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ABSTRACT 

With technologies increasing rapidly, symbolic, quantitative modeling and computer-based 
simulation (M&S) have become affordable and easy-to-apply tools in numerous application 
areas as, e.g., supply chain management, pilot training, car safety improvement, design of 
industrial buildings, or theater-level war gaming. M&S help to reduce the resources required 
for many types of projects, accelerate the development of technical systems, and enable the 
control and management of systems of high complexity. However, as the impact of M&S on 
the real world grows, the danger of adverse effects of erroneous or unsuitable models or simu-
lation results also increases. These effects may range from the delayed delivery of an item 
ordered by mail to hundreds of avoidable casualties caused by the simulation-based acquisi-
tion (SBA) of a malfunctioning communication system for rescue teams. In order to benefit 
from advancing M&S, countermeasures against M&S disadvantages and drawbacks must be 
taken. Verification and Validation (V&V) of models and simulation results are intended to 
ensure that only correct and suitable models and simulation results are used. However, during 
the development of any technical system including models for simulation, numerous errors 
may occur. The later they are detected, and the further they have propagated through the 
model development process, the more resources they require to correct – thus, their propaga-
tion should be avoided. If the errors remain undetected, and major decisions are based on in-
correct or unsuitable models or simulation results, no benefit is gained from M&S, but a dis-
advantage. 
This thesis proposes a structured and rigorous approach to support the verification and valida-
tion of models and simulation results by 

• the identification of the most significant of the current deficiencies of model develop-
ment (design and implementation) and use, including the need for more meaningful 
model documentation and the lack of quality assurance (QA) as an integral part of the 
model development process; 

• giving an overview of current quality assurance measures in M&S and in related areas. 
The transferability of concepts like the capability maturity model for software (SW-
CMM) and the ISO9000 standard is discussed, and potentials and limits of documents 
such as the VV&A Recommended Practices Guide of the US Defense Modeling and 
Simulation Office are identified; 

• analysis of quality assurance measures and so called V&V techniques for similarities 
and differences, to amplify their strengths and to reduce their weaknesses.  

• identification and discussion of influences that drive the required rigor and intensity of 
V&V measures (risk involved in using models and simulation results) on the one 
hand, and that limit the maximum reliability of V&V activities (knowledge about both 
the real system and the model) on the other.  

 
This finally leads to the specification of a generalized V&V process – the V&V Triangle. It 
illustrates the dependencies between numerous V&V objectives, which are derived from spe-
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cific potential errors that occur during model development, and provides guidance for achiev-
ing these objectives by the association of V&V techniques, required input, and evidence made 
available. The V&V Triangle is applied to an M&S sample project, and the lessons learned 
from evaluating the results lead to the formulation of future research objectives in M&S 
V&V. 
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1 INTRODUCTION 

The importance of modeling and simulation (M&S) is increasing constantly in numerous ap-
plication areas, including industry, academia, the military, and even public life. This cost-
effective and time-saving technology is used to gain new knowledge about a real system and 
its behavior, without requiring the real system actually to exist or to be manipulated. With the 
growing potential of M&S, the impact of decisions directly or indirectly based on simulation 
also grows – and this increases the possible worst case impact of wrong or invalid models or 
simulation results on the real world. 
There is no doubt that attention is required when relying on symbolic, quantitative models and 
computer-based simulation. Although the potential for their application has not yet been fully 
explored, non-negligible damage has already been caused by computer-based models and 
failures in control software, as the following examples illustrate: 

• The Grounding of Royal Majesty: In 1995, the Royal Majesty, a three year old ship 
equipped with a modern navigation system, strayed 17 miles off course and ran 
aground, only ten miles away from the US coast [Frankfurter Allgemeine Zeitung 
1995]. Due to fortunate circumstances the ship only grounded on mud and nobody was 
killed. Malfunction of the GPS antenna caused the navigation system to switch into 
backup mode, which used a dead reckoning model for position estimation. However, 
the effects of wind and current on the position of the ship were not taken into account 
when modeling the ship’s movement, yielding an invalid model and wrong, nearly fa-
tal position data from dead reckoning [Epstein 1997]. 

• The Pentium Bug: In 1994 an error in the floating point division of Intel’s Pentium 
Processor was detected. To accelerate floating point division, the Pentium uses a 
speedy algorithm known as Simulation ResultsT division, which requires a look-up 
table for updating the remainder [Peterson 1997]. Although the table entries were de-
termined correctly, a bug in the transfer script distorted the table that was finally used 
for the design of the processor. Five wrong entries in a table with 1066 cells caused 
Intel an approximated loss of half a billion US-Dollars. Intel did not publish where ex-
actly in the design process the error occurred. However, because an error pattern can 
be detected [Edelman 1997], it must be assumed that the transfer from the look-up ta-
ble to the design model of the integrated circuit failed, and the error was propagated 
through layout and production. Although M&S are used intensively for integrated cir-
cuit design and development, the error was not detected prior to the release of the 
processor. 

• Delay of the Denver Airport Baggage System: According to [General Accounting Of-
fice 1994], in 1994 significant mechanical and software problems plagued the auto-
mated baggage handling system of the new Denver airport. In tests of the system, bags 
were misloaded, were misrouted, or fell out of telecarts, causing the entire system to 
jam. Numerous mechanical deficiencies and software errors caused the undesired be-
havior; however, modeling errors were also identified. For example, the baggage sys-
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tem loaded bags into telecarts that were already full. After a previous jam the system 
was restarted, but initiated incorrectly, which led to an incorrect reflection of the state 
of the real system in the model used by the control software. The estimated overrun 
through February 1995 given in the report is US-$360 million, plus US-$37 million 
loss in income that the airport would have generated, if opened one year earlier, plus 
US-$86 million for the alternative baggage transportation system. Unconfirmed 
sources estimate a final overrun to date of US-$4.2 billion. 

 
This list can be easily continued. Reasons for the above failures are numerous, among them 
underestimation of system complexity, time pressure, and budget limitations. But aside from 
these very practical problems that more or less influence the design and development of any 
technical system, M&S lack a commonly accepted (and applied) methodology for quality con-
trol. This situation is not acceptable when the intended use of a model or simulation results 
has been deemed safety critical. 
To further facilitate the successful application of M&S in the military, in 1995 the US De-
partment of Defense published the M&S Master Plan, which describes the M&S objectives of 
the US Armed Forces [Department of Defense 1995]. To fully explore the benefits of M&S 
and to avoid their pitfalls, the necessity of the development of a verification and validation 
methodology for models and simulations was included in the master plan, and explicitly 
stated within Instruction 5000.61 [Department of Defense 1996]. Subsequently this necessity 
was also recognized by the NATO M&S community and included in the NATO M&S Master 
Plan [North Atlantic Treaty Organization 1998]. The need for models and simulations within 
the German Federal Armed Forces has been formulated in the “Leitlinie für Modellbildung 
und Simulation in der Bundeswehr“ [Bundesministerium für Verteidigung 2000] in 2000. The 
desired use of M&S for simulation-based acquisition (SBA) is stated in [Bundesamt für We-
hrtechnik und Beschaffung 2000]. 
For the use of M&S in industry, no master plans or official statements concerning verification 
and validation have been formulated and presented to the public so far. However, the increas-
ing time-to-market requirements imply that there also is a need for methods that enhance the 
availability of time and cost saving credible models and simulation results. 
This thesis is about verification and validation of symbolic models and results of computer-
based simulation, as will be motivated and developed in more detail in chapter 2. In the re-
mainder of this chapter, those concepts of M&S relevant to the context of this document are 
briefly reviewed to create a common base of understanding and to enhance the understanding 
of the work presented here. Then the terminology of verification and validation is introduced. 
This discussion cannot replace a complete introduction to the particular topics, and is not in-
tended to do so. 

1.1 The Role of System Theory in M&S 
In the real world numerous processes and activities take place that are determined by the enti-
ties or objects involved, their properties, their behavior, their dependencies, and their relation-
ships. These processes or activities will create new objects or entities, changes of properties, 
new behaviors, new dependencies, new relationships or new processes. Often this construct of 
entities, relationships, causes, and effects is so complex that the human mind needs to idealize 
and abstract in order to understand the real world. Among the aims of system theory is to en-
hance the understanding and mastery of complex systems. 
[Simon 1962] follows the “divide and conquer” approach and defines a complex system as 
“one made up of a large number of parts that interact in a non-simple way. In such systems 
the whole is more than the sum of its parts, not in an ultimate, metaphysical sense, but in the 
important pragmatic sense that, given the properties of the parts and the law of their interac-
tion, it is not a trivial matter to infer the properties of the whole”. In system theory the real 



3 

world is perceived as an unlimited set of parts (entities or objects), which somehow interact 
with each other. 
System theory distinguishes between system structure and system behavior [Zeigler, Prae-
hofer, and Kim 2000]. To handle system structure and to order the parts, objects, or entities, a 
hierarchical structure within the system is assumed. [Simon 1962] defines it as “a system that 
is composed of interrelated subsystems, each of the latter being in turn hierarchic in structure 
until we reach some lowest level of elementary subsystem”. To get a grip on system behavior 
he distinguishes between “the interaction among subsystems, on the one hand, and interac-
tions within subsystems – this is among the parts of those subsystems – on the other.” 
This concept of hierarchical decomposition was adopted for M&S. The structural breakdown 
of a complex system allows to a certain degree the independent analysis of its subsystems. 
This depends on the decomposability of the system. If the interaction among subsystems is of 
the same magnitude as the interactions within the subsystems, the system is not decomposa-
ble, if there are no interactions, the system is decomposable. Complete decomposability of a 
system is rare, therefore the term near-decomposability is introduced [Courtois 1981]. (Near-
decomposability means that the interactions among subsystems are weak, but not negligible.) 
To avoid confusion, in the following text the terms reality and real world will always refer to 
the world we live in, which the author considers to be real. A cutout (set of entities) from the 
real world then is called a system and is referred to as real system in the following, with a sys-
tem border between the system of interest and the rest of reality.  

1.2 Modeling and Models 
Both M&S have shown themselves to be extremely useful for understanding and managing 
complex real systems. However, a new age of M&S has begun with the rapid innovation in 
computer science and technology and its direct impact on M&S theory and practice. This sec-
tion clarifies the difference between modeling and simulation, and motivates the selection of 
the thesis focus on quantitative, symbolic models and computer-based simulation. 
Whenever one needs to communicate knowledge about a real system (teach), to understand 
the structure of and the dependencies within the real system (analyze), to estimate further de-
velopment of a given situation (prognosticate), or to create a new system (synthesis), one will 
be confronted with the complexity of the real system. It may become necessary to use a sim-
plified representation of the real system, which will be referred to as a model in the following. 
Modeling is the process of creating this desired simplified representation. Here the term 
model is used in the same sense as in [Shannon 1975] and [Schmidt 1985].  
 

Definition: A model is an abstract and idealized replication of a real system, which re-
flects all of its relevant properties with sufficient accuracy with respect to the intended 
purpose.  

 
A major feature of a model is that it is “easier” to handle than the real system itself. Reasons 
for modeling vary; models can be constructed of any real system. The real system may be  

1. completely available, examinable, analyzable, and modifiable, but it may be too ex-
pensive or time-consuming to do so; 

2. observable, but not modifiable due to, e.g., a lack of technical possibilities, danger to 
human life and/or nature, extremely high costs, or other reasons; 

3. non-existent or only partially existent; its subsystems may have properties 1. or 2. 
above. 

 
The impact of available system knowledge on modeling is discussed in section 4.1. In accor-
dance with the system theoretic approach introduced in section 1.1, during the modeling proc-
ess always only a cutout of reality is considered. A limited subset of real entities is deliber-
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ately chosen, and influences from others, which seem to be only loosely or not at all coupled 
to the chosen entities of interest are ignored. This cutout of reality interacts with its environ-
ment over the system border (environmental influences). External influences to this real sys-
tem are considered to be its input, and the observed behavior of the parameters of interest its 
output. 
During modeling, an abstract and idealized replication of the real system is created. The level 
of detail of the model is indicated by the degree or level of abstraction under which reality is 
perceived (resolution). All abstraction during examination or analysis must be conducted in a 
purpose-oriented manner, always giving consideration to the intended purpose of model use. 
If the degree of abstraction and idealization is too high, model accuracy suffers; if the degree 
of abstraction is too low, the model itself becomes too complex to be handled.  
The real system may not only be viewed at different degrees or levels of abstraction, but also 
from different perspectives. Particular properties of the real system thereby become unimpor-
tant for the intended modeling purpose and can be ignored, which leads to further decrease of 
complexity. The relevant properties of the real system are identified as attributes of the 
model, submodel, or object respectively. Additionally, processes or objects can be simplified 
by assuming ideal conditions, which also simplify their description (idealization). This free-
dom in creating a model implies that for one real system there can be an unlimited number of 
different models. There is no single solution for modeling a real system. 

1.2.1 Physical vs. Symbolic Models 
One differentiates between physical (or material) models, which have properties similar to 
those of the real system due to their material or physical construction, and symbolic models, 
which provide a textual, graphical, mathematical, logical, formal or otherwise symbolic de-
scription of the structure and behavior of the real system [IEEE 610.3 1989]. This thesis is 
restricted to quantitative symbolic models only. 

1.2.2 Symbolic Description of Structure and Behavior  
A symbolic model and its submodels (implicitly or explicitly) contain descriptions of the per-
ceived, observed, assumed, or otherwise detected structure and behavior of the real system 
and its subsystems. If no behavior description is available, the symbolic model is considered 
to be a static model, otherwise it is a dynamic model. 

• The structure description consists of all information required to completely describe 
the modeled elements of the real system and their static interdependencies. This in-
cludes the definition of all objects or entities, their attributes, submodels, the organiza-
tion of objects and submodels in submodels on the next higher level in the composi-
tion hierarchy (aggregation and de-aggregation, “has a”-dependencies), and the inheri-
tance hierarchies of objects (“is a”-dependencies).  

• The behavior description (dynamic models only) is given by the functional description 
of the dependencies between the input, the internal state, and the output of an object or 
submodel, and the interactions between the submodels on each layer of the submodel 
hierarchy.  

 
Dynamic models are the main focus of this thesis, but most of the ideas presented can be 
transferred to static models without modification.  

1.2.3 Hierarchical Decomposition 
Similar to the system-of-systems decomposition of a real system introduced in section 1.1, 
here the model is considered as a model-of-models. Submodels can be decomposed into sub-
models of the next lower level, or integrated or composed to submodels of the next higher 
level, yielding a composition or submodel hierarchy. In analogy to [Zeigler, Praehofer, and 



5 

Kim 2000], submodels which are not decomposed any further (objects or entities) are called 
atomic submodels in the following. Submodel composition is finished with the overall model 
as the highest level of integration. The composition hierarchy explains how the behavior of 
the overall model is a result of the behavior of its submodels by integrating their behaviors.  
The selection of the different levels of abstraction within a submodel hierarchy mainly de-
pends on the input and output of interest and on knowledge about the dependencies and sub-
system interactions in the real system. For example, following a top-down approach for a de-
scription of minimal complexity, if the functional dependencies between input and output can 
directly be formulated with sufficient accuracy, no further refinement is required – this leads 
to a hierarchy depth of one. Otherwise the subsystems at the next lower level of abstraction 
and their dependencies must be identified, and the model is composed of these less abstract 
submodels with their own I/O transition description, if available. The top-down decomposi-
tion process may continue until the behavior of the system can be described as the integrated 
behavior of its subsystems. Alternatively, the submodel hierarchy may be created from the 
bottom-up, starting with modeling the defined atomic subsystems and integrating them into 
submodels on higher hierarchical levels. However, the approach to the creation of the sub-
model hierarchy is only of secondary importance for the scope of this thesis; it is the existence 
of the submodel hierarchy that matters. 

1.2.4 Continuous and Discrete Models 
Symbolic models are classified as continuous models and discrete models. Whether a sym-
bolic model belongs to one class or the other depends on the domains of its input, output, and 
state parameters and the chosen representation of time (dynamic models only). If all attributes 
are continuous variables, the model is considered to be a state continuous model, and, if the 
system behavior is modeled over continuous time, the model is considered to be time con-
tinuous. Hybrid models, which combine both continuous and discrete attributes are common. 
Here, both continuous and discrete models are considered. 

1.2.5 Stochastic and Deterministic Models 
Symbolic models may also be deterministic or stochastic. If the behavior of the model and the 
model output are only and unambiguously defined by the model input and the current internal 
state, this model is called a deterministic model. If the behavior description of the model con-
tains random elements, the model is called a stochastic model. Hybrid models, which combine 
deterministic and stochastic behavior descriptions are common, and are treated as stochastic 
models. Here, both stochastic and deterministic models are considered. 

1.2.6 Representation Forms of a Model 
To deal with varying purposes of model descriptions and the necessity to communicate differ-
ent types of information about the model, three different representation forms of a model are 
distinguished here: the Conceptual Model, the Formal Model, and the Executable Model. 
Their dependencies are sketched in Figure 1. (Their developmental relationship is discussed in 
section 1.4.6 and depicted in Figure 2.) 

• The Conceptual Model describes the abstracted and idealized representation of the real 
system and holds all concepts of the model, i.e., its decomposition into interacting 
subsystems, the representation of properties of interest in the form of attributes, the 
degree of abstraction and idealization, and the rationale and reasoning that led to the 
chosen representation of the real system in the language of the model’s application 
domain. The Conceptual Model serves as communication basis between those familiar 
with the application domain of the model and the modeler, and provides insight into 
the ideas behind the model, the motivation for modeling properties, e.g., chosen sys-
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tem border, idealization, and abstraction. This insight is essential for comprehension 
and examination of the model as a representation of the real system. 

• The Formal Model is the formalized description of the Conceptual Model, compliant 
with a well-defined modeling formalism, expresses the Conceptual Model quantita-
tively and unambiguously, and thereby prepares several methods for its solution. Be-
cause the Formal Model is a solution-oriented, implementation-independent, unmis-
takable description of the Conceptual Model, it provides the basis for transformation 
of the model into the Executable Model.  

• The Executable Model technically implements the Formal Model and provides the ad-
ditional information that allows the model to be executed and operated on a computer 
or in a network of computers. The additional information includes, for example, mem-
ory allocation, variable data type declaration, calls of operating system procedures, 
and communication protocols as typically required in development and execution en-
vironments.  

 

conceptual contents

formal specification

technical implementation
 

Figure 1: Embedded representation forms of a model 

 
The stage to which a symbolic model description is developed, depends entirely on its pur-
pose. If the only purpose of the model is to visualize qualitative structural dependencies to 
support understanding and managing of the real system by giving an overview, it may be suf-
ficient to stop with the development of the Conceptual Model. For gaining any type of quanti-
tative results (quantitatively “solving the model”), formal information, which allows the ap-
plication of a well-defined (mathematical) solution technique, is added to the Conceptual 
Model, yielding the Formal Model.  
A model may be solved by several means, including analytic methods or simulation (see also 
section 1.2.6). There are advantages and disadvantages to both solution approaches, as briefly 
discussed in the following section. 

1.3 Model Solving  
If a Formal Model with a mathematical foundation is available, the model may be mathemati-
cally “solved”, i.e. quantitative results that characterize the behavior of the real system are 
calculated. Reasons for replacing the observation of the real system by a mathematical calcu-
lation of system behavior include:  

• The behavior of the real system may be too fast or slow to allow observation; 
• the behavior one whishes to examine would destroy or seriously damage the irre-

placeable or expensive real system or its environment; 
• current technology does not (yet) allow the direct observation of the behavior (the 

cause), but only of caused phenomena; and 
• the real system does not (yet) exist. 

 
Under certain given circumstances it is possible to solve a model analytically; however, simu-
lation is the more flexibly applicable solution method.  
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1.3.1 Analytic Solution Methods 
To solve a model analytically, a complete mathematical description of the model is required. 
Numerous modeling formalisms are available to support the creation of the mathematical de-
scription, for example Markov Chains or Queuing Nets [Hiller and Liebermann 1997]. Often 
based on state probabilities, characteristic values for the models can be exactly calculated or 
approximated without requiring large amounts of memory or computation power.  
However, the applicability of analytical solution methods is limited. To allow its analytical 
solution, a Conceptual Model must be transformed into a Formal Model (i.e., described ac-
cording to a formalism), for which well-defined solution methods are available. The limited 
expressiveness of the formalism and the restricted choice of stochastic input models may 
force the modeler to abstract and idealize in a manner that prohibits the inclusion of relevant 
aspects of the real system in the Formal Model [Brendel and Schäfer 2002]. In addition, even 
if the characteristics of the chosen input model support an analytical solution, and the Concep-
tual Model is properly formalized, its structure and behavior description may be too compli-
cated for analytical solution. Although there is strong tool support for analytical solution of 
specific Formal Models (e.g. SHARP, [Sahner, Trivedi and Puliafito 1998]), given the re-
quirements of industry and military discussed in section 1, the exploration of alternatives 
seems to be advisable. This document focuses on computer-based simulation, considering the 
analytical solution of a model only as a source of comparison data for the evaluation of a par-
ticular simulation approach. 

1.3.2 Computer-Based Simulation 
If an analytical solution of the model is not feasible due to the limitations of the modeling 
formalism or model complexity, or not desirable (e.g., an interactive virtual stimulus for a 
human or a technical device is required), one may approximate the behavior of the real system 
by executing the model over time, and subsequently or interactively draw conclusions about 
reality from the observed dynamic behavior of the model.  
In the context of this thesis, simulation means experimentation with a model. A simulation 
run is a single execution of the model, yielding simulation results or model output. The exe-
cution of a simulation experiment consists of a set of simulation runs, which must be well 
planned, and requires an experiment design for the model similar to the setup of a real ex-
periment. If the experiment design is unsuitable, results from simulation may not allow the 
desired increase in knowledge about the real world, or may be statistically insignificant. 
There are numerous distinct simulation methods and techniques available. The selection of a 
particular simulation method depends on the type of the model and the intended use of the 
simulation results. This thesis concentrates on computer-based simulation. Here, simulation is 
defined in analogy to [IEEE 610.3 1989]. 
 

Definition: Simulation is the execution of a model that behaves similar to the real sys-
tem when provided a set of controlled inputs over time. 

 
For computer-based simulation, the behavior of the symbolic model is calculated by a com-
puter. Within this thesis, model behavior is the dynamic change of the model output over 
time, as a function of model input, and, where applicable, the internal model state or random 
elements.  
The following taxonomy is used in this document – all of the concepts listed below are con-
sidered in the thesis:  

• Quasi-continuous vs. discrete simulation: Continuous simulation requires a continu-
ous model (with a continuous state space) and continuous advancement of time. If the 
model’s state space is discrete, or time advances in discrete time steps, the simulation 
is called discrete simulation. Theoretically, on a digital computer no continuous simu-
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lation is possible, but if the steps of time advancement and the discretization of the 
state space are sufficiently small, continuous simulation may be approximated (quasi-
continuous). It is not unusual to have both quasi-continuous and discrete advancement 
of time in one simulation together.  

• Time-stepped vs. discrete event simulation: If in a simulation time advances in time in-
tervals (“steps”) of equal length, this simulation is called time-stepped. Time-stepped 
simulation is scaled to wall clock (or real) time, and supports interaction between a 
user, physical models, or other real systems and the model (in-the-loop simulation). In 
discrete event simulation, simulation time “jumps” from event to event. Events are 
typically triggered by conditions and may be scheduled and caused from outside the 
(sub-) model or take place internally as a consequence of interactions among the ob-
jects or submodels. Time advancement may be both time-stepped or based on event 
occurrence for separate submodels contained in a model.  

• Deterministic vs. stochastic simulation: This depends on whether a stochastic or de-
terministic model is used. Whenever a deterministic model is executed, the simulation 
results depend exclusively on the initial state of the model and the input data. Random 
decisions that must be made when executing a stochastic model rely on random num-
bers that are “drawn” during each simulation run. Depending on the random numbers, 
simulation results in stochastic simulation can vary with each run, even if the input 
data does not change. To get statistically significant results, experimentation with a 
stochastic model must be repeated a sufficient number of times. 

 
In [Shannon 1975] or [Schmidt 1985] a more detailed introduction to simulation is provided.  

1.4 Model Development and Execution Process 
In the research field M&S, the structured planning and execution of activities that are required 
for model development and simulation are called the Model Development and Execution 
Process. M&S methodology evolved over decades, which has resulted in highly specialized 
model development processes for different application areas. General M&S research has also 
advanced, yielding different types of basic processes. 
The overall purpose of a process description is to support structuring, organizing, and manag-
ing the products and activities within the process. Stages of model development are identified 
and associated with intermediate or interim products that result from each stage. The diversity 
of the information about the model explicitly available at these stages provides additional in-
sight into the final product – the model and the simulation results.  
To increase the credibility of models and simulation results in a most effective and efficient 
manner, quality assurance measures and V&V activities should be embedded into the model 
development process, according to the discussion in chapter 3. As a foundation for the V&V 
framework that is developed in this document, here several processes of model development 
and execution are briefly reviewed for their potentials and limitations in the following. Then, 
based on this review, the selection of the process model for the creation of a V&V framework 
is motivated. 

1.4.1 Modeling Activities and Intermediate Products 
The activities conducted during model development can be organized in phases, according to 
their contents and chronological occurrence. In the scientific literature numerous model de-
velopment processes are presented, which most often can be distinguished by the selection of 
phases and the way in which the feedback between the phases is organized. Not only the itera-
tion of development phases, but also the resolution or level of detail of the activity descrip-
tions making up each phase can vary. This mainly depends on the motivation of the creator of 
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the model development process (which again is a purpose-oriented model) and the aspects of 
model development that seem most important to this particular person or group.  
Generally speaking for M&S, to yield meaningful simulation results it is essential that:  

• the purpose of modeling and the application of simulation results is communicated 
correctly and completely, and is documented precisely, 

• the real system subjected to modeling is analyzed (including data measurement), ab-
stracted, and idealized giving consideration to the intended purpose with well-defined 
requirements, and is documented with all its constraints and limitations formulated 
explicitly, 

• the Conceptual Model of the real system is specified completely and unambiguously 
using formal and/or mathematical methods as a Formal Model,  

• the Executable Model that will actually substitute the real system for experimentation 
is free of implementation errors and correctly implements the Formal Model, and  

• the experimental application of the Executable Model is conducted with suitable input 
data, within the model’s limitations in well-designed experiments.  

 
The analysis of the real system and finally the creation of the model are time and cost inten-
sive, especially for large-scale systems. To avoid mistakes during the development of the 
model, the development process must be manageable, which requires clear structuring of all 
developmental activities. In the area of software engineering – years ago – this realization 
resulted in actions: Significant standards or quasi-standards like the ISO9000 [Thaller 2000], 
discussed in section 3.2.2, or the Capability Maturity Model [Paulk et. al. 1993], discussed in 
section 3.2.1, require clear and unambiguous specification and documentation of the proc-
esses, which an organization should follow for the development of a software product. 
The different activities executed during the stepwise development of the model are summa-
rized according to their aim and chronological order, therefore allowing the decomposition of 
model development into phases. In the literature [Thaller 2000; Scrudder et. al. 1998; Leh-
mann et. al. 2002; Bundesministerium für Verteidigung 1997; Balci 1997b; Shannon 1975; 
Schmidt 1985], numerous representations of model development processes exist, which can 
be distinguished by the way in which activities are mapped to phases, by the knowledge re-
quired to perform those activities, the types of feedback loops reflecting the possible repeti-
tion of particular phases (iteration), and by the contents of the intermediate products constitut-
ing the result of the developmental work of each phase. The resolution of the phase-wise de-
composition of model development varies depending on the perceived relative importance of 
particular activities. 
In the literature there are several classes of process models for the development of models, 
software products, or simulation results. They include 

• Waterfall processes, as discussed in section 1.4.2, 
• V-type processes, as discussed in section 1.4.3, 
• Life cycle processes, as discussed in section 1.4.4, and  
• Spiral processes, as discussed in section 1.4.5. 

 
As the model development process itself is just a model of model development, there is no 
universally accepted presentation of the model development process. When choosing a model 
development process, one is responsible for choosing a process most suitable for the intended 
purpose. To motivate the selection of a process model in the context of this thesis, the follow-
ing four different classes of process models are presented, which are used or may be used in 
modified form for the description of model development. At the end of this section the model 
development and simulation process is introduced that will be used for the remainder of the 
thesis.  
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1.4.2 “Waterfall” Processes  
Waterfall processes are linear representations of model development with a very limited num-
ber of feedback loops. A sample waterfall process for software development is provided in 
[Boehm 1981], samples for M&S waterfall processes in [Shannon 1975] and [IEEE 1516 
2001]. 
Model development processes of the waterfall type are clear, comprehensive, and easy to 
handle. The unambiguous separation between the phases theoretically allows a clear assign-
ment of activities to phases. However, in reality such an idealized flow in model development 
is rare, which leads to the conclusion that the waterfall model is not suitable to describe the 
real process of model development as it is. This type of an idealized description should be 
considered more as a desirable goal, then as valid description of today’s practice. For concep-
tual model-theoretic considerations, this type of model development process seems to be suit-
able. 

1.4.3 V-Type Processes  
Model development processes in the “V-Style” focus on direct mirroring of its early and late 
phases. In addition to the direct steps back to the predecessor phase, special feedback loops to 
associated earlier phases are included. A sample of a V-type IT system development process 
is provided in [Bundesministerium für Verteidigung 1997]. The phases definition of the sub-
module SE of the “V-Modell”, the product flow and especially the carefully chosen feedback 
loops qualify it as a practically applicable guideline for the management of system develop-
ment activities. 
The clear separation of the development phases leads to a high degree of clarity of model de-
velopment processes in “V”-Form, too. Again, in theory an unambiguous assignment of ac-
tivities to each phase is possible. Giving consideration to QA measures, the V form shows the 
dependencies of the contents of the phases. However, even if feedback loops seem to be nu-
merous,  a  significant  number  of  additionally  possible  feedback  loops  is  (deliberately) 
ignored.  

1.4.4 Life Cycle Processes 
In many cases the execution of a model and the generation of simulation results do not termi-
nate a “model’s life”. After the evaluation and interpretation of simulation results and the 
formulation and implementation of conclusions for reality, the requirements for the model 
may be slightly modified and the model accordingly adapted, to support new examinations by 
simulation. Examples of M&S live cycle processes are provided in [Balci 1997b; Sargent 
1999; Robinson 1999]. 
In comparison to waterfall processes or V-type processes, life cycles usually are less clearly 
structured, although the precise separation of the phases supports clarity. A model life cycle is 
especially useful, if one needs to include the dependencies between the modeling process, the 
thereby gained new system knowledge, and the consequences for the real system. Model life 
cycles describe the process of the permanent modification of a model after its first use, which 
supports the representation of configuration control. 

1.4.5 Spiral Processes 
The clear separation between phases of model development is abandoned with the spiral proc-
ess. Consequently the creation of intermediate products associated with the end of a phase is 
not strictly demanded, nor are intermediate products defined. Spiral models support the visu-
alization of iteration cycles and the chronological order of modeling activities. Without phases 
and with iteration cycles there are no feedback loops required. 
The phase-less incremental spiral model is a very realistic representation of the model devel-
opment process as it currently seems to be conducted in most enterprises in the USA and 
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Europe [Thaller 2000]. Unfortunately, the lack of clarity and of mandatory intermediate prod-
ucts disqualify this process model for conceptual and theoretical considerations with respect 
to QA and integration of V&V activities. For example, [Lee and O’Keefe 1994] use a spiral 
process model for the discussion of V&V activities during the development of expert systems, 
but when addressing developmental activities, they implicitly identify “sectors” of the spiral 
and thereby reduce the spiral process model to a life cycle process model. 

1.4.6 The Chosen Model Development and Execution Process  
As an indispensable prerequisite for a V&V process that leads to a systematic increase in 
credibility of the model or the model results, there needs to be the possibility of precisely de-
fining intermediate products and the activities performed on these products (see section 3.1.1). 
Therefore, for M&S development and use the author assumes a clearly structured model de-
velopment and execution process, which satisfies the minimum requirement of providing 
well-defined intermediate products. To avoid unnecessary complications, the waterfall proc-
ess type is chosen. It is the least complicated of the reviewed process types, which is organ-
ized in phases with one intermediate product (IP) associated with each phase, as depicted in 
Figure 2. Each intermediate product documents all results of the associated phase and serves 
as an input to the next phase. Iterations due to the detection of inadequacy or incorrectness 
will be dealt in the V&V process. Iterations due to changes in requirements are deliberately 
ignored, as they are not an issue of V&V, but of configuration management, which is out of 
the scope of this document. 
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Figure 2: The chosen model development and execution process 

 
The process depicted in Figure 2 is organized as follows:  

• As a starting point, the reasons why the model is to be built to substitute a real system 
(for some analysis, operation, training, or experimentation) and direct goals that shall 
be achieved by M&S should be documented in an initial product, which is called the 
Sponsor Needs (SN). Usually the Sponsor Needs are expressed informally and in lan-
guage the sponsor is familiar with. 

• Then, during the problem definition phase, required interfaces and contents of the 
model have to be defined and documented as a Structured Problem Description 
(SPD). 
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• As a result of the system analysis phase, the perceived, observed, or assumed structure 
and behavior of the real system, including all of its relevant subsystems, which have to 
be reflected by the model, are documented as the Conceptual Model (CM). It ex-
presses and communicates the “idea behind the model” in language the domain ex-
perts are familiar with.  

• Subsequently, to formulate the concept of the model precisely and unambiguously, 
and to lay a foundation for the quantitative solution of the model, mathematical or 
formal modeling methods are used. The result of the formalization phase is docu-
mented as the Formal Model (FM). 

• Finally, after the selection of a particular solution technique, the implementation phase 
yields an Executable Model (EM). For the remainder of this document, the solution 
technique is assumed to be a simulation technique, as introduced in section 1.3.2. The 
Executable Model is executed by a digital machine and reflects both conceptual and 
mathematical solution, while dealing with a wide range of technical challenges.  

• After simulation (experimentation phase or model operation) the model output (model 
results, or when simulating, Simulation Results (SR)) may be used to substitute or 
supplement observations or measurements of the real system, if the simulation credi-
bly represents the behavior of the real system. 

 
Each of the developmental steps contains new important aspects of model development or 
use, which are well hidden in the final product. If the results of the phases are documented by 
the intermediate products, the final model can be examined from different perspectives by 
analyzing the intermediate products. The detailed specification of the intermediate products 
Structured Problem Description, Conceptual Model, Formal Model, Executable Model, and 
Simulation Results developed during this thesis can be found in Appendix A. 
The author is aware of the fact that this model development and execution process is a heavily 
idealized description of this process in every day practice. But it serves as solid foundation for 
the integration of V&V activities, and is sufficient to populate the three-dimensional model 
information space introduced in section 4.3.  

1.4.7 Parties Involved  
Because the development of a model and the execution of simulation experiments require 
numerous activities, quality assurance of models and simulations becomes a non-trivial field 
requiring the skill and knowledge from several areas and usually involves various individuals. 
However, as an extreme, one single person could be responsible for the completion of all 
tasks during model development, but in other cases teams develop the model. Because the 
assignment of tasks to persons or individuals should be up to the developer, roles and associ-
ated responsibilities within the model development process are identified. A role is outlined 
by  

• the knowledge and skill required to complete the associated tasks, and 
• the responsibility taken in the model development and execution process. 

 
The role model does not determine, whether one person plays several roles, or several persons 
share one role. However, particular roles require a sufficient distance between the individuals 
or teams performing them. Roles are defined in a similar form in [Defense Modeling and 
Simulation Office 1996 and 2000] and [Bundesministerium für Verteidigung 1997]. This 
document addresses the responsibilities of the following actors: 

• User / Operator: The model user or operator conducts the experiments with the model 
and is responsible for precisely specifying its required functionality. The user applies 
the model to generate simulation results. Typically there is a close relationship be-
tween the user and the sponsor who provides the funding for development.  
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• Sponsor / Beneficiary: The sponsor initiates the modeling process with the intention to 
solve a problem in his application domain by extending his knowledge base with 
simulation results. He provides funding for M&S development and is responsible for 
the precise description of the intended purpose of the model or simulation. (Financial 
aspects are out of scope of the thesis and are not further discussed, thus only the bene-
ficiary aspect of the role is of importance.) 

• Simulation Project Manager: This role is responsible for the administrative aspects of 
the development of a suitable and correct model or simulation results. The actor man-
ages the overall model development process, ensures that the chosen model develop-
ment process is correctly utilized, and ensures that all intermediate products are avail-
able at the project milestones.  

• System Analyst or Subject Matter Expert (SME): This role contributes to the modeling 
process by adding knowledge about the application domain and is responsible for the 
analysis of the real system. The actor is an expert on a cutout of the application do-
main and knows how to set up tests for the real system.  

• Modeling Expert: This role knows theory and practice of M&S, modeling paradigms, 
solution techniques, and tools. The actor is responsible for the creation of the Concep-
tual and the Formal Model, i.e., mainly responsible for system analysis and model 
formalization. 

• Programming Expert: This role is capable of encoding the simulation model. The actor 
knows the execution platforms, operating systems, and development environments, 
and is mainly responsible for the implementation. 

 
It is the responsibility of these roles to create a model and simulation results in close coopera-
tion, in a manner such that any pitfalls are avoided. 

1.5 Verification and Validation of Models and Simulation Results 
The purpose of M&S is to represent a real system in order to draw conclusions about the real 
system by experimentation with a model. Thus, the direct correlation between the model, an 
intended purpose of model use, and a clearly identified real system are among the key charac-
teristics of simulation. The term “simulation” implies a claim to represent the behavior of a 
real system as it is or as it could be. (The direct association to a real system distinguishes 
computer-based simulation from, e.g., computer games.) As decisions that heavily impact the 
real world rely increasingly on models or simulation results, the more important their correct-
ness (section 1.5.1) and suitability (section 1.5.2) becomes. Suitability refers to the concepts 
of capability, fidelity, and accuracy, while correctness refers to consistency and completeness 
(see Figure 3). 
The growing role of M&S implies that measures must be taken to ensure the correctness and 
suitability of models and simulation results. As neither suitability nor correctness can be 
proven in most cases, the credibility of a model or simulation results is of major importance. 
The credibility of a model is based on the perceived suitability and the perceived correctness 
of all intermediate products created during model development. The correctness and suitabil-
ity of simulation results require correctness and suitability of the model and its embedded 
data, but also suitable and correct runtime input data and use or operation of the model. Veri-
fication and validation aim to increase the credibility of models and simulation results by pro-
viding evidence and indication of correctness and suitability. The dependencies between the 
terms introduced above are illustrated in Figure 3. 
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1.5.1 Correctness and Verification  
When using a model or simulation results, one expects them to be internally consistent (self-
consistent), correctly described in all their different representation forms, and completely con-
sistent with each other. Through verification of a model, its input and its embedded data, and 
its simulation results one determines, whether any transformation or description was per-
formed according to well-defined rules and specifications. Verification deals with the exami-
nation of correctness (including consistency and completeness) with respect to these well-
defined rules. It addresses the question, whether something “has been built right” [Balci 1990; 
Shannon 1975]. Verification always requires some kind of documented specification or de-
scription, which is transformed into another specification or description, and unambiguously 
(ideally formally) defined rules.  
The term “correctness” is also used in related fields, e.g., in software verification. In this case 
a code block is considered to be partially correct, if under the assumption that a formally 
specified pre-condition holds, the execution of the code block results in the satisfaction of a 
formally specified post-condition [Berghammer 2001]. If the execution of the code block al-
ways terminates, too, it is even considered to be totally correct. However, software develop-
ment is only one aspect of M&S. Especially during the early phases of the model develop-
ment process (section 1.4.6), information and knowledge is documented that successfully re-
sists formalization using a syntactically and semantically specified language of limited ex-
pressiveness. Thus, in the context of verification of models and simulation results, the concept 
of correctness is used in a wider sense than in software verification.  
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Figure 3: Dependencies between V&V related terms 

[Balci 1998a] defines model verification as “substantiating that the model is transformed from 
one form into another, as intended, with sufficient accuracy”, and thereby stresses the consis-
tency requirement among the intermediate products. [Zeigler, Praehofer, and Kim 2000] keep 
distance from the definition of verification, but treat this problem under simulator correctness: 
“A simulator correctly simulates a model, if it is guaranteed to faithfully generate the model‘s 
output trajectory given its initial state and its input trajectory.” They stress the behavioral (ac-
tually model execution) aspect and thereby approaches verification from another direction. As 
there is no commonly accepted definition for model verification in M&S literature, the use of 
the term “verification” in the context of this thesis will be as follows: 
 

Definition: Model verification is the process of demonstrating that a model is cor-
rectly represented and was transformed correctly from one representation form into 
another, according to all transformation and representation rules, requirements, and 
constraints.  
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Considering the representation forms of a model introduced in section 1.2.6, model verifica-
tion includes ensuring that  

• the Structured Problem Description is met by the Conceptual Model,  
• the Conceptual Model is completely formalized as Formal Model and consistent with 

the chosen modeling formalism, and  
• the Formal Model was implemented correctly and completely.  

 
The main difference from validation (see section 1.5.2) is that the references to the real world 
and the intended purpose are not subject of verification. Precisely formulated specifications of 
the requirements, of the model in all its representation forms, and of the rule set are examined 
exclusively. 
Theoretically it is possible to verify a Formal Model completely, but in current practice im-
precise specification, model complexity, or lack of knowledge about the model (worst case: 
black box) preclude exhaustive verification. This situation requires a positive approach to 
verification. When doing non-exhaustive verification, the verification aims should be chosen 
in a way that allows the justified conclusion that the correctness of the examined parts of the 
model indicates the correctness of the overall model. Please note the difference from model 
falsification: While for falsification it is sufficient to identify a single counterexample, for 
exhaustive verification it must be proven that there is no counterexample. As long as this 
proof is not feasible, the non-existence of a counterexample can only be made plausible. This 
problem is again addressed in section 4.4. 
If one is going to use simulation results, verifying the model itself is necessary, but not suffi-
cient. [Pawlikowski, Jeong, and Lee 2002] point out that in the field of telecommunication the 
use or operation of models and the evaluation of simulation results occur in an unacceptable 
manner. It must be assumed that this example can also be transferred to other similar applica-
tion domains. Thus, to get reliable quantitative results from the model, verification of input 
(run time) data and embedded data and verification of the experiment are also required. This 
includes the demonstration that the input and embedded data cover the required value domain, 
have sufficient accuracy (decimal places, measurement accuracy, measurement error), dimen-
sion, and unit. If aggregated data is used, it must be demonstrated that aggregation was con-
ducted correctly and according to the aggregation strategy. It should be ensured that the data 
is organized in compliance with the required data models and in the correct technical format.  
There are numerous sources for methods and techniques for the verification of models and 
simulation results, e.g., [Defense Modeling and Simulation Office 1996 and 2000; Katoen 
1999; Balci 1990; Liggesmeyer, Sneed, and Spillner 1992; Myers 1979]. These techniques are 
usually highly specialized, as checking for (absolute) correctness requires an unambiguous 
description of the item subjected to examination and the specification of rules. This strongly 
encourages tool support – however, the high degree of specialization implies only limited 
opportunities for application of such tools, and the range of detectable errors is small. The 
exploration of these limits, the identification of the benefits, and the ability to create evidence 
that inspires belief in the correctness of the model or the simulation results are among the 
goals of this thesis. 

1.5.2 Suitability and Validation  
When using a model or simulation results, one expects them to be suitable for the intended 
purpose, within acceptable constraints. Validation of models or simulation results is per-
formed with respect to a real system, and always with respect to the intended purpose of 
model use. Validation deals with the suitability of the model (including capability, fidelity, 
and accuracy) and addresses the question of “whether the right model has been built” [Balci 
1990; Shannon 1975]. The main difference from verification is that the model is checked for 
its suitability as a substitute for the real system with respect to its intended use (assuming its 
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correctness) – rules and precise specifications play a subordinate role. This is due to the prob-
lem that it is difficult, if not impossible, to precisely specify vague terms like “intended pur-
pose”, “suitability”, or “acceptable difference to reality”, and therefore to generate precise 
rules for determination of validity.  
In the M&S literature there is no common understanding of the term “validation”. [Shannon 
1975] defines validation as “the process of bringing to an acceptable level the user‘s confi-
dence that any inference about a system derived from the simulation is correct”, and avoids to 
address any property of a model (I/O, structure, or behavior). [Balci 1998a] writes that “model 
validation is substantiating that within its domain of applicability the model behaves with sat-
isfactory accuracy consistent with the study objectives” and concentrates on behavior accu-
racy, which is an extremely small subset of Shannon’s definition. [Zeigler, Praehofer, and 
Kim 2000] explains it as “the concept of validity answers the question of whether it is impos-
sible to distinguish the model and system in the experimental frame of interest”. 
As there is no commonly accepted definition for model validation, the use of the term “valida-
tion” in the context of this thesis will be as follows: 
 

Definition: Model validation is the process of demonstrating that a model and its be-
havior are suitable representations of the real system and its behavior with respect to 
an intended purpose of model application. 

 
Reality in all of its complexity cannot be expressed; it is represented by theoretic assumptions 
and (mental) models of reality, or by (empirically) measured data of related systems, real sub-
systems, or the real systems, which serve as referent. Thus validation of the representation of 
structure and behavior of the real system provided by the model usually is limited to the failed 
attempt at its systematic falsification. This situation requires a positive approach to validation. 
When doing validation, the validation aims should be chosen in a way that allows the justifi-
able conclusion that the suitability of the examined parts of the model indicates the suitability 
of the overall model. This thesis contributes to this issue. 
In order to generate output, a model requires input data and experimentation; one should also 
take care to be sure that the data used and the process of conducting experiments are suitable. 
This includes the demonstration that the input data (stream) suitably substitutes for the influ-
ences generated by the environment on the modeled properties and that embedded data suita-
bly describes quantitative properties of the real system. When input data is created from raw 
data by aggregation, it must be ensured that any loss of information does not invalidate the 
data. [Sargent 1999] points out the importance of valid data for conceptual modeling. Experi-
ment validation also includes demonstrating that the experiment setups are representative of 
real situations. If the conditions under which the simulation is run are unrealistic, simulation 
results do not allow conclusions about reality to be drawn, no matter how suitable and correct 
model and data are. 
There are numerous techniques for the validation of models and simulations [Defense Model-
ing and Simulation Office 1996 and 2000; Schnepf 1990]. However, their specification often 
is vague, and their field of application wide, leaving a great amount of subjectivity in the 
judgment of suitability. To point out the benefits and limitations of their application, and their 
ability to create indications or evidence that increase the credibility of the model or simulation 
results is among the goals of this thesis. 

