue

Time and ports are required in DEVS, but the handling of time, especially as required for simulation,
has shortcomings in UML Statecharts (OMG 2004). Handling concurrent events as defined in the confluent
function is not accounted for in UML. Simultaneous events are supported in UML2.0, but not in DEVS.
Ports are directly handled in the UML2.0 component model. The DEVS Statecharts support modeling the
functions of atomic model that can be specified in DEVS Statecharts as exemplified for the ProcessorQueue.
For any atomic model one or more Statecharts can be developed. For this atomic model, there are two
primary state variables (aka phases). One is for distinguishing whether or not the ProcessorQueue is active

Sarjoughian

(i.e., either has a task to process) or passive (i.e., it has no task to do). When the model is in phase Passive
and any number of tasks are received via input port in, they are added to queue in an arbitrary order. Then
the first task is dequeued and processed and after some positive, finite time period the processes task is send
out via output port out. Similarly, other self-transitions as well as transitions between phases are specified.
Figure 6 shows a partial Statecharts. The semantics of the modeling elements for DEVS Statecharts satisfy
those of the DEVS formalism.

The ability to develop multiple Statecharts for each atomic model can aid in restraining developing
behavior from both scale and complexity aspect. This is, in part, due to being able to incrementally and
iteratively specifying each of the atomic model functions. Since these Statecharts are stored in a database,
scale (e.g., number of states, number of internal and external transitions) and complexity (e.g., number of
actions per state transition) measurements can be determined. It is important to note that the formal
specification of atomic model is too abstract for specifying details compared to the Statecharts. Thus, the
level of formal specifications for atomic model functions, particularly state transitions and their
relationships, are unsuitable from the standpoint of tackling scale and complexity. Since scale and
complexity traits cannot be characterized, they cannot be measured and used for restraining the traits. With
detailed modularized specification of the functions, behavioral scale and complexity for both atomic and
coupled models can be better tamed.

4.3.2 Activity specification

Although Statecharts is fundamental to developing behavioral models, it is insufficient (Alshareef,
Sarjoughian and Zarrin 2016). This is, in part, due to limitations in specifying ordering among actions
within and between functions as well as function. Similarly, the Statecharts language is limited
in terms of specifying structures such as for-loop and fork/join controls and conditional statements.

UML Activity diagram can be used to specify details of the atomic DEVS model functions and their
relationships. The DEVS Activity modeling method has been developed and implemented in a similar
fashion as DEVS Statecharts. The DEVS Activity modeling elements are defined based on those defined
for the UML Activity diagram. Coupled model is defined using activity, expansion region, and activity
edge elements among others. Atomic model is defined using activity node, Input and value pin, output pin.
As in DEVS Statecharts, the DEVS Activity models have semantics that conform to those of the DEVS
formalism and those that are defined for UML Activity models. In other words, UML Activity modeling is
adapted and as needed extends the abstract behavior specification for the DEVS formalism.

In Figure 7, partial DEVS Activity models for the ProcessorQueue are shown. These external, internal,
and output functions illustrate defining the kinds of behavior specification lacking in DEVS formalism and
DEVS Statecharts. Once more behavioral scale and complexity of models are characterized in a
complementary fashion. These DEVS Activity models are suited for measuring behavioral traits of atomic
and coupled models which are aid in incremental and iterative model development. The resulting models
are expected to have reduced scale and less complexity, for example, by eliminating unnecessary
conditional statements and dependencies among actions.

Sarjoughian

Figure 7: DEVS Activity Modeling for state transition and output functions

5 CONCLUSION

One of the fundamental challenges in model development is to strengthen linkages among conceptual,
mathematical, and computational models. To address this need, this paper shows system theory, DEVS,
UML, MDA, EMF, and Eclipse together are able to restrain in different, complementary ways scale and
complexity inherent in developing simulation models for Systems of Systems including Cyber-Physical
Systems. Restraining scale and complexity traits is achieved through partitioned structural and behavioral
models. The DEVS Statecharts and Activity modeling afford details that are absent in the atomic and
coupled DEVS modeling formalism. The CoSMoS and DEVS-Suite are suited for tacking scale and
complexity in complementary fashion. The former supports creating families of models at component, state,
and action abstraction levels while enforcing conformance to DEVS concept and formalism. Specifics
belonging to functions of atomic and coupled DEVS models can be specified using DEVS Statecharts and
Activity modeling. The DEVS-Suite supports executing and evaluating structural and behavioral via
superdense time input, output, and state trajectories. A simple parallel DEVS coupled model is used to
establish combined structural and behavioral modeling where scale and complexity traits are characterized.
These DEVS concepts and principles directly lend themselves to discrete-time component modeling theory,
approaches, frameworks, and tools. The foundations for scale and complexity traits inherent in structure
and behavior models developed in this paper should also apply to continuous as well heterogenous models
such as cellular automata, hybrid continuous-time, discrete-time, discrete-event, and other component-
based models.