1.5.3 Demarcation: Software Quality Assurance 
As stated in section 1.3.2, in the context of this thesis computer-based simulation is the solu-
tion approach for the generation of quantitative model results. This implies that the model is 
implemented in software to allow its execution on a computer (Executable Model – see also 
section 1.4.6 and Appendix A). However, model development does not equal software devel-
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opment; software development is one part of model development. For the remainder of the 
document it is distinguished between software quality assurance (software QA) and V&V of 
models and simulation results. Software QA measures need to be taken to ensure that the 
software is stable, correctly accesses peripheral devices, does not hang up or crash, does not 
crash the computer system, interacts correctly with other software components of the operat-
ing system or other applications, terminates, accepts operator input, or in other words, that the 
software “runs”. Software QA procedures and measures can be found in the appropriate litera-
ture, e.g., [Myers 1979; Liggesmeyer, Sneed, and Spillner 1992; Beizer 1990; DeMillo et al. 
1987], and software QA is out of the scope of this document. For the V&V of the Executable 
Model, the existence of a “running” Executable Models that allow the observation of model 
behavior is assumed. Methods for M&S V&V are likely to reveal software bugs that slipped 
through software QA as a side benefit, and thereby are complementary to software QA, but 
their efficient application requires software of a sufficiently high quality, i.e., “running” soft-
ware.  

1.5.4 Credibility 
The nature of validation and the technical constraints on verification imply that currently one 
cannot declare a model or simulation to be absolutely correct and suitable; one can only ex-
press the belief that the model is correct and suitable, or develop an expression of the credi-
bility of the model from one’s point of view.  
As there is no proof of correctness and suitability with non-exhaustive V&V, one may want to 
determine the degree of confidence in the model. This confidence intuitively is based on the 
probability that an existing incorrectness or unsuitability is not detected during V&V. This 
probability again depends on the intensity and rigor of the V&V applied, which is indicated 
by the V&V output products (evidence) created. In the context of this document, rigor pro-
vides a qualitative measure of the variety of model contents examined (breadth), and intensity 
qualitatively measures the thoroughness of the examination of a particular model content 
(depth). This will again be referred to in section 4.1.2 
 

Definition: The credibility of a model or simulation results is an expression of the de-
gree to which one is convinced that a particular model or particular set of simulation 
results are suitable for an intended purpose and correct. 

 
Conducting V&V to establish the credibility of a model or simulation results is more than 
simply increasing model quality. The user must recognize the effort spent on and the results 
gained by V&V. Doing V&V is necessary, but not sufficient. The V&V efforts have to be 
communicated to the user, who in turn needs to be convinced of the correctness and suitability 
of the model or simulation results. This requires careful documentation and configuration con-
trol of every little piece of V&V conducted. 
The introduction of a vague term like credibility is intended to ensure that the (hopefully 
small) amount of subjectivity in the decision of accepting a model or simulation results for an 
intended purpose is never forgotten. An in-depth discussion about credibility can be found in 
section 4.4. 

1.5.5 Accreditation 
In today’s M&S community, the terms “verification” and “validation” are usually mentioned 
as part of the triplet “VV&A”, with the “A” standing for “accreditation”. Accreditation is a 
bureaucratic act, during which a model or model results officially are declared as acceptable 
for a specific intended purpose [Defense Modeling and Simulation Office 1996 and 2000]. 
Accreditation should be exclusively based on the credibility of the model. Observation of cur-
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rent accreditation practice creates the impression that it can also be influenced by political 
interests, which should never be the case.  
 

Definition: Accreditation is the official certification that a model, simulation, or fed-
eration of models and simulations is acceptable for use for a specific purpose. [De-
partment of Defense 1996]. 

 
An informed accreditation decision requires information about the model or simulation re-
sults, which serves as indication and evidence for their correctness and suitability; such in-
formation is generated during a systematic execution of V&V activities.  
Model accreditation should be undertaken with great care; using a model for the generation of 
simulation results usually is not the end of its application procedure, but the results are subse-
quently interpreted. For proper interpretation, often deep insight into the model is required. 
This insight can never be replaced by an official statement that the model is “fit for purpose”. 
[Davis 1992] summarizes and discusses the problems that are likely to come with accredita-
tion, including the danger that the delay caused by a bureaucratic accreditation procedure 
might encourage the re-use of already accredited models, which actually are not suitable for 
the intended purpose. As accreditation is a management decision, it is out of the scope of this 
thesis. 
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2 GOALS OF THIS THESIS 

Modeling and Simulation possess the potential to significantly enhance traditional under-
standing, experimentation, examination, analysis, testing, and exploration of real systems. 
Although models and simulation results are widely applied, the potential for their use has not 
yet been exploited, because the applicability of models and simulation results – and their ac-
ceptable indirect influence on the real world – is limited by questions about their credibility. 
The high-level goals of current V&V research can be summarized as: 

(1) Demonstrate the correctness and suitability of models and simulation results by care-
ful and structured documentation of their systematic examination, to increase their 
credibility and to reduce the probability of unjustified rejection ([Balci 1998a]: Type I 
error). 

(2) Ensure the correctness and suitability of models and simulation results by their sys-
tematic examination, to avoid their acceptance and use in case of incorrectness or un-
suitability ([Balci 1998a]: Type II error). 

(3) Increase the quality, and thereby the credibility of models and simulation results in 
general, in order make M&S even more useful then they are today. 

 
This chapter is organized as follows: First, the most common current problems in the M&S 
community are summarized and general constraints of M&S V&V identified. Then the goals 
of this thesis are derived. 

2.1 Current Deficiencies in V&V and Challenges in the Problem Field 
At least in the military simulation community, currently there is no commonly accepted pro-
cedure for development, documentation, and V&V of models used for computer-based simu-
lation. This is due to the following problems and misperceptions that have been identified 
through the author’s own experience and in the literature [Kilikauskas 2001]. Although little 
explicit confirmation was found, these seem to be similar to the problems in other application 
domains [Pawlikowski, Jeong, and Lee 2002]. The current situation in M&S V&V can be 
summarized as: 

• Model development is often only seen as software development; 
• Model documentation is of secondary importance; 
• The dependencies between the risk of model use and the required effort for risk reduc-

tion by V&V are unclear; 
• The beneficial influence of constructive V&V activities on model development is un-

derestimated; 
• There is no in-depth guidance on V&V, as most available guidelines are abstract or in-

complete;  
• Missing documentation of conducted V&V activities precludes others from reproduc-

ing, copying, evaluating, judging, or assessing them afterwards. 
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Each of these deficiencies is a serious obstacle to the application of models or simulation re-
sults to real world problems, but once identified, they can be addressed. To solve these prob-
lems, managerial, organizational, psychological, and technical obstacles must be surmounted. 
This document is intended to contribute to the solution of the technical aspects of the prob-
lem. 

2.1.1 Model Development Considered as Software Development 
Encoding a model in a form that can be executed on a computer is an essential and necessary 
part of the development of a computer-based simulation, but not the only task. Abstracting 
and idealizing the real system in a problem-oriented manner is an extremely important step of 
model development, a fact, which is completely ignored when reducing model development 
to software development. Model development processes published in scientific literature 
[Shannon 1979; Balci 1990; Schmidt 1985] graphically visualize the main phases of model 
development, always including some type of problem definition and system analysis, which is 
then followed by model implementation and finally experimentation with the model (simula-
tion; see also Figure 2). When clearly separating software development tasks from non-
software development tasks, it becomes obvious that ideally the actual process of (symbolic) 
modeling is already completed when software development begins. This also implies that 
measures for quality assurance of software do not automatically ensure the correctness and 
suitability of the symbolic model, which is subsequently encoded in software (see also section 
1.5.3). Therefore it is not sufficient to require a software developer to be compliant with soft-
ware quality standards to increase the credibility of models and simulation results. V&V must 
be integrated into the complete model development and execution process.  
The challenge associated with this deficiency is of educational nature mainly. It needs to be 
ensured that those who develop models know about their special responsibilities and the spe-
cial activities and tasks that distinguish model development and use from software develop-
ment. 

2.1.2 Missing Model Documentation  
Models that have been developed in the past, in many cases prove to be poorly documented 
[Gutte et. al. 2001; Könke et. al. 2000; Kilikauskas et al. 2002; Scholten 1998]. This is due to 
several reasons, among them  

• protection of intellectual property of the developer; 
• lack of explicit documentation requirements, little or no funding for model documen-

tation, and a general ignorance of the importance of model documentation; 
• missing discipline in model development. 
 

With no or only little documentation available, the reasons that lead to the idealization and 
abstraction conducted during the modeling process are rarely reproducible, even if expensive 
re-engineering reveals the concepts of the model well hidden in the code. The process of gain-
ing insight into the model that is required to assess the model for, e.g., re-use or model modi-
fication is costly after development was finished. Approximately one and a half decades ago, 
in Software Engineering the situation was similar [Smith and Wood 1987], but has changed 
with the introduction and spreading of several concepts, including:  

• Software engineering processes, which stress the importance of requirements specifi-
cation and design; 

• the availability of expressive formal software specification methods as, e.g., Z [Wood-
cock and Davies 1996] or UML [Object Management Group 1999; Fowler 1997], 
which perform well as useful software specification languages; 

• Quality assurance standards as the ISO 9000 family [Thaller 2000]; 
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• Process models for software design as the V-Model [Bundesministerium für 
Verteidigung 1997] or the Rational Unified Process [Kruchten 2000]. 

 
Without sufficient model documentation, the process of demonstrating correctness and suit-
ability (and thereby establishing of credibility) is expensive and does not promise to be suc-
cessful. This problem is again referred to in section 4.3. 
Associated with this deficiency are two major challenges. First, the sponsor’s awareness of 
the importance of model documentation and the willingness to actually spend money on 
documentation needs to be increased, which can be achieved by highlighting current problems 
with poorly documented legacy models. Second, there also needs to be an obvious benefit for 
the model developer in documenting the product precisely, such as a measurable gain in pro-
ductivity or increased configuration control efficiency (return of investment). 

2.1.3 Under-Appreciation of Constructive Aspects of V&V 
V&V do not add any new functions or features to an Executable Model, and therefore do not 
make the product appear more attractive at first glance. To numerous model developers, V&V 
is considered to be a kind of necessary evil that is conducted in the end of model develop-
ment, because it is the sponsor’s desire. In the worst case, the sponsor is not seriously inter-
ested in V&V either, but only follows a dictated policy. With soft milestones during the pro-
ject and a hard deadline in the end, the concluding V&V activities are most likely to be re-
duced or even eliminated, often with the agreement of the sponsor. The constructive aspects 
of V&V conducted in parallel to model development are underestimated, and therefore no 
serious attempts are made to establish V&V activities as an integral part of the model devel-
opment process.  
With respect to this deficiency, the challenge lies in uncovering the constructive aspects of 
V&V. Useful model development processes with appropriate tool support, which integrate 
V&V in an efficiency increasing manner are most likely to convince model developers of the 
beneficial influences of V&V. The potentially positive impact of V&V on model development 
is again referred to in chapter 4. 

2.1.4 Missing V&V Guidance and Lack of Comparability 
Currently detailed and consistent guidance through the V&V process is missing, which results 
in a misperception of the practicality of V&V and the fear of getting lost within the V&V ac-
tivities without any meaningful result. With respect to software testing that suffered from 
similar misperceptions, the statement “if you thought designing and coding that program was 
hard, you ain’t seen nothing yet” was among [Myers 1979] motivations to organize software 
testing methods in a structured form. Although there are numerous V&V techniques from 
different research areas summarized in, e.g., [Defense Modeling and Simulation Office 1996 
and 2000; Balci 1998a], there is a lack of awareness within the M&S community of these 
techniques and the necessity of tool support [Pace 1999b]. Comparison between V&V activi-
ties is difficult, and available tools are rare. This problem is again referred to in chapter 4, and 
the challenge associated with this deficiency is easily phrased: Provide V&V guidance. 

2.1.5 Missing Estimate of Required V&V 
According to [Brain 2001], the determination of the required V&V effort can be expressed as 
“balancing the cost of knowing against the risk of assuming”. Several approaches exist to de-
scribe the dependencies between the risk of using a model or particular simulation results and 
the required rigor and intensity of V&V (e.g., [Mugridge 1999; Muessing, Laack, and 
Wrobleski 1997]). However, commonly accepted significant quantitative (and even qualita-
tive) measures for both the intensity of V&V and the degree of risk are missing, and none of 
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the known quantitative approaches is based on an empirical foundation. As a consequence, a 
relatively precise estimation of the required V&V effort is currently not possible.  
The challenge lies in the identification, formulation, and evaluation of significant quantitative 
measures for the risk of model use and intensity and rigor of risk-reducing V&V activities. 
This problem is again referred to in section 4.1. 

2.1.6 Missing Documentation of V&V Activities Previously Conducted 
Whenever a model developer is interested in a suitable and correct model, V&V techniques 
are applied in the end of the model development process, as already documented in [Shannon 
1975]. Especially output validation is commonly used for the “calibration” of the model, and 
for the detection of errors or inadequacies in the (executable) model. However, most often the 
developer is satisfied with successfully detecting and eliminating detected errors and does not 
document the validation effort itself. In this case the V&V effort cannot be credibly commu-
nicated, and a judgment or assessment of the correctness and suitability of the model is hardly 
possible.  
Here the challenge is to convince the sponsor of the necessity to task the developer with the 
documentation of the V&V plan and the conducted V&V activities, prior to the attempt to 
assess the credibility of a model, and to finance this additional effort. This problem is again 
referred to in chapter 4. 

2.2 Focus of the Thesis 
This thesis aims to provide an approach to systematically analyze models and simulation re-
sults for correctness and suitability, to counter the above deficiencies, and to create a founda-
tion for informed assessment of their credibility. Based on an extensive analysis of existing 
approaches and standards from related areas, this thesis motivates, develops, specifies, and 
evaluates a framework for examining and assessing the correctness and suitability of models 
and simulation results, and thereby points out the similarities and dependencies between most 
approaches to V&V known today. To facilitate this, this thesis proposes 

• a general methodology of model development and integrated V&V, which is ex-
amined independently from an application domain,  

• documentation requirements of intermediate products generated during model de-
velopment and framed as products of a straight-forward model development process,  

• guidance through the process of V&V by a precisely defined process, and  
• the selection, application, and documentation of so called “V&V techniques” and 

their results supported in such a manner that the drawbacks and limitations of a par-
ticular technique are mitigated by the advantages of others, and synergetic effects be-
tween the techniques are achieved. 

 
Taking these problems and constraints into consideration, this thesis focuses on supporting 
the creation of meaningful V&V results, which serve as evidence or indication of model 
credibility, following a structured approach. To achieve this, the document is organized as 
follows: 

• In chapter 3, the state of the art in M&S V&V is summarized, and principles of V&V 
are identified and discussed. The fundamental concepts of V&V developed so far are 
extracted from numerous pieces of related work and analyzed for their suitability for 
M&S V&V.  

• In chapter 4, foundations for the generalized V&V process are laid by the definitions 
of all inputs to the process and all desired outcomes, including discussions on applica-
tion risk and required V&V effort, real system knowledge, model knowledge, and the 
need for evidence and indications of credibility. The overall V&V aim to demonstrate 



23 

correctness and suitability of a model and its simulation results is decomposed into 
sets of V&V objectives. In the end of this section, the generalized V&V process is 
specified. 

• In chapter 5, the V&V process is evaluated by its application to a sample case. For the 
purpose of evaluating the concepts presented in this paper a small, but non-trivial road 
traffic simulation model was created and implemented (Appendix C). Its documenta-
tion and the documentation of V&V conducted on the model is found in the appendi-
ces of this document. 

• Chapter 6 finally concludes the document with a summary of the contents presented 
and the outlook for potential ongoing work. 

 
Several products created during the work underlying this thesis are documented in the Appen-
dices: 

• Appendix A documents the V&V Triangle specification. It contains the process or-
ganization, the precise specification of the intermediate products, the identification of 
their potential errors, and strategies for uncovering them. V&V techniques well known 
from other application domains as, e.g., Software Engineering are analyzed and asso-
ciated with the identified V&V objectives to support their achievement. 

• Appendix B gives an overview of the identified V&V objectives and the V&V evi-
dence made available during the V&V process. 

• Appendix C documents the sample M&S project which was used as a test case for the 
evaluation of the V&V process. 
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3 THE STATE OF THE ART  

This section describes the commonly accepted state of the art in V&V of models and simula-
tion results. Although there are not many constants in M&S V&V so far, the community 
agrees on a set of V&V principles that have been published by several authors. Subsequently, 
known approaches to V&V and standards and guidelines for quality assurance in related areas 
are subjected to examination. The section is concluded with the identification of the basic 
concepts that can be extracted from the related work as a foundation for the approach taken in 
chapter 4. 

3.1 Principles of V&V Planning and Implementation  
Principles that are known throughout the V&V community [Defense Modeling and Simula-
tion Office 1996 and 2000; Balci 1997a; Balci 1998b; Pace 1999a] serve as the foundation for 
the work documented in this thesis.  

3.1.1 V&V as Integral Part of Model Development 
If one wants to develop a suitable and correct model efficiently, V&V must be an integral part 
of the development process. V&V in parallel to model development supports the identifica-
tion of unsuitability and incorrectness already in the early stages of model development, re-
sulting in direct constructive feedback. Correcting errors soon after they occurred is much less 
expensive then allowing the error to propagate through the development process [Defense 
Modeling and Simulation Office 2000]. Both, the detection of errors and/or inadequacies 
within the model becomes more difficult the longer the model development has been com-
pleted. In addition, currently documentation available after completion of model development 
is incomplete and imprecise, and therefore is not an acceptable basis for “post development 
V&V”, making direct feedback with the person(s) in charge of the product necessary.  

3.1.2 Precise Specification of the Intended Purpose  
M&S are always purpose-oriented [Balci 2000]. Imprecise requirements descriptions must be 
avoided, as they allow undesired degrees of freedom for modeling. Validation can only be as 
specific as the documented intended application purpose. Verification techniques can be used 
to ensure correctness of the model even without a well-defined intended purpose, but also in 
this case a precise specification of the intended purpose usually helps focusing the verification 
effort. To assume the availability of a complete and precise specification of the intended pur-
pose in the beginning of the modeling process is an extreme idealization, as usually during 
model development new system knowledge is gained, which influences the requirements 
specification retroactively [Davis 1992], but there always should be a current version of the 
intended purpose specification, which can be used for validating the current version of the 
Conceptual Model, Formal Model, or Executable Model.  
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3.1.3 Sufficient System Knowledge  
A model can only be validated to the degree of real system knowledge (including data) that is 
available, or in other words: A validation statement is only as reliable as the knowledge or 
data it is validated against. In the best case, the real world entities and interactions of the real 
system and its subsystems are known, and quantitative measures for them exist, which can be 
measured at the real system as desired. Whenever there is only limited data about the real sys-
tem, the data only has been or can only be measured at a related system, there are no quantita-
tive measures, some of the dependencies within the real system are not yet explored or mod-
eled, or entities have only abstract counterparts, then meaningful validation of the overall 
model becomes more difficult. Substantive validation may be constraint to parts of the model, 
or – in the worst cast – be simply impossible. This prerequisite is the main motivation of sec-
tion 4.1. 

3.1.4 Sufficiently Unbiased V&V Implementers  
As motivated by [Arthur and Nance 2000], depending on the degree of subjectivity of the 
applied V&V techniques and the required reliability of V&V activities, their implementers 
should be sufficiently un-biased. With respect to software testing, [Myers 1979] states that the 
search for errors is a “destructive” process, which cannot be efficiently conducted by the one 
who constructed the item under examination.  
• If a member of the developer team conducts V&V, it is assumed that this person is highly 

biased what most probably leads to wrong (too good) V&V results when applying subjec-
tive V&V techniques (see section 4.5). The organizational advantage of in-team V&V is 
obvious – no information or knowledge about the model has to be transferred to a third 
party and no learning time for understanding the model is required. However, for the pur-
pose of assessment, in-team V&V is only acceptable, if objective V&V techniques with 
clearly defined quantitative measures are used. 

• If there is an in-house quality assurance department with sufficient distance to the project 
itself it can be assumed that there is no high bias with respect to the M&S project itself, but 
this is not ensured. Again, the organizational advantage is the opportunity of very close 
cooperation between the developer team and the in-house V&V team, and history of soft-
ware engineering teaches that this approach leads to higher quality products. But without 
“hard numbers” from objective V&V techniques, again the reliability of the V&V results 
for the purpose of accreditation must be doubted.  

• It can be expected that an external institution is un-biased, but now the communication and 
information exchange between the developer and the V&V team become more difficult. 
Intermediate products that are exchanged between these parties must contain all required 
information. Organizational, psychological, legal, and technical problems must be solved 
when doing external V&V, but only external V&V leads to unbiased or “objective” results 
when applying subjective V&V techniques. 

• If the external institution can demonstrate that it is technically, financially, and manageri-
ally independent from the developer [Rosenberg 2001] and does not benefit from either 
outcome of the V&V process, this external V&V may even be called independent V&V. 

3.1.5 Minimal Degree of Subjectivity  
V&V techniques can be classified ranging from “highly subjective” to “nearly objective”. The 
opinion of a Subject Matter Expert (SME) may be of high value especially for the validation 
of a model, when the SME compares a mental model of the real system and the expected be-
havior with the symbolic description of the Conceptual Model and the interpreted, visualized 
behavior of the Executable Model (see also 4.5.2). However, expertise is hard to judge and 
often limited to a specific area [Possner 1988], or the SME may be biased for any reason, 
which results in making (deliberately or not) a wrong statement.  
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Nearly objective techniques as, e.g., statistical methods for the comparison of model output 
and system data, or formal methods for constraint checking are based on a mature mathemati-
cal background, and are much less dependent on the person applying them to the model. 
However, the high degree of specialization of these techniques limits their application possi-
bilities and allows only the detection of small ranges of errors. If one prefers to get reproduci-
ble, nearly objective results, the use of nearly objective techniques is highly recommended. 
But for judgment of suitability with respect to the intended purpose, human reasoning is still 
unavoidable. This implies that for V&V an adequate mix of “highly subjective” and “nearly 
objective” V&V techniques is required. 

3.1.6 Unfeasible Proof of Suitability and Correctness  
In practice, there is neither absolute verification nor absolute validation of a whole model. 
Validation is performed with respect to the real world, which the author assumes is never 
completely describable in all its complexity. Reality is represented by theoretic assumptions 
and (mental) models, or by measured data of related systems, real subsystems, or the real sys-
tem, as discussed in section 4.1. There is no “perfect” or exhaustive knowledge of reality, and 
thus validation of models and simulation results can only be the failed attempt of systematic 
falsification. 
Verification always requires a precise specification or description of a model, which is trans-
formed into another specification or description following given rules. Through verification 
one checks, whether the transformation, specification, or description was performed according 
to the rules, or not. Theoretically it is possible to do so for the complete model, but in practice 
the model complexity or lack of knowledge about the model prohibit exhaustive verification. 
For these reasons V&V will not guarantee the correctness and suitability of a model, it re-
mains unproven, whether a residual error or inadequacy remains. 

3.2 Existing Related Standards, Guidelines, Methods, and Procedures 
In the defense area, for quality assurance of both software, in general, and credibility judg-
ment of models developed for computer-based simulation, already several standards, guide-
lines, methods, or procedures exist. However, all of them are somehow limited or do not sup-
port the achievement of the goals of V&V identified in section 3.1. In the following, a short 
overview of related work and the basic ideas behind each of the presented approaches is 
given, followed by a discussion of their potentials, limits, and risks. There is no claim for 
completeness of the below summary. Only those standards, guidelines, methods, and proce-
dures are listed that directly impacted the approach taken in this thesis. 

3.2.1 The Capability Maturity Model for Software 
As the creation of software often is an integral part of the development of a computer-based 
simulation, here a de-facto-standard that is supposed to allow a statement about the expectable 
quality of a software product is discussed. (However, model development does not equal 
software development – see also section 2.1.1) The Capability Maturity Model for Software 
(SW-CMM) was created at the Software Engineering Institute (SEI) at the Carnegie Mellon 
University in Pittsburgh and was first published in 1990. Here, version 1.1 is analyzed [Paulk 
et. al. 1993]. The SW-CMM defines five maturity levels based on key attributes that identify 
an organization at a particular maturity level, and key processes that an organization must 
have established at a particular maturity level. During an assessment that usually lasts one 
week, a group of experts determines, whether the requirements defined by each level have 
been achieved (or not), and assigns according to the results of the assessment an SW-CMM 
level to the department or organization.  
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A high level description of the SW-CMM levels as shown in Figure 4 is given below: 
• Level 1, “initial”: There are no requirements concerning the software development 

process. If there is a software development process in the organization, it is only exis-
tent on paper, software development is chaotic. No statement about the expectable 
quality of a software product can me made. If the organization produces high quality 
software, this is the result of the motivation and qualification of several individuals, 
but not of quality management. 

• Level 2, “repeatable”: Some task areas are clearly defined. An organization on this 
level has established basic project management. The discipline in applying the process 
is sufficiently high to repeat successes in similar following projects. Time tables and 
budget planning are no pure lottery any more. 

• Level 3, “defined”: Management truly controls the development of the software and is 
clearly informed about the advancement of development. There is a software devel-
opment process that is known throughout the organization and that actually reflects the 
software development practice in the organization or department. Frequent peer-to-
peer reviews are typical in a SW-CMM level 3 organization. 

• Level 4, “managed”: An organization at this level has measures at hand to determine 
both the quality of its software development process and the difference in quality of 
several project not only qualitatively, but also quantitatively.  

• Level 5, “optimizing”: The existing process structure continuously improves itself. 
Quantitatively measured feedback from the development process allows precise as-
sessment of the achieved degree of improvement. This can be achieved by the con-
tinuous application of innovative technology and ideas. 

 

 
Figure 4: Sketch of the SW-CMM levels [Paulk et. al. 1993] 

In the explaining text it is assumed that an enterprise needs approximately a time period of 
two years for the achievement of the next higher SW-CMM level. Skipping of a level most 
probably will fail, as the amount and complexity of the processes to be established is assumed 
not to be manageable.  
Transferability to V&V of models and simulation results: The SW-CMM describes a way of 
introducing commonly as reasonably accepted processes into development, project manage-
ment, and customer service, and associates the expectable quality of the software product with 
the maturity of the established processes in these areas. It describes the aims that have to be 
achieved for each level, but does not rule the way of how to do so. A general increase of soft-
ware quality can be expected from the use of a de-facto-standard as the SW-CMM. 
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Each SW-CMM level implicitly contains a statement about the expectable quality of a soft-
ware product developed by the organization, but does not allow any conclusion for the actu-
ally achieved quality of a specific piece of software. If one is going to rely on one unique 
software product, a general statement about the expectable quality of the software of the or-
ganization is not sufficient. However, [Conwell, Enright, and Stutzman 2000] point out the 
positive impact of well organized software development on the successful execution of V&V 
of models or simulation results. 
The SW-CMM is applicable to software development, which is only one part of model devel-
opment. It does not require the establishment of a model development process and should be 
adapted accordingly, if used in the context of M&S V&V. 

3.2.2 ISO 9000 
The standards or norms family ISO9000 was first published in 1987 by the International 
Standards Organization, Genf. The most popular norm of this family is the ISO9001, which is 
a standard for certification of the quality management system of an organization. In the fol-
lowing, the so called “long time revision” ISO9000:2000 as described in [Thaller 2000] is 
discussed. 
Similarly to the capability maturity model for software, the norm focuses on the processes 
established, but abstains from identifying several levels according to the maturity of the proc-
esses. Whether an organization conforms to ISO9001 is decided after the review of the quality 
management handbook and an audit of two days duration. The requirements documented in 
the norm are based on the assumption that the quality of a software product heavily depends 
on the focus on the customer, the management structure of the enterprise, the integration of all 
involved, the underlying processes, the management system, the continuous improvement, 
facts based decision making, and a well managed supply chain. 
For the purpose of certification, a “quality management handbook” must the filled in. The 
mandatory contents of the handbook are precisely defined and sketched in the following: 

• Quality management system: The norm defines general requirements for the quality 
management system. Their settlement must be documented according to the documen-
tation requirements. 

• Responsibility of management: The responsibility of the management is documented 
in the handbook. It is set out in writing that management fully supports the introduc-
tion of the norm, the organization’s work is customer oriented, a well-defined and 
adequate quality policy will be established, that there is a plan how to do so, that re-
sponsibilities and authority are clearly and unambiguously assigned, that the commu-
nication between all parties involved works, and that management will control the 
compliance with the desired quality policy. 

• Management of resources: Well-founded statements about the availability of all re-
quired resources are found in the handbook. Additionally it is documented that all em-
ployees are sufficiently high qualified, the local infrastructure supports product devel-
opment, and that the working environment is adequate. 

• Product realization: The processes of planning the implementation, communication 
with the customer, design and implementation, sales, production, service, and the con-
trol of monitoring devices and measurement tools must also be documented in the 
handbook. 

• Measurement, analysis, and improvement: The organization documents its way of 
continuous self-control. The methods of quality control and evaluation of both internal 
processes and internal products, of control of non-compliant products is done, and im-
provement methods are presented. 
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Transferability to V&V of models and simulation results: The ISO9000 regulates similar ar-
eas as the capability maturity model for software does. The satisfaction of the norm requires 
structured, well-founded methods and techniques of software engineering and business man-
agement, which implicitly leads to exhaustive documentation of all conducted activities. No 
regulations, which process representation to apply exist, this choice is left to the organization. 
A general increase in software quality can be expected. 
Similar to the SW-CMM as a norm for the certification of organizations, the ISO9000 does 
not allow a statement about the actual quality of one specific software product. Most of the 
regulations for software development should be replaced by regulations for the development 
of computer-based simulations, if this norm was meant to guide M&S V&V. 

3.2.3 The V-Model 
The “Entwicklungsstandard für IT-Systeme des Bundes – V-Modell” was published first in 
1991, and is available today in its version from 1997 (V-Modell97) [Bundesministerium für 
Verteidigung 1997]. It regulates all activities and products, as well as logical dependencies 
during maintenance and modification of IT systems, which distinguishes it from ISO9000 or 
the SW-CMM. In contrast to these, it does not only require the establishing of processes for 
development, configuration management, quality assurance, and project management, but 
actually defines precise processes and products in these areas. The development of hardware 
components is not regulated, but the integration of hardware and software components to an 
overall IT system is considered. The V-Model complements the above discussed (quasi) stan-
dards SW-CMM and ISO9000, as it implements several of the required processes. 
The V-Model is split into the four sub-units “project management (PM)”, “system develop-
ment (SE)”, “quality assurance (QS)”, and “configuration management (KM)”. SE is the cen-
ter with all other sub-units arranged around it. For each sub-unit there is a product flow de-
scription, which is synchronized with the product flow descriptions of the other sub-units, and 
product templates that define the contents of the products clearly and unambiguously. To 
avoid unnecessary documentation overhead, the mandatory products can be adjusted during 
SE according to the requirements of the project (tailoring). The sub-units regulate the follow-
ing: 

• In SE a complete software development process with phases, sub-phases, and products 
is presented, which focuses on system requirements analysis, system design, soft-
ware/hardware requirements analysis, software high-level design, software low-level 
design, software implementation, software integration, and transition to use. For each 
of these there is a phase in the development process assigned to, which includes sev-
eral sub-phases each, not further discussed here. 

• QS describes constructive (preventive) and analytic activities to increase the quality of 
the software, and regulates the influences of QS on SE. The main activities in the sub-
unit QS are the initialization of QS, examination preparation, process examination, 
product examination, and QS reporting. 

• The sub-unit KM regulates all activities for managing the different versions of the 
product in a structured form. The four distinguished phases are KM planning, product 
and configuration management, modification management, and additional KM ser-
vices. 

• The sub-unit PM regulates all organizational aspects. Explicitly considered are the 
project initialization, project acquisition, internal management, detailed planning, cost-
benefit-analysis, realization decision, risk management, project control, reporting, 
teaching, resources management, sub-contract management, employees briefing, and 
project completion. 
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Transferability to V&V of models and simulation results: The V-Model contains a precisely 
defined SE process, which can serve as basis for integration of V&V activities after addition 
of M&S specific elements. Exhaustive quality assurance (QA) activities are scheduled, which 
may be implemented using V&V techniques. 
The main focus of the V-Model is on the sub-unit SE and software development, as the 
phases SE3 through SE7 describe requirements analysis, design, and implementation of soft-
ware. Questions characteristic for model development and the design and implementation of 
the highly specialized simulation software are only considered marginally.  

3.2.4 NASA Likelihood of Failure Rating 
The NASA developed a categorization scheme for the likelihood of failures in a software pro-
ject, to provide an objective basis for the decision, whether independent V&V (IV&V) is re-
quired, or not [Rosenberg 2001]. Indicators for the likelihood of failure are so called factors, 
as there are:  

• the complexity of the software team (including team size and team member back-
grounds), 

• the degree of support by sub-contractors, 
• the complexity of the organization, including geographical distribution and communi-

cation infrastructure, 
• the time pressure, 
• the SW-CMM level of the organization, 
• the degree of innovativity of the software, 
• the complexity of integration, especially for distributed software, 
• the degree of maturity of the requirements specification, and 
• the number of lines of code. 

 
Depending on weighted factors that influence the development of the model, one estimates a 
“likelihood of failure” rating. Each of the above influence factors is quantified in five levels 1 
– 5 with an unweighted probability of failure score of the value 2level assigned to it. These 
failure scores of each factor (bullet list above) are weighted single or double, according to 
their assumed significance. (Weighting factors are fix.) The sum of all weighted failure scores 
yields the likelihood of failure rating. 
In a second step, the necessity for IV&V is determined using another categorization scheme 
where consequences of software errors are classified as “insignificant”, “marginal”, “substan-
tial”, and “grave”. Depending on the consequence class and the calculated likelihood of fail-
ure rating, the table states, whether IV&V is required, or not. 
Transferability to V&V of models and simulation results: This approach seems to be suitable 
for the determination of the required rigor and intensity of V&V. However, although the cal-
culation of the likelihood of failure rating creates the impression of an objective estimation, 
the initial scores for each factor level and their weights make it highly subjective. No study 
results are known that relate the actual numbers of errors found after rigorous V&V (which 
indicate the “likelihood of failure”) with the calculated likelihood of failure rating on an em-
pirical foundation. In this case this is not really relevant, as the rating only supports a binary 
decision (IV&V or no IV&V), but one must be careful, if this approach shall be transferred to 
support more subtle decisions.  

3.2.5 The DMSO Recommended Practices Guide on VV&A 
The Recommended Practices Guide (RPG) of the US Defense M&S Office [Defense Model-
ing and Simulation Office 1996 and 2000] most probably is the most extensive document in 
the research area of M&S VV&A currently available. It has been published first in 1996, but 
several of its numerous authors (Glasgow, Balci, Muessing, Youngblood, Solick) published 
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their contributions to the US Defense Modeling and Simulation Office in only slightly modi-
fied form previously on scientific conferences. The current RPG2000 is a completely modi-
fied version, that treats numerous more or less relevant aspects of VV&A. An excellent intro-
duction to the background and necessity of VV&A is provided, illustrated by examples. This 
includes definition and explanation of the terminology, process models, identification of peo-
ple or “roles” involved, guidelines for the approximation of cost and benefits, and more. Most 
of the contents of the RPG2000 are described in a process-oriented way, are easily compre-
hensible and provide an excellent overview of all organizational problems. Some guidance is 
provided even down to the selection of V&V activities. 
Without any doubt, the RPG2000 describes the current state of the art of VV&A methodology 
and satisfies its title. Nevertheless, despite (or because) of the extend of this work, there are 
inconsistencies, and some of its limitations become obvious after closer examination: 

• Within the core documents, the usefulness of the differentiation according to the roles 
within the problem solving process must be doubted. The separation between the 
guidelines given for each role is imprecise, which leads to frequent repetitions of text 
pieces over the whole document. One the other hand, information that definitely is of 
interest for a specific role is hidden in another section of the core document associated 
to another role. If one is seriously interested in VV&A, one has to read all core docu-
ments anyway, else most probably information that is relevant for the own role is 
missed. 

• The RPG2000 is both a technical and a political document. This seems to be the rea-
son, why products, processes, and guidelines are not precisely defined and leave 
enormous freedom for interpretation. Those who actually are involved in ensuring that 
a model or simulation results are correct and suitable, find beside a list of uncritically 
assembled V&V techniques only little practically applicable guidance. Detailed regu-
lations, which working steps should be executed for the V&V of a model or simula-
tion results, and detailed product specifications as given in the V-Model are not con-
tained in the RPG2000. It does not provide guidance through model development that 
allows the explicit association of QA activities with V&V techniques. 

3.2.6 Confidence Levels in Model Behavior 
The CLIMB process (Confidence Levels in Model Behavior, [Flight Mechanics Panel Work-
ing Group WG-12 on Validation of Missile Simulation 1985]) categorizes comparison data in 
five levels, according to the source they origin from. This significantly distinguishes CLIMB 
from other approaches, where accreditation is a binary decision without additional informa-
tion concerning the underlying V&V techniques, including their rigor and intensity. The ap-
proach has been introduced to increase the credibility of simulations used in the context of 
rocket development for system improvement and capability demonstration. 
The requirements for reaching a desired confidence level concern 

• the documentation and origin of the comparison data; 
• the documentation of the model, runtime data, and model use; 
• the necessity to satisfy all requirements of the next lower CLIMB level. 

 
The origin or source of the comparison data are the main characteristics of the desired level. 
This is sketched in Figure 5. 
To reach CLIMB 1, model output must be compared with the expected output of the model 
based on “educated guesses” (expert opinion). The Conceptual Model is evaluated by an 
SME, too. The model documentation is expected to include 

• a description of the examination aim (intended purpose of model use), 
• a rough description of the Conceptual Model, 
• a functional model, 
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• a description of the applicability of the model, 
• a comment on its implementation, 
• the model history, and  
• comments on the behavior of the model. 
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Figure 5: The CLIMB and their comparison data 

For CLIMB 2 already a comparison of behavior between the model and another documented 
(and accepted) theoretical model or another accredited Executable Model is required. In addi-
tion it is examined, whether the program specification (design) was met. Additional documen-
tation requirements include 

• block diagrams of the Conceptual Model and all of its submodels, 
• a basic description of the implementation, and 
• a benchmark test run. 

In addition, all requirements for CLIMB 1 must be fulfilled. 
 
For CLIMB 3 the behavior of the submodels of the model must be compared to the behavior 
of their corresponding real subsystems. The comparison data must be measured at the existing 
real subsystems in the lab. Additional documentation requirements include 

• the description of the lab test setup, 
• the description of the data measurement method, and 
• instructions for the creation of simulation runs. 

In addition, all requirements for CLIMB 2 must be fulfilled. 
 
To achieve CLIMB 4, comparison data is required, which was measured at a hardware-in-the-
loop simulation that interconnects all already existing real subsystems. Then the results of the 
“software only” model are compared to the results of the HIL simulation. Additional docu-
mentation requirements include 

• the description of the HIL experiment setup, and  
• the modifications of the model. 

In addition, all requirements for CLIMB 3 must be fulfilled. 
 
The highest CLIMB 5 requires the comparison of simulation results with the actually observ-
able behavior of the real system. Additional documentation requirements include 
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• the description of the real experiment setup and 
• the description of the simulation setup. 

In addition, all requirements for CLIMB 4 must be fulfilled. 
 
The CLIMB is an approach to define minimum requirements for V&V activities and docu-
mentation for a desired level of model credibility. With the requirements for the distribution 
of comparison data (breadth) and their origin (depth), a (highly specialized) measure for V&V 
rigor and intensity has been introduced. Those who are familiar with the CLIMB concept 
know from the achieved level, under which constraints the model was validated. Under the 
assumption that the V&V activities required for each level were implemented carefully and 
correctly by qualified personnel, a conclusion about the expected reliability of the model is 
possible. 
CLIMB is a highly specialized approach to increase the confidence in a special kind of M&S. 
It is most likely to be successfully applied to models of real systems that are under construc-
tion. With advance in development, more about the real system is learned, and the (adjusted) 
model becomes more likely to simulate the (expectable) behavior of the final real system. In 
the beginning of the development process of the real system, there is only the specification of 
its desired properties, and the Executable Model may serve as a “dynamic specification” of 
the real system. Whether the real system that will be developed to meet these requirements 
will behave as shown by the model is not clear at all. With the completion of the detailed de-
sign of the real system the correctness and suitability of the reflection of the structural de-
pendencies within the model can be evaluated, which leads to an increase of confidence (if 
true). As soon as real data can be measured from the (prototypically) implemented compo-
nents of the real system, the behavior of their representatives in the model (corresponding 
submodels) can be validated. Continuing this approach consequently, the real components are 
interconnected in a virtual system (hardware-in-the-loop simulation), which yields compari-
son data for the overall model. As the HIL simulation contains many real components, which 
will be used in the real system it is assumed that its output data is already very close to the 
data that will be measured after the real system’s completion. Finally the completion of the 
real system allows the direct comparison between model output and real system operation 
data. 
The strength of this approach lies in the stepwise integration of V&V results of the compo-
nents, which allows to gain confidence in the validity of the structure from pure behavior 
validation (bottom up black-box and integration testing). With the validation of each integra-
tion step of the validated components, indirectly the structure description is also validated. 
After extensive testing of the components and validation of the corresponding submodels, 
only a few tests with the completed real system should be required to confirm the correctness 
and suitability of the real model. 
CLIMB is mainly validation-oriented and does not cover the whole breadth and depth of the 
achievable V&V intensity. The selection of the focus is not amazing at all, as in the context of 
CLIMB exhaustive tests of the components of the real system and the real system itself, 
measurements of physically and quantitatively defined measurands are possible. However, the 
less opportunity for the comparison between simulation results and real data, the more impor-
tant becomes verification that ensures that the symbolic description of the structure and be-
havior of the model most likely results in the desired, not directly comparable behavior.  

3.2.7 RAND VV&A Taxonomy 
A pragmatic approach to the VV&A of models for combat and battle field simulation was 
presented by [Davis 1992] as research results for the U.S. Under Secretary of Defense for 
Acquisition. He neither deals with a V&V process, nor with the definition of V&V levels, but 
concentrates on a taxonomy for VV&A on the one hand, and incremental VV&A and re-use of 
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previously achieved V&V results on the other. The following issues are addressed within the 
taxonomy: 

• Verification is split into verification of logics and mathematics and verification of the 
program code. 

• The attempt to demonstrate validity is subdivided into empirical evaluation, theoreti-
cal evaluation, and evaluation by other comparisons. (Empirical evaluation mainly in-
cludes comparison against data from history, field-test, laboratory, maneuvers, and 
other exercises; theoretical evaluation addresses analytic rigor, verisimilitude, clarity 
and economy, and other validated models and scientific theories; and evaluation by 
other comparisons uses expert opinion, doctrine, models of uncertain validity, and 
other information sources.) In addition, in analogy to [Zeigler, Praehofer, and Kim 
2000] it is distinguished between predictive, descriptive (replicative), and structural 
validity, although the definition of structural validity deviates from Zeigler’s. 

• Model accreditation is divided into provisional accreditation for an application class 
and accreditation in the context of a particular analysis plan. 

 
 

Severity Category 
CATASTROPHIC CRITICAL MARGINAL NEGLIGIBLE 

Ref Impact Do-
main 

    

1 Personal 
Safety 

Death Severe injury Minor injury Less than minor 
injury 

2 Occupational 
Illness 

Severe and broad scale Severe or broad scale Minor and small scale Minor or small scale 

3 System Dam-
age 

Loss of system Major system damage Minor system damage Less than minor 
system damage 

4 Environ-
mental Impact 

Severe environmental 
damage (eg. Chernobyl) 

Major environmental 
damage (eg. Most land 
blight) 

Minor environmental 
damage (eg. pollution of a 
stream) 

Trivial environmental 
damage (eg. minor 
spillage with no long 
term effects) 

5 Operator 
Workload  

Operator cannot con-
tinue to operate system 

Severe reduction in the 
ability of operator to 
operate system 

Major reduction in the 
ability of operator to 
operate system 

Minor reduction in 
the ability of operator 
to operate system 

6 Financial Loss Above £1m £250k to £1m £10k to £250k Less than £10k 
7 Security 

Breach 
Top Secret Secret Confidential Restricted 

8 Reliability Total loss of functional 
capability 

Severe reduction in 
functional capability 

Significant reduction in 
functional capability 

Slight reduction in 
functional capability 

9 Project 
Schedule 

Slip impacts on overall 
defence capability 

Slip impacts on other 
projects (eg. life exten-
sion of existing system) 

Slip results in major 
internal schedule reorgani-
sation 

Schedules repub-
lished 

10 Mission 
Impact 

Mission loss (opera-
tional) 

Severe mission degrada-
tion (operational) 

Slight mission degradation 
(operational) 
Mission loss (training) 

Mission delayed 
(operational) 
Mission degraded 
(training) 

11 Criminal 
Liability 

Custodial sentence 
imposed 

Large fine imposed (£5k 
plus) 

Small fine imposed (up to 
£5k) 

Conditional discharge 
etc. 

12 Civil Liability Multiple, large civil 
suits (£10k plus) 

Single, large civil suit 
(£10k plus) 

Multiple, small civil suits 
(up to £10k) 

Single, small civil 
suit (up to £10k) 

13 Maintenance 
Burden 

Projected servicing 
schedules severely 
adversely affected 

Unscheduled mainte-
nance predictions se-
verely adversely affected 

Projected servicing sched-
ules slightly adversely 
affected 

Unscheduled mainte-
nance predictions 
slightly adversely 
affected 

14 Political 
Impact 

Government falls Minister resigns Commons debate/National 
Press aware 

Parliamentary Ques-
tion/Local Press 
aware 
 

15 Delivered 
System Per-
formance 

Design does not meet 
requirement in critical 
areas - leading to a 
failure to accept system 

Design does not meet 
requirement in non-
critical areas - leading to 
major modification 
programme 

Impact on operating 
procedures 

Some trivial defi-
ciencies 

Table 1: Impact domains and severity categories from [Mugridge 1997] 

Under consideration of this taxonomy, activities or techniques are identified, how to ensure or 
assess each type of correctness or validity. It should be recognized that the process of accredi-
tation is handled with great care, allowing only the accreditation of models in the narrow con-
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text of an analysis study, or the provisional accreditation for a wider application field (class 
accreditation). This expresses the (justified) concern that otherwise a model once officially 
“accredited” will be (ab-) used for applications it is not intended for, with the “accreditation 
stamp” as legitimation. 
When re-using a model in a study, information on previous V&V influences the V&V of the 
revised model, which is also explicitly stressed, but not developed in more detail. The clear 
differentiation between empirical, theoretical, and “other” evaluation helps to concentrate the 
validation effort on the aspects of the real world with sufficient information available. How-
ever, dependencies between the identified elements of the taxonomy are not pointed out in 
detail. 

3.2.8 DERA Risk Classification  
[Muessing, Laack, and Wrobleski 1997] published a matrix for the classification of severity of 
the impact of a decision, which has been extended and refined by [Mugridge 1999]. The upper 
border of the severity of the application of a model or simulation can be estimated giving con-
sideration to the possible worst case impact of wrong simulation results. To unify this estima-
tion, 15 impact domains are given, each with characteristics for the classification into one of 
the four severity categories. This allows to create a “severity profile”, or to determine a sever-
ity level. Lacking clearly defined quantitative metrics or empirical data, tables are used for the 
quantification [Muessing, Laack, and Wrobleski 1997; Mugridge 1999]. Table 1 shows a 
summary of worst case consequences of a wrong model or simulation results on the real 
world. This includes a classification of these consequences according to their severity. 
The impact domains are weighted, which controls their impact on the required level of credi-
bility. The required level of credibility then drives the selection of V&V activities taken from 
another table given in the technical report. 

3.2.9 Balci’s Evaluation Environment 
To support credibility assessment, Balci developed an evaluation environment for models and 
simulation results. Based on the postulation that modeling is an art and credibility assessment 
is situation dependent, [Balci 1990] justifies peer assessment as a quite effective method for 
evaluating the acceptability of simulation results. The peer panel, created from experts know-
ing the system under study, expert modelers, expert simulation analysts, and simulation pro-
ject experts, evaluate all available information about the model and the simulation results, 
based on indicators at the leaves of a predefined indicators hierarchy. To each indicator a 
score out of 100 is assigned, expressing the reviewer’s confidence that the requirements iden-
tified by the indicator are met. Each indicator is weighted according to its importance. If re-
quired, paths can also be weighted to reflect their meaning in a particular simulation study. 
Figure 6 depicts a sample indicators hierarchy. 
Both advantages and disadvantages of this approach seem quite obvious. The predefined indi-
cators hierarchy provides excellent guidance for planning and execution of V&V activities, 
and structures V&V results. However, as [Sargent 1999] clearly states, it is hard to map 
credibility statements for each indicator to scores of 0 – 100, to justify the chosen weights for 
the propagation of the indicator scores, and to draw any conclusion for the overall acceptabil-
ity of simulation results from the propagated score. A high degree of subjectivity is hidden in 
an objective looking approach. However, the approach was continued and the Evaluation En-
vironment stepwise improved. Its current state is documented in [Balci 2001]. 
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Experiment Design 
Verification

Data Validation
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Figure 6: Indicators hierarchy from [Balci 1990] 

3.2.10 The International Test Operations Procedure on V&V 
The V&V International Test Operations Procedure (ITOP) currently is under construction. Its 
first release to a selected reviewers community is expected for autumn 2003 [International 
Test Operations Procedure on V&V 2003]. Numerous issues addressed in this thesis influ-
enced the development of the ITOP on V&V. It is a high-level document intended to provide 
a standard to support the exchange of V&V information among the ratifying nations France, 
Germany, the United Kingdom, and the United States of America. It comprises a procedure 
and guidance for planning, implementing, and documenting V&V efforts of models and simu-
lations. The intention is to make M&S results acceptable, usable, and re-usable to the intended 
nations. For this purpose it provides 

1. modular cases for separate V&V of the model, the data, and model use, to support the 
clear separation of the model itself, embedded and runtime data, and the simulation 
scenarios; 

2. a structured approach for organizing claims, arguments and evidence as a basis for an 
informed accreditation decision, which is based on a fixed indicators hierarchy flexi-
bly extendable for each individual V&V effort [Pygott and Wilson 1996];  

3. a framework of levels addressing the level of impact, level of V&V, and level of qual-
ity; 

4. a workbook template for the uniform documentation of the modular cases, which con-
tain the claims, arguments, and evidence. 

 
Claim-Argument-Evidence Structures (CAE structures) support the structured presentation of 
a chain of arguments that motivate the claim for the correctness and suitability of a model or 
simulation results. The overall claim is hierarchically and flexibly decomposed into sub-
claims, with an argument justifying the decomposition. It is not intended to define propaga-
tion rules through the indicators hierarchy. The satisfaction of the lower claims will, in turn, 
lead to the satisfaction of higher claims until the highest claim of M&S credibility is reached. 
A discussion about the potential and limits of the ITOP on V&V is found in [Lehmann et. al. 
2002] 
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3.3 Summary of Basic Concepts 
The analysis of the related work summarized in section 3.2 resulted in the identification of 
several basic concepts of V&V. Some of them differ significantly, others are very similar. The 
identified basic concepts, which need to be considered for the specification of a V&V frame-
work following in chapter 4 are discussed in the following. 

3.3.1 Process Approach 
As shown in section 3.2.1, 3.2.2, and 3.2.3, and according to principle 3.1.1, numerous pub-
lished approaches to software quality assurance (QA) or V&V of models and simulation re-
sults require or are based on a process model, where phases of the model development process 
are overlaid by V&V phases, e.g. [Defense Modeling and Simulation Office 1996 and 2000; 
Graffagnini, Youngblood, and Lewis 1999]. Another commonly accepted approach are feed-
back loops within the development process with V&V activities linked to them [Sargent 
1999]. In general, these approaches can be distinguished by the selection of the type of the 
model development process and the assignment of V&V activities to the corresponding 
phases or feedback loops, as discussed in section 1.4. 
The advantage of the process approach is that there is explicit guidance how to proceed for 
model development and V&V. However, this advantage may become a disadvantage, if V&V 
activities have to be harmonized and synchronized with a model development process already 
established in an organization. 

3.3.2 Question Catalogues and Fixed Indicator Hierarchies 
The approaches presented in section 3.2.9 and 3.2.10 feature question catalogues and fixed 
indicators hierarchies. Checklists in general aim on excluding expected mistakes by explicitly 
checking, whether a specific property has been satisfied (or not), which showed to perform 
well in the area of software engineering (e.g., Fagan’s Inspections, [Office of Safety and Mis-
sion Assurance 1993]). These questions can be pure lists of properties to check within or 
without a recognizable order. Alternatively, the overall question of correctness and suitability 
of the model may be hierarchically decomposed, yielding a fixed or static indicators hierar-
chy. Each indicator is decomposed into a set of several more precise indicators. During V&V 
the indicators at the leaves of this hierarchy tree are examined, which allows to draw conclu-
sions for the indicators on the upper level. Examples of these approaches are given in section 
3.2.9 and 3.2.10, additional reference include the Cost Estimation Tool of Lewis [Kilikauskas 
et. al. 2002], TECOM Pamphlet 73-4 [Department of the Army 1999a], or the Army Pamphlet 
5-11 [Department of the Army 1999b]. 
Several advantages come along with this approach:  
• The choice of questions defines the width of examination (see also section 4.1.2); 
• Those responsible for V&V can choose, whether to approach the problem bottom-up start-

ing with the leaves of the hierarchy, or top-down starting with the root; 
• The examination applied to different models or simulation results is directly comparable, 

when the same checklist or indicators hierarchy was used. 
 
However, the following limitations can be identified: 
• The width of V&V is anticipated by the (inflexible) selection of the indicators. It is 

unlikely that any given questions catalogue below a certain degree of abstraction is com-
plete for any given model or simulation results. Therefore, the existence of loopholes must 
be assumed. 

• The indicators hierarchies suggests the assignment of credibility values and their propaga-
tion through the hierarchy. There are serious limitations to this approach, as discussed in 
[Sargent 1999]. 
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3.3.3 Flexible Indicator Hierarchies 
In the approach presented in section 3.2.10 also an indicators hierarchy is created, but in con-
trast to 3.3.2 its structure is not predefined but adapted for each V&V effort individually. This 
implies that in addition to the indicators hierarchy itself the rationale for its creation must be 
documented, too. 
Several advantages results from flexible indicators hierarchies: The precision of the questions 
can be increased or decreased by individual, aim-oriented hierarchical decomposition or ab-
straction, i.e., it supports both a flexible bottom-up and a top-down approach. Starting bottom-
up, for all available V&V evidence (products generated as outputs of V&V activities) claims 
are created, which they support, and these claims are flexibly connected by an argument to a 
claim at the next higher level in the hierarchy. Alternatively, starting top-down, the overall 
claim for correctness and suitability is decomposed flexibly into sub-claims, which are again 
decomposed into sub-claims, until sub-claims are identified for, which V&V techniques and 
sufficient information are available. Then the V&V results are created, which serve as evi-
dence. In practice and especially for model re-use and evidence leveraging, a meet-in-the-
middle approach seems to be most appropriate.  
However, the case dependent selection of arguments can also become a drawback. The identi-
fication of indicators and the reasoning of the argumentation must be reviewed with each new 
V&V project – in contrast to the fixed indicators hierarchy discussed in section 3.3.2. A com-
bination of these two approaches seems to be reasonable, with a fixed hierarchy for the more 
abstract indicators, and a flexible, case sensitive claim-argument structure when it comes 
down to the features of the model. 

3.3.4 Risk-Orientation  
Directly or indirectly addressed in the approaches taken in the sections 3.2.4, 3.2.6, 3.2.8, and 
3.2.10, this concept deals with the determination of the required V&V effort for a specific 
intended use of the model, depending on the worst case impact of a wrong simulation-based 
decision and the probability of a wrong model or invalid simulation results. Usually in risk-
oriented approaches to V&V, it is distinguished between impact of the decision, influence of 
the model or simulation results on the decision, and the probability of an unsuitable or incor-
rect model or simulation results. State of the art is the use of tables to come up with a conclu-
sion about the required rigor and intensity of V&V. Theoretically, these factors can be arith-
metically connected as discussed later in section 4.1, or in [Harmon, Gross, and Youngblood 
1999]. However, as long as there are measures or metrics for neither impact nor influence, 
these considerations are purely academic.  

3.3.5 Process Assessment vs. Product Assessment 
The processes presented in section 3.2.1 and 3.2.2 concentrate on the assessment of the devel-
opment process followed (“process-oriented”), while those in sections 3.2.6 and 3.2.10 con-
centrate on the (intermediate) products generated during development (“product-oriented”). 
The question, whether V&V shall be more process-oriented or more product-oriented remains 
unresolved in the V&V community; to motivate the selected orientation for this  thesis,  both  
tendencies  are  explained  and  their  advantages  and  disadvantages  briefly  discussed: 
• Process-oriented V&V focuses on the evaluation of the activities conducted during model 

development and V&V. It is the aim to ensure that the model has been developed in a rea-
sonable way in accordance with a well-defined model development process, using sound 
modeling and Software Engineering techniques. This approach (which is also the idea of 
ISO9000 [Thaller 2000] or the SW-CMM [Paulk et. al. 1993]) is based on the assumption 
that a careful and structured approach leads to the creation of a high-quality product. It is 
not necessary for the model developer to produce additional information that supports the 
evaluation of the correctness and suitability of the model in addition to the products re-
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quired within the certified process. It is sufficient to demonstrate that model development 
was conducted according to the process. This minimizes the additional effort for the 
model developer and leads to products of higher quality in general, but does not allow to 
judge the correctness and suitability of one particular model or a particular set of simula-
tion results. As models are no mass product and often each individual model is of great 
importance, for the V&V of a specific M&S product pure process-oriented V&V seems to 
be hardly acceptable. 

• Product-oriented V&V focuses on the assessment of the correctness and suitability of a 
specific product. The product itself is subjected to examination, independently from the 
way it was created. Pure product oriented V&V allows assessment of the product quality 
without constraining or limiting the developer with mandatory development guidelines. 
However, strict guidelines for the documentation of all intermediate products gained dur-
ing model development are required, as completeness and understandability of the model 
documentation are essential for this approach. This leads to a very high effort for product 
oriented V&V, which on the other hand also enhances reuse of the model. 

 
The main focus of scientific literature lies on the evaluation of developmental products (prod-
uct-oriented V&V) [Balci 1998b; Sargent 1999; Pace 1999b]. Due to pragmatic reasons, some 
authors now tend towards process-oriented V&V [Balci 2002]. A combination of both ap-
proaches promises to be sufficiently precise and manageable, if it focuses on the product for 
all critical aspects.  

3.3.6 V&V Degrees or V&V Levels 
In the approaches presented in sections 3.2.1, 3.2.4, 3.2.6, 3.2.8, 3.2.9, and 3.2.10, levels have 
been introduced to either express intensity or rigor of the conducted required V&V activities. 
Under the assumption that the proof of correctness not always, and the proof of suitability 
only rarely can be given, the V&V level or degree contains a statement about the expectable 
residual error or the allowed confidence in the model or simulation results.  
The advantage of using well-defined levels or degrees is clear; the binary statement about 
correctness and suitability is replaced by a refined statement, which expresses the degree of 
perceived correctness and suitability. Ideally, this removes the implied unreliability of each 
V&V statement. However, as there are no commonly accepted metrics for measuring the reli-
ability of V&V techniques at the current state of the art, the (subjective) weighting of V&V 
results returns the uncertainty to the statement, and their significance must be doubted. 
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4 THE GENERALIZED V&V-PROCESS 

In the previous chapters the need for a V&V process for models and simulation results that 
provides detailed and consistent guidance for effective and efficient planning, implementa-
tion, and documentation of V&V objectives, activities, and results was identified. In this con-
text, V&V shall be a comprehensible, risk-oriented, and manageable quality assurance meas-
ure that is applied throughout the whole model development process. Its results shall be 
documented in a form that supports assessment of both the rigor and intensity of the con-
ducted V&V. The new V&V process, which is developed in this thesis shall be distinguish-
able from existing guidelines by  

• identification and motivation of clearly defined objectives that shall be achieved dur-
ing V&V in parallel to model development; 

• precise specification of all required products (inputs) from model development and 
from other sources of external information, to achieve these objectives; 

• detailed guidance on how to choose and use V&V techniques to achieve the V&V 
objectives,  

• a clear description of the expectable V&V results (evidence),  
• the clarification of the dependencies between the V&V objectives, and  
• detailed guidance on how to reuse previously created V&V results in subsequent 

stages of V&V. 
 
This section discusses the external influences, drivers, and boundaries of V&V, and derives 
the design for a generalized V&V process. As the most important factors, which influence the 
planning, implementation, and documentation of M&S V&V, the following are identified: 

1. Required rigor and intensity of the V&V results, which depends on the risk associ-
ated with the use of the model or simulation results, which impacts the likelihood of 
residual errors, 

2. Real system knowledge, i.e., availability of information (theoretical and practical 
knowledge and “hard” measured data) about the real system, which limits the maxi-
mum possible intensity of V&V, and 

3. Model knowledge, i.e., availability of information about the model or simulation re-
sults themselves, which also limits the maximum possible intensity of V&V. 

 
To control these influences, the goals, constraints, and requirements discussed in previous 
chapters suggest that the M&S V&V process is embedded into a set of several processes: 

1. A risk classification process that helps to appreciate the minimum required V&V ef-
fort and focuses the identification of V&V objectives. 

2. A model development process with well-defined intermediate products that struc-
tures the development of the model and guaranties the existence of the minimum re-
quired information about the model. 
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3. A credibility building process during which the insight that was gained and docu-
mented during the V&V process is evaluated. 

 
This chapter first concentrates on the factors that influence the planning, implementation, and 
documentation of M&S V&V. Then the credibility building process is discussed, and the 
V&V process outline is sketched. Finally the developed V&V process, which is specified in 
detail in Appendix A, is introduced. 

4.1 Application Risk and Required V&V Effort  
The main driver for the V&V of models or simulation results is the risk incident to their ap-
plication [Kilikauskas et. al. 2002; Harmon, Gross, and Youngblood 1999; Muessing, Laack, 
and Wrobleski 1997; Mugridge 1999]. Simulation results must only be used, if they are suffi-
ciently credible with respect to the impact of their use, and the influence of the simulation 
results in comparison to other non-M&S influences (“conventional” information). If the influ-
ence of the model, simulation results, or observed model behavior is high, wrong or unsuit-
able simulation results are not compensated by conventional information, and most probably 
lead to wrong decisions with undesired consequences. For example, wrong behavior learned 
in a training simulator that is not compensated by other training methods may lead to severe 
damage or loss of the real system during its operation (including human death). Although the 
following discussion results in the statement that it is currently not possible to compute a sig-
nificant quantitative value for the risk associated with a simulation study, it helps to clarify 
the dependencies between the distinct influences on risk. 

4.1.1 General Approach to Risk Assessment 
Several parameters of the risk associated with a simulation-based decision are summarized 
below: 

• Models or simulation results themselves are harmless, as long as they do not initiate any 
action that impacts the real world. They only become counterproductive or even dan-
gerous, if they suggest a wrong or erroneous decision for the real world with undesired 
counterproductive consequences. Let E be the (undesired) event that a wrong decision is 
made (“erroneous decision”).  

• The worst case impact I(E) of the wrong decision may be directly derived from the area 
the decision affects, and is completely independent from the nature or origin of the in-
formation base used for decision making. If the decision may, for example, result in 
human death or massive financial loss, the impact of the decision is considered to be 
high. Otherwise, if the injury or financial loss is negligible, the impact is low [Muess-
ing, Laack, and Wrobleski 1997; Mugridge 1999]. As an externally provided constraint, 
I(E) is considered to be constant with respect to V&V, as the quality of the simulation 
results does not influence the worst case impact at all. (The determination of the severe-
ness of the worst case impact I(E) of a wrong decision is not up to those involved in de-
veloping, verifying and validating the model or simulation results, but to the user of the 
model or simulation results.)  

• The probability of making a wrong simulation-based decision PSim(E) depends on the 
correctness and suitability of the information base on which the decision is made. 

 
Following a typical interpretation of risk, the risk RSim incident to a simulation-based decision 
is defined as the product of the probability PSim(E) of making the wrong simulation-based 
decision E and the worst case impact I(E) of the wrong decision. (As unit for I(E) and RSim a 
currency may be used.) This can be expressed as  
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 ( ) ( )EIEPR SimSim ⋅=  (1)
 
The information base used for decision making is completely or partially gained by the use of 
models or simulation results. Let OE be the event that the simulation results on which the de-
cision is based are erroneous. From the perspective of those involved in M&S, the probability 
PSim(E) of an wrong simulation-based decision can be decomposed in  

(1) the probability P(OE) that the simulation results actually are erroneous, and 
(2) the probability P(E|OE) that wrong simulation results OE lead to a wrong decision E. 

(P(E|OE) expresses the influence of the simulation results.) 
 
This can be formulated as 
 
 ( ) ( ) ( )EESim OPOEPEP ⋅= |  (2)
 
Depending on the share of simulation results on the whole decision base, the correctness and 
suitability of the simulation results influence PSim(E) more or less. I.e., if the simulation re-
sults are only marginally considered during the decision making process, their influence is 
respectively low, which can be expressed by a low value of P(E|OE), close to zero. If the deci-
sion is nearly completely simulation-based, the influence of the simulation results is high, 
resulting in a high value of P(E|OE), close to one. If other sources of knowledge are consulted 
besides simulation, the influence of the simulation results depends on their weight during the 
decision making process. 
Treating the share of simulation-based knowledge of the decision base as an external require-
ment, P(E|OE) is not influenced by V&V and therefore constant. This clarifies that V&V ex-
cusively reduce the probability of negative influences of a model or simulation results on the 
overall decision making process by reducing P(OE). 
Finally, the decision maker has to accept a residual risk RMax when making a decision. Again, 
the acceptable residual risk RMax is treated as a constant with respect to V&V, as V&V does 
not modify it. If RMax ≥ RSim, i.e., the risk RSim of making the decision on the available infor-
mation base is less than or equal to the maximum acceptable residual risk RMax, the model or 
simulation results are acceptable for use. Using equations (1) and (2), this can be formulated 
as 
 
 ( ) ( ) ( ) MaxEESim REIOPOEPR ≤⋅⋅= |  (3)
 
Unfortunately, due to the lack of clearly identified and commonly accepted measures of 
model quality, today it is not reasonably possible to estimate or even compute P(OE). 
[Rosenberg 2001] gives a first rough guess of P(OE), but without any empirical foundation 
(see also section 3.2.4). P(E|OE) most probably also depends on the background of the deci-
sion makers, and thereby is highly subjective. Nevertheless, the following qualitative conclu-
sions can be drawn from or confirmed by the above discussion: 

1. The lower the acceptable probability of erroneous simulation output P(OE), the lower 
must be the maximum acceptable residual risk RMax. 

2. The maximum acceptable probability of erroneous simulation output P(OE) decreases 
with increasing influence of simulation results on the decision P(E|OE). 

3. If the probability of erroneous simulation output P(OE) cannot be reduced below a given 
threshold, the decision makor (often also the sponsor) needs to deliberately reduce the 
influence of simulation results on the decision, or change the intended use of the model 
to decrease the impact of an erroneous decision I(E). Otherwise a higher maximum re-
sidual risk RMax must be accepted. 
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4.1.2 Required V&V Rigor and Intensity 
The minimum required rigor and intensity of V&V (see section 1.5.4) is implied by the de-
sired credibility, which directly depends on the risk RMax acceptable for the intended model 
use. Without being able to give a reasonable estimate of P(OE), it is an even more desirable 
goal to reduce the probability of erroneous simulation output P(OE) by increasing the intensity 
of V&V. The desire to give an at least rough estimate of V&V intensity leads to the differen-
tiation between the depth and the breadth of V&V. The V&V intensity depends on “what was 
checked” (breadth) and “how intensively it was checked” (depth). Both achievable depth and 
achievable breadth of V&V are limited by the available system and model knowledge.  
Breadth is associated with rigor and describes the variety of objectives achieved during V&V 
concerning the previously introduced intermediate products. Indicators for the breadth of the 
conducted V&V are: 

• the variety of types of model information (intermediate products) evaluated, i.e., as-
pects of the model, which were examined, and their associated documentation; 

• the variety of information about the real system evaluated, including comparison data 
and comparison data sources (from both models and reality), and theoretical and prac-
tical knowledge (including the number of SME, and the number of domains where the 
SME came from); 

• the variety of V&V techniques applied and documented. 
 

For example, to increase rigor, after conducting V&V of the Structured Problem Description 
and the Conceptual Model, one may instruct an expert to verify the Formal Model for syntac-
tical and semantic correctness (see section 5.1), and to use statistical techniques to compare 
model results to test data from the real system (see section 6.5.2). 
The depth describes the intensity of examining the different model contents. Indicators for the 
depth of the conducted V&V are:  

• the concentration of analysis and testing on one particular intermediate product, and 
the level of detail of the documentation evaluated; 

• the density of comparison data (from both model and reality) and special knowledge 
about the real system (e.g., reputation of the SME consulted on a specific topic); 

• the maturity and objectivity of V&V techniques applied and documented. 
 

For example, to increase intensity, after behavior visualization of the Executable Model and 
its evaluation by an SME (face validation, see section 5.4), its syntactical and semantic cor-
rectness can be shown by a syntax and semantic checker (see section 5.1), and model behavior 
is evaluated by using an additional mature V&V technique like model checking (see section 
5.3.7). 

4.1.3 Risk and Credibility Classification  
As a conclusion from the above discussion, it can be summarized that a scalar measure for 
risk as provided by the risk classification process of [Mugridge 1999] is helpful as an overall 
risk statement, but does not support the focused identification of V&V objectives. This re-
quires at least a statement of prioritized worst case impacts to allow the identification of their 
potential causes within the model or simulation results and the concentration of V&V activi-
ties on them. Another discussion on V&V metrics can be found in [Pace 2003]. 
As it is not the intention of this thesis to offer a solution for the quantitative determination of 
V&V intensity, the probability of a residual error in the simulation output, and the maximum 
acceptable residual risk, the opportunities for the application of V&V activities are explored 
in both breadth and depth in the following. However, it needs to be highlighted that all planed 
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and conducted V&V activities are driven by the identified worst case impacts, which result in 
an (abstract) risk statement. For the later graphical illustration of the dependencies between 
risk classification, model development, credibility building, and V&V, the abstract (outlined) 
representation of the risk classification process shown in Figure 7 is chosen, which stresses 
the need for the identification of the worst case impacts and the formulation of a risk state-
ment. 
 

Required
credibility

Worst case 
impacts

Risk 
statement

 
Figure 7: An abstract risk classification process 

4.2 Real System Knowledge 
The extend to which information of the real system is available (including theoretical and 
practical knowledge, reasonable assumptions, and “hard” measured data) varies with the ob-
servability of the real system. For several reasons the information about the real system may 
be incomplete, among them: 
• The real system does not (yet) exist. 
• The real system is under development and only partially exists. 
• The real system is not exploitable or simply too complex. 
• It is too dangerous or expensive to modify or manipulate the real system, its input, or its 

internal state for examination. 
 
This problem has already been addressed by [Klir 1985] who defined Levels of System 
Knowledge. His concept was reused in [Zeigler, Praehofer, and Kim 2000], as shown in Table 
2. 
 

Level Name What we know at this level 
0 Source What variables to measure and how to observe them 
1 Data Data collected from a source system 
2 Generative Means to generate data in a data system 
3 Structure Components at a lower level coupled together to form a 

generative system 

Table 2: Levels of system knowledge 

At level 0, the border of the real system and its attributes and state variables are identified. At 
level 1, measured data is actually available, but the behavior of the system is still incompre-
hensive. At level 2, a symbolic behavior description can be provided, which allows to repro-
duce the data generated by the real system, which is still a black box. Insight into the structure 
of the system is gained at level 3. 
Especially during validation, the model or simulation results are judged giving consideration 
to the knowledge of reality. The less is known about the real system, the less confidence in the 
suitability of the model can be established by comparing the symbolic model or simulation 
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results to the real system. The less empirically measured quantitative data is available (which 
for example is the case for large scale combat simulations [Davis 1992]), the more important 
become qualitative behavior descriptions and knowledge of the structure of the real system. 
For this reason, Klir’s concept of Levels of System Knowledge is refined in the following by 
the distinction between the knowledge of the structure of the real system and the knowledge 
of its behavior. 

4.2.1 System Structure  
A real system can be considered as a black box with input and output parameters, without any 
structural information. This situation corresponds to Klir’s Level 0 of System Knowledge, if 
no behavior data (data about the system dynamics) is available, otherwise to Level 1. How-
ever, the impossibility to directly analyze and formulate functional dependencies between the 
input and the output of the complete real system is often among the reasons for modeling 
complex systems. As indicated in section 1.1, one is then interested in the decomposition of 
the real system into a system of (sub-) systems whose functionality finally can be analyzed 
and formulated (top down), or in its construction by integration of subsystems with well 
known or analyzable behavior (bottom up). The identified subsystems and their hierarchical 
and peer-to-peer-dependencies are called structure of the real system in the following. The 
possible depth of insight into the structure of the real system depends on  
• whether it is possible to identify components of the real system and their structural de-

pendencies (Level of System Knowledge 3) and 
• whether it is possible to actually manipulate or physically decompose the real system and 

to repeat the steps mentioned above iteratively. 
 
If the real system is not or only partially observable or modifiable, the above knowledge may 
be gained or substituted by  
• analysis of other symbolic or physical models of the real system (e.g., construction plans, 

prototypes), which were constructed for another purpose (e.g., construction), and may be 
completely, partially or not at all available,  

• analysis of a related real system, which reflects the desired properties of the real system to 
a certain degree, or  

• a postulate, which should be based on sound scientific assumptions. 
 
At best, a complete multi-layered subsystems hierarchy can be created from direct detailed 
analysis of the real system and all of its subsystems. At worst, the real system cannot be de-
composed at all and remains a black box. 
The knowledge about the structure of the real system limits the V&V of the model or simula-
tion results. As it will be shown in section 4.3, the decomposition of the model and its com-
ponent-wise V&V against the real system is a powerful approach to managing V&V of com-
plex models. The less is known about the internal structure of the real system, the more com-
plex become V&V of the model.  

4.2.2 System Behavior  
When trying to understand the behavior of a real system in operation over time, one first de-
cides, which aspects of the behavior might be of interest, and then chooses quantitatively 
measurable metrics to be able to measure the desired properties of the real system. (This cor-
responds to the Level 0 of System Knowledge; example of metrics for “object movement”: 
velocity [m/s], acceleration [m/s2], direction [rad].) This might be not feasible, if the available 
theoretic models of the real system are not sufficiently mature to provide such measures (ex-
ample of metrics for “Human Behavior Representation”: tiredness, concentration, creativity 
[Dompke 1999]). In this case, qualitative or ranked metrics accepted in the application do-
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main should be used, and only in the worst case new metrics should be created without rigor 
scientific research. In addition, even if precise metrics can be identified, measurement errors 
must be taken into account, and statistical relevance of the measured behavior data should be 
ensured whenever possible (Level 1 of System Knowledge). The depth of achievable insight 
into the behavior of the real system (which again can be a subsystem of a higher level system) 
depends on the observability and controllability of the identified structural elements, i.e. the 
input and output parameters (I/O) of the real system and all its identified subsystems. The 
following cases can be distinguished (in extension to those defined in [Kleijnen 1999]): 
• Observation of neither input nor output: No insight can be gained from observation of the 

system, only assumptions about its behavior can be made. 
• Output observation and unknown input: The behavior of the real system can be observed, 

but one is not capable of identifying or measuring all relevant influences on the behavior 
of the real system. Maybe behavior patterns in the real system output can be identified. 
The system seems to be self-driven. 

• Unknown output, but input observation: Only assumptions can be made how the real sys-
tem reacts on the observable inputs, the system seems to absorb all external influences as 
a black hole. 

• Output and input observation: Observing the input-output behavior of the real system, 
without controlling the input to the real system. Assumed cause-effect-dependencies be-
tween input and output can be formulated. 

• Output observation and control of input: Observing the input-output behavior of the real 
system, while manipulating the input to the real system and/or its subsystems. This allows 
to create significant test cases for the real system and to perform aim-oriented examina-
tion. Assumptions about the behavior of the system can be confirmed or disproved. Unfor-
tunately this is often not or only in limited form (lab conditions) possible, due to the same 
reasons of building the model (see chapter 1.2).  

 
In analogy to structural analysis, the information gained by observation or manipulation may 
be augmented by information gained from observation or manipulation of related systems or 
other models. (However, then the questions of their suitability still remain.) In the best case, 
quantitative metrics exist for each subsystem, which can be exhaustively measured with only 
negligible measurement error. In the worst case not even a limited number of qualitatively 
defined high-level system outputs can be observed. 
The non-availability of “hard” quantitatively measured data leads to less objective validation 
of a model or simulation results. For meaningful validation there should be at least input and 
output data for major subsystems available, otherwise the success of any validation attempt 
must be doubted. This evaluation is also shared by Sargant [Sargent 1999]. 

4.3 Model Knowledge  
The maximum possible intensity of V&V is also limited by the availability of information 
about the model. Due to, e.g., protection of intellectual property or simply failure in documen-
tation, the available information about the model itself may be limited. If – for any reason – 
necessary information cannot be obtained or reconstructed, V&V will be less intensive, as, if 
the information was available. In this situation the importance of quality assurance (quasi-) 
standards like the SW-CMM (section 3.2.1) or ISO9000 (section 3.2.2) becomes obvious: A 
developer who reached a high SW-CMM level or is certified for ISO9000 is more likely to 
produce adequate documentation than another, non-certified developer [Conwell, Enright, and 
Stutzman 2000]. However, the existence of documentation does not automatically imply 
availability for V&V. The age of the model also influences the likelihood of information 
availability: In the defense community, legacy models often come along without any mean-
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ingful documentation of their Conceptual Model, used algorithms, or constraints and limita-
tions. 
Type and amount of available model documentation heavily influence the degree of credibil-
ity that the model can achieve, as the case studies [Gabor, Dietz, and Grahn 2000] and [Schol-
ten 1998] show. In addition, the type of information available influences the selection of 
V&V techniques and the determination of achievable V&V objectives. Ideally, for the pur-
pose of V&V, the available model information supports both a rigorous judgment of whether 
the model meets the acceptability criteria specified by the Structured Problem Description, as 
well as direct comparison to the knowledge of the real system, e.g., recorded real system I/O 
data (Klir’s Level 1 of System Knowledge). To manage information about the model, in the 
following a framework for the classification of model information is introduced. 

4.3.1 The Three-dimensional Model Information Space  
Figure 8 depicts a three-dimensional model information space, in which it is possible to dif-
ferentiate model information according to the information sub-space it belongs to. Later this 
classification supports the identification of required information for the achievement of a par-
ticular V&V objective, as discussed in section 4.7.4. The creation of this three-dimensional 
model information space is based on the introduction to M&S given in the sections 1.2 and 
1.3. 
• It is strictly distinguished between information concerning conceptual aspects of a model 

(which are most easily accessible using the Conceptual Model), formal-mathematical as-
pects (which are most easily accessible using the Formal Model), and technical aspects 
(which can be analyzed using the Executable Model).  

• The submodels are integrated hierarchically, under the assumption that each model is 
explicitly or implicitly composed of submodels that depend on and interact with each 
other (see also section 1.1). 

• It is distinguished between the symbolic description of structure and behavior (symbolic 
model) and the interpreted behavior. 

 
These dimensions span an model information space. Examples for information sub-spaces in 
the three-dimensional model information space are: 
• Subspace “interpreted behavior of the overall Executable Model” (which is close to the 

origin of the information space depicted in Figure 8), or 
• Subspace “symbolic description of the atomic conceptual submodels” (which is the “most 

distant” cube in the three-dimensional model information space). 
 

Executable Model
Formal Model

Conceptual Model

Executable Model
Formal Model

Conceptual Model

Overall Model
Sub-Models Layer 1

Atomic Sub-Models

Overall Model
Sub-Models Layer 1

Atomic Sub-Models

Interpreted Behavior

Symbolic Description

 
Figure 8: The three-dimensional model information space  
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Available information can be classified according to the sub-spaces in the information space. 
Examples:  
• Input and output data recorded during an execution of the Executable Model belong to 

the information subspace “interpreted behavior of the overall Executable Model”. If data 
logs of the (main) submodels at the first decomposition level are available, these belong 
to the “interpreted behavior of executable submodel layer 1” (e.g., recorded I/O behavior 
of the federates in an HLA federation [IEEE 1516 2001]).  

• If one mentally executes the conceptual description of the behavior of an atomic sub-
model (object) within the model (which is considered to belong to the sub-space “sym-
bolic description of the atomic Conceptual Model”), one creates a mental image of the 
submodel’s behavior, which is classified as “interpreted behavior of the atomic concep-
tual submodel”.  

 
The availability of information about a model depends on the stage of model development and 
the conditions under which the model is was developed. If no documentation requirements are 
formulated, the quality of information solely depends on the quality management process of 
the developer.  
The information subspaces can be directly associated with the knowledge of structure and 
behavior of the real system. All structure knowledge of the real system may be used for the 
evaluation of the submodel hierarchy documented in the corresponding subspaces of the sym-
bolic description of the model structure. All functional dependencies within the real system 
may be compared to the symbolic descriptions of model behavior. All data recorded at the 
real system may be used for comparison with the interpreted behavior of the model. 
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Figure 9: Activities along the axes of the three-dimensional model information space 

 
If information about the model desired for V&V is missing, the dependencies between the 
information subspaces along the axes depicted Figure 9 may be used to create additional in-
formation about the model.  
• Construction: The model is further developed, refined, and specified for a more advanced 

developmental stage. (This corresponds to the phases system analysis, formalization, and 
implementation of the model development process introduced in section 1.4.6). 

• Extraction: Implicitly contained information is extracted. For example, if the description 
of the overall Conceptual Model is not available, one needs to disassemble and then to 
reverse-engineer the program code to extract the formal-mathematical aspects of the 
overall model description. These subsequently are interpreted to understand the underly-
ing concepts.  

• Integration: The submodels are assembled to create submodels of the next higher layer of 
the composition hierarchy. This is typically done during model development in the phases 
system analysis, formalization, and implementation. Also the recorded I/O of the sub-
models can be integrated to yield the I/O of the associated next higher layer submodel. 
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• Decomposition: A submodel is decomposed into submodels on the next lower layer of the 
submodel hierarchy. This usually is performed for separate examination of each individ-
ual submodel. 

• Execution: Behavior data (model output) is generated by interpretation of the symbolic 
description of structure and behavior based on model input. This typically is done during 
the experimentation phase, when one uses the executable binary file on a hardware plat-
form to generate simulation results. Other forms of execution are mental or symbolic 
execution of the conceptual (system analysis) or formal (sub-) models (formalization). 
During the implementation phase, the model is executed for the purpose of error detec-
tion (Testing). 

• Analysis: Formulation of the symbolic structure and behavior description of the model is 
based solely on model input and output. This is as difficult as the analysis of the real sys-
tem, and stated here only for reasons of completeness. 

 
The availability of information in the subspaces heavily influences the possible choice of 
V&V activities. For example, the examination of the symbolic description of the Executable 
Model for the purpose of model validation usually is expensive (code analysis, more suitable 
for verification), thus, if possible, here examination of the interpreted behavior is more effi-
cient (testing). The evaluation of the behavior of the Conceptual Model is not very reliable 
(interpretation by mental execution, often only qualitatively), the examination of the symbolic 
description is more suitable (analysis). 
In general one is interested in validating the behavior of the overall Executable Model. Be-
cause this often is not directly possible, one must find a path through the information sub-
spaces that allows the justified conclusion that the originally intended goal has been achieved. 
How the available information influences the V&V of a model is discussed in section 4.6. The 
concepts of the three-dimensional model information space have been previously published in 
[Brade, Maguire, and Lotz 2002] and [Kilikauskas et. al 2002]. 
The structure of the submodel hierarchy may vary through the different intermediate products 
(conceptual, formal, Executable Model). Even monolithic legacy models have been built upon 
Conceptual Models designed in a hierarchical, modular way. Easy projection from the con-
ceptual submodel hierarchy over the mathematical-formal submodel hierarchy to the executa-
ble submodel hierarchy is desirable, but not necessary. 

4.3.2 Populating the Three-Dimensional Model Information Space  
In most cases the reconstruction of missing information is extremely expensive (especially for 
analysis and extraction). As a consequence, the minimum requirement for a model develop-
ment process to support successful application of V&V activities is to provide intermediate 
products that populate the three dimensional information space. Otherwise the operations 
described above need to be applied during V&V to (re-) construct required missing informa-
tion. The model development and execution process introduced in section 1.4.6 meets this 
minimum requirement. For its below integration into a processes framework, its graphical 
representation was adapted as shown in Figure 10. The arrow shows the general direction of 
model development, the black boxes the main developmental phases, and the ellipsoids repre-
sent well-defined intermediate products created during each phase. Iterations due to the 
change of requirements or additional knowledge gain during modeling are not explicitly 
graphically visualized, but do not interfere with the chosen representation. The expected ac-
tivities in the development phases and their associated intermediate products are specified in 
detail in Appendix A, thus a solid representation is chosen for them. 
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Figure 10: The model development and execution process of section 1.4.6 represented alterna-

tively 

4.4 Establishing Credibility  
To establish the credibility of a model or simulation results means to increase its perceived 
correctness and perceived suitability, and therefore to make plausible that no relevant errors 
or inadequacies remain in the model or the simulation results. This section motivates the in-
troduction of the vague term credibility that addresses “the quality or power of inspiring be-
lief” [Merriam Webster 2003]. 
According to the principle stated in section 3.1.6, in most cases there is no proof of correct-
ness and suitability of a non-trivial model or its simulation results. As a consequence, one 
never definitely knows when to terminate V&V activities, unless a sufficient number of errors 
and inadequacies was found to render the model or simulation results unsuitable or incorrect 
(failure of V&V or successful falsification). This suggests that the perceived suitability and 
perceived correctness can only inspire the believe that a model or simulation results actually 
are suitable for an intended purpose and correct. Based on the power or quality of the inspir-
ing belief, which is founded on the intensity and the rigor of the conducted V&V activities 
and their successful communication, a final decision is made, whether the model or simulation 
results can be used or not – always with a residual risk left.  
Following the principles of V&V, the credibility of one specific model or set of simulation 
results has to be examined explicitly, as the credibility indicated by the credibility of the de-
veloper (based on its SW-CMM level, an ISO9000 certification, or the developer’s reputation) 
may be to high (model users risk) or to low (model builders risk).  
In order to apply simulation results, the demonstration of the correctness and suitability of the 
model is required, but not sufficient. The credibility of simulation results is based on three 
main influences:  

(1) The credibility of the model used for experimentation and its embedded data,  
(2) the credibility of the runtime input data, and  
(3) the credibility of the ways of operation or application of the model.  
 

If only one of the three items is not credible, the correctness and suitability of the simulation 
results must be doubted. Figure 11 visualizes this concept. 
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Figure 11: Credibility of simulation results 

4.4.1 Credibility of the Model 
The credibility of a model is based on its perceived suitability and perceived correctness, al-
ways giving consideration to the intended purpose. To establish credibility of a model, the 
three-dimensional model information space and the dependencies between its sub-spaces in-
troduced in section 4.3.1 are used. 

• Credibility of the Conceptual, Formal, and Executable Model: There is a strong de-
pendency between the credibility of the Conceptual Model, the Formal Model, and the 
Executable Model. If the Conceptual Model is credible with respect to the knowledge 
available about the real system, here it is assumed that the contents expressed by the 
formulas of the Formal Model are also credible, if it is shown that it correctly (with re-
spect to the modeling formalism) and suitably reflects the Conceptual Model (trace-
ability). The same is true for the Executable Model: If the formulas of the underlying 
Formal Model are credible, and it is shown that they are suitably and correctly en-
coded, the Executable Model becomes credible. Thus, to establish credibility of the 
Executable Model incrementally, one starts with validating the Conceptual Model 
against real system knowledge (giving consideration to the intended purpose), and 
then reduce further work to verifying internal correctness of the Formal Model and 
complete consistency with the Conceptual Model, and do the same for the Executable 
Model. Incremental credibility building should be conducted in parallel to the advance 
in model development over the phases system analysis, formalization, and implemen-
tation. 

• Credibility of the submodel hierarchy: A model is considered to be credible, if all its 
submodels are credible and interact in a credible way. The bottom-up approach along 
the “integration” axis (see Figure 9), is to “integrate” credibly interacting credible 
submodels to credible submodels on the next hierarchical level. If it is not possible to 
directly establish credibility of the overall model, it needs to be “decomposed” top-
down into credibly interacting submodels, until it is feasible to show the credibility of 
the submodels. This should be done during each of the phases system analysis, formal-
ization, and implementation. 

• Credibility of symbolic description and interpreted behavior: If the chances are lim-
ited to directly observe behavior of both the complex model and the real system, the 
extrapolation of expectable behavior from the symbolic structure and behavior de-
scription is desirable to increase credibility of the interpreted behavior (and vice 
versa). For early error detection during model development it is important to ensure 
that the conceptual structure and behavior description is credible, which finally will be 
confirmed, when the observed behavior of the Executable Model is credible. Having 
successfully established credibility of the symbolic model, “execution” is expected to 
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yield credible observable behavior (and vice versa). This should be done during sys-
tem analysis and implementation, but also be considered during formalization. 

 
To achieve an increase of credibility of the behavior of the overall Executable Model, one can 
approach this challenge by creating paths through the three-dimensional model information 
space in Figure 8. Under the assumption that the sponsor/beneficiary is exclusively interested 
in the quantitative model results, the end point of these paths is always the origin of the three-
dimensional model information space; the starting points vary with the information available. 
For example: Starting with establishing credibility of the structure and behavior description of 
the conceptual atomic submodels by evaluating the differences between them and the associ-
ated real subsystems. One may continue with establishing credibility of the structure and be-
havior descriptions of the formal atomic submodels by showing their correctness and com-
plete consistency with their conceptual descriptions. After subsequent successful demonstra-
tion of the consistency between the Formal Model of the atomic elements and their implemen-
tation, one may proceed establishing the credibility of the behavior of the executable atomic 
submodels. Integrating them bottom-up layer by layer and building credibility in each layer of 
executable submodels, most probably results in a credible overall model. (Actually, this is a 
generalized description of the CLIMB approach [Flight Mechanics Panel Working Group 12 
1985], as discussed in section 3.2.6, which can be considered as a special path through the 
three-dimensional model information space).  
As a consequence, the V&V process to be developed should support incremental credibility 
building. This means, the credibility of information of a particular information sub-space may 
be both directly increased by comparison to external specifications, data, or knowledge, or 
build upon credible information from another information sub-space by ensuring consistency 
and completeness with the information in this sub-space. 
To achieve the aims of this thesis, an abstract representation of the credibility building process 
is adequate (outlined representation). The graphical illustration of the credibility building 
process shown in Figure 12 stresses the concepts that  

• credibility is built stepwise in parallel to model development and 
• evidence (modular V&V results) on which credibility is build needs to be communi-

cated. 
 

 
Figure 12: Abstract representation of the phase-wise credibility building process 

4.4.2 Credibility of Runtime Input Data and Embedded Data 
When establishing credibility of data, different categories of data must be distinguished:  

• Raw data, which is directly available in a data base. Raw data is created by measuring 
and recording at a real system, or is generated by other means, e.g., experimentation 
with another model. 

• Aggregated data, which is directly available in a data base. It is created by modifica-
tion of raw data. 

• Parameterized data generators, which create data according to a given distribution 
function and their initialization data. 

 
The credible use of raw data requires the assessment of the following characteristics: 
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• Age: Data for simulation must be up to date. Data that does not reflect the current 
properties of the real system usually is not credible. 

• Real system of origin: Data shall be taken from a suitable real system. This is relevant, 
if (for any reason) it is not possible to gain data from the real system, which is simu-
lated and the data is “transferred” to the simulated system. 

• Measurement method: It should be credible that data is measured precisely enough for 
the intended purpose of the model. That includes that the sampling rate is sufficiently 
high, the rounding errors are insignificant, and the inaccuracy of the measuring device 
is irrelevant. 

• Interval: The data interval should be suitable as model input (valid input interval or 
domain) and suitable for the achievement of the goals of model operation.  

• Internal consistency: Data is not credible, if it is shown to be internally inconsistent. 
 
The following technical and interoperability issues should be addressed: 

• Data format: Data should not be used for simulation, if it is not credible that there will 
be no technical complications when accessing the data base. 

• Compliance with data models: For substantive interoperability of models in distributed 
simulations usually a common data model is required. This can be achieved by com-
pliance with a standardized data model. 

 
Often models generate their own input data (self driven simulation). For this purpose, usually 
a generator for a parameterized (stochastic) distribution function is used, randomly generating 
the desired input data. For the judgment of their credibility the following should be consid-
ered: 

• Goodness of fit: The empirical distribution of the generated data must fit the empirical 
distribution of the chosen reference data, otherwise it is no suitable substitute for the 
real data. Both the parameter values and the distribution function may have to be ad-
justed. 