ACKNOWLEDGMENTS

TBD

REFERENCES

Alshareef, Abdurrahman, Hessam S. Sarjoughian, and Bahram Zarrin. 2016. "An approach for activity-
based DEVS model specification." Proceedings of the Symposium on Theory of Modeling &
Simulation. Society for Computer Simulation International.

Anylogic. 2017. https://www.anylogic.com/.
Davis, Paul K, and James H Bigelow. 1998. "Experiments in Multiresolution Modeling (MRM)."

RAND/MR-1004-DARPA, Rand Corporation, xvii-69.
Fard, M. D., and H. S. Sarjoughian. 2015. "Visual and persistence behavior modeling for DEVS in

CoSMoS." Proceedings of the Symposium on Theory of Modeling & Simulation, SpringSim Multi-
Conference. Washington DC: Society for Computer Simulation. 227-234.

Sarjoughian

Maleki, M., R. Woodbury, R. Goldstein, S. Breslav, and A. Khan. 2015. "Designing DEVS visual interfaces
for end-user programmers." Simulation Transactions 91 (8): 715-734.

OMG. 2004. "Unified Modeling Language." http://www.omg.org/docs/formal/05-07-04.pdf.
Ptolemaeus, C. 2014. System design, modeling, and simulation: using Ptolemy II. Berkeley.

http://Ptolemy.org.
R. C. Gronback. 2009. Eclipse Modeling Project: a Domain-specific Language Toolkit. NJ: Upper Saddle

River, Addison-Wesley.
Rozenblit, Jerzy W. 1991. "Experimental frame specification methodology for hierarchical simulation

modeling." International Journal Of General System 19 (3): 317--336.
Sargent, Robert G. 2005. "Verification and validation of simulation models." Proceedings of the 37th

Winter Simulation Conference. 130-143.
Sarjoughian, H. S., and A. M. Markid. 2012. "EMF-DEVS modeling." Proceedings of the 2012 Symposium

on Theory of Modeling and Simulation-DEVS Integrative M&S Symposium. Society for Computer
Simulation International.

Sarjoughian, H. S., and S. Sundaramoorthi. 2015. "Superdense time trajectories for DEVS simulation
models." Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium. Society for Computer Simulation. 249-256.

Sarjoughian, Hessam S., Abdurrahman Alshareef, and Yonglin Lei. 2015. "Behavioral DEVS
metamodeling." Proceedings of the 2015 Winter Simulation Conference. IEEE Press. 2788-2799.

Seo, Chungman, Bernard P. Zeigler, Robert Coop, and Doohwan Kim. 2013. "DEVS modeling and
simulation methodology with MS4 Me software tool." Theory of Modeling & Simulation-DEVS
Integrative M&S Symposium. Society for Computer Simulation International.

Wainer, Gabriel. 2002. "CD++: a toolkit to develop DEVS models." Software: Practice and Experience 32
(13): 1261-1306.

Whitner, Richard B., and Osman Balci. 1989. "Guidelines for selecting and using simulation model
verification techniques." Proceedings of the 21st Winter Simulation Conference. 559-568.

Wymore, A Wayne. 1993. Model-based Systems Engineering. Vol. 3. Boca Raton, FL: CRC press.
Zeigler, Bernard P, Herbert Praehofer, and Tag Gon Kim. 2000. Theory of Modeling and Simulation:

Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic press.

AUTHOR BIOGRAPHIES

HESSAM S. SARJOUGHIAN is an Associate Professor of Computer Science and Computer Engineering
in the School of Computing, Informatics, and Decision Systems Engineering (CIDSE) at Arizona State
University (ASU), Tempe, AZ, and co-director of the Arizona Center for Integrative Modeling \&
Simulation (ACIMS). His research interests include model theory, poly-formalism modeling, collaborative
modeling, simulation for complexity science, and M\&S frameworks/tools. He is the director of the ASU
Online Masters of Engineering in Modeling & Simulation program. His e-mail address is hss@gmail.com.