• Independent and identical distribution: To allow the substitution of real data by sto-
chastically distributed data, the assumption that the real data is independently and 
identically distributed (IID) must be justified. If a non-stationary process is modeled 
(time-varying arrival rates), distribution function or parameters must be adjusted [Vin-
cent 1998]. 

 
A special class of runtime data in simulations are the random numbers. They usually are cre-
ated during a simulation execution as a stream by a random number generator. The structure 
of the random number generator already provides insight into the credibility of the random-
ness of the generated numbers. [L’Ecuyer 1998; Keppler 1993] discuss several approaches to 
random number generation, initialization (seed), their advantages, and their shortcomings.  

• Correlation: The degree of correlation in a set of numbers must be low enough to 
credibly make it a set of “random numbers”.  

• Period length: Among the most important aspects of a random number generator is the 
period length of the generated numbers – on modern computers a period length of 216 
may be used up during a few minutes (of wall clock time), disqualifying the generator 
as a baby toy. 

 
As a consequence for the V&V process, data acquisition, data measurement, data transforma-
tion, and data use shall be considered during its phases, especially during the V&V of system 
analysis and experimentation.  
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4.4.3 Credibility of Model Operation 
The best model may become dangerous, if applied in the wrong manner [Pawlikowski, Jeong, 
and Lee 2002]. [Kleijnen 1998] defines the design of experiments (DOE) as “selecting the 
combinations of factor levels that will automatically be simulated in an experiment with the 
simulation model” as sub-discipline within mathematical statistics. Even if the experiment 
design is not based on a mathematical foundation, the following influences on the credibility 
of model operation need to be considered: 

• Design of experiments: It has to be credible that the design of experiments (harmo-
nized set of simulation runs) allows the drawing of conclusions. Especially for sto-
chastic simulations the design of experiments is a non-trivial problem. 

• Runtime environment: The runtime environment of a model may disturb the simulation 
run. Faults in the runtime communication structure, random number generators that 
create highly dependent “random” numbers, and other malicious effects may result in 
non-credible model operation.  

• Completeness: To achieve the goals of simulation, scenarios are most often predefined 
in the requirements. It shall be credible that all required scenarios have been simu-
lated. 

 
This implies that during the V&V of experimentation adequate model operation has to be en-
sured. 

4.5 Remarks on V&V Techniques 
Numerous techniques that may be used for V&V of models and simulation results are avail-
able from different research and development areas, including requirements engineering, sys-
tem analysis in the application domain, M&S theory, software engineering, experiment design 
in the application domain, and experiment design in computer-based simulation:  

• Requirements engineering addresses the communication problem between the user and 
the developer and its solution, and offers methods to express “what you want” [Partsch 
1991]. The use of these methods makes it more likely that these requirements pre-
cisely direct the development of the final product (“what you get”). Although the de-
velopment of requirements for a model and simulation slightly deviates from software 
requirements engineering, numerous relevant aspects can be transferred to support the 
achievement of a complete, consistent, correct, suitable, unambiguous, and testable 
Structured Problem Description. To formalize the requirements, and to express logical 
dependencies formally, mathematical logics are suitable. 

• No general statement can be made about the applicability of techniques from the ap-
plication domain (including system analysis techniques), because approaches for 
model validation vary according to the tasks within the countless application domains. 
However, for quantitative models there is always the desire to validate them against 
empirical data. For the V&V of simulation results, statistical methods (data aggrega-
tion and statistical tests) play an important role [Kleijnen 1998]. 

• Especially error detection techniques and verification techniques are available for dif-
ferent modeling formalisms, which originate from M&S theory, including, e.g., syntax 
and semantic checkers, or deadlock detection methods (aliveness) and reachability 
graphs for state transition models. Numerous errors within the Formal Model can be 
detected following approaches of M&S theory [Zeigler, Praehofer, and Kim 2000; 
Hiller and Liebermann 1997]. 

• In the area of Software Engineering, numerous test and analysis techniques are known 
that support the detection and elimination of errors in the program code [Myers 1979; 
Liggesmeyer, Sneed, and Spillner 1992; Beizer 1990; DeMillo et al. 1987]. These 
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techniques are highly recommended for the examination of the program code that im-
plements a model (Executable Model), not only for the purpose of software quality as-
surance, but also for V&V of the model. Although M&S are significantly more than 
just encoding a piece of software, with these software analysis and test techniques a 
variety of techniques exists that can be used after slight modification to support as-
sessment of the correctness and suitability of a model or simulation results.  

 
Popular summaries presenting unmodified techniques from the above areas as V&V tech-
niques are given in [Defense Modeling and Simulation Office 1996 and 2000; Balci 1990]. 
These summaries can be considered as a starting point for subsequent work, as in general it is 
not possible to directly apply these techniques for V&V of the intermediate product without 
modification. The Structured Problem Description, Conceptual Model, Formal Model, Execu-
table Model, and Simulation Results have much in common with the products created during 
a structured software development process, but there also are non-negligible differences. To 
allow the efficient and effective execution of V&V techniques, they need to be adapted to 
each intermediate product individually. In chapter 5, conducted adaptation and harmonization 
of V&V techniques is documented. 

4.5.1 Demarcation of Validation, Verification, Testing, and Analysis 
For most of the V&V techniques that are summarized as such in literature [Defense Modeling 
and Simulation Office 1996 and 2000; Balci 1990; Shannon 1975] it does not seem to be rea-
sonable to distinguish them as techniques for either model verification or model validation. 
Most of them actually are analysis or test techniques that can be used for both validation and 
verification – it depends on whether the examination or evaluation of the intermediate product 
focuses on its compliance with well-defined rules, or whether it supports the assessment of 
suitability for the intended purpose with respect to the real system. More often than not, the 
use of a V&V technique on an intermediate product yields a V&V result or product (V&V 
evidence), which contains extracted, previously hidden information, that subsequently is 
evaluated according to precisely specified rules (that may be available as a standard, guide-
line, or other unambiguous specification) or for suitability with respect to the intended pur-
pose and the real system, respectively.  
For software quality assurance, one usually distinguishes between analysis, testing, and veri-
fication. Analysis and testing can both be performed for the purpose of V&V of models and 
simulation results. The definition of software verification is stronger than the definition of 
model verification, as software verification usually requires the proof of correctness (not only 
its demonstration).  
Under consideration of the taxonomy used for software testing, analysis, and verification in 
[Liggesmeyer, Sneed, and Spillner 1992], and according to the three-dimensional model in-
formation space introduced in section 4.3, for the V&V of models and simulation results, in 
the following it is distinguished between 

• techniques for analysis of the symbolic model and its submodels in all stages of model 
development (section 4.5.1.1),  

• techniques for analyzing input, embedded, and output data (section 4.5.1.2), and 
• techniques that support the development and evaluation of high yield test cases (i.e., 

test cases that are most likely to reveal existing errors [Myers 1979], section 4.5.1.3). 
 

4.5.1.1 Static Model Analysis 
For static model analysis the (symbolic) description of the problem and the (conceptual, for-
mal, executable) model are subjected to examination for correctness and suitability. The term 
“Static Model Analysis” is chosen in analogy to the terminology used for software analysis 
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[Liggesmeyer, Sneed, and Spillner 1992], where static analysis (of software) is defined to 
“include code verification and numerous analytic measures that provide additional informa-
tion about the code”. The general purpose of static model analysis is the aim-oriented extrac-
tion of particular model aspects that are (implicitly) hidden in the model description, and to 
subject these special aspects, now revealed, to further examination. The stage of development 
of the model, and the type of the intermediate product subjected to examination heavily influ-
ence the selection of an effective static analysis technique.  
Methods for static model analysis always require insight into the symbolic model, and often 
also serve as preparation for “white box” and “gray box” testing techniques. In addition to 
directly revealing incorrectness or unsuitability of the analyzed intermediate product, analysis 
results can later be reused for further V&V activities, as, e.g., testing of the Executable 
Model. The gained knowledge of internal dependencies of the intermediate products posi-
tively influences the creation of test cases with a high yield. 
As indicated with the three-dimensional model information space in section 4.3.1, hierarchical 
decomposability allows to handle symbolic models of high complexity. If the symbolic model 
is decomposable, the analysis should be conducted component- or partition-wise, decompos-
ing it top-down, integrating it bottom-up, or meet-in-the-middle as appropriate.  

4.5.1.2 Test Case Development 
Another possibility to establish the credibility of a model is the sample survey examination of 
its behavior. When testing a model, its expected behavior should be anticipated, as it is rec-
ommended for software testing [Beizer 1990], and subsequently compared to the observed 
behavior.  
If the structure of the model under test is only of secondary importance, in analogy to soft-
ware testing this will be referred to as model “Black Box Testing” [Becker 1989]. The test 
setup can either be based on the modeling requirements or be purely randomly. Due to the 
size of the output space of non-trivial models, exhaustive analysis usually is not possible, and 
tests should be carefully designed to allow the investigation of the most interesting sub-spaces 
of the output space (non-exhaustive testing). In contrast to Black Box Testing, model “white 
box testing” is based on the knowledge of the internal structure of the model in all its repre-
sentation forms (Conceptual Model, Formal Model, Executable Model) gained during static 
model analysis, and will be used to confirm or disprove expected behavior by aim-oriented 
stimulation of the Executable Model. The identification of the most interesting sub-spaces can 
be conducted following different approaches; several model analysis techniques yield useful 
results (e.g., cause-effect graphs or control-flow graphs) that support the search for high yield 
test cases.  
Software testing usually is implemented as execution testing, field testing, functional testing, 
or product testing [Defense Modeling and Simulation Office 1996 and 2000]. Depending on 
how close the (nearly finished) product is to its release date, the audience involved in testing 
changes, the number of testers increases, and tests become more in number, but less focused 
and more use-oriented. (Alpha Testing, Beta Testing, Acceptance Testing). In addition to the 
“normal” model output, supplementary data can be recorded by instrumentation of the model.  
According to the three-dimensional model information space, these methods support the ex-
amination of the correctness and suitability of the I/O behavior of the overall model and all of 
its submodels (if separately available). If partition testing or submodel testing is possible, i.e., 
separate submodels can be executed and their behavior can be observed, either bottom-up or 
top-down, as suitable.  

4.5.1.3 Data Analysis 
Under the assumption that with program crashes and obviously erroneous model output is 
dealt during software quality assurance, the difference between correct and incorrect, or suit-
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able and unsuitable model behavior is very subtle. The detection of incorrectness or unsuit-
ability requires rigorous analysis of the outcome of each test case. For the analysis of data, 
regardless of whether it is input, embedded, or output data, it must be distinguished between 
“soft” qualitative information and “hard” quantitative data. Techniques based on statistics and 
mathematical logics are intended to be used for the analysis of quantitative (or at least ranked, 
i.e. ordered) data. Depending on the aim of data analysis, either the internal structure of the 
(sub-)models used to generate the data or its specification is of importance, or comparison 
data is required. The reliability of the comparison data depends on the maturity of research, 
measurement methods, statistical relevance, and measurement tools in the particular field (see 
also section 4.1 on real system knowledge).  
After generation, model results can be directly examined, or they can be aggregated to a 
higher level, which allows to deal with greater amounts of data by, e.g., fitting to a distribu-
tion function, or calculation of the mean value. When aggregating simulation results created 
by stochastic models, it must be ensured that enough “independent” simulation runs have 
been executed to guarantee the statistical significance of the simulation results. 
Data analysis techniques often yield results that again need to be interpreted by an expert to 
be useful for further model improvement. Therefore it seems to be advisable to use expert 
opinion supported by formally defined techniques for the examination of the correctness and 
suitability of simulation results. Statistical tests can be applied to test a hypothesis formulated 
by an expert and to create confidence in this statement, based on the extents of the samples 
examined. Expected model behavior may be specified using a suitable formalism, e.g., tempo-
ral logic (see section 5.3). This specification can then be used to check data sets for violation 
(even during runtime), or for automatically post-processing the simulation output. 

4.5.2 Expert Opinion as Validation Evidence 
With often no mature quantitatively defined metrics for validation available, suitability needs 
to be judged by an instance that knows the meaning of the terms “residual risk” and “respon-
sibility”. Most V&V techniques yield V&V results that support a more objective judgment of 
the credibility of the model or simulation results. But even if a proof of correctness has been 
successfully completed, it still must be judged, whether the specification used for the proof is 
suitable. The unavailability of truly objective V&V techniques and measures leads to the dis-
tinction between “highly subjective” V&V techniques (which are mainly based on unfiltered 
expert opinion), and “nearly objective” V&V techniques (with a mature formal foundation).  
Expert opinion is used for direct or indirect judgment of model credibility. On the one hand, 
the expert can be directly confronted with the model, and asked to state a (highly subjective) 
opinion. The main disadvantage of direct judgment is that it is rarely repeatable, as soon as 
another expert gets involved. The “inspiring power” of this type of evidence (documented 
expert opinion) solemnly depends on the expert’s reputation. Alternatively, the expert can 
evaluate knowledge concerning particular model aspects explicitly excerpted from the model, 
while all other model aspects are hidden, and thereby judge the credibility indirectly (nearly 
objectively) without distraction. In this case, next to the expert statement there is the docu-
mentation of the extracted model aspects as evidence. As to err is human, and according to the 
argumentation in section 3.1.4, it is desirable to increase the share of nearly objective V&V 
techniques whenever possible, and thereby to enhance repeatability of V&V activities. How-
ever, in this case it must be ensured that these activities explicitly cover all relevant model 
aspects. 

4.6  The Dependencies Visualized and Roles in V&V  
Following the introduction of risk, system knowledge, model knowledge, credibility, and 
V&V techniques in the context of the thesis, these influences on V&V are brought together. 
To visualize the dependencies between risk classification, model development and execution, 
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V&V objectives identification, V&V results creation, and credibility building, Figure 13 was 
drawn. In addition to the previously introduced processes, the V&V process, explained in 
section 4.7, with phases (columns) and V&V sub-phases (gray boxes 1.1 – 5.6) is depicted 
below. The intermediate products from model development serve as input to the V&V proc-
ess. The risk classification process drives the selection of V&V sub-phases, which will be 
processed during V&V execution. The credibility of the model and its simulation results is 
based on V&V results (evidence) associated with the individual V&V sub-phases. The form 
of the V&V process already indicates the numerous feedback loops that allow to increase 
credibility during model development iteratively. The V&V process, which will be referred to 
as V&V Triangle in the following (due to its graphical representation) is specified in 
Appendix A.  
To plan and implement the V&V activities, V&V roles can be identified, in analogy to the 
roles in the M&S development process: 

• V&V Agent: This role manages all V&V activities that shall be conducted. The actor 
must be knowledgeable in V&V methodology and tools support, and is responsible for 
ensuring that the required degree of credibility is achieved or identified errors are re-
ported to the user and/or the accreditation agent. 

• Subject Matter Expert: The qualification requirements for this role are identical with 
those for the SME in M&S Development. He is responsible for ensuring the associa-
tion between model and real system being suitable and correct. 

• Modeling Expert: The qualification requirements for this role are identical with those 
for the Modeling Expert in M&S Development. He is responsible for ensuring the cor-
rectness and suitability of the Conceptual Model and the Formal Model. 

• Programming Expert: The qualification requirements for this role are identical with 
those for the Programming Expert in M&S Development. He is responsible for ensur-
ing the correctness and suitability of the implemented Executable Model. 

• Accreditation Agent: This role represents the user who accepts of rejects the model or 
simulation results for the intended purpose. He must be knowledgeable in theory and 
practice of M&S and the application domain. 

 
The generalized V&V process, which is specified in the following section is embedded into 
this framework. 

4.7 Structured V&V – The V&V Triangle  
The V&V Triangle is a generalized process for the stepwise V&V of models, their intermedi-
ate products, and simulation results. As there is no “one size fits all” solution, by providing a 
harmonized summary of V&V objectives it becomes a process model for mastering V&V of 
models and simulation results, and thereby serves as structured foundation for further V&V 
research. As a generalized process, it covers most of the approaches to V&V known today. It 
is depicted in Figure 14 and integrated into the framework introduced in section 4.5, which 
implies that  

• its inputs from model development are well-defined intermediate products that are 
created during model development (as indicated by the model development process in-
troduced in section 1.4.6) giving consideration to the chronological order of their 
availability; 

• the intensity and rigor of V&V are variable, according to the risk incident to the in-
tended purpose of model use, supporting incremental establishing of credibility (ac-
cording to the concepts introduced in section 4.4); 

• all V&V objectives identified within the process are harmonized with each other; 
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• previously created V&V evidence is reused efficiently during subsequent V&V activi-
ties; 

• its output is the modular documentation of the achieved V&V objectives, the con-
ducted V&V activities, and the V&V results, which can be used to inspire the belief in 
the correctness and suitability according to the identified risk. 

 
To achieve the goals of this thesis identified in section 2.2, the design of the V&V Triangle 
combines the fundamental approaches to V&V (introduced in section 3.1.6 giving considera-
tion to the principles identified in section 3.1). It provides 

• requirements concerning real system knowledge (according to the concepts introduced 
in section 4.1); 

• detailed documentation requirements for the intermediate products (according to the 
three-dimensional model information space introduced in section 4.3);  

• a summary of types of errors, which are most likely to be hidden in the intermediate 
product on which the V&V activities are focused; 

• V&V main phases to assess the correctness and suitability of each particular interme-
diate product (see section 4.7.3); 

• V&V sub-phases with generalized V&V objectives to fully explore the potentials of 
the examination of specific types of intermediate products and external information 
(see section 4.7.4); 

• guidance on how to apply V&V techniques to achieve the V&V objectives, and on 
how to reuse previously created V&V products; 

• an overview of the dependencies between different V&V objectives and the influence 
of repetitive examination on the credibility of the model and simulation results. 

 
Within the V&V Triangle, three consistent views on V&V of a model and simulation results 
are combined: 

• The errors view: All V&V activities are conducted to confirm the absence of errors in 
the intermediate products, or to reveal them. In Appendix A, each specification of an 
intermediate product is immediately followed by a summary of errors, which must be 
expected and drive most V&V activities. 

• The objectives view: From the identified errors explicit V&V objectives are derived, 
which allow to focus all V&V activities. With errors propagating through the interme-
diate products, V&V objectives and their dependencies are defined for each V&V sub-
phase.  

• The techniques view: V&V Techniques are discussed, which help to achieve the pro-
posed goals. They are summarized and associated to the objectives defined for each 
V&V sub-phase. 

 
The V&V process is organized as a (lower) triangular 6 × 5 matrix, with  

• the initial product Sponsor Needs and the five intermediate products Structured Prob-
lem Description, Conceptual Model, Formal Model, Executable Model, and Simula-
tion Results (section 1.4.6) arranged along the horizontal dimension. (The five inter-
mediate products are also arranged along the vertical dimension, as depicted in Figure 
14.)  

• the columns of the triangular matrix representing the V&V main phases, which are as-
sociated with the intermediate products placed (left) above them; 

• intersections between the columns and rows (that are associated with the intermediate 
products to their upper left), which split the V&V main phases into V&V sub-phases 
(gray boxes in Figure 14). 
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Figure 14: The V&V Triangle 

It becomes obvious that the V&V process is embedded into the complete model development 
and execution process. With three different forms of model representation (conceptual, for-
mal, executable), it focuses on model V&V, but also considers V&V of the Structured Prob-
lem Description, and addresses the need for correct and suitable Simulation Results. The first 
concepts of the V&V Triangle were published in [Brade 2000]. 

4.7.1 Intermediate Products 
The V&V Triangle is not limited to a particular model development process, but product-
oriented. The process-orientation aspect is only touched by the assumption of traceability 
through the intermediate products. The intermediate products may be available in different 
versions (as typical for a cyclic or spiral development process), which requires reasonable 
configuration management. The development phases depicted as black boxes in Figure 14 
symbolize sets of activities that need to be executed at least once to transform one intermedi-
ate product into its successor. By clearly defining required contents of the intermediate prod-
ucts, the V&V Triangle provides a guideline for documentation of each step of model devel-
opment from the V&V perspective. Whenever those (extensive) documentation requirements 
are satisfied, there is a solid foundation for both execution of V&V activities and for reuse of 
the knowledge documented in the intermediate products gained during the associated devel-
opment phase. 

4.7.2 Failures, Errors, and their Propagation 
Among the aims of model improvement is the avoidance of any type of failure during model 
development or error within an intermediate product, or to detect them and initiate their cor-
rection as early as possible. When errors or error classes are known that have to be expected, 



 63

the process of error avoidance, search, and detection, and therefore the chance of successful 
model development can be increased by well directed V&V activities.  
In literature there is a clear differentiation between faults, errors, and failure. In [Smith and 
Wood 1987] for example this differentiation is used to deal with the issue of fault tolerance in 
software. There a fault (e.g., a wrong variable is incremented in the program code) causes an 
erroneous state (error – e.g., in the main memory the value of the relevant variable is too 
low), leading to failure in providing the required service (e.g., a program function call returns 
a too low number of items in a storage hall). The failure of a subsystem may be considered as 
a fault in the next higher subsystem, resulting in chains of failures and errors. However, in 
this document these terms are used in a slightly different manner, as Smith and Wood focus 
on the execution aspect of software, whereas here, error propagation during the construction 
of the model is of main interest (compare with section 4.3.2). In the context of this document,  

• whenever the developer fails to perform a developmental action or task correctly, this 
will be called failure, and as  

• the failure most probably leads to incorrect or unsuitable information within the asso-
ciated intermediate product, this yields an intermediate product with an error.  

 
Or, in other words, failure in development causes errors in the product. (This is consistent 
with the usage of the term “error” in [Shannon 1975] or [Vengheluwe 2001].) 
If one is interested in improving model development, countermeasures to avoid failures 
should be introduced: If the scope is on judging the correctness and suitability of a product, 
methods and techniques for error detection should be identified and used. [Shannon 1975] 
points out that there often are errors in design, errors in programming, errors in the data used, 
errors in the procedure of model use, and errors in interpretation. [Vengheluwe 2001] dis-
cusses modeling errors due to an improperly defined experimental frame, due to an improp-
erly characterized model structure, and due to inaccurate estimates of model parameters. 
However, both stop at this level of description and give no further refinement.  
Regarding intermediate products, two overall error classes are identified: 

• Internal errors (exactly one intermediate product is analyzed): If one examines the 
Structured Problem Description, the Conceptual Model, the Formal Model, the Execu-
table Model, and the Simulation Results independently from each other as self-
contained products, internal inconsistencies, inadequacies, incompleteness, or incor-
rectness with respect to external rules, regulations, facts, assumptions about the real 
world, or comparison data may be detected. The intermediate product internal errors 
include errors introduced by faulty external information, which is won independently 
from previous model development and not documented in any preceding intermediate 
product. The expectable errors depend on the intermediate product subjected to ex-
amination. 

• Transformation errors (Intermediate products are compared pairwise): The develop-
mental advance of the model is evaluated under explicit consideration of a previously 
created intermediate product, on which the current product is based. If relevant con-
tents of the preceding intermediate products are not completely and consistently re-
flected by the succeeding intermediate products, consistency and completeness re-
quirements between the intermediate products have been violated. The type of the 
relevant contents depends on the intermediate product. 

 
Practical experience and discussion with professional model developers revealed the error and 
failure types that occur during model development and intermediate product documentation 
summarized in Appendix A. The author does not claim these lists to be complete. These typi-
cally expectable failures and errors are classified and described, including 

• requirements specification failures and errors in the Structured Problem Description, 
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• analysis, modeling, or projection failures and errors in the Conceptual Model, 
• formalization failures and errors in the Formal Model, 
• implementation failures, and errors in the Executable Model, 
• use, experimentation, or operation failures and errors in the Simulation Results. 
 

As already motivated in section 1.4.6, failures in configuration control are deliberately not 
included into this examination. Also failures that occur during interpretation of Simulation 
Results (in a waterfall process conducted subsequently to experimentation, see Figure 2) are 
out of scope of this thesis. 

4.7.3 V&V Main Phases 
The V&V Triangle visualizes the dependencies between the intermediate products and the 
V&V phases. One V&V main phase is assigned to each of the five intermediate products, 
which ideally are gained sequentially during model development.  

• During V&V of the Structured Problem Description (Structured Problem Description 
V&V; column 1.x with x = 1,2 in Figure 14) shall be shown that the Structured Prob-
lem Description is suitable and correct. The main purpose here is to ensure that the 
Sponsor Needs are adequately interpreted and understood. This includes ensuring that 
all potential errors identified for the Structured Problem Description are avoided. To 
efficiently achieve this goal, techniques and knowledge from the application domain 
of the model, the area of requirements engineering, and M&S are advisable. 

• During V&V of the Conceptual Model (Conceptual Model V&V; column 2.x with x = 
1…3 in Figure 14) shall be shown that the Conceptual Model is suitable and correct. 
The main purpose here is to ensure that the abstraction and idealization of the real sys-
tem supports and allows the intended examination. This includes ensuring that all po-
tential errors identified for the Conceptual Model are avoided. Knowledge and experi-
ence from both the application domain of the model and M&S are required. 

• During V&V of the Formal Model (Formal Model V&V; column 3.x with x = 1…4 in 
Figure 14) shall be shown that the Formal Model is suitable and correct. The main 
purpose is to ensure that the solution oriented, quantitatively computable description 
adequately approximates the purpose-oriented, abstract and idealized perception of the 
real system. This includes ensuring that all potential errors identified for the Formal 
Model are avoided. Knowledge and techniques from the area of M&S theory are re-
quired. 

• During V&V of the Executable Model (Executable Model V&V; column 4.x with x = 
1…5 in Figure 14) shall be shown that the Executable Model is suitable and correct. 
The main purpose here is to ensure that the automatically computable output values 
approximate (virtual) measurements at the real system under comparable input condi-
tions. This includes ensuring that all potential errors identified for the Executable 
Model are avoided. Software engineering and programming skills are required. 

• During V&V of the Simulation Results (Simulation Results V&V; column 5.x with x = 
1…6 in Figure 14) shall be shown that the Simulation Results are suitable and correct. 
The main purpose here is to ensure that in analogy to experimentation with the real 
system meaningful Simulation Results are generated. This includes ensuring that all 
potential errors identified for the Simulation Results are avoided. Knowledge and ex-
perience from both the application domain of the model and M&S are required. 

 
During V&V, systematic examination of each intermediate product by analysis, testing, and 
test results evaluation under application of mature V&V techniques or techniques assure the 
desired correctness and suitability. If the intermediate products shall successfully pass the 
above V&V main phases, their sufficiently high quality is required. To allow the discussion of 



 65

V&V activities, it is necessary to clearly separate V&V and model development in the follow-
ing, and to draw a clear border line: During V&V, failures and errors can be detected – the 
elimination of identified failures or errors is not considered to be part of the V&V process, but 
to be another (necessary) iteration of model development or experimentation, to achieve the 
desired quality of the intermediate product (regress in model development). 

4.7.4 V&V Sub-Phases and V&V Objectives 
The overall V&V goal of each phase to increase the perceived correctness and suitability of 
each intermediate product (and thereby its credibility) is decomposed into objectives, accord-
ing to the two error classes identified in section 4.7.2. The self-contained examination of each 
intermediate product is distinguished from the examination of the consistency with previously 
created intermediate products, yielding two different types of V&V sub-phases. Each V&V 
main phase is decomposed into  

• exactly one sub-phase, in which the absence of product internal errors in the interme-
diate product is demonstrated. (This is symbolized in Figure 14 as a rectangle with a 
circular arrow, numbered x.1). This type of V&V sub-phase will be referred to as 
product internal V&V in the following.  

• one or more additional sub-phases for the pairwise comparison between the intermedi-
ate product and previously created intermediate products, demonstrating or confirming 
the absence of transformation errors and propagated errors. (This is symbolized in 
Figure 14 as a rectangle with a straight arrow from top right to bottom left). This type 
of V&V sub-phase will be referred to as transformation V&V in the following. Here is 
distinguished between sub-phases that include the earliest possible opportunity for the 
detection of a particular error (dark gray, numbered x.2 in Figure 14), and sub-phases 
for the confirmation of absence of a propagated error, or its delayed detection (light 
gray, numbered x.3+). 

 
The key concept to manage the complexity of V&V of a model and simulation results is the 
“divide et impera” concept, here applied according to the three-dimensional model informa-
tion space introduced in section 4.3.1. For clear separation of objectives, the five V&V main 
phases are subdivided into 20 sub-phases according to a simple pattern. In the first sub-phase 
of a V&V main phase, only the intermediate product in its direct context is examined, regard-
less of any preceding intermediate products. Then with each succeeding V&V sub-phase, 
those issues characteristic for exactly one preceding intermediate product are added for direct 
comparison. 
In each V&V sub-phase the following issues are addressed: 

• Required stage of model development: Identification of information about the model 
that must be available to achieve the goals of the V&V sub-phase. 

• IP counterpart (transformation V&V only): Intermediate product to which the cur-
rent intermediate product is compared. 

• Sub-phase goal: Describes the overall intention of the V&V sub-phase and identifies 
the V&V sub-phase as a product internal V&V sub-phase or as a transformation V&V 
sub-phase. Here also explicitly addressed errors are summarized. 

• Requirements for and consequences of sub-phase skipping: During several sub-
phases the demonstration of the absence of a particular (propagated) error is repeated, 
using different information and approaches. This implies the existence of redundancy 
in the complete V&V process. Possible consequences of skipping the sub-phase are 
pointed out. 

• Impact of error detection on model development: Here the regress in model devel-
opment caused by error detection is described, usually including the identification of 
the phase(s) that must be at least partially repeated. 
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• Sub-phase objectives: Summary of precise objectives that should be achieved during 
this V&V sub-phase to accomplish the sub-phase goal. 

• Proposed techniques for static analysis: Summary and short explanation of tech-
niques for static analysis of the documented intermediate product, to reveal potential 
errors or to make the absence of errors credible. “Static” here means that the model 
description is not executed (if possible), but analyzed for particular properties that are 
made explicitly visible and evaluated. 

• Proposed techniques for dynamic analysis: Summary and short explanation of tech-
niques for test case generation and (if feasible and reasonable) execution of the sym-
bolic model. 

• Proposed techniques for results evaluation: Summary and short explanation of 
techniques for the evaluation of input and output data provided for and from the 
model, respectively. Additionally, V&V techniques sometimes produce results that re-
quire further interpretation. Proposals for this subsequent interpretation are given here. 

• External references, leveraged information, and reused V&V output: Identifica-
tion of required additional external information and previously created V&V evidence 
that is (re-) used during this sub-phase for, e.g., comparison purposes.  

• Provided output: List of V&V results (products) that are gained when executing the 
proposed V&V techniques.  

 
For each sub-phase, a figure visualizes the dependencies between the objectives, the tech-
niques, their inputs, and the provided outputs (V&V results). Objectives are visualized as 
boxes with round corners, with light-headed arrows pointing to their associated techniques, 
depicted as boxes. The required inputs for the application of these techniques, visualized as 
ellipsoids, point towards the techniques with bold-headed arrows. The same type of arrows 
points from the techniques to the V&V results (also represented as ellipsoids). An overview 
of the goals and objectives of the sub-phases is given in Appendix B. 

4.7.5 Incremental Credibility Building and Tailoring 
In the V&V Triangle, all transformation V&V sub-phases of a row address the question, 
whether the contents of the associated intermediate product are suitably and correctly re-
flected by all following intermediate products. The V&V activities recommended in each 
transformation V&V sub-phase with the objective to “confirm completeness and consistency” 
(see Appendix A) include the execution of techniques that can be used for indirect confirma-
tion or disprove of the activities conducted during the transformation V&V sub-phase on its 
left with the objective “demonstrate completeness and consistency”. This is achieved by 
searching for errors that were propagated through the intermediate products examined before. 
This redundancy can be used to increase the intensity of V&V (both depth and breadth), and 
thus to increase the credibility established so far, or to tailor the process for more efficient 
V&V. 

• Increase the intensity of V&V activities: By repeating the comparison vs. an interme-
diate product, this process provides information about the model from a different per-
spective. It is possible to confirm or disprove previous V&V results.  

• Speed up the V&V process: Conduct the activities of the most efficient V&V sub-
phase and skip all redundant sub-phases. This allows to tailor a slim set of V&V ac-
tivities, at the cost of V&V rigor and intensity.  

 
Example: The Conceptual Model already has been analyzed with respect to its self-
consistency and correctness in form (product internal V&V 2.1), and it was demonstrated that 
the Conceptual Model satisfies the requirements given in the Structured Problem Description 
(transformation V&V 2.2). If it is found credible that the Formal Model is free of internal 
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errors (product internal V&V 3.1) and was suitably and correctly transformed from the Con-
ceptual Model (transformation V&V 3.2), it is already implicitly demonstrated that the For-
mal Model satisfies the contents of the Structured Problem Description. However, executing 
redundant V&V activities (transformation V&V 3.3) may add additional inspiration to this 
believe, or may disprove the belief by detection of propagated errors, caused by a previously 
undetected error in the Conceptual Model.  
The assumption of having all intermediate products available is an extreme idealization, al-
most not given in practice. Usually the V&V budget is also limited. Therefore the selection of 
the V&V sub-phases that will be run through is influenced by the available system knowledge 
(see section 4.1) and model knowledge (see section 4.3), time and budget constraints, and the 
tools available. However, whenever the selection of the V&V sub-phases is a compromise, 
one must be aware that higher credibility could be achieved by fully exploiting the V&V op-
tions presented in this document. Whenever a model is subjected to accreditation, first it can 
be determined, which of the V&V objectives given in the sub-phases were achieved, and 
which evidence was created (and which not). The decision, whether the power of the V&V 
results is sufficient to inspire the necessary belief in the correctness and suitability, remains to 
the sponsor, or a sponsor representative. 
Credibility assessments, which are based on a (standardized) procedure like the V&V Trian-
gle, are comparable (to a certain degree). Evaluating the results of the documentation of the 
sub-aims, a more objective judgment with respect to the overall validity of the model can be 
made. 
The V&V Triangle supports V&V planning and V&V implementation:  
• When using the V&V Triangle for V&V planning, one first determines, which intermedi-

ate products are available or will become available during model development (model 
knowledge). Then, referring to the objectives of each V&V sub-phase, the risk incident to 
the use of the model or simulation results, the errors addressed during each sub-phase, the 
required reference information (system knowledge), and the expectable V&V products, 
one determines, which sub-phases have to be implemented for the purpose of creating be-
lief inspiring material with sufficient power. By choosing a set of V&V sub-phases (and 
thereby pre-determining the coverage of V&V objectives given in the V&V Triangle), the 
rigor of the V&V activities is outlined. 

• For implementation, as soon as the first scheduled intermediate products are provided, 
one can start with the first scheduled V&V sub-phase to identify the first objective. The 
intensity of the V&V activities depends on the preciseness of the evaluated model infor-
mation and the thoroughness of the V&V techniques implementation. Whenever the ac-
tivities that are recommended in the first scheduled sub-phase are completed and docu-
mented, it may become necessary to repeat one or more steps of model development due 
to detected incorrectness or unsuitability of the examined intermediate product. (This 
yields a new version of the first intermediate product and initiates the repetition of the 
first scheduled sub-phase.) Otherwise, the V&V agent starts with the activities recom-
mended for the next scheduled V&V sub-phase, to achieve the next V&V objective. 
When there are no more scheduled sub-phases in a column left, the V&V of the current 
version of the intermediate product is concluded, and the next intermediate product is 
subjected to examination as soon as available. If planned V&V products cannot be gener-
ated during V&V implementation, it becomes necessary to adapt the V&V plan. 
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Figure 15: Procedure for planning based on the V&V Triangle. 
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Figure 16 visualizes a V&V process tailored from the V&V Triangle, yielding a model devel-
opment and execution process in V-form (see section 1.4.3). All intermediate products are 
examined for correctness in form and self-consistency (sub-phases x.1 with x = 1…5), and 
completeness and consistency with respect to their predecessor (sub-phases x.2 with x = 
1…5). But only two V&V sub-phases with the aim to confirm previously created V&V evi-
dence are executed, which minimizes the additional effort. However, the detection of any vio-
lation of the Structured Problem Description undetected in sub-phase 2.2 is delayed to sub-
phase 4.4, and any failure in specifying the Sponsor Needs undetected in sub-phase 1.2 
propagates through all intermediate products until discovered during the evaluation of the 
Simulation Results. 
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Figure 16: A tailored V&V process in V-form 

This concludes the introduction of the ideas and concepts of the V&V Triangle. The detailed 
specification of the anticipated developmental activities and their failures, the intermediate 
products, the expected errors, and the V&V sub-phases, including V&V objectives, V&V 
techniques, and V&V evidence, is provided in Appendix A. An overview of the V&V objec-
tives and the generated V&V evidence is given in Appendix B. 
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5 EVALUATION OF THE V&V TRIANGLE 

There are 74 different objectives identified within the V&V Triangle, which may be achieved 
during V&V (which is then “exhaustive” V&V with respect to the V&V Triangle). However, 
the V&V Triangle does not propose exhaustive, static V&V in form of a “cookbook ap-
proach”. Its intention is not to force those responsible for conducting V&V into the cumber-
some task of achieving all V&V objectives and to substantiate all of them with evidence. The 
opposite is the case – the V&V Triangle supports the selection of harmonized V&V objec-
tives, and points out their dependencies, to enhance the use of as many of their synergetic 
effects as possible.  
The V&V Triangle covers most of the known operational approaches to V&V, including re-
quirements tracing and face validation, which was shown to be true for at least the M&S 
sample project. In this section, paths taken through the V&V Triangle are described, which 
illustrate the application of the approach introduced in section 4.7. Also enablers are pre-
sented that allow the selection of the paths. The dependencies between the V&V techniques 
within a path are explicitly pointed out. The relationships between the different paths taken 
become obvious, as the V&V sub-phases processed on each path are graphically highlighted. 
The paths that are described and evaluated in the following include 

• the path of documentation correctness in form and internal consistency, which focuses 
on the documentation of the intermediate products, 

• the path of behavior propositions violation detection, which focuses on the identifica-
tion of violations of formally specified behavior propositions, 

• the path of human review, which focuses on techniques that allow human experts to 
make deliberate statements about the correctness and suitability of a model or simula-
tion results. 

5.1 The Sample M&S Project 
For the purposes of illustration and evaluation of the V&V Triangle, a small, but not trivial 
performance model of a road intersection was created. A brief summary of the model and its 
use is anticipated here, the detailed documentation of the intermediate products created during 
model development is documented in Appendix C.  
The model was created to facilitate the comparison of different lights control strategies for the 
Munich road intersection “An der Point Süd”, without impacting the traffic flow in the road 
intersection, taking into account the lights strategy and the density of traffic from the three 
different directions. This performance analysis task is purely fictive and has no real origin – 
nevertheless, the chosen road intersection exists close to the “Neue Messe München” in the 
east of Munich. Most information of the real system originates from official sources (the 
“Traffic Regulation Office”), as documented in Appendix C. As result of the system analysis 
phase, three major sub-systems were identified, as they are: 

• The intersection geometry, which models the intersection layout, the lanes, and the po-
sitions of the lights;  
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• the lights control unit, which models the switching logic of the traffic lights; 
• the vehicles, which model the participants in road traffic and their behavior in the road 

intersection. 
 
The Conceptual Model is formalized using DEVS [Zeigler, Praehofer, and Kim 2000], prepar-
ing it for discrete event simulation, and finally implemented in Wolverine’s simulation envi-
ronment SLX [Henriksen 1998]. 81 experiments were executed using the intersection model, 
yielding average and accumulated alive (instantiation until destruction) and waiting times 
(velocity equal or less than 1m/s) of the vehicles arriving from the different directions. 
In-house development of the model facilitated the documentation of all (immediately avail-
able) intermediate products according to the required contents summaries provided in 
Appendix A. Whenever additional information about an intermediate product was required, 
the contents summaries were modified or extended as appropriate.  

5.2 Documentation Correctness in Form and Internal Consistency 
Understanding, duplicating, and assessing the knowledge and information available as a 
foundation for a model are among the most important aspects of V&V of models and simula-
tion results. Model documentation provides insight into the model, increases its transparency, 
and thereby becomes an indispensable prerequisite for V&V. Regardless of the actual con-
tents that are documented and their meaning for the application domain, requirements for 
“good” model documentation exist that are valid for all cases of model documentation. The 
application of techniques for checking that these documentation requirements are met is found 
in this section. 
Within the chosen model development process (section 1.4.6), formal-mathematical aspects 
(documented in the Formal Model) and technical aspects (documented in the Executable 
Model) are added incrementally to the abstracted and idealized representation of the real sys-
tem (documented in the Conceptual Model). But the separated documentation of the concep-
tual, formal, and technical aspects of a model brings another challenge; documentation that is 
not complete and consistent may become dangerous, if it implies assumptions about the (ex-
ecutable) model that are not true. To be complete and consistent, each intermediate product 
must satisfy all requirements defined by its predecessor, and provide all information required 
for further model development.  
To facilitate V&V as described by the V&V Triangle for the M&S sample project (as docu-
mented in Appendix C), the complete model documentation includes the documentation of 
the Sponsor Needs, the Structured Problem Description, the Conceptual Model, the Formal 
Model, the Executable Model, and the Simulation Results. Whenever a new intermediate 
product was subjected to V&V, documentation correctness in form checking was conducted 
first. The key features of the V&V Triangle to support the availability of intermediate prod-
ucts, which are comprehensible, correct in form, complete, and consistent are  
• documentation requirements, forms, and templates, 
• techniques for completeness and consistency checking, and  
• modeling formalisms and formal specification techniques.  
 
These key features strongly encourage tool support. 

5.2.1 Background – Structured Documents  
Not only to support V&V, but also to enhance maintenance and re-use, all documentation 
efforts should result in comprehensible, structured documents. Structured documents, which 
are automatically generated from a data base, are successfully applied to the documentation of 
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technical products, which often are subjected to modification. The main advantages of struc-
tured documents include  
• their hierarchical organization, which allows tool supported efficient browsing through the 

documents, and  
• their significantly simplified maintenance by automatic generation on demand from the 

data base, which stores their contents.  
 
As on a sufficiently high level of abstraction the required structure and type of contents of the 
documentation of all models and simulation results are identical, the concept of structured 
documents was transferred to model documentation, with the aim to populate the three-
dimensional model information space, according to the content requirements given in the sec-
tions 2.2, 3.2, 4.2, 5.2, and 6.2 of Appendix A. The V&V techniques evaluated in the follow-
ing focus on the completeness, internal consistency, and pairwise consistency of the docu-
mentation of each intermediate product. 

5.2.2 The Enablers: Check Lists, Templates, Dependencies Matrices, and Formalisms 
For model development it is crucial that all potential future developmental issues are at least 
raised (even, if left deliberately unresolved) as early as possible during the model develop-
ment process, otherwise undesired degrees of freedom are introduced into model develop-
ment.  
Ideally, the documentation of each intermediate product includes all required contents in the 
desired format (is correct in form), which are not contradictory among themselves (internally 
consistent), and meets all the requirements defined by the contents of the preceding interme-
diate product (i.e. the contents of the intermediate product are consistent with the contents of 
the predecessor, and reflect them completely). Correctness in form is always determined with 
respect to a given form (or formalism), which was designed to cover all required pieces of 
information. To require correctness in form enhances completeness in content and consis-
tency, the availability of an adequate form assumed. 
To ensure that nothing important is forgotten, checklists or templates are helpful. From the 
checklist or template a matrix can be created, which identifies those contents that need to be 
consistent within the checklist or template, and with the contents of other checklists and tem-
plates (dependency matrix). When using checklists, templates, or consistency matrices for 
checking correctness in form, completeness, and consistency, the result of their application 
are completed check lists, completed templates, or completed dependency (traceability or con-
sistency) matrices. 

5.2.2.1 Checklists 
For each intermediate product there is a list of required contents to provide the desired insight 
into the model as those documented in the Appendix A, sections 2.2, 3.2, 4.2, 5.2, and 6.2. 
Based on these lists of required contents, checklists are created with a checkbox available for 
each required content (Example: FEDEP Checklists, [Defense Modeling and Simulation Of-
fice 1999b]). For completion of a checklist, someone reviews the available intermediate prod-
uct and checks the boxes, if justified (reviewer’s opinion!). The main effort is to review the 
available documents, whereas the effort for checking the boxes can be considered as negligi-
ble. No in-depth examination is conducted when using checklists, it is only assured that there 
is any information as required by the check box available at all. (For example, if the docu-
mentation requirements contain the need for an unique identifier for configuration control, it 
is only checked, whether there is such an identifier in the correct format. The question of its 
uniqueness remains unexamined.) The benefits of applying this technique depend on the ma-
turity of the list of required contents (i.e., the underlying expert knowledge) and the reliability 
and skill of the reviewer, as the check list only serves as evidence for the fact that someone 
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actually reviewed the intermediate product for the contents marked as “checked”. The power 
of inspiring believe may be increased by referencing associated sections or paragraphs in the 
documentation for each checkbox, but this increases the checking effort significantly. 
In the context of this thesis, checklists where applied only implicitly. With the opportunity to 
document the M&S sample project in any desired format, the stronger approach of using tem-
plates was chosen. 

5.2.2.2 Forms or Templates 
For each intermediate product, a predefined form or template is provided. During the M&S 
sample project, the intermediate products were created based on their associated form. This is 
a constructive technique for error avoidance; now it becomes obvious already during model 
development, whether there is the required information available in each cell of the form or 
template, or not. Thus, checking for correctness in form is reduced to assessing the contents in 
each cell, without the need to find the desired information somewhere in a document (as with 
the checklist approach). The main effort during V&V consists of reviewing the completed 
template and to check it for empty cells, cells with entries incorrect in format, and fields with 
entries that are obviously wrong. If the reviewer is familiar with the template, the reviewing 
effort may even be lower than reviewing a document structured in an unknown format. By 
looking through the completed templates, every reviewer can quickly reassure himself that 
there are the required entries in the fields, or not (in contrast to the checklist approach, where 
confirmation of the first “checker’s” work means repetition of the complete checking proce-
dure).  

5.2.2.3 Consistency Matrices 
For intermediate product internal or pairwise consistency checking, a consistency rules set is 
created from the template(s) of the intermediate product(s) involved. The creation of the rules 
set includes the identification of contents that must be consistent with each other (in the M&S 
sample project given as dependency matrices), and one or more rules that must not be violated 
by these contents. However, the less formal the specification of the contents examined for 
inconsistency, the more difficult becomes the specification of rules, which in general leads to 
a high involvement of human experts for assessment of consistency especially in the early 
phases of model development.  
Consistency checking applied internally for an intermediate product helps to detect inconsis-
tencies between its various contents (internal consistency), and results in a completed inter-
mediate product internal consistency matrix. Consistency checking applied to pairs of inter-
mediate products creates a trace between the contents of the intermediate product and the con-
tents of its predecessors (pairwise consistency), which results in a completed IP-IP traceabil-
ity matrix. Among the advantages of the use of traceability matrices is that incompleteness 
with respect to requirements or model contents can be detected by tracing each entry of an 
intermediate product to the entries of its predecessors (requirements tracing). Good experi-
ence was made with requirements tracing in the software domain, and there was no need to 
copy them for M&S V&V. Other techniques were explored for “inter-IP-consistency check-
ing”, as documented in sections 5.3 and 5.4. 

5.2.2.4 Modeling Formalisms 
As pointed out in section 4.1, during the chosen model development process a model is for-
malized in a solution-oriented, unambiguous form to prepare its solution, using a suitable 
modeling paradigm or formalism. Modeling formalisms provide powerful support to assess 
consistency and completeness of the (formal) model specification. They own a syntax and 
semantics specification with which the formalized model must be compliant. The syntax and 
semantic rules implicitly contain requirements concerning correctness in form, consistency, 
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and completeness, which means that inconsistency and incompleteness can be revealed indi-
rectly and efficiently by the detection of syntax or semantic errors. With an Formal Model 
specification available, intermediate product internal consistency and completeness checking 
is replaced by syntax and semantic analysis with a higher potential for automation and thus a 
lower likelihood of failure. 

5.2.2.5 Tools Support 
The use of forms or templates and the desire for correctness in form encourage recording of 
the contents of the intermediate products in a database, which is organized and typed accord-
ing to the form or template. Then, for documentation of the intermediate products, electronic 
forms are filled in at the computer screen, and the information is stored in an underlying data 
base. Thereby all writing (and reading) access to the data base is directly controlled, and rig-
orous checks for correctness in form, completeness, and consistency are automatically per-
formed or initiated whenever an entry is made or modified. As soon as an entry is made, it is 
checked that it satisfies the formal requirements and characteristics of its field. Consistency 
checks can be guided by dialogues (“wizards”) based on dependency matrices and the consis-
tency rules set.  
As the dependencies between the various intermediate product contents and the associated 
consistency rules are most likely to become quite complicated, tool support is strongly rec-
ommended for guidance through consistency checking. In [Morales and Moulding 2000] the 
efficiency of an automated consistency checker for SOM’s and the FOM of HLA federations 
is demonstrated. In the context of this thesis, two prototypes of tools that support the struc-
tured documentation of models and simulation results, checks for correctness in form, com-
pleteness, and consistency were designed and implemented. For details please refer to [Schul-
theiß 2001] and [Moritz 2003]. 
Modeling formalisms also enhance tool support, and only develop their full potential inte-
grated into a development environment, where checks for syntactical and semantic correct-
ness, and thereby correctness in form, consistency, and completeness can be automated. For-
mal specification techniques used in the context of the M&S sample project are PLTL (sec-
tion 5.3.2), DEVS [Zeigler, Praehofer, and Kim 2000] as modeling formalism, and the simu-
lation environment SLX [Henriksen 1998] for the implementation of the Executable Model. 
The PLTL formulas were parsed successfully by VIOLADE [Brade and Waldner 2003], as 
already discussed in section 5.3.8. The Executable Model specification in SLX was created in 
the SLX development environment with computer aid for (automated) syntax and semantic 
analysis available. 

5.2.3 Planning with the V&V Triangle 
In the V&V Triangle, the examination of correctness in form and internal consistency is al-
ways conducted in the first V&V sub-phase (x.1) associated with each intermediate product. 
Consistency with the preceding intermediate product and completeness is always demon-
strated in the second sub-phase (x.2). (This demonstration is omitted in the M&S sample pro-
ject, where the focus lies on the exploitation of less generic techniques for demonstration of 
pairwise consistency.) The V&V objective “confirmation of completeness and consistency“ 
with earlier intermediate product (sub-phases x.3+) needs only to be achieved, if additional 
evidence for the traceability of the particular contents is required, or if the directly preceding 
intermediate product is not available. (For example, if there is no Formal Model, consistency 
between Conceptual Model and Executable Model cannot be shown by tracing contents of the 
Executable Model through the Formal Model to the Conceptual Model.)  
With all intermediate products available, and the assumption that in the M&S sample project 
no traceability matrix based confirmation for completeness and consistency is required on the 
path of correctness in form, the V&V sub-phases x.1 are visited, as sketched in Figure 17. All 
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V&V objectives and V&V techniques are taken from the V&V sub-phase specification 
documented in Appendix A. With the opportunity to determine the format of intermediate 
product documentation, the Formal Model specified in DEVS, and the Executable Model im-
plemented in SLX, the following V&V plan was created: 

• Require intermediate product documentation according to the associated lists of re-
quired contents defined in the Appendix A, sections 2.2, 3.2, 4.2, 5.2, and 6.2. 

• Sub-phase 1.1 (Structured Problem Description) 
o Demonstrate correctness in form: Review intermediate product documentation, 

confirm compliance with the associated template; 
o Demonstrate self-consistency: Create internal dependency matrix from intermedi-

ate product template, check dependent contents for consistency using expert opin-
ion, complete intermediate product internal consistency matrix. 

• Sub-phase 2.1 (Conceptual Model): 
o Demonstrate correctness in form and self-consistency: Perform correctness in form 

checking, I/O parameters declaration analysis, interface analysis, and dimension 
unit analysis. 

• Sub-phase 3.1 (Formal Model): 
o Demonstrate correctness in form and self-consistency: Perform correctness in form 

checking and syntax and semantic analysis of the DEVS specification. 
• Sub-phase 4.1 (Executable Model): 

o Demonstrate correctness in form and self-consistency: Perform correctness in form 
checking and syntax and semantic analysis of the SLX code. 

• Sub-phase 5.1 (Simulation Results): 
o Demonstrate correctness in form: Review intermediate product documentation, 

confirm compliance with the associated template. 
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Figure 17: Path of correctness in form and internal consistency 

5.2.4 Sub-Phase 1.1: Correctness in Form and Self-Consistency 
Here the focus of the V&V activities lies on the demonstration that the documentation of the 
Structured Problem Description is compliant with the Structured Problem Description tem-
plate (which requires the recording of all information relevant for further model develop-
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ment). To make the demonstration of compliance as easy as possible, the Structured Problem 
Description of the M&S sample project was modified in an iterative process until it was 
documented according to the Structured Problem Description template defined in Appendix 
A, section 2.2. Although the Structured Problem Description of the M&S sample project is 
not completely compliant with the template structure, all relevant contents for further model 
development are provided. Comparison of the dependent contents did not yield inconsisten-
cies. 
It is essential for the success of an M&S project that the Structured Problem Description cov-
ers all Sponsor Needs correctly in content, but this belongs to sub-phase 1.2 and is beyond the 
path of correctness in form and internal consistency. Due to the fictive nature of the M&S 
sample project, the sponsor’s real needs were assumed to be completely documented in the 
Sponsor Needs documentation, and no real review took place (which is considered to be care-
less in a real M&S project). 

5.2.5 Sub-Phase 2.1: Correctness in Form and Self-Consistency 
For the Conceptual Model documentation, correctness in form is also demonstrated by a 
check for compliance with the Conceptual Model template. To demonstrate internal consis-
tency of the Conceptual Model, due to the exploratory nature of the M&S sample project the 
creation of a Conceptual Model internal dependency matrix was omitted and replaced (instead 
of supplemented) by other, more specialized V&V activities as I/O parameter declaration 
analysis, interaction analysis, and dimension unit analysis. 

5.2.5.1 Correctness in Form Checking 
The documentation requirements given in section 3.2 are used as a reference for the determi-
nation of correctness in form of the Conceptual Model. To make this as easy as possible, the 
Conceptual Model was documented in an iterative process according to the Conceptual Model 
template (Appendix A).  

5.2.5.2 I/O Parameter Declaration Analysis 
This analysis technique is based on the precondition that the targeted model is hierarchically 
organized in submodels. The interface of each conceptual submodel must be consistent with 
its internal functionality. Due to the informal nature of the Conceptual Model, this analysis 
activity cannot be included into automated syntax or semantic analysis and needs to be per-
formed “manually”. The procedure for I/O parameter declaration checking is straight forward:  

1. Identify all functions (including state transition conditions or other functional I/O de-
pendencies) in each conceptual submodel; 

2. Identify all parameters involved in the functions, categorize them as input, state, and 
output parameters; 

3. Check, whether all input and output parameters are declared in the associated sub-
model interface as input parameters or output parameters, respectively. As a side ef-
fect, confirmation of the internal consistency of the state variables declaration is sup-
ported. 

 
This technique helped to reveal the required input and output of each submodel in the M&S 
sample project, and thereby had a constructive impact on the iterative identification of the 
conceptual submodel borders and overall Conceptual Model formulation. However, the in-
formal nature of the Conceptual Model prohibits the automation of the I/O parameters decla-
ration analysis, which implies that a rigorous, computer aided check must be delayed until the 
Formal Model stage. 
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5.2.5.3 Interaction Analysis 
In a hierarchically organized Conceptual Model, the “interfaces” between the conceptual 
submodels need to be consistent, and require special consideration during the demonstration 
of internal consistency. (This is of great importance for reused and “composed” conceptual 
submodels, but also the exchange of a submodel in the M&S sample project revealed the im-
portance of syntactically and semantically consistent submodel interfaces.) After confirmation 
that the conceptual submodel interfaces actually reflect their I/O needs, interaction analysis 
can reveal inconsistencies in submodel interaction. “Interaction analysis” for the Conceptual 
Model was derived from interface analysis as used in Software Engineering [Beizer 1990], 
and slightly modified. The implementation of the technique is straight forward: 

1. Identify all documented submodels within the submodel hierarchy; 
2. Identify all documented interactions between submodels; 
3. Analyze, whether the defined interfaces and submodel responses allow the desired in-

teractions. 
 
Actually this is an extremely specialized form of manual or mental execution, where one con-
centrates on the interaction of two or more submodels. By executing interaction analysis, in 
the M&S sample project several potential concurrency problems were detected before they 
could propagate to the Formal Model or Executable Model, including the need for vehicle-
vehicle interaction of memorization of the previous vehicle attributes after position, velocity, 
and acceleration update. 

5.2.5.4 Dimension Unit Analysis 
This is actually a highly specialized form of the semantic analysis, which requires mathemati-
cal equations with dimension units (e.g., m for meters as physical dimension unit, or € as cur-
rency) assigned to the parameters. By applying mathematical operations to the dimension 
units it is determined, whether the correct resulting dimension unit is calculated. This tech-
nique was used to demonstrate the correctness of the kinetic equations used for vehicle 
movement in the M&S sample project. 

5.2.6 Sub-Phase 3.1: Correctness in Form and Self-Consistency  
In the M&S sample project, the Formal Model documentation consists of the model specifica-
tion in Parallel DEVS [Zeigler, Praehofer, and Kim 2000]. Checking correctness in form and 
self-consistency of the Formal Model with respect to the Formal Model documentation tem-
plate itself is less important in this phase, as the syntax and semantics of a well-defined mod-
eling formalism contain all requirements for complete and consistent model specification. As 
soon as a formalism for model specification with well-defined syntax and semantics is avail-
able, the violation of form or internal consistency requirements usually results in a syntax or 
semantic error. However, it needs to be ensured that the supplemental information, which is 
also a part of the Formal Model documentation is consistent with the Formal Model itself, 
which can be performed by using the associated template and dependency matrix. (For exam-
ple, the referenced modeling formalism should be identical with the formalism used for for-
mal specification of the model contents.) 

5.2.6.1 Demonstrate Correctness in Form  
The documentation requirements given in section 4.2 are used as reference for determination 
of formal correctness of the Formal Model documentation. To make this as easy as possible, 
the Formal Model was documented in an iterative process according to the Formal Model 
template (Appendix A). The cumbersome completion of the Formal Model internal depend-
ency matrix was omitted due to the exploratory nature of the M&S sample project. 
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5.2.6.2 Syntax Analysis 
With Parallel DEVS as the formalism used for Formal Model specification, a stable founda-
tion for rigorous syntax analysis is available. There is an unambiguous formal specification 
for DEVS models [Zeigler, Praehofer, and Kim 2000]: All atomic submodels are defined as 
(mathematical) 7-tuples, with a set of input events, a set of output events, a set of states, an 
internal transition function, an external transition function, a concurrent events resolution 
function, an output function, and a time advance function. To couple atomic models to cou-
pled models, new sets are created, and again this needs to be formalized using mathematical 
declarations and equations. For the M&S sample project it was shown that only (lexical) to-
kens allowed by DEVS were used, and that they were combined according to the underlying 
grammar. 
This was performed manually, as the effort of transforming the Formal Model specified in 
DEVS into a machine-readable form (e.g., ASCII in XML format) is high. However, this ef-
fort could be significantly reduced, if the Formal Model was developed using a DEVS speci-
fication tool, which was not available at the time it was required. (DEVSJAVA [DEVSJAVA 
2.7 2003] and CD++ [Glinsky and Wainer 2002] were considered to be too closely tied to an 
implementation solution.) A diploma thesis was initiated to close this gap [Schäfer 2003] by 
the design and implementation of a DEVS-based visual modeling environment (see also sec-
tion 6.10). 

5.2.6.3  Semantic Analysis 
For the DEVS model of the M&S sample project also semantic analysis was conducted. For 
DEVS this is the confirmation  
• that the value domain of an output port of an atomic or coupled DEVS is equal to or con-

tained in the value domain of the associated input port of a directly interconnected DEVS 
(internal coupling), or 

• that the value domain of an input or output port of an atomic or coupled DEVS is equal to 
the value domain of the associated input or output port of a contained atomic or coupled 
DEVS, respectively (external input and output coupling), 

 
which was shown to be true for all interconnected and embedded submodels in the M&S 
sample project. 

5.2.7 Sub-Phase 4.1: Correctness in Form and Self-Consistency  
In the M&S sample project, the Executable Model is available as SLX code in the SLX simu-
lation environment. As for the Formal Model documentation, the Executable Model docu-
mentation template is only required to assess the availability of the desired supplemental in-
formation. The demonstration of the correctness in form of the Executable Model itself is 
more efficiently performed by automated syntax and semantic analysis. 

5.2.7.1 Demonstrate Correctness in Form  
To make the demonstration of correctness in form as easy as possible, the Executable Model 
documentation was developed according to the Executable Model documentation template 
specified in section 5.2 of Appendix A. The demonstration of self-consistency was omitted 
due to the exploratory nature of the M&S sample project. 

5.2.7.2 Syntax and Semantic Analysis  
As the Executable Model in this case is a model that is used for computer-based simulation, it 
needs to satisfy the same requirements as any piece of software, concerning the unambigu-
ousness of its specification. Execution on a computer includes compilation or interpretation, 
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which implies the existence of a syntax and semantic analyzer that was used to confirm the 
syntactical and semantic correctness of the Executable Model. 

5.2.8 Sub-Phase 5.1: Correctness in Form and Self-Consistency  
In the M&S sample project, for the Simulation Results documentation the demonstration of 
correctness in form using the Simulation Results documentation template is again of major 
importance, as no formalism is used for the documentation of the experiment setup and the 
Simulation Results. The explicit checking of correctness in form is extremely important, as 
the description of the experiment setup and the data acquisition process usually is informal. 

5.2.8.1 Demonstrate Correctness in Form  
To make the demonstration of correctness in form as easy as possible, the Executable Model 
documentation was developed according to the Executable Model documentation template 
specified in section 6.2  of Appendix A.  

5.2.8.2 Experimentation Documentation Internal Consistency Checking 
This is a specialized form of the demonstration of correctness in form, which concentrates on 
the documentation of the experiments. For each documented experiment, not only the Simula-
tion Results need to be documented, but also a detailed description of the complete experi-
ment setup is required. For the M&S sample project this was shown to be true – although the 
Simulation Results are due to their extend only documented in aggregated form, the raw 
model output is electronically available. 

5.2.9 Concluding Remarks  
Diverse representations of a model are required to understand, master, and execute an Execu-
table Model on a computer platform. Completeness and consistency of these representations 
are essential to allow the transfer of knowledge gained by the use of one representation to 
another. During the M&S sample project and in [Brecht and Riepl 2002] it was shown that the 
lists of required contents provided in Appendix A encourage the modeler to create documen-
tation that is useful for subsequent V&V activities. The need to document the required con-
tents also encouraged the model developers to write down their thoughts, a procedure that, 
simply by executing it, revealed gaps and inconsistencies in the (apparently stable) mental 
constructs. 
Nevertheless, models quickly become quite complex systems themselves, and completeness 
and consistency can only be ensured with an acceptable effort by the use of supporting tools. 
Without suitable tools the creation and documentation of consistency matrices and traceability 
matrices is cumbersome, inefficient, and error prone. 
The main problems with the model documentation included: 
• Changes in either representation of the model (Conceptual Model, Formal Model, or Ex-

ecutable Model) needed to be manually transferred to the other model representations. 
This lead to inconsistencies between the different model representations, which becomes 
obvious after intensive study of Appendix C. 

• The manual check for internal consistency allowed the acceptance of unacceptable incon-
sistencies during the review process. Computer support is recommended to enforce a more 
rigorous consistency check. 

 
As previously indicated, the intermediate product documentation templates can be used for 
the organization of a data base, which allows the electronic storage of the model contents. The 
use of commonly accepted standards as XML or ODBC assumed, the access to this data base 
and the check for consistency can be controlled by specialized, exchangeable tools. In addi-
tion, this data base can be used to populate a model repository, which holds in-depth informa-
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tion about a number of models in a standardized format (see also section 6.10). The result of 
following the path of documentation correctness in form should be model documentation that 
makes the model sufficiently transparent for following content-oriented V&V activities. 

5.3 Automatic Detection of Behavior Proposition Violation  
By definition, simulation includes the execution of a model over time (see section 1.3.2). 
When an Structured Problem Description is created, often implicit model behavior require-
ments are anticipated. Then, as soon as the Conceptual Model is completed, in the modeler’s 
mind there is a clear imagination of the desired behavior of at least its submodels. However, 
desired behavior may not equal the observed behavior of the executable submodels, as long as 
undetected errors remain. This becomes delicate, if the undesired Executable Model behavior 
remains unobserved until it is too late and damage is caused.  
In the following, the thesis concentrates on discrete state transition models (see also section 
1.2.4). Model behavior is the change of the internal state of the model and its output, depend-
ing on its previous state and input. Typical undesired behavior that occurs in discrete state 
transition models includes: 

• Undefined submodel state: The value of an attribute, or the value combination of two 
or more attributes reflect undefined submodel behavior. (Example: An object repre-
senting a vehicle in a road intersection, with an acceleration of 35 m/s2). 

• Undefined state transition: An object changes states in an undefined way. (Example: 
If for an object “vehicle” there is a state “accelerating”, behavior specification may re-
quire that the vehicle in state “standing” must pass through the state “accelerating” to 
reach the state “cruising”. Then a direct transition from “standing” to “cruising” is un-
defined.) 

• Missing effect: A state transition that is caused by the occurrence of a particular event 
is missing. Example: (The state transition “change of color” of traffic lights from red 
to green should cause the state transition from “standing” to “accelerating” for the 
waiting vehicle.) 

• Missing cause: A state transition without any specified cause (state or state transition 
prior to it). Example: The vehicle switches from “cruising” to “decelerating” although 
the lights stay green and there is no slower vehicle in front of it. 

 
Those types of undesired behavior may be detected by subject matter experts through visuali-
zation as proposed for the sub-phases 4.1, 4.3, 5.1, and 5.4, but to do so for a significant num-
ber of test runs or test experiments requires patience and a lot of time. Especially, if the unde-
sired behavior occurs rarely, it may be hardly detectable by human review. Statistical tech-
niques sometimes allow to backtrack a violation from statistical test results, if the behavior 
violation occurs frequently enough to impact statistical analysis of model output. However, 
the formal specification of desired behavior derived from the Structured Problem Description 
(V&V sub-phases 1.1, 1.2) and the Conceptual Model (V&V sub-phases 2.1, 2.2) as explicitly 
expressed behavior propositions allows direct detection of behavior violations.  

5.3.1 Background – Formal Specification of Software Requirements 
The idea of formal specification of desired behavior extracted from a “natural language speci-
fication” is successfully applied as Cause-Effect Graphing for software. A comprehensive 
introduction to Cause-Effect Graphing is given in [Myers 1979]. Based on the assumption that 
exhaustive testing of software is rarely possible, Cause-Effect Graphing is a technique that 
aids in selecting in a systematic way a high-yield set of test cases, and supports the identifica-
tion of incompleteness or ambiguities within the software specification. 
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A Cause-Effect Graph is a formal description into which a natural-language specification is 
translated. It is based on Boolean logic, which is extended by constraint operators. To sim-
plify the creation of the Boolean expressions, graphical representations for the Boolean opera-
tors “identity”, “not”, “or”, and “and” are provided, which allows the creation of a cause-
effect graph according to the following process: 

1. Identify all causes and effects in the natural language specification: A cause is a dis-
tinct input condition or an equivalence class of input conditions. An effect is an output 
condition or a system state change. 

2. Analyze the semantic content of the specification and transform it into a Boolean 
graph, which links the causes and the effects. 

 
According to [Myers 1979], already the transformation from the natural language specifica-
tion of the software into the formal specification reveals numerous ambiguities and errors. 
The Cause-Effect-Graph can be efficiently reused, if one needs to test, whether the “and” or 
the “or” interconnections of effects yield the desired causes in the implemented software. The 
Boolean “and” and “or” allow to skip several input combinations, respectively. Myers states 
that it is sufficient for the testing of an effect, which is to be triggered by the parallel occur-
rence of several causes, just to check, whether the effect occurs when all causes are given, and 
to ensure that the absence of any single cause does not result in the effect in this case. All 
cause combinations, where more than one cause (but less then all) are not true, do not need to 
be explicitly tested, they are implicitly covered by the previously introduced test cases. As-
sume there are n causes, which may be given or not (binary decision), the systematic selection 
of test cases reduces the number of required tests from 2n to n + 1. The procedure for causes 
interconnected by an “or” relation is similar. 
When transferring this promising concept to M&S V&V (as indicated, but not completed by 
[Balci 1990]), simulation time introduces several complications. Although Cause-Effect 
Graphing allows it to express a great variety of behavior constraints (or Cause-Effect Depend-
encies), there is one serious drawback: It is assumed that any given combination of causes 
immediately (no expiration of time) results in one or more particular effects. This assumption 
is justified for the specification of (timeless) software functions or other elementary units, but 
not for the I/O behavior and the internal state changes of a symbolic model over time – here 
temporal dependencies are of great importance, including the causal order of states and state 
transitions. Thus, the only opportunity for the application of Cause-Effect Graphing in its un-
modified, original form is during the V&V of the Executable Model, to aid the testing, 
whether the functions within the code of the Executable Model are built to their functional 
specification, given in the high level design. This is a pure software engineering task already 
discussed in [Myers 1979] and other publications. If one wants to transfer the idea of formal 
specification of behavior propositions to M&S V&V, one needs to change the foundations of 
Cause-Effect Graphing: A more expressive underlying mathematical logic is required. 

5.3.2 The Enabler: Temporal Logic 
A prerequisite to the verification of model behavior is to express the desired behavior of the 
model formally. As discussed in section 5.3.1, Boolean logic is not sufficiently expressive to 
formalize model behavior over time, as the causal order of model I/O and internal state 
changes is of great importance. Temporal logic seems suitable for the specification of desired 
model behavior, and showed to perform well in the context of model checking (see section 
5.3.7). 
To formalize desired behavior of a symbolic model over time, several sub-classes of temporal 
logic exist, including Propositional Linear Temporal Logic (PLTL) with or without “past” 
operators, Computation Tree Logic (CTL), CTL* [Katoen 1999], and Real Time TL [Ruf and 
Kropf 2001]. For the specification of behavior constraints already the least expressive PLTL 
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provides powerful features, which will be introduced briefly in the following. This introduc-
tion is only intended to provide the foundation for the approach taken in the following; a more 
fundamental introduction into Temporal logic can be found in, e.g., [Katoen 1999; Gerth, 
Vardi and Wolper 1995]. 
PLTL is a propositional logic with linear time, which means that alternative future develop-
ments are not allowed (there is only one “line of time”). PLTL supports the specification of 
safety and aliveness properties. The basis of PLTL are atomic propositions p∈AP (the set of 
atomic propositions) that contain atomic statements that can be true or false. (For example, 
the atomic proposition pinfrontof(i,k) may state that vehicle i drives in front of vehicle k, which 
can be true or false.) Those atomic propositions are combined to formulas Φ, according to the 
syntax of PLTL, which is given below in Backus-Naur Form. With p∈AP, the set of PLTL 
formulas is defined as  

ΦΦΦΦ∨ΦΦ¬=Φ U|X|||:: p . 
 

For the explanation of the temporal operators, first the “time line”, which is a triple M=(S, x, 
Label) is introduced, where 
• S is a non-empty denumerable set of states, 
• x is an sequence of states s ∈ S, and 
• Label: S → SAP a function, which assigns to each state s ∈ S the atomic propositions Label 

(s) that are valid in s. 
 
Or, in other words, the “time line” is a sequence of states in each of which particular proposi-
tions are true or false. In PLTL, time serves as a linear ordering relation on a sequence of 
states, it does not allow statements about the length of the time interval, which passes between 
two individual states. 
The first three formulas yield the set of formulas of propositional logic. The temporal operator 
X is pronounced “neXt”, and U “Until”. The Boolean operators ∧ (conjunction), ⇒ (implica-
tion), ⇔ (equivalence), true, and false, and the temporal operators F (“Future”) and G 
(“Globally”) are derived from the above elements. 
• If si is the current state in sequence x, then Xp means that p holds in the next state si+1, 
• pUq means that p holds in all following states of sequence x until the state sj (with j>i), 

where q holds,  
• Fp means that there will be a future state sj in sequence x (with j>i) where p holds, and  
• Gp means that p globally holds for all following states of sequence x.  
 
Example: With AP = {pred, pempty}where pred states “the lights are red”, and pempty states “there 
is no vehicle right beyond the lights”, the condition “whenever the lights are red and there is 
no vehicle right beyond the lights, then this will not change as long as the lights remain red” 
can be formalized in PLTL as 

G(pred ∧ pempty ⇒ pempty U ¬pred). 
 
In the V&V Triangle, the concept of Cause-Effect Graphing in combination is used with the 
option to formally specify desired model behavior over time for M&S V&V. 

5.3.3 Planning with the V&V Triangle 
According to the V&V Triangle, already in sub-phase 1.1 temporal logics can be used to ex-
press documented behavior requirements formally, to demonstrate the unambiguousness of 
the Structured Problem Description, and to support assessment of its “correctness in fact” 
(consistency with the available domain knowledge). Then in V&V sub-phase 1.2, the explic-
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itly formalized behavior requirements can be presented to the sponsor for feedback on the 
question of “completeness in content”. 
After system analysis, with the Conceptual Model available, the potentials of formal behavior 
specification can be explored in depth. In V&V sub-phase 2.1, for each conceptual submodel 
behavior propositions can be defined, based on the submodels input, output, and state parame-
ters. After these behavior propositions were used to demonstrate that the submodel behaviors 
are “correct in fact”, the behavior propositions are matched to the Structured Problem De-
scription in V&V sub-phase 2.2, revealing errors or loopholes in both the Structured Problem 
Description and the Conceptual Model. Subsequently in V&V sub-phase 2.3, the behavior 
propositions can be discussed with the sponsor, to confirm that no important behavior propo-
sitions were forgotten. In V&V sub-phase 3.2, the behavior propositions are the foundation 
for model checking. By reusing them as specification of desired behavior, it is demonstrated 
that the Formal Model with a well-defined state space is “complete in content” and “further 
abstraction and idealization is suitable and correct”. In the V&V sub-phase 4.3 test cases are 
generated that are most likely to cover the violations of the behavior constraints, if there are 
any. During both V&V sub-phases 4.3 and 5.4, all I/S/O-traces generated during testing and 
experimentation are checked for any violation of the defined behavior propositions. 
For the M&S sample project, the identification of behavior constraints and the detection of 
their violation contributes to the following V&V plan, with the selection of V&V sub-phases 
that are processed visualized in Figure 18: 

• Sub-phase 2.1 (Conceptual Model): 
o Demonstrate self-consistency, demonstrate unambiguousness: Create an initial 

list of formalized behavior propositions. Identify sections of the Conceptual 
Model documentation where the information required for this purpose is miss-
ing or ambiguous.  

o Demonstrate factual correctness: Present initial (“re-translated”, if required) list 
of formalized behavior propositions to domain experts for review.  

The sample implementation is documented in section 5.3.4. 
• Sub-phase 2.2 (Structured Problem Description-Conceptual Model transformation): 

o Demonstrate that the anticipated model behavior meets the requirements: As-
sign behavior propositions to behavior information within the Structured Prob-
lem Description, identify gaps in the behavior propositions list and the Struc-
tured Problem Description, adjust behavior proposition list as required, and 
document loopholes in the Structured Problem Description.  

The sample implementation is documented in section 5.3.5. 
• Sub-phase 2.3 (Sponsor Needs-Conceptual Model transformation): 

o Demonstrate that the model behavior allows the needed experimentation: Dis-
cuss behavior propositions with the sponsor, adjust behavior propositions as 
required.  

The sample implementation is documented in section 5.3.6. 
• Sub-phase 3.2 (Conceptual Model-Formal Model transformation): 

o Demonstrate that the Formal Model completely and consistently reflects the 
symbolic behavior description of the Conceptual Model: Use behavior proposi-
tions for (submodel-wise) Model Checking. 

The sample implementation is documented in section 5.3.7. 
• Sub-phase 4.3 (Conceptual Model-Executable Model transformation): 

o Confirm that the Executable Model behavior is consistent with domain knowl-
edge: Use behavior propositions for test case creation, generate I/S/O trace ac-
ceptance automata for I/S/O trace acceptance checking. 

The sample implementation is documented in section 5.3.8. 
• Sub-phase 5.4 (Simulation Results-Executable Model transformation): 
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o Confirm that the Executable Model behaves during all experiments as intended 
with the Conceptual Model: Use I/S/O trace acceptance automata for post-
experimentation analysis of generated I/S/O traces. 

The sample implementation is documented in section 5.3.9. 
 
The path is “closed”, allowing to backtrack the Simulation Results to the Sponsor Needs. 
However, it becomes obvious immediately, which sub-phases have not been addressed at all 
and might need coverage by other paths, as discussed in section 5.3.10.  
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Figure 18: Path of behavior propositions violation detection 

5.3.4 Sub-Phase 2.1: Extracting Behavior Propositions from the Conceptual Model 
To achieve the V&V objectives defined for sub-phase 2.1, behavior propositions are extracted 
from the Conceptual Model. If there are internal inconsistencies or ambiguities in the Concep-
tual Model, they most probably result in inconsistent logical expressions, or are revealed dur-
ing the (failed) formalization attempt. This effect is similar as in [Myers 1979], when he states 
that the accurate study of a natural language specification for the purpose of formalization 
reveals previously undetected errors.  
The identification of behavior propositions in the Conceptual Model is closely related to the 
creation of a Cause-Effect Graph, as described in section 5.3.1. Both domain expert and mod-
eling expert work together to accomplish this task. 

1. Identify all input, state, and output parameters for each submodel. If the Conceptual 
Model is available as a data base entry according to a known template, this can be 
done automatically.  

2. Carefully read the behavior description of each conceptual submodel and write down 
any implicitly or explicitly stated behavior proposition. Link the extracted behavior 
propositions to their origin in the Conceptual Model documentation. If missing pa-
rameters or other inconsistencies or ambiguities are detected, this shall be recorded. 

3. Formalize the behavior propositions in PLTL, if possible.  
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Next to the detection of incompleteness or ambiguity, a subsequent review of the extracted 
behavior propositions by a domain expert may reveal inconsistency with domain knowledge.  
Already the process of extracting the parameters of each submodel revealed serious deficien-
cies in the documentation of the Conceptual Model behavior, which was created using the 
template introduced in section 3.2, but without a rigorous control by, e.g., an electronic form 
with controlled entry fields. It was revealed that the description of the vehicles behavior was 
incomplete; no information about destination selection and route planning is given at all. 
However, although it was possible to express several important behavior propositions, nu-
merous others could not be formalized in PLTL. Logics with greater expressiveness seem 
more suitable for the formalization of behavior constraints, which should be subjected to ex-
ploitation during future research (see section 6.10). 

5.3.5 Sub-Phase 2.2: Counterchecking with the Structured Problem Description 
To achieve the V&V objectives defined for sub-phase 2.2, the initial list of formalized behav-
ior propositions from 2.1 is compared to the behavior requirements implicitly or explicitly 
stated in the Structured Problem Description. The aim with the highest priority is, to ensure 
that no behavior constraints identified as relevant in the Structured Problem Description are 
not reflected by the Conceptual Model. As a side-effect, also missing behavior requirements 
in the Structured Problem Description are revealed.  
The V&V activities of this phase become even more important, if no Conceptual Model is 
available, which in the defense community is usually the case for legacy models (e.g., [Schol-
ten 1998]). Then the list of formalized behavior propositions extracted from the Conceptual 
Model in 2.1 is replaced by a list of anticipated or assumed behavior constraints, which is 
created by “playing” with the legacy model and making assumptions about its underlying 
Conceptual Model. 
The comparison between the Conceptual Model behavior propositions and the required be-
havior comparison is a highly specialized approach to a consistency and completeness check, 
which focuses on the comparison between required model behavior and conceptually de-
scribed model behavior.  

1. Assign the behavior propositions extracted from the Conceptual Model to the M&S 
objectives and the explicitly stated behavior requirements of the Structured Problem 
Description.  

2. Identify M&S objectives and behavior requirements in the Structured Problem De-
scription without behavior propositions assigned to; identify behavior propositions 
without an originating aim or a behavior requirement. 

3. Analyze these gaps, trace them back to missing requirements in the Structured Prob-
lem Description, or missing behavior description in the Conceptual Model. 

 
In the M&S sample project, the extraction of behavior propositions from the Conceptual 
Model resulted in numerous behavior propositions without having a counterpart in the Struc-
tured Problem Description. As these behavior propositions were consistent with the M&S 
objectives, there was no need to modify the Conceptual Model. Theoretically an extension or 
refinement of the Structured Problem Description was possible, but because no inconsisten-
cies were found, direct feedback with the sponsor is preferable.  

5.3.6 Sub-Phase 2.3: Counterchecking with the Sponsor Needs 
To achieve the V&V objectives defined for sub-phase 2.3, the formalized behavior proposi-
tions are presented to the sponsor for review. If required, they are translated back into a lan-
guage that the sponsor understands. From the discussion of the behavior propositions ex-
tracted from the Conceptual Model the sponsor gets another indicator for the suitability of the 
model for the intended purpose. 
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This approach to the validation of the Conceptual Model behavior description benefits from 
the diversity of information representation. The sponsor with the real counterpart of the model 
use in mind can quickly realize, which behavior propositions are reasonable, and which are 
not. 
For behavior propositions review, the sponsor or a sponsor representative with knowledge of 
the higher level M&S aim focuses the Conceptual Model review activities on the explicitly 
made available Conceptual Model behavior description without distraction by any other Con-
ceptual Model contents. 

1. Translate the list of formalized behavior constraints back into natural language.  
2. Discuss the list with the sponsor. 

 
For the M&S sample project, in the list of behavior propositions both the PLTL formula and 
its natural language translation are available. A meeting with professional analysts for in-town 
road traffic took place, were several of the behavior propositions extracted from the vehicles 
Conceptual Model were discussed. The analysts doubted that the (completely deterministic) 
vehicles behavior unambiguously described by the behavior propositions is suited to reflect 
the often irrational behavior of real vehicles.  

5.3.7 Sub-Phase 3.2: Model Checking  
To put it in a nutshell, model checking is an automated technique that, given a finite state 
model of a system and a property stated in some suitable logical formalism, systematically 
checks the validity of this property. Examples of successful model checking projects can be 
found in [Kim, Park, and Baik 2000; Hong and Kim 1996; Geilen 2000; Bienmüller et. al. 
2001]. In the following the applicability of model checking for the proof that the Formal 
Model satisfies the desired behavior propositions is discussed. 

5.3.7.1 Automaton Creation and Acceptance Checking 
To verify that a finite state model satisfies some formally specified behavior propositions, 
these propositions can be transformed into acceptance automata, according to a well-defined 
algorithm, which is documented in, e.g., [Katoen 1999; Gerth, Vardi and Wolper 1995]. Ac-
ceptance automata only accept input sequences, which satisfy the behavior propositions de-
fined by their underlying PLTL formula. Such an automaton will be used to check, whether 
the (state transition) behavior of a model is accepted (and correct) or rejected (which implies a 
violation of the PLTL behavior specification). Figure 19 depicts the acceptance automaton 
Astop_at_lights, which was generated from the formula G(pred ∧ pempty ⇒ pempty U ¬pred), identified 
during the M&S sample project in sub-phase 2.1. This acceptance automaton is a finite state 
machine with one or more entry states (incoming arrows without origin) and one or more ac-
cepting states (double outline). The unidirectional arrows depict all allowed state transitions. 
Each state of the acceptance automaton is labeled, indicating which input parameter values 
(propositions) are accepted in the particular state. (Elements of the set of atomic propositions 
that are not contained in the label of a state are assumed not to hold in the particular state.) 
With an acceptance automaton and a formally specified state transition model available, two 
approaches of using it are popular: 
• The state space of the model is traversed, ensuring that each state has been visited at least 

once. For each state transition generated this way it is checked, whether there is also a 
transition in the acceptance automaton, which leads to a state, which accepts the properties 
of the successor state in the model. Non-acceptance implies the violation of the behavior 
constraint. 

• The state transition model is considered as an automaton describing the possible model 
behavior. The PLTL formula specifying the desired behavior is negated prior to its trans-
formation into an acceptance automaton, which yields an automaton only accepting unde-
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sired behavior. The product automaton of both automata (acceptance automaton × state 
transition model) should not accept any behavior, else a violation of the behavior con-
straint is detected [Katoen 1999].  

 
It was shown that non-trivial models that are precisely specified using the DEVS formalism 
can be exhaustively verified in the way described above [Hong and Kim 1996]. In the domain 
of Integrated Circuit Design huge (but more or less homogenous) models are build. Here, 
model checking is well established for the detection of violation of behavior specifications 
[Burch et. al. 1994]. 

{∅, {pred}}

{∅, {pempty}}

{∅}

{{pempty}, {pred, pempty}}

 

Figure 19: Acceptance automaton Astop_at_lights 

5.3.7.2 Comments on Implementation 
Although in the M&S sample project a Formal Model specified according to the DEVS for-
malism is available (0), it would have mend serious additional effort to refine it to a complete 
state transition model that allows model checking as proposed in [Hong and Kim 1996]. Also 
the extraction of a flattened state space from the available Formal Model, which may serve as 
input to a specialized model checker as the Symbolic Model Verifier SMV [SMV 2.5 1998], 
would have meant a tremendous additional effort. However, it must be assumed that the nec-
essary additional effort can be significantly reduced, if the development of the Formal Model 
is computer aided, yielding a machine-readable specification, free of syntactical and semantic 
errors, which prohibits “workarounds” as found in the available DEVS specification. To find 
acceptance in the M&S-Community, these tools also should provide strong support for the 
subsequent implementation. To simplify the specification of DEVS models and to open 
DEVS to a wider user community, considerations about graphical visualization of DEVS can 
be found in [Brade and Cegla 2003]. For an in-depth examination of this issue, a diploma the-
sis was started [Schäfer 2003]. 
The complete absence of an Formal Model is not unusual, and the V&V objective “Demon-
strate completeness in content” of sub-phase 3.2 is hardly achievable. In this M&S sample 
project, the V&V objective “confirm completeness in content” of sub-phase 4.3 changed to a 
“demonstrate”, too.  

5.3.8 Sub-Phase 4.3: Automated I/S/O Trace Analysis  
With the Executable Model (simulation software) available, it becomes possible to actually 
run the model for testing, and to analyze its behavior. There is a difference between software 
testing one the one hand, and model testing on the other, although the border is blurred (see 
also section 1.5.3). The author considers everything that deals with the detection end elimina-
tion of bugs (e.g., program crashes, memory leaks, or user interface malfunction) in the simu-
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lation software as purely software related and out scope of this document. However, when one 
concentrates on model testing, one is also likely to detect coding errors that remained unre-
vealed during software quality assurance. 

5.3.8.1 I/S/O Trace Generation and Acceptance Checking 
The structure created from all input, state, and output variables of an Executable Model is 
called the I/S/O vector in the following, where an I/S/O vector resembles a state s ∈ S as de-
fined in section 5.3.2. Then, the I/S/O trace documents the sequence x of I/S/O vectors, i.e., 
all input, state, and output values that were created during an execution of the Executable 
Model, ordered by their chronological occurrence. (Time stamps for the I/S/O vectors are 
helpful, if, e.g., the I/S/O trace is visualized or compared to other log files, but are not re-
quired for the detection of violations of behavior constraints specified in PLTL.) 
As discussed in section 4.5.1, there are two aspects on testing a model:  

• the development of test cases, and  
• the analysis of the model behavior observed during the test. 

 
For the development of test cases, one uses the modified list of behavior propositions to de-
rive model initialization conditions that are most likely to provoke a model state in which the 
condition is violated. The model behavior during the test is recorded as an I/S/O trace, which 
requires all state variables of interest made visible by instrumentation. Then the acceptance 
automata created from the behavior propositions are used to automatically analyze the I/S/O 
traces.  
Following exactly the same procedure as for model checking, from the PLTL specification of 
a desired behavior proposition, an acceptance automaton is generated. Now – in contrast to 
model checking – an input to the acceptance automaton consists of a subset of values of the 
I/S/O vector, while the complete input sequence is provided by the I/S/O trace. Whenever a 
new input is provided, a state transition in the acceptance automaton is attempted. An I/S/O 
trace is only accepted, if for each contained next I/S/O vector, there is a suitably labeled suc-
cessor state in the acceptance automaton that can be reached. 

5.3.8.2 Comments on Implementation 
The main difference between model checking and automated I/S/O trace analysis is that for 
the trace analysis the claim for exhaustiveness of checking is omitted. While model checking 
concentrates on proving that no possible state transition violates the formally specified behav-
ior, during trace analysis only a subset of all possible paths through the state space is evalu-
ated. As for any testing technique, the identification of high-yield test cases and the monitor-
ing of the current internal state are crucial. With the source code available, for the sample 
evaluation it was feasible to instrument the Executable Model to log a suitable I/S/O trajec-
tory.  
Generating an acceptance automaton from a PLTL specification of the behavior constraints, 
and feeding an I/S/O trace into the acceptance automaton can be automated. The tool 
VIOLADE (VILOLAtion DEtector) was designed in the context of this thesis and prototypi-
cally implemented, based on the approach described above. The user specifies the format of 
the I/S/O trace (trace file format), specifies a desired property in PLTL, identifies the I/S/O 
trace file that is subjected to examination, hits the run button, and gets the answer, where in 
the trace file the specified behavior proposition is violated, if there is any violation. More de-
tails concerning VIOLADE are found in [Brade and Waldner 2003]. 

5.3.9 Sub-Phase 5.4: I/S/O Trace Surveillance 
During experimentation, the same I/S/O trace acceptance checker can be reused, which was 
created for analysis of the I/S/O traces during testing the Executable Model. Also during ex-
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perimentation, undesired model behavior may be revealed that was not previously detected 
during Executable Model testing. The procedure is exactly the same as the second part of the 
procedure for Executable Model testing, and with a violation detection tool as VIOLADE 
available, the additional effort is small. 

5.3.10 Concluding Remarks on PLTL for Behavior Propositions Specification 
The advantages of the formal specification of behavior constraints in PLTL include, that the 
natural language specification of the model behavior and the behavior requirements in the 
Structured Problem Description are intensively reviewed, and that violations of the formally 
specified behavior propositions can be reliably detected even within extremely large samples 
of I/S/O traces. 
The limitations are serious; although important constraints can be formally expressed in 
PLTL, numerous other constrains remain that cannot be formalized due to the limited expres-
siveness of PLTL, and therefore their violation is not automatically detected. Also, undesired 
behavior that was not anticipated and expressed as a behavior proposition, but becomes obvi-
ous to an attentive human observer will never be detected by an acceptance automaton (see 
also section 5.4). Thus, at the current state of the art, automatic violation detection of behavior 
propositions cannot replace other methods for assessing the correctness and suitability of 
model behavior, but only complement them. More expressive logics, and the generation of 
more powerful acceptance automata need to be explored for improved acceptance checking 
(see section 6.10). 

5.4 Human Review 
Although automated computer-based evaluation techniques are more objective, more effi-
cient, more likely to be repeatable, and even more reliable than human review, the human 
reviewer plays an extremely important role for the V&V of models and simulation results. 
This statement is based on the following observations: 
• Today, M&S still are considered as both art and science. Models are build in numerous 

application domains, which sometimes lack formal specification techniques for the prob-
lems within this domain. The lack of discipline, or the disability to rigorously specify re-
quirements prohibit the use of tool support for the evaluation of the requirements specifi-
cation, and require a high degree of human involvement.  

• When specifying the requirements for a model, humans make numerous implicit assump-
tions, which are not all explicitly stated or formalized. The violation of these implicit as-
sumptions can only be detected by an expert observer, who knows about them.  

• Models and simulation results are often an integral part of an iterative knowledge gaining 
process. The Executable Model and the observation of Executable Model behavior can 
serve as stimulus for the human mind. Until completing the Executable Model, there may 
only be a vague expectation of the model behavior, which can be only be judged for plau-
sibility by its observation. 

• For validation, there remains a gap between the real world and the M&S world, as today 
no description of the real world can be proven to be suitable (although unsuitable descrip-
tions sooner or later are identified as being unsuitable). Therefore, the assessment of valid-
ity of a model or simulation results for an intended purpose remains to the human.  

 
Within this section only those review activities are considered as human review that directly 
deal with the intermediate products or interpreted behavior data (provided in a human-
readable form), but not with the evaluation of V&V results (gained by, e.g., static analysis of 
the intermediate products; for example, the review of a control flow graph yielded by control 
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flow analysis is out of scope of this section. Also any tracing problems that require a high 
degree of specialized human involvement are addressed in section 5.1). 

5.4.1 Background – Current Practice 
Human review currently is the method not only in the defense community for determination 
of model validity (at least for constructive simulations), thus, there was no transfer of an idea 
from another research area required (as for documentation correctness in form checking or the 
detection of behavior propositions violation). Human review helps to reveal many inadequa-
cies of models, as will be made plausible in the following, but it must not be overestimated. 
Human review and more objective approaches to V&V are complementary, which means that 
one never should rely on human review or automated error detection alone. 

5.4.2 Enabler: Human Knowledge and Flexibility 
A human features a high robustness to unknown document formats, and can access broad 
background knowledge for the detection of errors, which are not directly in the scope of an 
explicit search. The intermediate product can be provided in (nearly) any format, and a list of 
review criteria does not need to be developed into detail (if required at all), as the human 
mind can adapt itself to the problem it is confronted with. However, the reliability of the re-
view results depends on the skill, personal motivation, bias, concentration and other hardly 
quantifiable human factors, which makes them hardly repeatable, if the expert changes. Even 
if the same expert is confronted twice with the same review task, it must be assumed that 
there are discrepancies between the review results. 
When involved in the V&V of a model or simulation results, there are three main tasks for the 
human reviewer: 

1. Review the documentation of the intermediate products (static analysis), to assess its 
suitability; 

2. “manually” or “mentally” execute the symbolic behavior specification provided in the 
Conceptual Model (which requires more interpretation than a machine is capable of); 

3. review execution results (dynamic analysis), to asses their suitability. 
 
Ad (1): The intermediate product is passed on to experts knowledgeable in the domain of in-

terest who carefully analyze the document, using their expert knowledge or checklists. 
Well known review techniques from Software Engineering that can be transferred di-
rectly to M&S include Peer Review, Audit, Desk Checking, Self-Inspections, (Formal) In-
spections, or Walkthroughs, as explained in detail in [Smith and Wood 1987; Beizer 
1990; DeMillo et al. 1987; Hetzel 1984; Myers 1979; Office of Safety and Mission As-
surance 1993]. (However, the checklists need to be adjusted to ensure the coverage of all 
aspects relevant for M&S.) Although they are not based on a mathematical foundation 
and tool support is low, these techniques contribute significantly to quality assurance in 
Software Engineering, and are likely to have a similar effect on M&S. It was observed 
that, if groups are involved for review, it is often the same person who created the code 
who also detects the faults in the code, simply by being encouraged to present it deliber-
ately to others [Office of Safety and Mission Assurance 1993]. 

Ad (2): If the intermediate product lacks the required unambiguousness for automatic inter-
pretation, or, if there is no automated interpreter available, a human may manually or 
mentally interpret the behavior specification. Then from the mentally interpreted behavior 
conclusions are drawn back to the behavior specification. 

Ad (3): As soon as there is a behavior specification that may be interpreted by a machine for 
automatic generation of behavior data (Executable Model), these execution results are re-
viewed by human experts. This approach is highly popular in the M&S community. If the 
experts assess the execution results giving consideration to the intended purpose directly 
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as suitable or not, this process is called Face Validation. It has several serious drawbacks, 
if used exclusively for validation (see section 3.1.4), but it is of great value in combina-
tion with other more objective techniques. An attempt to work around the reviewers bias 
is the Turing Test, where the reviewers do not know the origin of different data sets pre-
sented. 

 
Tool support for human review is limited to test case generation, visualization and animation, 
data representation, expert guidance, and expert opinion recording tools, as it lacks the re-
quired formal foundation for the creation of tools with a higher degree of automation. It is 
imaginable that the intermediate product is fed into a suitable expert system, which uses a 
domain-specific knowledge base for the evaluation of the contents, to replace the human re-
viewer. This requires machine-readable documentation of the intermediate product and a suit-
able knowledge base. However, until today expert systems showed only to perform well in a 
few, highly specialized application domains, and the tasks introduced above remain to the 
human being. 

5.4.3 Planning with the V&V Triangle 
Due to the exploratory nature of the M&S sample project, there was no real sponsor with real 
Sponsor Needs. This prohibited the demonstration of completeness and consistency with the 
Sponsor Needs (Sub-Phases 1.2, 2.3, 3.4, 4.5, and 5.6), which would be essential in a real 
V&V project. The domain knowledge required for expert review in the M&S sample project 
concentrates on performance analysis of road traffic flow. In the V&V Triangle no human 
review is planed for the Formal Model (sub-phases 4.x). Figure 20 depicts the sub-phases of 
the V&V Triangle that are touched with the following V&V plan: 

• Sub-phase 1.1 (Structured Problem Description) 
o Demonstrate consistency with domain knowledge: Review parameter names, 

dimension unit, accuracy, and the description of anticipated submodels, their 
attributes (interfaces), and submodel interactions. 

o Demonstrate self-consistency: Review I/O parameters and experimentation re-
quirements, and demonstrate the suitability of the overall model I/O for the 
planed experiments. 

• Sub-phase 2.1 (Conceptual Model) 
o Demonstrate consistency with domain knowledge: Review the parameter 

names, their dimension units, and accuracy; review submodels, their attributes 
(interfaces), and submodel interactions; mentally execute the submodel behav-
ior specifications, guess behavior of higher level submodels; compare guessed 
behavior to domain knowledge, reference knowledge sources. 

o Demonstrate self-consistency: Review the attributes of the submodels and the 
specifications of their interactions, demonstrate the suitability of the interfaces; 
review the attributes of the submodels and their next higher level submodel; 
demonstrate suitability of composition or aggregation. 

• Sub-phase 2.2 (Conceptual Model) 
o Demonstrate completeness and consistency with the Structured Problem De-

scription: Review model border, structure specification, and behavior specifica-
tion, giving consideration to required I/O parameters, accuracy, and domain 
knowledge. 

• Sub-Phase 4.1 (Executable Model) 
o Demonstrate consistency with domain knowledge: Graphically visualize and 

animate the (executable) model behavior; compare observed model behavior 
and submodels behaviors to domain knowledge; record results of comparison. 

• Sub-Phase 4.3 (Executable Model) 
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o Confirm consistency with the Conceptual Model: Graphically visualize and 
animate the (executable) model behavior; compare observed model behavior 
and behavior described in the Conceptual Model; record results of comparison. 

• Sub-Phase 4.4 (Executable Model) 
o Confirm consistency with the Structured Problem Description: Graphically 

visualize and animate the (executable) model behavior, compare observed 
model behavior and behavior requirements defined in the Structured Problem 
Description; record results of comparison. 

• Sub-Phase 5.1 (Simulation Results) 
o Demonstrate consistency with domain knowledge: Compare simulation ex-

periment design with design of (fictive) real experiment; assess Simulation Re-
sults for plausibility. 

• Sub-Phase 5.4 (Simulation Results) 
o Confirm consistency with the Conceptual Model: Explain Simulation Results 

based on the assumptions made for the Conceptual Model. 
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Figure 20: The path of human review 

5.4.4 Sub-Phase 1.1: Problem Description Review 
The human reviewer with knowledge of the application domain and M&S, but not necessarily 
of the Sponsor Needs, assesses the correctness of the Structured Problem Description with 
respect to his domain knowledge. The choice of I/O parameters for the M&S sample project 
was found to be acceptable for performance analysis. This was confirmed during a meeting 
with experts from the Verkehrsordnungsamt (Traffic Regulation Office) München. 

5.4.5 Sub-Phase 2.1 and 2.2: Symbolic Description Review and Mental Execution 
The symbolic description of structure and behavior of each submodel is reviewed for correct-
ness with respect to the reviewer’s domain knowledge as a participant in daily road traffic, 
and expert knowledge taken from [Topp 1994; Lemessi 2001; Tittelbach 2001]. This is per-
formed independently from the intended purpose of the model development and use, but un-
der explicit consideration of the references used for conceptual modeling (documented in 
Appendix A), and additional available domain knowledge. Each submodel was individually 
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mentally executed to determine, whether it behaves as desired and consistently with the avail-
able domain knowledge. Whenever possible, conclusions for the submodel interactions were 
drawn, and from these behavior assumptions for the next higher submodel were made. It was 
also checked that the model behavior anticipated by mental execution allows the implementa-
tion of the planned experiments as specified in the Structured Problem Description.  
The activities in this sub-phase directly impacted model development, as they can hardly be 
separated from it, as long as reviewer and developer are the same person. Whenever a new 
behavior description was completed, it was immediately checked by its mental execution, 
whether it satisfies the modeler’s intention. This activity is essential, and the effort invested in 
review and mental execution directly paid back for the following developmental activities. 
During the M&S sample project, the review of the symbolic structure description revealed 
that there was a misinterpretation of the CAD sketch of the intersection layout, which resulted 
in a wrong assignment between a lights node “l51” and its controlling lights group. It was also 
detected that the assumption of an exponential distribution of the vehicles inter arrival times is 
inconsistent with the domain knowledge documented in [Topp 1994]. 
However, to create a meaningful V&V product from Conceptual Model review and mental 
execution other than a review report is difficult. The credibility of this report directly depends 
on the credibility of the expert who wrote it. To perform V&V as efficiently as possible, the 
reviewer should not change for sub-phase 2.2. Although errors in the Conceptual Model can 
be detected efficiently by symbolic description review and mental execution, it must be as-
sumed that other significant errors remain undetected at this stage of model development due 
to the complexity and unpredictability of the submodel interactions.  

5.4.6 Sub-Phase 4.1, 4.3, and 4.4: Visualization by Animation 
The huge amount of data created during model execution in endless columns of numbers is 
not intuitively comprehensible for a human being reviewing it. Thus, unsuitable or incorrect 
model behavior data may pass data review undetected. To allow a more intuitive assessment 
of model behavior, the model behavior data is visualized over time, which means that time is 
not only just another dimension in a function graph, but the dynamic change of parameter 
values can be observed at the computer screen. 
For validation of the Executable Model, test cases should be created that are most likely to 
reveal undesired model behavior (high yield test cases). Expert opinion plays an important 
role for test case generation as well as for model output analysis. A single test or the multiple 
execution of one type of test already grants some insight into the behavior of the Executable 
Model, but the implementation of a suite of tests is more likely to reveal hidden errors. 
In implementing visualization and animation for V&V in Sub-Phase 4.1 using Wolverine’s 
Proof Animation [Wolverine Software 2003], the animation provided a bird’s perspective on 
the intersection. The following test techniques on the path of human review were inherited 
from Software Engineering and performed on the M&S sample project: 

• Random testing: Animation of the trace of an arbitrary simulation experiment quickly 
revealed that 
o there was an erroneous link in the intersection graph. Vehicles “jumped” around 

the corner after passing an “intersect node”; 
o the idealization of vehicle width to zero moves the vehicles closer to intersect 

nodes and join nodes than physically possible; 
o the left-turning behavior of the vehicles is too bold; they enter the opposite side 

lane, if there is no vehicle closing in on the lane that is close to the driver, and 
cause (undetected) crashes with new incoming vehicles when delayed by a vehicle 
on a more distant opposite side lane. 

• Stress testing: Originally developed to detect memory leaks and problems with the 
storage and access of large amounts of data [Myers 1979], the modified stress test fea-
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tures the generation of a vast amount of (simulated) objects. This is not performed for 
the purpose to test software quality (however, detection of problems in dealing with 
software objects may be a side effect), but to test, whether the concept of object inter-
actions is still correct for large numbers of objects. In the M&S sample project for 
stress testing the inter arrival times in all vehicle sources were reduced to ten seconds, 
quickly creating traffic jams of considerable length. Animation revealed that vehicles 
generated for entry roads without remaining capacity (a long vehicle queue was al-
ready waiting for green lights) entered the road as if it were empty. After the detection 
of this error it could easily be traced to a fault in the predecessor determination func-
tion of the vehicle. 

• Symptom generation test: An expert uses his knowledge to make up situations (input 
conditions and expected output) he believes to be symptomatic for model validity that 
the model shall reproduce. After (or during) running the model it is determined, 
whether the actually observed model output is sufficiently similarly to the desired 
model output. It was tried to provoke a traffic jam on the left turn lane coming in from 
north by creating extremely dense straight traffic from the south. The queue definitely 
grew to slow, as the extremely bold left turning behavior of the vehicles lead to an un-
realistic queue length reduction. 

• Degeneration test: This is actually a modified symptom generation test. The model is 
not executed as it is, but parts of its functionality or submodels are disabled or re-
moved. After that, an expert defines some desired behavior of the modified model, de-
rives the conditions that must be reflected by model input to result in this behavior, 
and tests subsequently, whether the observed behavior matches the desired behavior. 
The degeneration test revealed that the behavior rules of the vehicles do not reflect the 
driving behavior suitably – best intersection performance data (throughput, mean ve-
hicle waiting times) are generated when the lights are completely removed. The vehi-
cles behave extremely deliberate and conscious, decelerating only, if necessary, and 
accelerating speedily. Crash situations created by this behavior are not detected in the 
simulation. 

• Traces driven methods: For this test, the test setup is driven by the available traces of 
real measured data. Ideally measured output of the real system is also available, allow-
ing subsequent comparison between observed model behavior and recorded behavior 
of the real system. Unfortunately this did not provide any additional insight, as the 
available data was to inaccurate (vehicles/minute) to allow the creation of another in-
put trace as already used by the model internal vehicle stream generator. 

• Sensitivity Analysis: The vector or trace of input values was changed slightly from 
simulation run to simulation run to allow the determination of the impact of each input 
parameter. As there are usually too many possible modifications of the values of the 
input vector or trace to test them all, expert knowledge is required to identify high-
yield sets of input vectors or traces. In subsequently evaluating test results the expert 
compares the observed impact to his knowledge. 

 
Systematic stimulation of the Executable Model is necessary for testing, but not sufficient. On 
the path of human review, the model output is graphically preprocessed to support its judg-
ment by humans. Function graphs were not applied in the M&S sample project, but the object 
flow was visualized and animated over time. It was presented to and discussed with experts 
from the Verkehrsordnungsamt München who instantly discovered anomalies in the vehicles 
behavior. 
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5.4.7 Sub-Phase 5.1: Results Assessment 
During this sub-phase expert opinion is required to assess the adequacy of the experiment 
setup. For the M&S sample project, an experiment with 81 simulation runs was conducted 
with all permutations of three different densities over the three incoming roads on three dif-
ferent lights control tables. This was found to be a reasonable approach to general traffic flow 
examination by the experts from the Verkehrsordnungsamt München. 

5.4.8 Sub-Phase 5.4: Requirements Satisfaction Assessment 
It is not sufficient, if observed model behavior seems plausible to the expert; it is also neces-
sary that it can be explained with respect to the abstraction and idealization that was applied 
to the real world and is documented in the Conceptual Model. With a M&S sample project of 
limited complexity it was easily possible to trace any observed anomalies back to their origin 
in the Conceptual Model. 

5.4.9 Concluding Remarks on Human Review 
Although conducted informally, human review of the Conceptual Model, and visualization 
and animation of the behavior of the Executable Model helped to detect numerous errors in 
the M&S sample project. There are two indispensable prerequisites for successful human re-
view: 

1. The complete and comprehensive documentation of the Conceptual Model and of all 
of its submodels making the model transparent for the analyst is available. 

2. There is an in-depth visualization of the behavior of the model and all of its submod-
els, giving the observer insight into the model and submodel dynamics. 

 
The review of the Conceptual Model occurs in the early stages of model development and 
therefore is a valuable early error detection measure. To increase the unambiguousness in the 
Conceptual Model, it is desirable to increase the share of formal elements within the Concep-
tual Model, as long as its readability for those knowledgeable in the application domain is not 
reduced. This also enhances tool support (see section 6.10).  
Visualization and animation increase transparency of the model behavior, and help to reveal 
at least frequently occurring erroneous model behavior. It is desirable to support visualization 
and animation of model behavior early in the model development process, which again re-
quires stronger tool support for formal modeling. However, special care is required when us-
ing visualized simulation output for validation; visualization tools can distract the observer 
from the essential model output, and errors in model behavior can be hidden by nice anima-
tion features. 
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6 SUMMARY AND CONTINUING WORK 

Although the process of model development received a lot of attention during the last few 
decades, integrated quality assurance methods and measures have played only a subordinate 
role. In earlier processes [Shannon 1975; Schmidt 1985], validation was a concluding activity 
after model development is completed. In other process models the execution of V&V activi-
ties is implicitly assumed to be a part of the developmental activities, resulting in feedback 
loops to previous phases. With the desire and demand to increase the credibility of models 
and simulation results by increasing their (perceived) correctness and suitability, the need was 
expressed for explicit guidance on how to plan, implement, and document V&V activities in 
detail.  
This section summarizes the motivation for this thesis, the starting position including the 
identified deficiencies in M&S, the approach proposed by this thesis to their elimination, and 
the lessons learned from applying the proposed approach to a test case. 

6.1 Contribution to the State of the Art 
When this work was initiated, several distinct approaches to the V&V of a model or simula-
tion results existed, all described at abstract levels [Defense Modeling and Simulation Office 
1996 and 2000; Balci 1990; Sargent 1999; Pace 1999a]. More specialized approaches with a 
higher level of detail as, e.g., [Flight Mechanics Panel Working Group 12 1985] were rare. In 
this thesis the similarities and differences between these approaches were identified, and from 
the analysis results the generalized V&V process – the “V&V Triangle” – was developed as 
proposal for a basis of future V&V.  
This document contributes to the current state of the art 

• an overview and analysis of the major approaches to V&V of models and simula-
tion results currently known, and of successful quality assurance measures from re-
lated areas; 

• a consistent framework for V&V of models and simulation results, including termi-
nology, a discussion of the impact of available knowledge of both the model and the 
real system on the overall V&V effort, and thoughts on the main drivers of V&V, 
which are the worst case consequences of the application of simulation results; 

• a structured three-dimensional approach for information and documentation col-
lection in form of intermediate products that are created during model development, to 
provide a stable foundation not only for the execution of V&V activities, but also for 
the reuse of submodels; 

• an overview of dependencies between related V&V objectives in form of the V&V 
Triangle, and thereby provides guidance for adaptation of V&V activities to available 
information about the model and the real system (tailoring); 

• detailed guidance for the selection of V&V techniques, which can be efficiently and 
effectively applied for achieving a particular V&V objective, and a refined explana-
tion of the V&V techniques application; 
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• the documentation of lessons learned by the application of several V&V techniques 
to a sample M&S project, and a clear vision for future V&V research. 

 
Major aspects of this contribution, including the overview over the dependencies among re-
lated V&V objectives and the detailed guidance for the selection of applicable V&V tech-
niques, are contained in the “V&V Triangle” documented in Appendix A. 

6.2 The V&V Triangle 
The V&V Triangle approach was derived from rigorous analysis of existing approaches to 
V&V of models and simulation results, personal experience gained during model develop-
ment efforts, and experience with the V&V of models developed at the institute. The explana-
tion of the V&V Triangle contains tables and figures to keep the V&V Triangle as transparent 
as possible. The V&V Triangle supports a structured approach to M&S V&V: 

• Its inputs from the model development process are well-defined intermediate prod-
ucts that are created during model development, following the chronological order in 
which they become available; 

• the intensity and rigor of V&V are variable, according to the risk incident to the in-
tended purpose of model use, supporting establishing credibility incrementally; 

• all V&V objectives identified within the process are harmonized with each other; 
• previously created V&V evidence is reused efficiently during subsequent V&V ac-

tivities; 
• its output is the modular documentation of the V&V objectives achieved, the V&V 

activities conducted, and the V&V results which can be used to inspire belief in the 
correctness and suitability according to the identified risk. 

 
For this purpose the V&V Triangle provides: 

• detailed documentation requirements for the form and content of the intermediate 
products (providing all the desired information about the model and the simulation re-
sults);  

• a summary of error types, which are most likely to be hidden in the intermediate 
product on which the V&V activities are focused; 

• V&V main phases to assess the correctness and suitability of each intermediate prod-
uct individually; 

• V&V sub-phases with generic V&V objectives to fully explore the potential of the 
examination of specific types of intermediate products and external information; 

• guidance on how to apply V&V techniques to achieve the V&V objectives, and on 
how to reuse previously created V&V products; 

• an overview of the dependencies between different V&V objectives and the influ-
ence of repetitive examination on the credibility of the model or simulation results. 

 
The efficiency of the V&V Triangle was evaluated by its application on a small, but not trivial 
road intersection model (Appendix C), revealing potential benefits and limits. 

6.3 Potential Benefit and Limits of the V&V Triangle 
The V&V Triangle provides a foundation for the verification and validation of models and 
simulation results. It is no procedural approach for planning and implementing V&V activi-
ties; rather, it needs to be tailored to the particular needs of any given M&S project. Although 
it provides valuable guidance how to plan and implement V&V, there also are limitations to 
its use. 
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6.3.1 Potential Benefit 
• The application of the V&V Triangle is independent from the chosen model devel-

opment paradigm. The V&V objectives and techniques summarized in the V&V Tri-
angle depend on the minimum information that needs to be provided by the intermedi-
ate products. As long as these requirements are met, the V&V Triangle provides guid-
ance on how to accomplish the V&V objectives for the intermediate products devel-
oped utilizing any model development process. 

• The V&V Triangle is a solid foundation for V&V planning and implementation. 
The requirements for documentation of the intermediate products, the V&V objec-
tives, and their associated V&V techniques were derived from M&S theory, existing 
approaches to M&S V&V, discussion with V&V experts, and personal practical ex-
perience with V&V planning and implementation. The dependencies between the ob-
jectives and techniques are clearly identified, and at least for a subset, the documented 
sample application gives additional insight into the V&V of models and simulation re-
sults. 

• The V&V Triangle is a foundation for further research and for a wide range of ap-
plications. With the identification of the influences on V&V and their qualitative dis-
cussion, the foundation for rigorous quantitative analysis of the problem domain is 
laid. Availability of information and knowledge about the real system and the model 
itself limit the maximum possible V&V. Ideally, the activities should be exclusively 
driven by the maximum acceptable risk for the use of the model or the simulation re-
sults. 

• The V&V Triangle points out the dependencies between the V&V objectives and 
thereby supports deliberate tailoring: Depending on their assignment to their sub-
phases, particular V&V activities can replace other activities. At the expense of rigor 
and intensity, V&V can become less resource intensive. 

• The V&V Triangle provides the foundation for the implementation of less abstract 
application domain-specific V&V process models. Depending on the application 
domain, V&V objectives and techniques identified in the V&V Triangle can be re-
fined or replaced flexibly by more appropriate objectives and techniques. 

6.3.2 Limits 
• Despite its high level of detail, the V&V Triangle does not define a procedure to be 

followed strictly. It provides an overview of desirable V&V objectives and possible 
techniques for the achievement of these objective, but does not replace a deeper un-
derstanding of the problems regarding M&S V&V.  

• Among the foundations of the V&V Triangle there is the assumption of model trans-
parency. Although testing and analysis techniques can (and should) be combined and 
used to complement each other, the V&V Triangle does not provide explicit guid-
ance on how to deal with “black boxes” for which there is no documentation. If an 
intermediate product is missing, the V&V objectives in the sub-phases associated with 
this intermediate product can be shifted into the sub-phases to their right, but this im-
pacts the dependencies between the V&V objectives in a non-trivial way. 

• The reuse of parts of the intermediate products is not explicitly addressed. If such 
parts are reused, leveraging the outcomes of V&V (or V&V related tasks) previously 
applied offers great potential for the reduction of the remaining V&V effort.  

• Although the hierarchical organization of models is stressed, the benefits of the char-
acteristics of component-based models and distributed simulations are still not 
fully explored. The V&V Triangle needs adaptation to these extremely promising 
sub-disciplines of M&S. 
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6.4 Application V&V Techniques 
In the context of this thesis, the purpose of choosing and applying a V&V technique is the 
creation of evidence that demonstrates that an intermediate product satisfies some required or 
desired property. (As a side effect, errors are detected, if the intermediate product does not 
satisfy these properties.) Some V&V techniques are quite cumbersome to apply without ap-
propriate tools available, others provide deep insight into the model and its behavior with lit-
tle effort. The groups of V&V techniques or techniques discussed below demonstrated to be 
of special importance during the evaluation of the V&V Triangle in the sample M&S project. 

6.4.1 Requirements Tracing and Configuration Control 
For the purpose of requirements tracing a trace from the contents of an intermediate product 
to the associated contents of its predecessor is created. This allows one to track all features of 
the Executable Model back to the requirements specification given in the Structured Problem 
Description. The detection of inconsistencies between the intermediate products is supported 
by this technique. However, without appropriate software for model documentation available, 
which automatically controls the modifications of each intermediate product, such inconsis-
tencies are quickly introduced. The implementation of requirements tracing does only require 
an extremely limited amount of creativity, and becomes a cumbersome and error prone task, if 
performed manually.  
The conclusion is that requirements tracing without an adequate model documentation system 
is extremely time consuming and should be replaced by more efficient techniques for the de-
tection of inconsistencies. However, if such a system is used and requirements tracing can be 
automated or supported (at least to a certain degree), there could be truly consistent model 
documentation. The author considers the design and implementation of a highly specialized 
model documentation system to be a desirable goal (see section 6.10). 

6.4.2 Automated Error Detection 
During the evaluation phase of the V&V Triangle, Propositional Linear Temporal Logic 
(PLTL) was used to specify desired behavior properties. Similar to model checking, from 
these properties acceptance automata were derived that are able to automatically detect viola-
tions of the desired behavior in the I/S/O traces of the Executable Model. Among the advan-
tages of this approach to error detection is the efficiency of the technique, as large amounts of 
model behavior data can be analyzed automatically, and there is (practically) no chance, that a 
violation remains unrevealed. However, another finding of the attempt to automatically detect 
behavior violations in the test case was that it was impossible to express all identified behav-
ior properties in PLTL due to its limited expressiveness.  
Given the current state of the art, automated error detection methods cannot replace human 
review. In the author’s opinion both approaches to V&V should be used to complement each 
other. The absence of errors that can be automatically detected then is proven during an auto-
mated procedure, while it remains to the human expert to detect more subtle violations of de-
sired behavior. 

6.4.3 Instrumentation, Visualization, and Face Validation 
Although applicable only late in the model development process (an Executable Model is re-
quired that actually transforms input data to output data), visualization of the submodel be-
havior and their interactions, combined with face validation by SMEs was recognized as an 
extremely powerful approach to revealing numerous propagated errors and inconsistencies in 
the Executable Model that were not detected before. For this purpose, the information of the 
dynamic behavior of the model and its submodels over time needs to be accessible from out-
side, which usually requires some kind of instrumentation of the Executable Model’s source 
code. Simply translating the raw model output data into a dynamic, visual animation, and pre-
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senting it to experts familiar with the system and the problem, triggered the identification of 
errors or provided starting points for the search for additional errors. This combination of 
V&V techniques allows the human being to fully apply his mental abilities to detect “some-
thing wrong” in the model behavior. Thus, although face validation is a totally informal ap-
proach to V&V, it was found to be highly efficient, and will play as important a role in M&S 
V&V in the future as it did in the past. 

6.5 Other Promising Paths Through the V&V Triangle 
During evaluation of the V&V Triangle, only a small subset of the possible paths through the 
V&V Triangle was explored. Several others look promising and are briefly discussed in the 
following. 

6.5.1 Instrumentation, Assertions, and Inductive Assertions 
Instrumentation in the context of software testing means to insert statements into the code, 
which catch and record internal program runtime information that is otherwise hidden from 
the tester. The most efficient way to instrument a program depends on the test strategy and the 
aims of the test. However, a promising instrumentation strategy is to catch the values of pa-
rameters at the beginning and the end of a process block.  
Assertions concerning the expected behavior of the model can be directly derived from the 
behavior properties identified in V&V sub-phases 1.1, 1.2, 2.1, and 2.2. In all V&V sub-
phases 3.x, these behavior propositions can be used as assertions in the Formal Model, assum-
ing that one has a modeling environment that detects assertions violations. In sub-phase 4.1 
this instrumentation can be used to monitor the execution of any process block and detect, if a 
precondition stated as assertion is violated, and to ensure that a post-condition, again stated as 
an assertion, holds. If required, it can be proven that a precondition is strong enough to guar-
antee the post-condition after execution of the process block. In V&V sub-phase 4.3 asser-
tions can be used to control the submodel state and to automatically report violations of the 
desired state. 

6.5.2 Statistical Data Evaluation 
Another approach to the V&V of a model or simulation results focuses exclusively on data 
evaluation. With the guarantee that a quantitative symbolic model works on quantitative input 
and produces quantitative output that can be compared to quantitative real data, truly objec-
tive statements about some model aspects can be made. In following the path of data evalua-
tion, the model itself is considered to be a black box. If necessary, the values of the state vari-
ables are made visible as output parameters (instrumentation). Then all data used by, pro-
duced by, or related to the model is analyzed for particular statistical characteristics. 
Methods provided by mathematical statistics enable data evaluation in the M&S domain. To 
handle large amounts of data (a sample in the following), mathematical statistics define char-
acteristics as frequency (of a particular data value), relative frequency, and – for continuous 
data – class frequency and relative class frequency. The (relative) frequency of sample values 
can be graphically depicted in “histogram” form. The relative frequency allows the creation 
of an empiric distribution function and an empiric cumulative distribution function. For each 
data sample an empiric mean, median, p-quantiles, standard deviation and variance can be 
determined [Bosch 1987]. This allows one to categorize and compare large samples by their 
statistical characteristics, and supports the interpretation of the sample. [Sargent 1999] pro-
poses the use of box plots to visualize the characteristics of data used in the context of M&S 
V&V. 
The size of a sample plays an important role when characterizing it. On the one hand, if the 
sample size is too small, the characteristics are meaningless, on the other hand starting from a 
particular sample size, no more relevant information is gained by increasing the sample size. 
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More often than not there is only a small sample of real world data available (if any at all). 
The allowed confidence in the outcome of a statistical test or hypothesis test indicates the 
meaning of the comparison of data samples. Statistical methods can be used in the V&V sub-
phases 3.2 (goodness of fit of distribution functions), 4.1 (correlation of random numbers, 
model data vs. real data comparison), and 5.1 (statistical significance of Simulation Results) 
to detect undesired correlations or to assess the similarity of data distributions in different 
samples.  

6.5.3 Flow Analysis  
Both the control and data flows of the Conceptual Model, the Formal Model, and the Execu-
table Model show great promise for M&S V&V. Control flow analysis (and control flow test-
ing) and data flow analysis (and data flow testing) can be copied from software testing. 
According to [Beizer 1990] a control flow graph is a simplified graphical representation of the 
program’s control structure. Its graphical elements are process blocks, decisions, and junc-
tions. A process block is a sequence of program statements, uninterrupted by either decisions 
or junctions, with exactly one entry and one exit. A decision is a program point where the 
control flow diverges. A junction is a program point where the control flow merges. 
The reasons for the creation of a program control flow graph are directly transferred to M&S 
V&V: 

1. Control flow graphs visualize the control flows, and abstract from other program ele-
ments. This supports the identification of errors in the control flows. 

2. The control flow graphs serve as a preparation for path testing. 
3. Control flow graphs of the Conceptual Model, the Formal Model, and the Executable 

Model can be compared to conduct a consistency check. 
 
In the V&V Triangle, starting with V&V sub-phase 2.1, a flow diagram can be extracted from 
the Conceptual Model and plotted in one or several control flow graphs, depicting all possible 
choices of “paths” within each submodel. This type of diagram focuses on decision making in 
the Conceptual Model. This graph can be reviewed during V&V sub-phase 2.2 forcing the 
reviewer to explicitly concentrate on the decision making description within the submodels. In 
V&V sub-phase 3.2 the control flows of the Conceptual Model and the Formal Model may be 
compared for consistency checking, which also can be done with the control flows of the 
Formal Model and the Executable Model in V&V sub-phase 4.2. Finally model test cases are 
created based on the Conceptual Model control flows for V&V sub-phase 4.3. 
A data flow graph, which documents the modification of a data item during the program exe-
cution [Beizer 1990] can be used as a “object or submodel flow graph” in the V&V Triangle. 
In a nutshell, a data flow graph is a graph consisting of nodes and directed links (arrows). The 
nodes denote operations (assignment and mathematical operation), and the links denote that 
the result of the operation at the arrow’s tail is needed for the operation at the arrow’s head. 
This approach is transferable into the V&V Triangle: The object flow graphs or submodel 
flow graphs are extracted from the Conceptual Model in V&V sub-phase 2.1, depicting all 
manipulations of data elements (e.g., attributes, state variables). This type of diagram focuses 
on the initialization, modification, and recalculation of (internal) submodel values. This dia-
gram may also be subjected to further analysis or be checked for violation of a specification, 
and is used during later V&V sub-phases (e.g., 4.3) to trace the life of a simulation object. 

6.6 Concluding Remarks on the V&V Triangle 
The V&V Triangle was derived from rigorous analysis of the V&V challenge itself, of exist-
ing approaches to V&V, of personal M&S experience, and was evaluated in a test case, and 
promises to be another little step toward the integration of V&V activities into model devel-
opment. During refinement of the V&V Triangle specification, quickly the limits of generality 
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were reached. To create a V&V process independently from a particular application domain, 
independently from a modeling formalism, and independently from a technical realization 
environment, hardly enhances the detection of those V&V techniques, which are a real help to 
those confronted with a real V&V problem. Thus the author believes that any further refine-
ment of the V&V Triangle without further reduction of the problem space is ineffective.  
The key to V&V in everyday modeling practice is the availability of tools. Rigorous specifi-
cation requirements, which are required for entering model documentation into a general 
model documentation framework force those involved in the modeling process into re-
thinking. However, the modeler needs to have a direct benefit from electronic model docu-
mentation, as, e.g., automatic generation of model documentation or automatic access to a 
model repository for submodels reuse. Then, with electronic documentation of the intermedi-
ate products available, automatic V&V activities such as consistency checking can be per-
formed on these intermediate products. The V&V Triangle provides the foundation for the 
identification of the functional requirements for V&V support tools over the V&V sub-
phases. 
The V&V Triangle provides a detailed overview of the dependencies between the objectives 
and activities, which are important for the demonstration of the correctness and suitability of a 
model or simulation results. However, in such a wide research context, only a limited number 
of identified issues was explored in depth, with numerous open issues remaining. The most 
fascinating of them are outlined in the following. 

6.7 V&V of Component-Based Models  
To reduce the complexity of V&V of a model or simulation results, here the information 
available about the model is decomposed along the “integration/decomposition axis” (see 
Figure 9) of the three-dimensional model information space introduced in section 4.3.1. The 
explicit decomposability of a component-based model encourages the V&V of each compo-
nent prior to the V&V of the overall composed model, which can then be reduced to the dem-
onstration that the valid components interact in a valid manner. However, in the description of 
the V&V Triangle, model decomposability most often is only an implicit assumption, which 
is not explicitly discussed for most of its V&V sub-phases. With the growing popularity of the 
concepts of simulator interoperability (e.g., HLA federations, [Dahmann, Kuhl, and Weath-
erly 1998]) and component-based simulation [Hofmann 2003], the need for a methodology for 
the V&V of component-based models arises.  
As a general approach to the V&V of component-based models, a bottom-up approach is rec-
ommended. Here the first step is the V&V of each component (submodel), followed by the 
layer-wise demonstration that their integration into the overall (composed) model also is cor-
rect and suitable. If a component is reused in another model, under certain (limited) circum-
stances also the associated V&V results can be reused: All verification results, which demon-
strate the consistency among the intermediate products can be leveraged, as well as those veri-
fication results that demonstrate consistency with those precisely specified external rules that 
are still applicable. Validation results may also be reused, as long as the new intended purpose 
of model use is related closely enough to the original intended purpose.  
The development of a methodology for V&V of component-based models requires an in-
depth examination of 

• the potential and limits of the integration of correct and suitable components into a 
higher level correct and suitable component,  

• the impact of “black boxes” on the demonstration of overall model correctness and 
suitability, and  

• the potential of reuse especially of validation results, if the intended purpose of the 
new model deviates from the original intended purpose of the component. 
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The V&V Triangle provides a stable foundation for this examination. 

6.8 V&V of Distributed Simulations 
An implicit assumption of the V&V Triangle is that any internal information of the Executa-
ble Model can be made available and monitored (“white box”), which in practice (especially 
with commercial models) often not is the case. If the Executable Model is not a monolithic 
implementation, but technically distributed, an additional opportunity for the instrumentation 
of the Executable Model and the monitoring of its internal state exists that is otherwise not 
available. The communication between the distributed submodels can be monitored (as long 
as it is unencrypted), which gives additional insight into the internal behavior of the overall 
model.  
For the V&V of distributed simulations the research needs are similar to those for the V&V of 
component-based models. (Actually the distributed Executable Model is composed of execu-
table submodels, although they do not need to be as flexible as one expects from a “model 
component”.) Effective and efficient V&V techniques need to be identified or refined, which 
help to ensure that the distribution of the submodels of a correct and suitable overall model 
does not lead to its distortion or falsification. Also these techniques need to be embedded into 
an appropriate development process for distributed models, as, e.g., the FEDEP [IEEE 1516.3 
2001].  

6.9 Assessment of Credibility 
V&V is conducted to demonstrate that a model or simulation results are correct and suitable, 
or, in other words, to increase their perceived correctness and suitability. Unfortunately, for 
non-trivial models under financial constraints it usually is not possible to actually prove that a 
model or simulation results are suitable and correct. As already discussed in section 4.4, to 
implement target-oriented V&V and to establish a sufficiently high degree of credibility of the 
model, the rigor and intensity of applicable V&V should be adapted accordingly. However, 
the problem of how to assess credibility still remains. 
In section 4.4 credibility is discussed qualitatively, which was sufficient for the creation of the 
V&V Triangle. More objectivity would be added to the V&V process, if there was a quantita-
tive measure of credibility available – initial ideas could be taken from Theory of Belief 
[Shafer 1976]. Alternatively, [Becker 1989] discusses quantitative models for software reli-
ability, which also hold potential for transfer to M&S. However, the exact nature of a quanti-
tative measure of credibility is difficult. A discussion about the quantification of credibility 
can be found in [Brade and Köster 2001; Brade, Maguire, and Lotz 2002].  
The idea sketched in the following is based on the Claim-Argument-Evidence concept used in 
the ITOP on V&V (section 3.2.10) and the three-dimensional model information space (sec-
tion 4.3.1). The credibility of the claim of the V&V agent that the model is suitable for the 
intended purpose will be judged by the convincing force of the logical decomposition of this 
general claim in situation-specific sub-claims (breadth), and the probative force of the evi-
dence referred to for substantiation of the sub-claims (depth). In [Brade and Köster 2001] and 
[Brade, Maguire, and Lotz 2003] for the quantification of convincing force and probative 
force, linguistic variables (low, medium, and high) were chosen, but this definitely is not a 
final solution. Fuzzy logic could be used to put this approach on a more stable scientific foun-
dation. 

6.10 Tool Support  
To make V&V affordable, tools are required, which support both model development and 
execution and V&V [Pace 1999c]. [Modeling and Simulation Information Analysis Center 
2000] provides an overview of currently available tools, and numerous ideas for additional 
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V&V tools are born when reading this list. Proposals for tool development are found in the 
following. 

6.10.1 Model Documentation System 
As mentioned before, the availability of a model documentation system is desirable. There are 
numerous documentation management systems for storing electronic documents, but these 
systems do not support access to specific contents of the documentation. A model documenta-
tion system should be able to store the contents of an intermediate product according to its 
contents requirements given in the sections 2.2, 3.2, 4.2, 5.2, and 6.2 of Appendix A, respec-
tively, and to access these contents individually. This typed data base then is a stable founda-
tion for rigorous configuration control, checks for correctness in form, checks for internal 
consistency, and checks for IP-IP traceability (especially after the modification of any inter-
mediate product). This model documentation system should be coupled with the tools used for 
the creation of the intermediate product via an open standard like XML. A first step into this 
direction is documented in [Moritz 2002]. 

6.10.2 An Integrated Model Development System  
As long as there is no direct benefit in changing a specification prior to the modification of the 
source code, for minor changes software developers first modify their code before they adapt 
the design documents (if they are adapted at all). After a while, minor changes become major 
changes, and code and design become inconsistent. This situation changed with the usage of 
integrated development systems as [Borland 2003], where changes in the UML design di-
rectly impact the code, and vice versa. 
The potential of something similar for model development should be explored. A flexible 
modeling formalism like DEVS [Zeigler, Praehofer, and Kim 2000] could be used as a bridge 
between the Conceptual Model, which documents the abstraction and idealization performed, 
and the Executable Model, which is finally used for the generation of Simulation Results. A 
first step in this direction is made with a visual modeling environment for DEVS [Schäfer 
2003]. 

6.10.3 Output Analyzers 
Models usually produce vast amounts of output, which somehow need to be analyzed. Tools 
for statistical analysis exist, but the use of mathematical logics for the detection of undesired 
entries in the I/S/O trace can be increased. With VIOLADE [Brade and Waldner 2003] a tool 
for the automatic detection of desired behavior violations was created. There still remain nu-
merous interesting tasks, including the systematic identification of typical behavior problems 
in monolithic models and federations, the identification and eventually modification of suffi-
ciently expressive mathematical logics for behavior specification, a methodology for the crea-
tion of acceptance automata for these logics, and the implementation of the prototypical dem-
onstrator. 
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Appendix A: The V&V Triangle Specification 
 
 
 
This appendix contains the detailed specification of the V&V Triangle. An overview over its 
ideas and concepts is provided in the main document, section 4.7. All references and acro-
nyms are resolved in the main document. 
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1 PREREQUISITE: SPONSOR NEEDS 

The motivation for the development of a model originates from a specific task within an ap-
plication domain. For various reasons introduced in the main document (sections 1.2 and 
1.3.2), the examination or use of a real system needs to be supported or replaced by a quanti-
tative modeling approach. The model or simulation results are intended to provide (additional) 
aid to supply some higher level need, and this need must be communicated. Such needs in-
clude reducing the education time for military pilots (training), or exploring the safety fea-
tures of a public building (analysis). Often the need is the duplication of any type of real ex-
periment. Thus, whenever the term “experimentation” is used in the following, other needs 
(such as training) are not explicitly excluded. 
People in the application domain of the real system ideally are experts in their field, but one 
cannot expect them also to be M&S experts. The sponsor may have clear and precise ideas 
how to use the model or simulations results, but may not be able to communicate them to the 
developer. This is delicious, as finally the suitability of the model or simulation results is as-
sessed with respect to the SN and the intended purpose of modeling or simulation. Therefore, 
already for the documentation of the SN here guidance is provided.  
The SN express what the sponsor expects to get. They are provided by the spon-
sor/beneficiary, address mainly the system analyst and the modeler, and serve as essential 
input to the problem definition phase. Their representation is formless with respect to the 
model development process, but structured documents are recommended. To support the 
sponsor in providing all relevant input information to the model development process, a tem-
plate for the documentation of the needs may be helpful. To be a useful product for the initia-
tion of V&V in the model development process, the SN should contain the following entries 
(a sample “Initial Product: SN” is found in Appendix C): 
 
1) Configuration control information: Required for configuration control and reference by 

succeeding IP, includes an unique identifier. 
2) Purpose and background: Reasons for developing the model, including: 

a) General problem set: Description of the general problem that is intended to be solved 
by the use of M&S. 

b) Experimentation aim: Description of the purpose of conducting real experiments, if 
experimentation with or modification of the real system was possible.  

c) Motivation for M&S: Documentation of the reasons why M&S are expected to sub-
stitute or supplement the real experiments successfully.  

d) M&S aim and intended purpose: Description to which extend/coverage the aim of 
the real experiments shall be covered by M&S.  

3) Experimental framework description: Detailed description of the real experiment or 
real process that simulation shall replace, including: 
a) Idealized system and sample experiment description: Description of the a priori 

known structure and behavior of the real system and its subsystems, desired instru-
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mentation (locations and functionality of observation or measuring devices), and de-
sired observation and modification of external influences. Identification of require-
ments that would go along with the real experiment and qualitative description of the 
results that are expected. 

b) Influence parameters: The identification of metrics for recording external influences 
on the system behavior, as used for the real experiment.  

c) Goal parameters: The identification of metrics of the real experiment for recording 
system behavior.  

d) Acceptable limitations: A priori identified irrelevant influences, rough estimate of the 
allowed differences between the model and the real system. 

4) Operation environment: Description of the operational environment in, which the model 
finally will be used to generate SR (interaction with other systems or human), including: 
a) Operation platform, peripheral devices, and operating system: Description of the 

technical environment in which the simulation will be run. 
b) Interoperability (Machine-Machine-Interfaces): Required interoperability with 

other hardware subsystems or EMs, including communication protocols and inter-
faces. 

c) Interactivity (Man-Machine-Interfaces): The required possibilities of the manipula-
tion of the simulation experiment by human operators (interactivity) must be consid-
ered in the model. 

5) Worst case impacts statement: Identification of the worst case consequences of wrong 
decisions that may be derived from an unsuitable or incorrect model or simulation results. 

 
The identification of all of the needs mentioned above is essential for an aim-oriented ap-
proach to model development and simulation experiment execution. The less of them are ex-
plicitly stated in the beginning, the less straight forward model development will be. If the 
sponsor is not able to provide the above information, degrees of freedom are introduced into 
model development, which are most likely to be undesired. Before starting to precisely define 
the requirements for modeling, the above information items should be identified, which may 
require a kind of “pre-phase” with support of a modeling expert. To ensure that the SN are 
internally consistent and actually reflect the problem of interest is the sponsor’s responsibility 
and beyond the tasks of an M&S V&V process.  

2 V&V OF THE STRUCTURED PROBLEM DESCRIPTION 

To allow meaningful verification and validation during the early stages of model development 
specific, accurate and detailed requirements that the model must meet should be derived from 
the SN, including the intended purpose and risk analysis. The SPD contains the precise and 
unambiguous requirements specification for further model development, including concep-
tual, formal, technical and experimental requirements as far as already identified. It lays the 
foundation for model development. The more vague the definition of the intended purpose of 
modeling or simulation, the less can later be said about the fitness for purpose of the model or 
the SR.  
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2.1 Expected Problem Definition Activities 
The SPD is created during the problem definition phase, when the SN are analyzed and dis-
cussed with the aim to create a precise specification for model development. Here no guid-
ance is provided on how to actually perform the problem definition, as it is strongly task de-
pendent (see also main document, section 1.4.6). How to proceed for the creation of an SPD is 
left to the developer who may refer to [Shannon 1975] or [Partsch 1991]. Only these activi-
ties, which directly impact V&V are briefly outlined. 
 

Communication 
failure

Documentation 
failure

Incorrectness
in form

Internal 
inconsistency

Incorrectness 
in fact

Ambiguity

Incompleteness 
in content

Inconsistency
with SN

most likely results in

Failure sources Resulting errors

 
 Figure 1: Dependencies between failures in the problem definition phase and errors in the 

SPD 

One of the most important steps of the problem definition phase is to create an “M&S objec-
tives hierarchy”. As the intended purpose of the model or simulation results defined by the 
sponsor might be too complex or abstract, it should be decomposed into several clearly identi-
fied intended sub-purposes or M&S objectives. Starting with the overall SN, these should be 
decomposed into sub-needs, until precise requirements for M&S (M&S objectives), including 
test and acceptability criteria, can be derived from each sub-need. If possible, these require-
ments should be prioritized.  
Errors in the SPD are likely to lead to the development of a model that is not suitable for the 
solution of the actual problem. ([Balci 1990] stresses the significance of this problem by the 
introduction of a “type III error”.) They are caused by insufficiently pertinent questioning 
when identifying the intended purpose and required features of the model, or simply by com-
munication problems. The following failures during problem definition are identified: 

• Communication Failure: The problem definition should take place in the form of a 
dialogue between user, system analyst, and modeler. Both system analyst and modeler 
interpret and refine the SN for the purpose of modeling giving consideration to the in-
tended purpose. The user may fail to communicate the needs. 

• Documentation Failure: The SPD is written by the modeling expert, in close coopera-
tion with the system analyst and the user, and documents what the user will get. If the 
partners fail to completely document the requirements, this might cause serious prob-
lems afterwards. 
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The problem definition phase is re-entered, when the SN change or an error in the SPD is de-
tected. 

2.2 Documentation Requirements for the SPD  
Literature analysis [Shannon 1975; Banks 1998; Zeigler, Praehofer, and Kim 2000; Partsch 
1991], numerous discussions with M&S experts, and own experience with simulation projects 
(including [Hohl 2001; Brecht and Riepl 2002] and Appendix C) yielded the need for V&V to 
record particular pieces of information in the SPD. For its documentation, templates or struc-
tured documents are recommended, which address the contents summarized below (a sample 
SPD is provided in Appendix C): 
1) Configuration control information: Required for configuration control, references to 

preceding IPs, and references by succeeding IPs. It should include an unique version iden-
tifier. 

2) M&S objectives hierarchy: The M&S aims should be decomposed into a detailed list of 
sub-objectives with a rationale for their decomposition.  

3) Model border requirements: Description of the required input to and output from the 
model.  
a) Conceptual description: Description of the influence (input) and goal (output) pa-

rameters, as if created or measured in the real experiment. This includes 
i) their assignments to real world measurands, for explanation of their semantics;  
ii) the explanation of assumed or postulated relevance of each parameter for the 

model, as a rationale for modeling particular properties;  
iii) the required domains (value ranges) and a rationale for their selection;  
iv) the required accuracies and a rationale for their selection; 
v) identification of externally provided (standardized) data models.  

b) Formal specification: Formal specification requirements of the model I/O (for exam-
ple driven by the need for formal integration, as required by the HLA rules). 

c) Technical implementation: Describes interfaces and protocols for the exchange of 
electronic I/O data with data bases, other models, or other data sources and data re-
cording tools. This affects 
i) the format of input (standards of data repositories, interfaces, input generation 

tools) and the format of output (standards for data collection) of the overall 
model; 

ii) interface and protocol specifications for xIL, including the rationale for their 
selection and response time requirements; 

iii) communication infrastructure and a rationale for its selection; 
iv) simulation libraries or simulation environments (API, support functions, li-

brary description) and rationale for their selection; 
v) real time requirements (maximum allowed response times). 

4) Model structure and behavior requirements: Description of a priori known subsystems 
and their behavior that shall be considered during modeling. For non-closed, non-stand 
alone models, this might be a requirement for substantive interoperability with other mod-
els or systems. 
a) Conceptual description: 

i) A priori identified structural elements: This includes real subsystems relevant 
to the intended purpose, with explanation of their relevance and their alloca-
tion within the composition hierarchy of the real system, for explanation of 
their semantics; description of their behavior and identification of involved in-
put and affected output parameters of the next higher submodel; description of 
their border, conceptual I/O requirements and constraints; 
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ii) Imported structural elements: This addresses the above for imported concep-
tual submodels, software modules, hardware subsystems, or human operators; 

iii) Data models: Data models that the structure of the CM must be compliant 
with, with (a reference to) the description of the data model and an explanation 
of the necessity of compliance; 

iv) A priori identified behavior: Already known behavior sequences or interac-
tions between a priory identified or imported structural elements, including as-
signment to real world behavior (for explanation of their semantics), and ex-
planation of their relevance (as rationale for their introduction), or commonly 
accepted functional descriptions (e.g., Functional Descriptions of the Mission 
Space, FDMS [Defense Modeling and Simulation Office 2003]); 

v) A priori identified behavioral constraints: Specification of behavior that must 
(not) be shown by the model or its submodels without knowing or explicitly 
postulating the exact functional dependencies, with assignment to real world 
behavior (for explanation of their semantics), and an explanation of their rele-
vance (as a rationale for their introduction). 

b) Formal specification: Identification and (a reference to) the description of the re-
quired modeling formalism(s) (e.g. QN, PN, DEVS), templates for model documenta-
tion (e.g., HLA OMT), or other formal specification methods (e.g., UML, Z). 

c) Technical implementation:  
i) Software requirements: Simulation environment, programming paradigm, pro-

gramming language, and plug-ins, operating system, in parallel running proc-
esses (e.g., Runtime Communication Infrastructure, Object Request Broker, 
other submodels, or SIL), and the rationale for their selection. 

ii) Hardware requirements: I/O devices, HIL, execution platform, and the ration-
ale for their selection. 

5) Experimental framework requirements: General type of scenarios that shall be exam-
ined using the model. 
a) Conceptual setup: Scenarios described as sample experiments for achieving the iden-

tified sub-aims, input data with accuracy requirements, including reference scenarios 
with predicted outcome the simulation must duplicate; 

b) Technical setup: Describes data base access, instrumentation, and output recording. 
6) Additional acceptability criteria: Identification of all additional requirements that the 

model and simulation results must satisfy to be acceptable. As a minimum for acceptance 
all requirements stated in the SPD need to be satisfied. 

7) Standards summary: All standards that shall be considered during model development 
and use. 

 
All entries without information have to be justified. The required information may be com-
pleted during several iterations of the problem definition phase.  

2.3 Potential Errors in the SPD 
The SPD documents the results of the problem definition phase and is the foundation for all 
further model development. The dependencies between the identified failures during problem 
definition and errors in the SPD are sketched in Figure 1. The following errors should be de-
tected as early as possible: 

• Incorrectness in form (internal error): Relevant types of information for the devel-
opment of the model are not addressed (incompleteness; e.g., no documentation of in-
fluence parameters is found). Forgetting any type of information opens undesired de-
grees of freedom for modeling and most probably results in an unsuitable realization 
of the model (e.g., inadequate system border, unsuitable degree of abstraction, imple-
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mentation for the wrong computer platform). Incorrectness in form is also caused by 
the violation of format conventions. It can only be determined, if there is a clearly 
identified reference form (as presented in section 2.2) that describes the required con-
tents of the SPD. 

• Internal inconsistency (internal error): The contents of the SPD are contradictory. 
(For example, imported structural elements are not compliant with the required data 
model, or the required model I/O does not allow the execution of the required experi-
ments.) The requirements concerning concept, formalization, implementation, and 
execution with any logical dependency must be consistent. An internal dependency 
matrix can be created from the same reference (checklist, template) that is used for the 
detection of incorrectness in form. 

• Ambiguity (internal error): The contents of the SPD leave too much freedom for in-
terpretation.  

• Incorrectness in fact (internal error): The SPD is wrong with respect to available sys-
tem knowledge, domain knowledge, or metrics definition, independent of the task that 
shall be accomplished by M&S. 

• Incompleteness in content (transformation error): Relevant information for the de-
velopment of the model is missing (e.g., an important influence parameter or parame-
ter of interest was forgotten).  

• Inconsistency with SN (transformation error): The SN are not suitably reflected by 
the SPD. Even, if all required types of information have been considered (correctness 
in form) and are self-consistent, the information itself may be wrong, e.g., an unsuit-
able real system was identified as a reference system. 

 
The importance of a precise and complete requirements specification for model development 
is also stressed in [Balci 2000]. [Partsch 1991] discusses requirements specification for the 
development of software in general. Due to the nature of modeling, suitability can only be 
judged with respect to the intended purpose, which ideally is documented in form of an M&S 
objectives hierarchy. The success of a validation attempt of a model or simulation results 
strongly depends on the quality of the definition of the intended purposes. 
The following V&V activities are performed to demonstrate the absence of errors in the SPD. 

2.4 SPD Internal V&V  
This section documents the goals of V&V sub-phase 1.1, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 2 visualizes their dependencies.  

• Required stage of model development: Problem definition phase completed 
• IP counterpart for comparison (transformation V&V only): N/A 
• Sub-phase goal: Demonstrate formal correctness and self-consistency of SPD. This 

sub-phase aims to ensure that a well-documented, complete, internally consistent, fac-
tually correct, and reasonable SPD is available. Addressed errors include that  

o the M&S aims hierarchy, 
o the identification of the real system, 
o the conceptual modeling requirements, 
o formalization requirements, 
o implementation requirements, and  
o experimental requirements 

are missing, imprecise, incorrect, inconsistent with other entries, or not testable. 
• Requirements for and consequences of sub-phase skipping: It is not recommended 

to skip this sub-phase. Errors in the SPD may propagate through the complete model 
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development process and cause serious trouble. Missing requirements open undesired 
degrees of freedom, while factually incorrect requirements are most likely to result in 
a factually incorrect model. 

• Impact of error detection on model development: Regress by one phase. The prob-
lem definition phase has to be (at least partially) repeated. 

• Sub-phase objectives: Demonstrate that 
o the SPD is correct in form (i.e., consistent with the required SPD template); 
o all contents of the SPD are consistent; 
o all contents of the SPD are factually correct (i.e., consistent with domain 

knowledge); 
o all contents of the SPD are unambiguous; 
o all contents of the SPD are testable. 

 

Demonstrate that the SPD is correct in
form

SPD check list or
template

Demonstrate that all contents of the
SPD are consistent

Demonstrate that all contents of the
SPD are unambiguous

Demonstrate that all contents of the
SPD are factually correct

Demonstrate that all contents of the
SPD are testable

SPD internal dependen-
cies matrix

Documented knowledge of the
application domain, requirements

engineering, and M&S
Correctness in
form checking

SPD internal
consistency

checking

SPD Expert
review

Completed SPD internal
consistency matrix

SPD factual correctness
statementTest cases

specification

SDP test cases

Completed SPD check
list  or template

 
 Figure 2: Dependencies between the objectives, techniques, inputs, and outputs of V&V sub-

phase 1.1 

• Proposed techniques for static analysis: 
o SPD documentation correctness in form checking (includes completeness 

checking): Using an appropriate checklist or a template it is checked, whether 
the information required by the checklist or the fields of the template is pro-
vided in the required format. This results in a completed SPD checklist or tem-
plate. 

o SPD documentation internal consistency checking: Using a template-based in-
ternal dependency matrix, which identifies the contents of the SPD that need to 
be consistent, they are judged for consistency by an expert. The outcome is 
documented in a completed SPD internal consistency matrix. 

o SPD expert review: The contents of the SPD are evaluated for consistency with 
domain knowledge, requirements engineering knowledge, and M&S knowl-
edge. This results in an SPD factual correctness statement. 

o Test case specification: For all (testable) contents of the SPD, test cases are 
outlined. The test cases specification include expected test outcome (oracles) 
and pass/fail criteria. 
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• Proposed techniques for dynamic testing:  N/A 
• Proposed techniques for results evaluation: N/A 
• External references, leveraged information, and reused V&V output:  

o SPD checklist or template  
o SPD internal dependency matrix 
o Documented knowledge of the application domain, requirements engineering, 

and M&S 
• Provided output: 

o Completed SPD checklist or template, including correctness statement 
o Completed SPD internal consistency matrix  
o SPD factual correctness statement 
o SDP test cases 

2.5 SN to SPD Transformation V&V 
This section documents the goals of V&V sub-phase 1.2, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 3 visualizes their dependencies.  

• Required stage of model development: Problem definition phase completed 
• IP for comparison (transformation V&V only): SN  
• Sub-phase goal: Demonstrate completeness of the SPD in content and consistency 

with the SN. This sub-phase aims to ensure that the SPD indeed reflects the SN as 
precisely as required. Addressed errors include: 

o Incorrect or unsuitable M&S objectives: The achievement of the specified 
M&S objectives does not contribute to the satisfaction of the SN. 

o Incorrect or unsuitable conceptual modeling requirements: The consideration 
of the conceptual modeling requirements does not lead to the needed represen-
tation of the real system. 

o Incorrect or unsuitable real reference system: The specification of the reference 
system does not support the identification of a sufficiently similar real system.  

o Incorrect or unsuitable formal modeling requirements: The consideration of the 
formal modeling requirements does not result in the needed formal specifica-
tion. 

o Incorrect or unsuitable implementation requirements: The consideration of the 
implementation requirements does not yield the needed technical solution. 

• Requirements for and consequences of sub-phase skipping: It is not recommended 
to skip this sub-phase. Errors in the SPD may propagate through the complete model 
development process and cause serious trouble. If unsuitable requirements, or re-
quirements, which are inconsistent with the SN are documented, it must be doubted, 
whether the overall needs will be satisfied in the end. 

• Impact of error detection on model development: Regress by one phase. The prob-
lem definition phase has to be (at least partially) repeated. 

• Sub-phase objectives: Demonstrate that 
o the model border (I/O parameters, accuracy, update conditions) is defined as 

needed; 
o all developmental constraints (conceptual modeling requirements, formaliza-

tion requirements, implementation requirements) are defined as needed; 
o the experimental framework is defined as needed; 
o the specified test cases allow the assessment of acceptability criteria satisfac-

tion. 
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• Proposed techniques for static analysis:  
o SN-SPD completeness and consistency checking: A trace is created from each 

explicitly stated need to the associated requirements in the SPD, and docu-
mented in an SN-SPD traceability matrix. Requirements without needs and 
needs without requirements need to be resolved. With a template or checklist 
for the SN available, a template-based SN-SPD dependency matrix can be cre-
ated and used. 

o SPD expert review: An expert with knowledge of the problem (sponsor repre-
sentative) reviews the SPD and assesses its completeness and correctness in 
content. The review statements need to be documented as an SPD adequacy 
statement. 

o Test case review and pass/fail criteria confirmation: It is ensured that the test 
cases cover all testable needs. It may become necessary to adjust them to the 
particular test conditions. 

• Proposed techniques for dynamic testing:  N/A 
• Proposed techniques for results evaluation: N/A 
• External references, leveraged information, and reused V&V output:  

o Problem knowledge beyond the available SN documentation 
o Expert knowledge: Domain knowledge, requirements engineering, M&S 
o Template-based SN-SPD dependency matrix 
o Test cases from 1.1 

• Provided output: 
o SPD adequacy statement 
o Completed SN-SPD traceability matrix 
o Additional test cases with predicted outcomes and pass/fail criteria 

 
Demonstrate that the model border is

defined as needed

Demonstrate that all conceptual
modeling requirements are defined as

needed

Demonstrate that all implementation
requirements are defined as needed

Demonstrate that all formalization
requirements are defined as needed

Demonstrate that the experimental
framework is defined as needed

SN-SPD dependen-
cies matrix

Expert knowledge: domain
knowledge, requirements

engineering, M&S
SN-SPD

completeness and
consistency checking

Expert
review

Completed SN-SPD
traceability matrix

SPD adequacy
statement

Problem knowledge
beyond the available SN

documentation

Test cases from 1.1

Demonstrate that the specified test
cases allow the assessment of
acceptability criteria satisfaction

Test case review
and acceptability

criteria confirmation

Modified test cases and
acceptability criteria  

 Figure 3: Dependencies between the objectives, techniques, inputs, and outputs of V&V sub-
phase 1.2 
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3 V&V OF THE CONCEPTUAL MODEL 

The CM documents the modelers understanding of the real system in an idealized and abstract 
form. It serves as a comprehensive foundation for communication between those familiar with 
the application domain (sponsor, user, system analyst) and those responsible for the develop-
ment of the model (modeler, programmer).  

3.1 Expected System Analysis Activities 
Goal of the second phase of the model development process is to collect as much information 
about the real system as required to identify all relevant subsystems, their internal behavior 
and inter subsystems dependencies, giving consideration to the aims, requirements, and con-
straints given in the SPD. As a result, the idealized and abstracted observed, perceived, or 
assumed real system is documented as the CM.  
Failures during examination of the real system, its decomposition into subsystems, and during 
data collecting cause errors that affect the correctness and suitability of the information con-
tained within the CM.  
 

Reference system 
selection failure

Abstraction and 
idealization

failure

System analysis
failure

Documentation
failure

Incorrectness 
in form

Internal 
inconsistency

Incorrectness 
in fact

Ambiguity

Inappropriate 
abstraction

Inappropriate 
system border

Inappropriate 
discretization

Incompleteness 
in content

Erroneous 
embedded data

most likely results in

Failure sources Resulting errors

 
 Figure 4: Dependencies between failures in the system analysis phase and errors in the CM 

The CM is created in cooperation between modeler and system analyst and will be used by 
the modeler in the following phases of model development. Failures include superficial and 
insufficient system analysis, unsuitable measurement techniques, or may be due to a wrong 
SPD. 
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• Reference system selection failure: Whenever a model reflects a system whose be-
havior cannot be observed for some reason, one tries to derive the structure and behav-
ior description from existing or easier available knowledge. This includes related sys-
tems, documented knowledge, and expert opinion. Wrong theoretical assumptions or 
conclusions, an SME with inadequate knowledge, or data, which are derived from a 
related, but not sufficiently similar real system, most likely lead to a wrong CM, in-
cluding unsuitable or incorrect embedded data or runtime data.  

• Abstraction and idealization failure: Modeling is not only a science, but also an art. 
One of the most challenging tasks during modeling is to choose a suitable degree of 
abstraction and idealization. If the model is too abstract, the lack of detail does not al-
low to reproduce the behavior of the real system with the desired accuracy. However, 
high resolution does not automatically imply better behavior representation, as for a 
complex system, the whole is more than the sum of its parts. The behavior of the sys-
tem may be well known at a higher level of abstraction, while the knowledge about the 
modeled detailed interaction of its components is still immature. (For example, the be-
havior of a specific individual in a particular situation may be unpredictable, in con-
trast to the behavior of a mass of people in the same situation.) Theoretically, the 
number of properties of a real system that can be analyzed is unlimited, therefore dur-
ing modeling under explicit consideration of the intended purpose a limited set of 
relevant properties is identified. Failure to do so results in an incorrect or unsuitable 
CM. 

• System analysis failure: Numerous approaches to system analysis exist, including in-
ductive and deductive techniques, top-dwn, or bottom-up approaches [Simon 1962]. 
These approaches assume that modeling includes creating a subsystems hierarchy. 
Each submodel corresponds to a real subsystem that has been identified, being com-
posed  of  other  interacting  submodels  on  the  next  lower  hierarchy  level, as suit-
able. If system analysis fails, the extracted subsystems hierarchy is unsuitable or incor-
rect. 

• Documentation failure: While documenting the CM, it should be assured that the 
suitable subspaces of the three-dimensional model information space (main document, 
section 4.3.1) are covered. Incomplete CM documentation is not only an obstacle to 
V&V, but also to model reuse. 

 
The system analysis phase is re-entered, if the SPD is refined (this occurs frequently, as com-
plete specification is rarely available), the SPD significantly changes, or an error in the CM is 
detected. 

3.2 CM Documentation Requirements  
The CM can be considered as (main) part of the natural language specification of the simula-
tion software that will be developed later during the implementation phase. The representation 
forms of a CM are numerous; recommended are block diagrams, dependency graphs, hierar-
chy trees, structured documents, or tables. Although the CM should be self-explaining, the 
ambiguity of natural language implies that usually additional explanation (presentation, dis-
cussion, explanatory text) is needed. The CM should address the following contents (a sample 
CM is given in Appendix C): 
1) Configuration control information: Required for configuration control, references to 

preceding IPs, and references by succeeding IPs. It should include an unique version iden-
tifier. 

2) CM overview: A brief description of the CM, summarizing model purpose, CM border, 
and its contents. 
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3) Structure and behavior description: Layer-wise description of all submodels of each 
hierarchy layer, their internal behavior, their decomposition into lower-level submodels, 
and their interactions. This includes for each submodel on each layer: 
a) Real subsystem: Identification of the real subsystem reflected by the submodel. 
b) Origin: Identifies the submodel as custom-made for the M&S objectives documented 

in the (referenced) SPD, as externally provided and integrated CM originally devel-
oped for another purpose, or as CM of a formally specified or already implemented 
executable submodel. If a pre-defined submodel is used, a rationale for integrating it is 
required (e.g. identification of an interoperability standard or data model that demands 
its use, or assumed advantage of using it). 

c) Submodel border: Description of all I/O parameters, including  
i) an identifier, the specification of its range, unit, accuracy (decimal places), up-

date frequency or condition, and initial value; 
ii) assignment to real world measurand (for explanation of its semantics); 
iii) identification of any interoperability framework or standard that the selection 

of I/O parameters is compliant with. 
d) Structure description:  

i) Detailed description of the abstract and idealized replication of the real subsys-
tem, rationale for the chosen abstraction, and identification of the real world 
references used (e.g., map, CAD drawing); 

ii) Identification and rough description all of contained submodels, rationale for 
the chosen (de-)composition, and assignment between submodels and real 
subsystems (to explain of the semantics of each submodel); 

iii) Inheritance hierarchies ("is a" relationships), including rationale for choosing 
the hierarchies, and motivation for refinement or abstraction of modeled ele-
ments; 

iv) Identification of any interoperability framework or standard that the structure 
definition is compliant with. 

e) Internal behavior description: 
i) Identification of states or subsets of the state space: This includes the descrip-

tion of state variables (identifier, range set, unit, accuracy (decimal places), 
and initial value) and states (sets of state variable ranges), and an assignment 
to states of the real subsystem (to explain of the semantics of each state); 

ii) (Graphical) description of behavior or state transitions (internal behavior, as 
reactions to external stimuli, events, or other submodels state constellations; 
own internal dynamics). This includes state transitions or updates of state and 
output variables (state transition diagram), conditions for state transitions or 
variable updates, and an assignment to real state changes, to explain the se-
mantics of each state change. Explanation for the chosen resolution of time; 

iii) Identification of any interoperability framework or standard that the behavior 
definition is compliant with. 

f) Interaction with other submodels: 
i) Identification of all submodels on the same layer in the submodel hierarchy 

that are interaction partners, including identification and description of inter-
connection between their I/O parameters. 

ii) Assignment to real world interactions, for an explanation of the semantics of 
each interaction. 

iii) Rationale for the derivation of conditions that initiate the interaction, referring 
to real world references. 

iv) Behavior constraints of the submodels that later refinement must satisfy, in-
cluding illegal attribute value interval combinations or cause-effect pairs. 
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v) Identification of any interoperability framework or standard that the interac-
tion definition is compliant with. 

g) Embedded data: Reference to exhaustive data documentation.  
4) Reference material summary: Clear identification of all reference material that is used 

for system analysis, e.g. CAD sketches, construction plans, documented expert opinion, 
data files, maps, or photos. 

5) Standards summary: Identification of any standard the conceptual submodel is compli-
ant with. 

 
For each item no information is given for, there should be a justification. The required infor-
mation may be completed during several iterations of the system analysis phase.  

3.3 Potential Errors in the CM 
This section summarizes errors that origin from incorrect or unsuitable abstraction, idealiza-
tion, selection of the system border, or simply from insufficient knowledge about the real sys-
tem, and result in a CM not suitable for the intended purpose or incorrect. Errors in the CM 
occur during system analysis and the aim-oriented identification, abstraction and idealization 
of, e.g., structures, objects, states, and behavior, or are the result of specification errors. The 
dependencies between the identified failures during system analysis and errors in the CM are 
sketched in Figure 4. Potential errors identified for the CM are introduced in the following: 

• Incorrectness in form (internal error): When modeling a real system, it usually is re-
quired to identify inputs that have to be considered, outputs that should be observable, 
eventually giving consideration to objects or subsystems, their attributes, and their in-
teractions, of cause-effect-dependencies, states, and state transitions, and more. If any 
of these types of information is missing, the CM is incomplete in form. For the judg-
ment of correctness in form there must be a clearly identified reference form summa-
rizing the mandatory contents of the CM (e.g. in section 3.2). 

• Internal inconsistency (internal error): Discrepancies within the CM. Whenever there 
are logical dependencies between particular contents of the CM, these contents should 
be consistent. For example, parameters used in the behavior description of a submodel 
should also be defined within its structure description. A consistency checklist can be 
created from the same reference that is used for judgment of correctness in form. 

• Incorrectness in fact (internal error): Violation of the rules and laws of the applica-
tion domain. In each application domain certain principles and rules are valid, e.g., 
when modeling movement, kinetics must be considered. 

• Ambiguity (internal error): The specification of the CM is imprecise and opens unde-
sired degrees of freedom for further model development. 

• Unsuitable abstraction and idealization (transformation error): To allow the 
achievement of the intended purpose, a suitable level of abstraction is required, includ-
ing a suitable identification of subsystems and atomic subsystems. In addition, unsuit-
able abstraction and idealization may result in incompliance with externally provided 
reference models like the Functional Descriptions of the Mission Space (FDMS [De-
fense Modeling and Simulation Office 2003]). Compatible abstraction and idealization 
is required, otherwise substantive interoperability between submodels is most likely 
not achievable. 

• Unsuitable model border (transformation error): Required external influences on the 
real system are not properly reflected by the input parameters of the model, or other 
relevant subsystems that influence the behavior of the subsystem of interest are not in-
cluded in the model. The model output parameters do not allow the observations one 
is interested in.  
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• Unsuitable discretization of time (transformation error): The resolution of time or 
the discretization of the state space is not precise enough to allow the desired observa-
tions, or too precise for (efficient) execution of the implementation. Especially when 
modeling continuous processes, special care is required. 

• Incompleteness in content (transformation error): The contents of the SPD are not 
satisfied, e.g., required I/O parameters or anticipated subsystems are not considered. 
Consistency or compliance requirements have been violated.  

• Unsuitable or incorrect embedded data (transformation error): If data that is em-
bedded in the model is measured at an unsuitable related system, is created by another 
invalid model, or is otherwise determined in the wrong way, the quantitative aspects 
of the behavior description are wrong. Even if there is data directly measured at the 
real system available, it must be ensured that it is suitable (e.g., age, measurement tol-
erance). 

 
In the following V&V activities are identified to demonstrate the absence of the errors men-
tioned above. As conceptual modeling is not only a science, but also an art, it is extremely 
difficult to distinguish unsuitable from suitable at this stage of model development.  

3.4 CM Internal V&V  
This section documents the goals of V&V sub-phase 2.1, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 5 visualizes their dependencies.  

• Required stage of model development: System analysis completed 
• IP counterpart (transformation V&V only): N/A 
• Sub-phase goal: Demonstrate formal correctness and self-consistency of the CM. 

This sub-phase aims mainly to ensure that the documentation of the CM is complete, 
internally consistent, and useful, and that the CM is consistent with the available do-
main knowledge. Addressed errors include that  

o the submodel border descriptions,  
o the conceptual submodel hierarchy, 
o the submodel internal behavior descriptions, and 
o the submodel interactions  

are missing, imprecise, factually incorrect, or inconsistent with respect to other CM 
contents.  

• Requirements for and consequences of sub-phase skipping: It is not recommended 
to skip this sub-phase. Inconsistencies in the CM will delay further model develop-
ment, or lead to wrong simulation results. If factually wrong model contents (inconsis-
tent with domain knowledge) are not detected in this early stage of model develop-
ment, resources are wasted developing an (at least partially) factually wrong FM. 

• Impact of error detection on model development: Regress by on phase. The system 
analysis phase must be (at least partially) repeated giving consideration to the newly 
gained knowledge about the real system.  

• Sub-phase objectives: Demonstrate that 
o the CM (including its supplemental information and the conceptually described 

experimental framework) is correct in form (i.e., consistent with the required 
CM template), 

o all contents of the CM are consistent with each other, 
o all contents of the CM (including structure, embedded data, anticipated behav-

ior, and experimental framework) are unambiguous and factually correct (con-
sistent with domain knowledge),  
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o the data sources are suitable, and 
o all data are sufficiently accurate. 

Demonstrate that the CM is correct in
form

Demonstrate that all contents of the CM
are consistent

Demonstrate that all contents of the
CM are unambiguous and factually
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CM internal
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Demonstrate that all data are
sufficiently accurate
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Units consistency
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Units calculation rules

Fault insertion

Faulty CM

Additional CM test
cases

CM structure
review

CM assumptions
catalogue

Assumptions
reverse

engineering
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 Figure 5: Dependencies between the objectives, techniques, inputs, and outputs of V&V sub-
phase 2.1 

• Proposed techniques for static analysis:  
o CM documentation correctness in form checking (includes completeness 

checking): Using an appropriate checklist or a template is checked (as provided 
in section 3.2), whether the information required by the checklist or the fields 
of the template is provided in the required format. This yields a completed CM 
checklist or template. 

o CM documentation internal consistency checking: Using a template-based in-
ternal dependency matrix, which identifies the contents of the CM that need to 
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be consistent, these contents are judged for consistency by an expert. The out-
come of this activity is a completed CM internal consistency matrix. 

o CM structure review: The structure description of all submodels is reviewed 
and assessed for consistency with available domain knowledge. This results in 
a CM factual correctness statement. 

o Dimension test: This test is highly specialized to check equations containing 
parameters with units. The resolution of the units according to the equation 
must be correct. 

o Assumptions reverse-engineering: The CM is reviewed by SMEs who write 
down the assumptions, which must hold for the model to be a valid representa-
tion of the real system. These reverse-engineered assumptions can later be used 
for comparison with previously documented assumptions.  

o Application domain dependent analysis and checks: Dependent on the applica-
tion domain, highly specialized V&V activities can be performed. For exam-
ple, for integrated circuit design the distances between different types of semi-
conductor materials can be verified efficiently. 

• Proposed techniques for dynamic testing:   
o Mental execution and behavior propositions specification: The conceptual 

structure and behavior description of each submodel is mentally interpreted, to 
anticipate the behavior of the model under particular input conditions and to 
extract behavior propositions. Simply by reading the structure and behavior 
specification carefully and rigorously for the purpose of behavior propositions 
specification, some of its ambiguities, gaps, and loopholes already become ob-
vious. The extracted behavior propositions can be reused for numerous V&V 
tasks, as, e.g., model checking of the FM, or test case generation for the EM. 
(Behavior propositions are the foundation of the “path of behavior specifica-
tion violation detection”, as explained in detail in the main document, section 
5.3.) However, mental execution is cumbersome and error-prone. It usually 
provides only vague results for an extremely limited number of test cases.  

o Fault/failure insertion: Alternatively to the mental execution of the unmodified 
CM, it can be modified, e.g. by fault insertion. The (now erroneous) antici-
pated model behavior (failure) should be plausible. The anticipated model be-
havior is documented. 

o Data evaluation: Experts assess the suitability of the data used as a foundation 
for conceptual modeling, yielding a data suitability statement.  

• Proposed techniques for results evaluation: N/A 
• External references, leveraged information, and reused V&V output:  

o Theoretical, mental, and other models of the real system (system knowledge) 
o Test cases from 1.1 
o CM checklist or template 
o CM internal dependency matrix 
o Units calculation rules 
o System instrumentation information 

• Provided output: 
o Completed CM checklist or template 
o Completed CM internal consistency matrix 
o Extracted behavior propositions for each submodel 
o Additional CM test cases  
o Interpreted CM behavior record 
o CM structure factual correctness statements 
o CM assumptions catalogue 
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o Data suitability statements 

3.5 SPD to CM transformation V&V  
This section documents the goals of V&V sub-phase 2.2, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 6 visualizes their dependencies.  

• Required stage of model development: System analysis completed 
• IP counterpart (transformation V&V only): SPD 
• Sub-phase goal: Demonstrate completeness of the CM in content and consistency 

with the SPD. This sub-phase aims mainly to ensure that the CM meets the conceptual 
modeling requirements and is a correct and suitable representation of the real system, 
which allows the execution of the required experiments within the specified experi-
mental framework. Explicitly addressed errors include that  

o the model border (I/O parameters, their semantics, their accuracy),  
o the conceptual submodel structure description, 
o the anticipated submodel internal behavior, 
o the anticipated submodel interactions,  
o the chosen experimental framework, and  
o the representation of time does not allow to achieve the specified M&S objec-

tives; and that 
o explicit conceptual modeling requirements are violated (e.g., required I/O pa-

rameters, submodel structure, or submodel behavior). 
• Requirements for and consequences of sub-phase skipping: It is not recommended 

to skip this sub-phase. If the CM does not meet the requirements for conceptual mod-
eling, resources will be wasted for the development of an at least partially wrong FM.  

• Impact of error detection on model development: Regress by one phase. The sys-
tem analysis phase has to be (at least partially) repeated under special consideration of 
the detected inconsistencies and missing contents.  

• Sub-phase objectives: Demonstrate that  
o the model border (I/O parameters, their semantics, their accuracy), 
o the degree of abstraction and idealization, 
o the model structure and hierarchical decomposition, 
o the representation of time,  
o the anticipated model behavior (including embedded data), and 
o the experimental framework 
meet the requirements. 

• Proposed techniques for static analysis:  
o SPD-CM completeness and consistency checking: A trace is created from each 

applicable structural and behavioral requirement in the SPD to the associated 
content of the CM and documented in an SPD-CM traceability matrix. Con-
tents without requirements and requirements without model contents need to 
be resolved. A template-based SN-SPD dependency matrix can be created and 
used for this purpose. 

o CM assumptions review: The assumptions catalogue created during V&V sub-
phase 2.1 is reviewed for its consistency with the SPD. If the extracted as-
sumptions contradict the conditions under which the model is supposed to be 
exercised to accomplish the required M&S objectives, a problem is detected. 
The results of the review are documented in the CM assumptions compliance 
statement. 
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o CM structure review: The symbolic structure description is reviewed for a cov-
erage of all structural elements required in the SPD. The results of the review 
are documented in the CM structure compliance statement. 

o Behavior propositions review: The behavior propositions extracted from the 
CM during V&V sub-phase 2.1 are compared to the behavior requirements 
given in the SPD. If there are behavior requirements without associated behav-
ior propositions (and vice versa), or if required behavior and behavior proposi-
tions are inconsistent, a problem is detected. This is documented in a CM be-
havior propositions compliance statement. 
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 Figure 6: Dependencies between the objectives, techniques, inputs, and outputs of V&V sub-

phase 2.2 

 
• Proposed techniques for dynamic testing:  

o Mental execution: A subset of the test cases identified during the V&V sub-
phases 1.1, 1.2, and 2.1 is mentally executed to anticipate CM behavior, which 
supports judgment of consistency between the symbolic behavior description 
stated in the CM and the behavior requirements in the SPD. If other test cases 
are made up in addition to those already available, new interpreted CM behav-
ior (“oracles”) and behavior propositions should be added to the CM test cases 
and the CM behavior propositions, respectively. 

• Proposed techniques for results evaluation: N/A 
• External references, leveraged information, and reused V&V output:  

o Template-based SPD-CM dependency matrix 
o Behavior propositions from 2.1 
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o Test cases from 1.1, 1.2, and 2.1 
o Interpreted CM behavior (“oracles”) from 2.1 
o Assumptions catalogue from 2.1 

• Provided output: 
o Completed SPD-CM traceability matrix  
o CM structure compliance statement 
o Additional CM test cases 
o Additional CM behavior propositions  
o CM behavior compliance statement 
o CM assumptions compliance statement  

3.6 SN to CM transformation V&V 
This section documents the goals of V&V sub-phase 2.3, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 7 visualizes their dependencies. 

• Required stage of model development: System analysis completed 
• IP counterpart (transformation V&V only): SN 
• Sub-phase goal: Confirm completeness of the CM in content and consistency with the 

SN. This sub-phase mainly aims to countercheck that the SN (from which the re-
quirements originate) are covered by the CM. With the CM now serving as a vehicle 
for communication, additional, in sub-phase 1.2 unavailable options are given. Typi-
cally addressed errors include that  

o an unsuitable system border does not allow to observe the needed influences 
and output parameters with the needed semantics, 

o the conceptual submodel structure does not allow the observation of the 
needed submodel interactions or internal submodel behavior (state parameters), 
and 

o the anticipated conceptual submodel internal behavior is too imprecise to allow 
the needed insight into the subsystem behavior. 

• Requirements for and consequences of sub-phase skipping: This is a confirmation 
sub-phase. It can be skipped, if during V&V sub-phase 1.2 it was made credible that 
all relevant aspects of the SN have been included suitably in the SPD, and during 
V&V sub-phase 2.2 it was made credible, that the CM satisfies all SPD contents. 
However, as it is extremely difficult to capture all M&S requirements in the SPD 
(truly complete specifications are rare), it is highly probable that the user’s abstracted 
and idealized perception of the real system and the experimental framework deviates 
from the modeler’s. As the CM is the foundation for formalization and implementa-
tion, especially during these early phases of model development direct feedback of the 
sponsor is crucial for success. 

• Impact of error detection on model development: Regress by two phases. The 
model developer has to return to the problem definition phase, restart model develop-
ment with the newly gained knowledge about the (partial) incorrectness or unsuitabil-
ity of the CM or SPD, and correct the errors made during problem definition or system 
analysis. 

• Sub-phase objectives: Confirm that 
o the model border (including anticipated accuracy of parameters),  
o the degree of abstraction, 
o the model structure and hierarchical decomposition, 
o the representation of time,  
o the model behavior (including embedded data), and 
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o the experimental framework 
allow the needed experimentation. Remark: The objectives are the same as those 
of V&V sub-phase 2.2, with the sole exception that not the compliance with the 
SPD is assessed, but the adequacy with respect to the real needs. 
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 Figure 7: Dependencies between the objectives, techniques, inputs, and outputs of V&V sub-

phase 2.3 

• Proposed techniques for static analysis:  
o SN-CM completeness and consistency checking: By reusing the SN-SPD and 

SPD-CM consistency matrices from V&V sub-phases 1.2 and 2.2, and the use 
of a template based SN-CM dependency matrix, a trace from each need to the 
associated CM contents is created, and documented in the SN-CM traceability 
matrix. Needs without associated CM contents (and vice versa) indicate a 
problem.  

o CM assumptions review: The assumptions catalogue created during V&V sub-
phase 2.1 is reviewed by a sponsor representative with knowledge of the spon-
sor’s needs. If the previously extracted assumptions contradict the conditions 
under which the model needs to be exercised to address the SN, a problem is 
detected. The results of the review are documented in the CM assumptions 
adequacy statement. 

o CM structure review: The symbolic structure description is reviewed for cov-
erage of all structural elements, which need to be stimulated or observed. The 
results of the review are documented in the CM structure adequacy statement. 
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o Behavior propositions review: The behavior propositions extracted from the 
CM during V&V sub-phase 2.1 and 2.2 are compared to the needed behavior. 
If needed behavior and behavior propositions are inconsistent, a problem is de-
tected. This phenomenon is to be documented in the CM behavior adequacy 
statement. 

• Proposed techniques for dynamic testing:   
o Mental execution: Additional mentally generated model behavior examples 

may be required to judge consistency between CM and SN. 
• Proposed techniques for results evaluation: N/A 
• External references, leveraged information, and reused V&V output:  

o Test cases from 1.1, 1.2, 2.1, and 2.2 
o Documented interpreted behavior from 2.1 and 2.2 
o Behavior propositions catalogue from 2.1 
o Assumptions catalogue from 2.1 
o Completed SPD-SN traceability matrix from 1.2 
o Completed CM-SPD traceability matrix from 2.2 
o Template-based SN-CM dependency matrix 

• Provided output: 
o Completed CM-SN traceability matrix 
o Additional CM interpreted behavior (oracles) 
o Behavior propositions adequacy statement 
o CM structure adequacy statement 
o CM behavior adequacy statement 
o CM assumptions adequacy statement 

4 V&V OF THE FORMAL MODEL 

Quantitative solution of a model or mathematical-digital simulation on a digital computer 
require to express the contents of the CM in a computable form. This is achieved by using a 
specialized formalism with a well-defined mathematical foundation. The FM is the solution-
oriented, platform-independent, syntactically and (partially) semantically unambiguous speci-
fication of the CM, according to one or more well-defined formalisms based on a mature 
mathematical foundation. Usually, modeling formalisms require that all contents of the CM 
are quantitatively described. Still missing quantitative information is added, and functional 
dependencies, which are too complex to achieve an efficient, precise solution are approxi-
mated (this may require additional abstraction and idealization). An interpreter can “run” or 
execute the FM, if it is completely defined, or can generate executable code from it. 

4.1 Expected Formalization Activities  
To allow the application of mature solution techniques, the CM is transformed into the FM. 
For mature modeling formalisms, application domain oriented and application domain inde-
pendent simulation tools are available that allow direct automated interpretation of the model 
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or generation of executable code. For each submodel a suitable modeling formalisms is cho-
sen during the formalization phase. An increase of model internal consistency is already 
achieved during formalization, because the modeler has to rethink the CM over in order to 
express it formally in a restricted and controlled language. Formalization forces the modeler 
to implicitly consider the expert knowledge that led to the development of the formalism, and 
helps to avoid dead-end roads during further modeling. Inconsistencies become obvious, and 
gaps or ambiguities in the CM are detected, when rigorously transforming it to a formal de-
scription. As a rule, the more specialized the formalism, the less flexible is its application, but 
its subsequent analytic solution, its interpretation, or the transformation into an EM become 
easier. 
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 Figure 8: Dependencies between failures in the formalization phase and errors in the FM 

Examples for highly specialized modeling formalisms are Queuing Networks (QN) for bottle-
neck analysis [Hillier and Liebermann 1997], or Petri Nets (PN) for examination of parallel-
isms [Lindemann 1998]. Several extensions for these “classic” formalisms are available to 
increase their expressiveness, including Colored QN, Extended QN, Colored PN, Timed PN, 
Generalized Stochastic PN, Deterministic and Stochastic PN, or Queuing PN. The challenge 
of hierarchical integration of submodels into a submodel hierarchy (which is not explicitly 
addressed by the above formalisms) for the purpose of discrete event simulation is among the 
key features of the Discrete Event System Specification (DEVS) of [Zeigler, Praehofer, and 
Kim 2000]. To allow the integration of non-discrete elements into the specification, a Discrete 
Time System Specification (DTSS) and a Differential Equation Systems Specification 
(DESS) have been formalized by Zeigler et. al. More generic (half-) formal specification 
techniques are more flexible, but usually provide a less strict framework for V&V. An exam-
ple of a highly flexible half-formal model description method is the well known Unified 
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Modeling Language (UML) [Object Management Group 1999]. However, UML specifica-
tions prepare the implementation of object-oriented software, simulation specific elements are 
not predefined there. (In addition to the formalism mentioned here as a preparation of an ap-
proach to Multi-Formalism Modeling, [Vangheluwe 2001] provides an excellent overview of 
formal modeling methods.) 
The following problems may occur during formalization: 
• Formalism selection failure: For the chosen formalism no efficient solution method is 

available, or it is not expressive enough to allow the suitable formulation of the CM. An 
immature modeling formalism may contain ambiguous elements. 

• Model formulation failure: The chosen approximation methods and numerical solution 
methods do not allow to express the CM with sufficient accuracy or efficiency. Also, the 
preparation of input data, including selection of distribution functions or fitting measured 
data to distribution functions, might fail. 

• FM documentation failure: In documenting an FM, not only for the purpose of V&V it 
should be assured, that the suitable subspaces of the three-dimensional model information 
space (main document, section 4.3.1) are covered. 

 
The model formalization phase is re-entered, when the CM changes or an error in the FM is 
detected. Constraints that have been considered but cannot yet be realized should be propa-
gated through the phase.  

4.2 FM Documentation Requirements 
The modeler creates the FM, which can be used by the programmer as a high level design for 
the implementation of the EM (software). The representation form of the FM is defined by the 
chosen formalism and consists of, e.g., Petri Net or Queueing Net elements, DEVS equations, 
UML diagrams, or mathematical formulas. The formalism must have a mature mathematical 
foundation. Required contents are (a sample FM is given in Appendix C): 
1) Configuration control information: Required for configuration control, references to 

preceding IPs, and references by succeeding IPs. It should include an unique version iden-
tifier. 

2) Identification of the formalism(s): This includes a reference to the description of the 
underlying formalism, and a rationale for its selection. 

3) Structure and behavior description: Layer-wise description of all submodels of each 
layer according to the modeling formalism, (e.g., graphic diagrams or mathematical for-
mulae), their internal behavior, their decomposition into lower-level submodels, and their 
interactions. This includes for each submodel on each layer: 
a) CM: Identification of the associated conceptual submodel. 
b) Origin: Identifies the formal submodel as custom-made, or as an FM of an imple-

mented executable submodel. If a pre-defined submodel is used, a rationale for inte-
grating it is required (e.g. identification of the interoperability standards that demand 
its use, or assumed advantage of using it). 

c) Model border description: According to the modeling formalism, 
i) formalized description of input data sources (model structure description), 
ii) formally correct integration of submodels, including submodels specified in 

different modeling formalisms. 
d) Structure and internal behavior description: According to the formalism, including 

i) submodel hierarchy, 
ii) static interdependencies between the submodels, 
iii) object inheritance hierarchy, 
iv) states and state transition diagrams, 



Appendix A – 24 

v) algorithms, and heuristic and numeric solution methods explanation, including 
a detailed description of chosen solution methods and justification for their se-
lection and an approximation of error, and 

vi) formalized behavior constraints (assertions specification). 
e) Submodel interactions: 

i) external events and conditions for their generation 
ii) formalized dynamic interactions between submodels  

4) Formalized experimental framework: A formal specification of external influences 
(e.g., external event generation patterns with formatted data reference)  

5) Standards summary: An identification of any standard the formal submodel is compliant 
with. 

 
There should be a justification for each number no information is given for. The required in-
formation may be completed during several iterations of the formalization phase.  

4.3 Potential Errors in the FM 
All violations of the rules of model formalization and formulation, including the FM docu-
mentation requirements, are summarized as formalization errors. The completeness, clarity, 
and correctness of the FM must be assured. Formalization errors are the results of failures in 
expressing the CM as an FM according to the chosen modeling formalism. The dependencies 
between the identified failures during formalization and errors in the FM are sketched in 
Figure 8. Potential errors identified for the FM are introduced in the following: 

• Syntax errors (internal error): Violation of the syntax rules of the modeling formal-
ism. Each formalism defines elements and rules, which regulate the allowed depend-
encies between the elements. To ensure the unambiguousness of the description, these 
rules must not be violated. The reference for syntax checking is part of the specifica-
tion of the formalism. 

• Semantic errors (internal error): This type of incorrectness addresses the violation of 
the semantic rules of the modeling formalism. Often is it not allowed to combine the 
elements given by the formalism in any desired way. Errors occur, if, e.g., different 
contents of the CM are projected on elements of the formalism, and these elements are 
not allowed to have the dependency as intended with the CM.  

• Incorrectness in Form (internal error): A modeling formalism defines all of its ele-
ments and their allowed use syntactically and semantically, which means that most of-
ten incorrectness of the model specification in form results in a syntax or semantic er-
ror. However, the above template requires entries in addition to the pure model con-
tents; for example, a reference to the description of the formalism or a standards sum-
mary need to be provided, too. For the assessment of correctness in form, there must 
be a clearly identified reference form summarizing the mandatory contents of the FM, 
as given in section 4.2. 

• Internal inconsistency (internal error): The modeling formalism defines the internal 
consistency requirements, which means that inconsistency usually leads to a syntax or 
semantic error. However, consistency with other entries, for example the formalism 
identification, should be ensured. 

• Ambiguity (internal error): The FM should not be ambiguous. If it is, it must be 
judged, whether this allows an undesired degree of freedom for implementation. 

• Incompleteness in content (transformation error): The FM does not reflect the CM 
completely. 
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• Inconsistency with the CM (transformation error): The formal specification of the 
abstracted and idealized real system deviates from its conceptual description. The con-
tents of the FM thereby become factually incorrect. 

• Inaccurate description (transformation error): The CM is not precisely enough re-
flected. Used numeric approximation methods are not sufficiently accurate or do not 
converge. Although the FM is still factually correct, it lacks the required accuracy. 

• Inefficient description (transformation error): The chosen formal specification may 
be not sufficiently efficient to support an implementation that, e.g., satisfies given 
real-time requirements.  

 
The absence of the above errors in the FM can be demonstrated by the implementation of the 
following V&V activities. 

4.4 FM Internal V&V 
This section documents the goals of V&V sub-phase 3.1, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 9 visualizes their dependencies.  

• Required stage of model development: Formalization phase completed 
• IP counterpart (transformation V&V only): N/A 
• Sub-phase goal: Demonstrate formal correctness and self-consistency of the FM. This 

sub-phase aims mainly to ensure that the FM and its supplemental information are 
well-documented and of sufficiently high quality for subsequent V&V activities. 
Mainly addressed errors include that the FM and its supplemental information are 
formally incorrect or ambiguous. 

• Requirements for and consequences of sub-phase skipping: It is not recommended 
to skip this sub-phase. The syntax and semantics of a modeling formalism contain 
many relevant aspects for the subsequent solution of the model. Further examinations 
of the FM and development of the EM may be significantly disturbed by syntactical 
and semantic errors in the FM. 

• Impact of error detection on model development: Regress by one phase. The model 
formalization phase has to be (at least partially) repeated.  

• Sub-phase objectives: Demonstrate that 
o the FM, its supplemental information, and the formally specified experimental 

framework are correct in form (i.e., consistent with the required FM template) 
and consistent with each other; 

o there are no syntax or semantic errors in the FM i.e., the FM is consistent with 
the modeling formalism specification; 

o there is no ambiguity in the FM. 
Remark: For the FM, demonstration of factual correctness is not explicitly required (as 
it is for the CM). Under the assumption that the facts knowledge of model formaliza-
tion according to a particular modeling formalism is represented by the associated 
modeling formalism, demonstration of factual correctness is completely covered by 
the demonstration of formal correctness. 

• Proposed techniques for static analysis:  
o FM documentation correctness in form checking (includes completeness 

checking): Using a checklist or a template as provided in section 4.2, the FM is 
checked for completeness and consistency with this template. For the FM this 
only affects the supplemental information, because the question of correctness 
in form of the formalized model contents is covered by the required compli-
ance with the modeling formalism specification. 
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o FM documentation internal consistency checking: In using a template-based 
FM internal dependency matrix, the FM documentation is checked for internal 
consistency. This affects only the supplemental information and its consistency 
with the actual FM, as the internal consistency of the FM is covered by the re-
quired compliance with the modeling formalism specification. 

o Syntax analysis: The FM specification is analyzed for syntactical correctness 
with respect to the modeling formalism specification. All symbols used for the 
FM and their combination must be consistent with the grammar provided by 
the modeling formalism. This technique is similar to syntax analysis for pro-
gram code as in [Beizer 1990]. 

o Semantic analysis: Combinations of and operations on elements in the FM 
must be compliant with their definition according to the modeling formalism. 
This technique is similar to semantic analysis for program code as in [Beizer 
1990]. 

o Interfaces consistency checking: Modeling formalisms that support the hierar-
chical integration or composition of submodels also support rigorous analysis 
of consistency of the formally specified interfaces.  

o Formal proof of formalism dependent properties: Some modeling formalisms 
allow the proof of particular desired behavior properties. For example, for Petri 
Nets the demonstration of the absence of deadlocks (“aliveness”) can be per-
formed efficiently. The applicability of formal proofs strongly depends on the 
chosen modeling formalism. 
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 Figure 9: Dependencies between the objectives, techniques, inputs, and outputs of V&V sub-

phase 3.1 

• Proposed techniques for dynamic testing:  N/A 
• Proposed techniques for results evaluation: N/A 
• External references, leveraged information, and reused V&V output:  

o FM template or checklist 
o Template-based FM internal dependency matrix 
o Modeling formalism specification  
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• Provided output: 
o FM check protocols, token sequences, parse trees 
o Completed FM checklist or template 
o Completed FM internal consistency matrix 
o FM interfaces consistency statement 

4.5 CM to FM Transformation V&V  
This section documents the goals of V&V sub-phase 3.2, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 10 visualizes their dependencies.  

• Required stage of model development: Formalization phase completed 
• IP counterpart (transformation V&V only): CM  
• Sub-phase goal: Demonstrate completeness of the FM in content and consistency 

with the CM. This sub-phase aims mainly to ensure that the complete CM was cor-
rectly formalized. Explicitly addressed errors include that  

o the FM (including supplemental information and the formally specified ex-
perimental framework) is incomplete (i.e. it does not cover all contents of the 
CM completely), or inconsistent with the CM (i.e., the contents of the CM are 
not reflected correctly), and 

o the chosen formalism is unsuitable (inefficient) 
• Requirements for and consequences of sub-phase skipping: It is not recommended 

to skip this V&V sub-phase. It needs to be ensured that all structural and behavioral 
contents of the CM are appropriately reflected by the FM, otherwise it cannot be used 
as a foundation for subsequent efficient implementation. 

• Impact of error detection on model development: Regress by one phase. Model 
formalization has to be (at least partially) repeated. 

• Sub-phase objectives: Demonstrate that 
o the FM completely and consistently reflects the symbolic structure and behav-

ior description of the CM; 
o further (formalism enforced) abstraction and idealization is suitable and correct 

(algorithms, approximation methods, data); 
o the formally specified experimental framework is complete and consistent with 

the conceptually described experimental framework of the CM, including input 
models and distribution functions. 

• Proposed techniques for static analysis:  
o CM-FM completeness and consistency checking: A trace is created from each 

content of the CM to the associated content of the FM, and documented in the 
CM-FM traceability matrix. Contents in the CM without FM counterparts (and 
vice versa) need to be resolved. A template-based CM-FM dependency matrix 
can be created and used for this purpose. 

o Assertions insertion: The extracted behavior propositions from V&V spb-
phase 2.1 are inserted as annotations or assertions in the appropriate places of 
the FM. During analytical solution, mental interpretation, or automated inter-
pretation, these assertions are checked for violation. By a formal proof or sym-
bolic execution it is shown that an assertion that serves as pre-condition is cor-
rectly transformed into its succeeding post-condition (inductive assertions). 

o Object flow analysis: Possible modifications of an object class by other objects 
or submodels (and, if possible their sequential order of occurrence) are identi-
fied and denoted as an FM object flow graph. This technique is derived from 
data flow analysis for program code as in [Myers 1979]. The object flow graph 
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is interpreted and compared to the object behavior described in the CM. This 
supports the identification of missing or inappropriate specification of modifi-
cations of an object or submodel during its life. 

o Control flow analysis: By extracting FM control flow graphs, the internal be-
havior alternatives within the formal submodels are made explicitly visible 
[Carr and Balci 2000]. They are compared to the submodel behavior options 
described in the CM. Incorrect formal specification of decision making within 
the formal submodels can be detected this way.  

o Model checking: The CM behavior propositions from V&V sub-phases 2.1 
and 2.2 are formalized using an appropriate temporal logic, and transferred into 
acceptance automata. Subsequently it is proven that the complete language 
generated by the associated formally specified (state transition) submodel is 
accepted by the corresponding acceptance automaton [Katoen 1999] (see also 
main document, section 5.3). 

Assertions
insertion

Control flow
analysis

Object flow
analysis

Automated
interpretation

Demonstrate that the FM completely
and consistently reflects the symbolic

description of the CM

Demonstrate that the formal
experimental framework is complete
and consistent with the experimental

framework of the CM

Demonstrate that further abstraction
and idealization is suitable and correct

Analytical
solution

CM-FM
dependencies matrix

CM-FM
completeness and

consistency checking

Completed CM-FM
traceability matrix

Model
checking

Extracted behavior
propositions of 2.1 and 2.2

Test cases of 1.1,
1.2, 2.1, and 2.2

FM behavior
propositions violations

report

FM assertion
 violation report

FM control flow
graphs FM object flow

graphs

FM analytical
solution results

FM interpretation
results

Flow graphs
review

FM flow graphs
review statement

 
 Figure 10: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 3.2 

 
• Proposed techniques for dynamic testing:   



Appendix A – 29 

o Testing by automated interpretation: Assuming the existence of a suitable exe-
cution environment, a subset of the test cases defined in V&V sub-phases 1.1, 
1.2, 2.1, and 2.2 can be executed by interpreting the FM. Depending on the 
performance of the FM execution, testing techniques used for the EM can be 
applied to the FM. In this case, the FM plays the role of a “prototype” of the 
EM. 

o Analytical solution: This is no true testing, although model output (results) is 
created. If the modeling formalism supports the analytical solution for at least 
a subset of the input combinations defined in the test cases of V&V sub-phases 
1.1, 1.2, 2.1, and 2.2, the results created this way can be used for assessment of 
consistency with the anticipated behavior of the CM. 

• Proposed techniques for results evaluation:  
With small amounts of computer generated simulation results or analytically 
gained results available, evaluation methods applied to the EM can be used here, 
too. It is most likely that statistical methods cannot (yet) be applied. 

• External references, leveraged information, and reused V&V output:  
o CM-FM template-based dependency matrix 
o Extracted behavior propositions of 2.1 and 2.2 
o Test cases of 1.1, 1.2, 2.1, and 2.2 

• Provided output: 
o Completed CM-FM traceability matrix 
o FM object flow graphs and comparison statements 
o FM control flow graphs and comparison statements 
o FM assertions violations report 
o FM behavior propositions violations report 
o FM interpretation results 
o FM analytical solution results 
o FM flow graphs review statement 

4.6 SPD to FM Transformation V&V  
This section documents the goals of V&V sub-phase 3.3, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 11 visualizes their dependencies.  

• Required stage of model development: Formalization phase completed 
• IP counterpart (transformation V&V only): SPD 
• Sub-phase goal: Confirm completeness of the FM in content and consistency with the 

SPD. This sub-phase mainly aims to confirm that the model behavior meets the re-
quirements, using the limited amount of quantitative model output now available. Ad-
dressed errors also include  

o violation of explicit formalization requirements and 
o incompliance of the FM to required higher level formal framework 

• Requirements for and consequences of sub-phase skipping: This is a confirmation 
sub-phase. It can be skipped, if it is credible that all contents of the SPD are covered 
by the CM (V&V sub-phase 2.2), and that the FM completely and consistently reflects 
the CM (V&V sub-phase 3.2). However, in addition to the activities of V&V sub-
phase 2.2, a more rigorous assessment concerning the model’s satisfaction of required 
behavior can be made, if quantitative data for a subset of input combinations is avail-
able. 

• Impact of error detection on model development: Regress by two phases. If this 
sub-phase reveals that a required content is missing or wrong in the FM, an error in ei-
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ther the system analysis or the model formalization is detected. Both phases have to be 
repeated (at least partially). 

• Sub-phase objectives: Confirm that  
o the FM is complete in content and consistent with the SPD;  
o the symbolic behavior specification in the FM is as accurate as required; and 
o the FM is compliant with the required formal framework. 

• Proposed techniques for static analysis:  
o SPD-FM completeness and consistency checking: By reusing the SPD-CM and 

CM-FM traceability matrices from V&V sub-phases 2.2 and 3.2, and using a 
template-based SPD-FM dependency matrix, a trace from each requirement to 
the associated FM contents is created, and documented in the SPD-FM trace-
ability matrix. Requirements without associated FM contents (and vice versa) 
indicate a problem.  

o Object flow graph and control flow graph review: The flow graphs of V&V 
sub-phase 3.2 are reviewed for consistency with the structural and behavioral 
requirements stated in the SPD. Incompliance is documented in the flow graph 
compliance statement. 
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 Figure 11: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 3.3 

• Proposed techniques for dynamic testing:   
o Automated interpretation: Generation of additional FM behavior data for addi-

tional test cases, if required. 
o Analytical solution: Computation of additional FM behavior data for additional 

test cases, if required. 
• Proposed techniques for results evaluation:  

o Analytical solutions review: Experts analyze, whether the analytical solution of 
the model indicates model behavior as required, if possible by comparison to 
“hard” quantitative test criteria. The review result is documented as a behavior 
accuracy statement. 
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o Interpretation results review: Experts analyze, whether the interpretation of the 
model indicates model behavior as required. The review result is documented 
as a behavior accuracy statement. 

• External references, leveraged information, and reused V&V output:  
o FM analytical solution results from 3.2 
o FM interpretation results from 3.2 
o CM-FM traceability matrix from 3.2 
o SPD-CM traceability matrix from 2.2 
o Template-based SPD-FM dependency matrix 

• Provided Output: 
o Completed SPD-FM traceability matrix 
o Additional FM interpretation results 
o Additional FM analytical solution results 
o FM behavior requirements compliance statement 

4.7 SN to FM Transformation V&V  
This section documents the goals of V&V sub-phase 3.4, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 12 visualizes their dependencies.  

• Required stage of model development: Formalization phase completed 
• IP counterpart (transformation V&V only): SN 
• Sub-phase goal: Confirm completeness of the FM in content and consistency with the 

SN. This sub-phase mainly aims to confirm that the FM is the appropriate step to-
wards the satisfaction of the SN, using the limited amount of available quantitative 
model results.  

• Requirements for and consequences of sub-phase skipping: This is a confirmation 
sub-phase. It can be skipped, if it was assured previously that the SPD covers the SN 
(1.2), and the FM meets the SPD (3.3). However, if the FM allows interpretation and 
visualization of the model behavior, in this stage direct feedback with the sponsor is 
extremely valuable. (This is related to the concept of “rapid prototyping”, where prior 
to developing the deliverable product an executable prototype is presented to the spon-
sor as soon as possible.) 

• Impact of error detection on model development: Regress by three phases. The FM 
misses an important aspect of the SN. Thus, the (at least partial) repetition of the prob-
lem definition, system analysis and model formalization is required.  

• Sub-phase objectives: Confirm that 
o the model border allows the needed experimentation (stimulation and observa-

tion), and 
o the FM behavior description (including embedded data) is as accurate as 

needed. 
Remark: The objectives are similar to those of V&V sub-phase 3.3, with the only dif-
ference not assessing the compliance with the SPD, but the adequacy with respect to 
the real needs. 

• Proposed techniques for static analysis:  
o SN-FM completeness and consistency checking: By reusing the SN-SPD and 

SPD-FM consistency matrices from V&V sub-phases 1.2 and 3.3, and the use 
of a template based SN-FM dependency matrix, a trace from each need to the 
associated FM contents is created, and documented in the SN-FM consistency 
matrix. Needs without associated FM contents (and vice versa) indicate a prob-
lem. 
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o Object flow graph and control flow graph review: The flow graphs of V&V 
sub-phase 3.2 are reviewed for consistency with the SN. Inadequacy is docu-
mented in the flow graph adequacy statement. 

• Proposed techniques for dynamic testing:   
o Interpretation or analytic solution of ad hoc test cases: With the possibility of 

first (limited) experimentation with the model, the sponsor may describe mean-
ingful new test cases, which previously have not been identified, yielding addi-
tional results. 

• Proposed techniques for results evaluation:  
o Visualization and Face Validation: If quantitative model results are available 

from analytic solution or interpretation (e.g., taken from V&V sub-phase 3.2), 
they are visualized and evaluated for plausibility by experts, which are in-
volved in the solution of the real problem the model or the simulation results 
are supposed to contribute to. 
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 Figure 12: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 3.4 

• External references, leveraged information, and reused V&V output:  
o Completed SN-SPD traceability matrix 
o Completed SPD-FM traceability matrix 
o Template-based SN-FM dependency matrix 
o Object flow graph from 3.2 
o Data flow graph from 3.2 
o FM interpretation results from 3.2 
o FM analytical solution results from 3.2 

• Provided output: 
o Completed SN-FM traceability matrix 
o FM flow graph adequacy statement 
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o Additional FM test cases 
o Additional FM results 
o FM behavior adequacy statement 

5 V&V OF THE EXECUTABLE MODEL 

The EM consists of the executable symbolic description of the model (i.e., a specification that 
automatically can be compiled or interpreted by a computer, e.g., program code), and a plat-
form and environment for executing the model, which allows the generation of SR. Whenever 
the EM is executed during EM V&V, this is exclusively done for the purpose of detection of 
incorrectness and unsuitability. This must not be confused with the execution of the model 
during the experimentation phase, where – under the assumption that the EM is correct and 
suitable – SR are generated to trigger conclusions for the real world. 

5.1 Expected Implementation Activities 
When preparing an FM for computer-based simulation, a simulation method must be selected 
in accordance with the state space description and representation of time chosen in the CM, 
and the solution methods suitable for the FM (continuous vs. discrete simulation, see also 
main document, section 1.2.4). During the implementation phase, a simulation environment or 
infrastructure is used or created, and the FM is transformed into a specification that can be 
interpreted or executed within the simulation environment.  
Implementation failures occur, when transforming the FM into a computer executable specifi-
cation. Implementation errors summarize all “technical” errors, including software/hardware 
design errors, coding errors, compiler errors, installation errors, interoperability problems, 
non-compliance with interface or network communication standards, and runtime errors. 
(Most of the below error types are also characteristic for software applications that do not 
implement simulation models). 
The EM is created by the programmer and will be run by the user. When documenting the 
EM, the population of the associated sub-spaces in the three-dimensional model information 
space introduced in the main document, section 4.3.1 is desirable. There must not be any de-
viation from the FM in this phase. Neither qualitative nor quantitative information should be 
added to the model, only technical aspects, i.e., calls of operating systems procedures for I/O 
from files, memory allocation, or the selection of data type for attributes are addressed. Input 
data needs to be made available electronically. 

• Implementation to specification failure: The FM is not transformed correctly and 
completely into an executable version. 

• Software engineering failure: The software development method is error-prone, pro-
gramming conventions are violated, software quality assurance measures are insuffi-
cient, the programming language is antiquated, or sound software engineering meth-
ods are ignored. 
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 Figure 13: Dependencies between failures in the implementation phase and errors in the EM 

 
• Development environment selection failure: Modules or functional components fre-

quently used for simulation are provided in form of simulation languages, simulation 
libraries, or simulation environments. Simulation languages (e.g., Simula [Lamprecht 
1976], SLX [Henriksen 1998]) feature specialized language elements or constructs 
that directly support encoding of simulation models, while simulation libraries (e.g., 
DEVSJava [DEVSJAVA 2.7 2003], GPSS Fortran [Schmidt 1985]) provide previ-
ously encoded, simulation specific data structures, objects, and functions for high level 
programming languages. Simulation environments (e.g., Visual Simulation Environ-
ment, SLX, Simul8) usually support development and execution of models by provid-
ing a simulation language (or predefined simulation specific elements), and, e.g., 
component catalogues, drag-and-drop modeling, a control panel for running and de-
bugging the simulation, and results analysis functions. This support may be domain or 
problem class oriented, with highly specialized predefined elements. It also may be 
less constraint for multiple applications by definition of more general elements, or as 
flexible as any higher programming languages by simply augmenting one with the de-
sired simulation functionality. The quality of the used “standard” components heavily 
influences the quality of the EM, but their broader application has a positive impact on 
their perceived correctness. 

• Documentation failure: The importance of the process of EM documentation is un-
derestimated, and not all relevant information about the EM is recorded. 

 
The implementation phase is re-entered, when the FM changes or an error in the EM is de-
tected. 
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5.2 EM Documentation Requirements  
The compiled/interpretable program specification in its operating environment finally makes 
up the EM that receives input data and creates simulation output or SR. Required contents are 
(a sample EM is given in Appendix C): 
1) Configuration control information: Required for configuration control, references to 

preceding IPs, and references by succeeding IPs. It should include an unique version iden-
tifier. 

2) Runtime environment: Description of the platform, operating system, additionally re-
quired running processes or applications (e.g., communication infrastructure), or recording 
tools and data bases. 

3) Software description:  
a) Identification of supporting software: Simulation language, simulation libraries, or 

simulation environment. 
b) High level design: This is an extension of the FM, with the high level design of simu-

lation control added. Distribution information for distributed execution is included 
here.  

c) Low level design: This is the refinement of the high level design as a direct prepara-
tion for the implementation. 

d) Commented executable specification: Program code or other specification that is 
executed or interpreted.  

4) Simulation infrastructure: This includes all added simulation functionality as 
a) Simulation control and time management: The dynamic change of the state parame-

ters over time and the advancement of simulation time need to be managed. Structure 
and functionality of simulation control depend on the simulation method. 

b) Random number generator: For stochastic simulation random numbers are required, 
which are created by the RNG. 

5) Structure and behavior description: Implementation of all submodels on each layer, 
their internal behavior, their decomposition into lower-level submodels, and their interac-
tions. This includes for each submodel on each layer: 
a) Formal Submodel: Identification of the associated formal submodel. 
b) Origin: Identifies the executable submodel as custom-made or as an imported execu-

table submodel (e.g., a reused federate in a federation). If a pre-defined submodel is 
used, a rationale for integrating it is required, e.g. identification of an interoperability 
standard, which demands its use, or assumed advantage of using it. 

c) Interface: This includes 
i) the description of I/O streams, file formats, callback functions, exchangeable 

objects, remote function calls, or communication library function calls, pa-
rameter types, update conditions, accuracy of parameters, and the assignment 
to the associated entry in the FM; 

ii) justification for the chosen formats and types. 
d) Structure and internal behavior: This includes 

i) the identification of all integrated executable submodels; 
ii) state variable data types, update conditions, accuracy; 
iii) inheritance hierarchy of objects within the submodel; 
iv) update procedures for state variables and output parameters; 
v) conditions for or frequency of calls of update procedures; 
vi) assignments to associated entries in the FM. 

e) Interaction with other submodels: This includes the implementation of internal dy-
namics of subsystems and objects, state variables, state transitions, where applicable. 

f) Electronic data sources: Identification of accessible data bases, access protocols and 
data conversion requirements. 
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6) Standards summary: Identification of any standard the EM is compliant with. 
 
There should be a justification for each number no information is given for. The required in-
formation may be completed during several iterations of the implementation phase.  

5.3 Potential Errors in the EM 
The dependencies between the identified failures during the implementation and errors in the 
EM are sketched in Figure 13. Potential errors identified for the EM are introduced in the fol-
lowing: 

• Incorrectness in form (internal error): An EM should contain – besides the program 
code – the high- and low-level design of the code, including module descriptions, 
(program) objects hierarchies, state transition diagrams, and a precise I/O interface 
specification. For the assessment of formal correctness and completeness, there must 
be a clearly identified reference form, summarizing the mandatory contents of the EM, 
as e.g. provided in section 5.2. 

• Internal inconsistency (internal error): The contents of the EM are not consistent, 
e.g., the code does not reflect the high level design, the code is not executable in the 
simulation environment, or function or object libraries are not linkable. 

• Technical interoperability error (internal error): The EM is not able to communicate 
with other components as intended. The EM is not compliant with desired standards, 
e.g., uses the wrong Object Request Broker version, or does not satisfy HLA compli-
ance requirements [IEEE 1516.1 2001]. 

• Bugs (internal error): To compile and execute (or interpret) the program code, it must 
be syntactically and semantically correct. The reference for this check is the unambi-
guous specification of the programming or simulation language. Even, if syntactical 
and semantic correctness is ensured, errors may be hidden in the program code that re-
sult in absurd simulation results or program crash. The reason for this is not necessar-
ily a programming error – an instable operating system, parallel processes, unexpected 
malfunctioning of periphery devices may cause runtime errors [Echtle 1990]. 

• Time management errors (internal error): The advancement of simulation time is 
faulty. For example, for a discrete event simulation, wrong insertion of events into the 
events list (especially for distributed simulation), or wrong handling of the event list. 
For a time-step simulation, attributes that change their values simultaneously with re-
spect to simulation time are updated sequentially, causing undesired temporal depend-
encies. The simulation method does not allow to observe the desired properties. The 
discrete event simulation may not be scaled to wall clock time (where applicable), or 
the “samples” of the states created by a discrete simulation are not dense enough. 

• Correlated random numbers (internal error): The random number generator creates 
correlated random numbers, causing undesired dependencies in the simulation output. 
[L’Ecuyer 1998] for example discusses several methods how to generate random 
numbers. Again, this functionality is easily encapsulated in a module, which needs to 
be attached to the EM during the implementation phase. Being capable of examining 
the random number generator for randomness is essential for V&V of the EM. 

• Inefficiency (internal error): The EM may simply be to slow to produce simulation re-
sults in time (Violation of real time requirements). 

• Unsuitable simulation method (transformation error): Simulation methods can be 
distinguished by the type of sampling or discretization of time that they support (time-
step simulation vs. discrete event simulation, see also section 1.3.2), and their strategy 
for time advancement. Especially in a distributed simulation, several strategies for 
time advancement are available, including conservative and optimistic strategies [Fu-
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jimoto 2000]. A simulation control unit is often made available as a reusable compo-
nent. To assess the correctness and suitability of an EM, insight into the time ad-
vancement mechanism and its implementation is required, which also should be rigor-
ously tested. 

• Incompleteness in content (transformation error): The EM does not implement the 
FM correctly and completely. 

• Inconsistency with the FM (transformation error): The contents of the EM are not 
consistent with their associated contents of the FM. 

 
The absence of the above errors shall be demonstrated by the implementation of the below 
V&V activities. 

5.4 EM Internal V&V 
This section documents the goals of V&V sub-phase 4.1, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 14 visualizes their dependencies.  

• Required stage of model development: Implementation phase completed 
• IP counterpart (transformation V&V only): N/A 
• Sub-phase goal: Demonstrate correctness in form and self-consistency of the EM. 

This includes the demonstration that the EM is “good” software and that the imple-
mented simulation infrastructure (including time management and random number 
generation) was built to its specification. Addressed Errors include 

o software “bugs”, including syntactical and semantic coding errors, runtime er-
rors, and concurrency errors; 

o technical interoperability problems; 
o unsuitable use of random numbers; and  
o simulation infrastructure errors, including time management errors and errors 

in random number generation. 
• Requirements for and consequences of sub-phase skipping: It is not recommended 

to skip this sub-phase. Experimentation and further V&V activities rely on a “properly 
running” EM, and software errors appearing later in the development process will de-
lay and distort the observation of model behavior. 

• Impact of error detection on model development: Regress by one phase. Implemen-
tation must be (at least partially) repeated.  

• Sub-phase objectives: Demonstrate that 
o the EM, its supplemental information, and the implemented experimental 

framework are correct in form (i.e., consistent with the EM documentation re-
quirements), 

o the contents of the EM and its supplemental information are consistent with 
each other, 

o the EM is stable, reliable, and testable software (i.e., consistent with Software 
Engineering “best practice”), 

o the simulation infrastructure (including time management and random number 
generation) is consistent with its specification, and 

o the distributed executable submodels are technically interoperable, if applica-
ble. 

 



Appendix A – 38 

Demonstrate that the EM and its supplemental
information are correct in form

Demonstrate that the contents of the EM and its
supplemental information are consistent

Demonstrate that the simulation infrastructure is
consistent with its specification

Demonstrate that the EM is stable, reliable, testable
SW

Demonstrate that distributed executable submodels
are technically interoperable

EM Object
instance flow

analysis

EM object
 flow graphs

SW QA
measures

RNG
analysis

EM control
flow analysis

SW engineering
knowledge

RNG analysis
report

EM control
 flow graphs

Component
and integration

testing

RNG testing

Random numbers
sequences

Statistical analysis of
random number

sequences

RNG statement

EM internal
dependencies matrix

EM documentation
internal consistency

checking

Completed EM internal
consistency matrix

EM documentation
correctness in form

checking

EM check list
or template

Completed EM
checklist or template

Flow graphs
testing

EM flow graph
test cases

EM flow graph
test results

SW QA report
 and products

EM integration
test cases

EM integration
test results

Simulation
control

analysis

Simulation control
analysis report

Simulation
control
testing

Simulation control
test cases

Simulation control
test results

 
 Figure 14: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 4.1 

 
• Proposed techniques for static analysis:  

o EM documentation correctness in form checking (includes completeness 
checking): Using a checklist or a template as provided in 5.2, the EM and its 
supplementary information are checked for completeness and consistency with 
the template. This yields a completed EM checklist or template. 
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o EM documentation internal consistency checking: Using a of a template-based 
EM internal dependency matrix, the EM documentation is checked for internal 
consistency. This results in a completed EM internal consistency matrix. 

o Software QA measures: To ensure sufficiently high quality of the software, 
quality increasing measures taught in software engineering should be taken. 
These techniques, including debugging, desk checking, proof of correctness, 
and many others are discussed in literature [Liggesmeyer, Sneed, and Spillner 
1992; Myers 1979; Beizer 1990]. 

o EM control flow analysis: Using appropriate tools, the control flows of the EM 
(or at least the executable submodels) are extracted and documented as EM 
control flow graphs. Classically, these control flow graphs are used for the 
creation of high-yield test cases for software QA, but will also be reused dur-
ing subsequent V&V activities.  

o EM object instance flow analysis: The potential flows of atomic executable 
submodels are extracted from the code, documented in EM object flow graphs, 
and appropriate test cases are created to allow the observation of the object 
along these flow paths. Besides for the detection of pure software errors, these 
object flow graphs can later be reused for object flow comparison. 

o RNG Analysis: The code of the random number generator is reviewed. From 
the structure of the RNG statements about its properties can be derived 
[L’Ecuyer 1998], e.g. an upper limit for its period length can be determined. 

o Simulation control and time management analysis: As one of the core pieces of 
the EM, the simulation control unit is individually and rigorously analyzed. 

• Proposed techniques for dynamic testing:   
o Software test techniques: Software Engineering offers numerous methods for 

software testing, including module testing, integration testing, special input 
testing, and others. These methods are used to increase the availability and re-
liability of software and are documented in the appropriate literature, as, e.g., 
[Myers 1979] or [Beizer 1990]. 

o EM control flow and EM object flow testing: Based on the EM control flow 
graphs and the EM object flow graphs test cases are created and executed for 
the purpose of software error detection. 

o RNG testing: The RNG is ran, and its behavior is recorded as sequences of 
random numbers. 

o Simulation control and time management testing: The simulation control unit 
is individually tested, whether it is able to control the dynamic change of state 
of the EM as specified. Special care is required by the resolution of concurrent 
events or concurrent changes of state in diverse submodels.  

• Proposed techniques for results evaluation:  
o Statistical analysis of random number sequences: Literature [L’Ecuyer 1998; 

Hellekalek 1997; Keppler 1993] provides various techniques combinations for 
RNG results evaluation. 

• External references, leveraged information, and reused V&V output:  
o EM checklist or template 
o Template-based EM internal dependency matrix 
o Software engineering domain knowledge 

• Provided output: 
o Completed EM checklist or template 
o Completed EM internal consistency matrix 
o Software QA report and products 
o EM control flow graph 
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o EM object flow graph 
o EM flow graph test cases and test results 
o RNG analysis report, random numbers sequences, and RNG statement 
o EM integration test cases and EM integration test results 
o Simulation control analysis report 
o Simulation control test cases 
o Simulation control test results 

5.5 FM to EM Transformation V&V 
This section documents the goals of V&V sub-phase 4.2, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 15 visualizes their dependencies.  

• Required stage of model development: Implementation phase completed 
• IP counterpart (transformation V&V only): FM 
• Sub-phase goal: Demonstrate completeness of the EM in content and consistency 

with the FM. This sub-phase aims to ensure that the implementation of the simulation 
infrastructure is suitable for the underlying modeling formalism, and that the EM im-
plements the FM completely and consistently. Addressed errors include:  

o the implementation of the simulation infrastructure is inconsistent with the 
used modeling formalism; 

o the submodel structure, the internal behavior, and interactions are incomplete 
or inconsistent with the FM; 

o distribution functions specified in the FM or the formally specified experimen-
tal framework are not matched by the observed associated empirical distribu-
tions of the EM. 

• Requirements for and consequences of sub-phase skipping: It is not recommended 
to skip this sub-phase. If it is not credible that the software implements the formally 
specified model, it must be doubted that the modeling theory underlying the used for-
malism was adequately applied for model solution. 

• Impact of error detection on model development: Regress by one phase. Implemen-
tation must be (at least partially) repeated.  

• Sub-phase objectives: Demonstrate that  
o the chosen implementation technique of the simulation infrastructure is suit-

able for the formalism the FM is based on, 
o the EM structure is complete and consistent with FM, 
o the EM implements the internal behavior and interactions completely and con-

sistently with the FM, 
o all random number distributions are implemented as defined in the FM, and 
o data types and algorithms are transformed to digitally computable form ac-

ceptably 
• Proposed techniques for static analysis:  

o FM-EM completeness and consistency checking: A trace is created from each 
content of the FM to the associated content of the EM, and documented in an 
FM-EM traceability matrix. Contents in the FM without EM counterparts (and 
vice versa) need to be resolved. A template-based FM-EM dependency matrix 
can be created and used for this purpose. 

o Flow graph comparison: The FM flow graphs from V&V sub-phase 3.2 are 
compared to their EM counterparts from V&V sub-phase 4.1. Differences in-
dicate a problem and need to be resolved. 
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o Simulation infrastructure analysis: It is examined, whether simulation control 
is implemented according to one of the supported solution methods of the 
modeling formalism. 

o Interface analysis: By analyzing the interfaces of the executable submodels it is 
determined, whether their communication takes place according to the com-
munication means provided by the formalism. 

o Distribution generators analysis: RNG create uniform distributions, which are 
transformed into the desired distribution by a mathematical function. By re-
view of the RNG code, it is analyzed, whether the underlying mathematical 
function is erroneous. 

• Proposed techniques for dynamic testing:   
o Analytical solution duplication: According to the test cases subsets chosen in 

3.3 and 3.4, the EM is run under the same input conditions under which the 
FM was analytically solved. 

o FM interpretation duplication: According to the test cases subsets chosen in 3.3 
and 3.4, the EM is run under the same input conditions under which the FM 
was executed by interpretation. 

o Goodness of fit testing: The empirical distribution functions defined by “ran-
dom” numbers observed during testing are recorded for subsequent compari-
son to their associated distribution functions in the FM.  

o Assertion checking: All behavior propositions specified within the FM are em-
bedded into their associated positions in the EM. Their violation is automati-
cally detected during the execution of tests. 

• Proposed techniques for results evaluation:  
o FM-EM results comparison: The model results generated by analytical solution 

or interpretation of the FM are compared to the associated results of the EM. 
This can be achieved by, e.g., graphical visualization or statistical comparison. 

o Statistical tests: These are used to determine to, which degree the empirical 
distribution functions created from the recorded number sequences fit their as-
sociated theoretical distribution functions, or another empirical distribution 
function. 

• External references, leveraged information, and reused V&V output:  
o Simulation method 
o FM interpretation test cases and results from 3.3 and 3.4 
o Analytical solution test cases and results from 3.3 and 3.4 
o FM flow graphs from 3.2 
o EM flow graphs from 4.1 
o FM-EM dependency matrix 

• Provided output: 
o Simulation infrastructure analysis statement 
o Simulation infrastructure test cases 
o Simulation infrastructure test results 
o EM results and I/S/O traces 
o EM-FM results comparison statement 
o Completed FM-EM consistency matrix 
o Flow graph comparison statement 
o Distribution generator analysis statement 
o Goodness of fit statement 
o Interface analysis statement 
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 Figure 15: Dependencies between the objectives, techniques, inputs, and outputs of V&V 
sub-phase 4.2 

5.6 CM to EM Transformation V&V 
This section documents the goals of V&V sub-phase 4.3, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 16 visualizes their dependencies.  

• Required stage of model development: Implementation phase completed 
• IP counterpart (transformation V&V only): CM 
• Sub-phase goal: Confirm completeness of EM in content and consistency with the 

CM. This sub-phase is mainly concerned with the question, whether the EM actually 
is an implementation of the modeler’s idealized and abstracted perception of the real 
system. The error mainly addressed is that the EM or its submodels do not show the 
behavior as intended with the CM. 

• Requirements for and consequences of sub-phase skipping: This is a confirmation 
sub-phase. It can be skipped, if it was assured previously that the FM specifies the CM 
correctly and suitably (V&V sub-phase 3.2), and the EM meets the specification given 
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by the FM (V&V sub-phase 4.2). However, this is the first opportunity for the user to 
actually observe model behavior for all desired input combinations, and a valuable (al-
though late) opportunity to detect behavior specification errors or implementation er-
rors. 

• Impact of error detection on model development: Regress by two phases. Model 
formalization and model implementation must be (at least partially) repeated.  

• Sub-phase objectives: Confirm that  
o the executable submodel structure is consistent with the description of the 

submodel structure provided in the CM; 
o the heuristics and algorithms implemented in the EM for internal submodel 

behavior and submodel interaction, including their further abstraction for im-
plementation due to digitalization, yield behavior data with sufficient accuracy; 

o the (actually observed) EM behavior is consistent with domain knowledge. 
• Proposed techniques for static analysis: 

o CM-EM completeness and consistency checking: By reusing the CM-FM and 
FM-EM traceability matrices from V&V sub-phases 3.2 and 4.2, and by using 
a template based CM-EM dependency matrix, a trace from each CM content to 
the associated EM contents is created, and documented in the CM-EM trace-
ability matrix. CM contents without associated EM contents (and vice versa) 
indicate a problem.  

o Flow graph analysis: The EM control flow graphs and the EM object flow 
graphs are reviewed and judged for consistency with the CM and additional 
domain knowledge.  

• Proposed techniques for dynamic testing:  
o Reference experiments execution: Run test experiments for the EM or its ex-

ecutable submodels of which the modeler has clear expectations about their 
outcome (oracle), as defined in 2.1. EM behavior is recorded as EM I/S/O 
traces (see main document, section 5.3.8).  

o Assertion checking: The behavior propositions of V&V sub-phase 2.1 are in-
serted into the EM and all of its submodels. During execution, violations are 
automatically reported. 

o Sensitivity analysis: Several experiments with the EM are conducted under 
slightly modified input conditions. Thereby the sensitivity of the EM input pa-
rameters is determined, and subsequently compared to the perceived relevance 
of the real influences to the real system (system knowledge) [Kleijnen 1998]. 

o Fault-Failure-Insertion: The EM is modified according to the CM modifica-
tions from 2.2 to produce erroneous model behavior. If the model does not be-
have as predicted, this problem needs to be resolved. EM behavior is recorded 
as an EM I/S/O trace. 

• Proposed techniques for results evaluation:  
o I/S/O trace analysis: Traces of the EM behavior are analyzed for violations of 

behavior propositions specified in 2.1. This can be automated to some extend 
(see also main document, section 5.3.8). The assessment of event sequences 
that are generated by the EM, and their correspondence to real system behavior 
is also a possible I/S/O trace analysis activity. 

o Visualization and face validation of EM I/S/O traces: The behavior of the EM 
and its executable submodels is visualized in a form that can be intuitively un-
derstood and judged by SMEs. A possible form of results evaluation is the Tur-
ing test, where the SMEs compare I/S/O traces measured at the real system and 
EM I/S/O traces without knowing the sources of the traces. During the Turing 
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test, they categorize the traces as EM-originated or real-system-originated, and 
explain the reasoning for the assignment. 
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 Figure 16: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 4.3 

• External references, leveraged information, and reused V&V output:  
o Completed CM-FM traceability matrix 
o CM-EM dependency matrix 
o Completed FM-EM traceability matrix 
o Behavior propositions from 2.1 
o Reference experiments 
o CM modifications from 2.1 
o EM flow graphs 

• Provided output: 
o Completed EM-CM traceability matrix 
o Assertion violations report 
o Documented sensitivity plausibility statement 
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o Flow graph comparison statement 
o EM I/S/O traces 
o EM behavior plausibility statement 
o EM behavior propositions violation statement 

 

5.7 SPD to EM Transformation V&V 
This section documents the goals of V&V sub-phase 4.4, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 17 visualizes their dependencies.  
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 Figure 17: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 4.4 

 
• Required stage of model development: Implementation phase completed 
• IP counterpart (transformation V&V only): SPD 
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• Sub-phase goal: Confirm completeness of the EM in content and consistency with the 
SPD. The focus of this sub-phase lies on the question, whether the EM satisfies all ex-
plicitly specified requirements. Addressed errors include:  

o Violation of real time requirements 
o Violation of explicit implementation requirements 
o Violation of required I/O parameter accuracy 
o Violation of interactivity and interoperability requirements  
o Violation of software functionality requirements 

• Requirements for and consequences of sub-phase skipping: This is a confirmation 
sub-phase. It can be skipped, if it is sure that the CM satisfies all requirements given in 
the SPD (sub-phase 2.2) and the EM implements the CM correctly and suitably (V&V 
sub-phase 4.3).  

• Impact of error detection on model development: Regress by three phases. If it is 
discovered that the EM does not meet all requirements, model development must (at 
least partially) be repeated from system analysis. 

• Sub-phase objectives: Confirm that  
o real time requirements are met; 
o the observed model behavior is within the specified behavior constraints; 
o the software functionality is implemented as required; 
o the EM is compliant with the required technical framework (platform, interac-

tivity, interoperability). 
• Proposed techniques for static analysis:  

o SPD-EM completeness and consistency checking: By reusing the SPD-CM 
and CM-EM traceability matrices from V&V sub-phases 2.2 and 4.3, and us-
ing a template-based SPD-EM dependency matrix, a trace from each require-
ment to the associated EM contents is created, and documented in the SPD-EM 
consistency matrix. Requirements without associated EM contents (and vice 
versa) indicate a problem.  

o Feature availability checking: The simple existence of a required feature is 
checked. 

• Proposed techniques for dynamic testing:  
o Interface testing and compliance testing: It is tested, whether the EM is com-

pliant with the required man-machine- and machine-machine-interfaces speci-
fications. 

o Installation and system integration testing: The EM is executed in its opera-
tional environment according to the test cases specified in V&V sub-phase 1.1.  

o Benchmarking: The response behavior of the EM is tested according to a well-
defined input pattern and measured. 

o Extreme input (load) testing: To test the responsiveness of the EM under ex-
treme conditions, a high internal load is created and the EM behavior recorded.  

o Functional testing: It is tested, whether the EM supports all required experi-
mentation (stimulation and observation) within the specified experimental 
framework. 

• Proposed techniques for results evaluation:  
o Pass/fail evaluation: Quantitative generated data is compared to quantitative 

pass/fail criteria. 
o Test results and test experiment results review: The results provided during 

V&V sub-phases 4.1, 4.2., and 4.3 are assessed, if they meet the associated 
pass/fail criteria. 

o Face validation: see above. 
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• External references, leveraged information, and reused V&V output:  
o Benchmarks 
o Test results from 4.1, 4.2, and 4.3 
o Test cases from 1.1 
o Completed SPD-CM traceability matrix from 2.2 
o SPD-EM dependency matrix 
o Completed CM-EM traceability matrix from 4.3 
o EM operational environment 
o Compliance test criteria 

• Provided outputs: 
o Performance characteristics 
o Pass/fail assessment 
o Functional test results 
o Documented features availability statement 
o Completed SPD-EM traceability matrix 
o EM installation and integration test results 
o EM compliance test results 

 

5.8 SN to EM Transformation V&V 
This section documents the goals of V&V sub-phase 4.5, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 18 visualizes their dependencies.  

• Required stage of model development: Implementation phase completed 
• IP counterpart (transformation V&V only): SN 
• Sub-phase goal: Confirm completeness of the EM in content and consistency with the 

SN. In this sub-phase the remaining question, whether the EM covers the implicit 
(never specified) needs and is useful for the solution of the user’s problem is exam-
ined.  

• Requirements for and consequences of sub-phase skipping: This is a confirmation 
sub-phase. If it was shown earlier that the SN are complete and consistent with the 
SPD (V&V sub-phase 1.2), and that the EM is implemented to its specification given 
by the SPD (V&V sub-phase 4.4), the V&V activities in this section are redundant. 
However, due to the difficulty to perfectly express the SN in the SPD and to detect er-
rors in the SPD, other than by examining the completed software, it is very likely that 
still errors remain. 

• Impact of error detection on model development: Regress by four phases, model 
development needs to be (at least partially) repeated from the beginning.  

• Sub-phase objectives: Confirm that 
o the EM duplicates the behavior of the real system as needed; 
o the EM works with other systems as needed; 
o the EM allows experimentation as needed. 

• Proposed techniques for static analysis:  
o SN-EM completeness and consistency checking: By reusing the SN-SPD and 

SPD-EM traceability matrices from V&V sub-phases 1.2 and 4.4, and using a 
template-based SN-EM dependency matrix, a trace from each need to the asso-
ciated EM contents is created, and documented in the SN-EM consistency ma-
trix. Needs without associated EM contents (and vice versa) indicate a prob-
lem.  

• Proposed techniques for dynamic testing:   
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o Application: The “test cases” are real cases of model application, or previously 
unspecified uses of the model closely related to its real application with known 
outcome. Failure in accepting all relevant inputs is recorded as well as EM be-
havior for subsequent evaluation. 

• Proposed techniques for results evaluation:  
o Visualization and face validation 
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 Figure 18: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 4.5 

• External references, leveraged information, and reused V&V output:  
o Completed SN-SPD traceability matrix from 1.2 
o SN-EM dependency matrix 
o Completed SPD-EM traceability matrix from 4.4 
o Knowledge of the real needs 

• Provided Output:  
o Completed SN-EM traceability matrix 
o EM application results 
o EM usability statement 
o EM results adequacy statement 
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6 V&V OF SIMULATION RESULTS  

The SR document the observed behavior of the EM, which was stimulated according to the 
design of experiments and experiment setup over time. They also may include aggregated 
values created from the observed and recorded model behavior.  

6.1 Expected Experimentation Activities 
During experimentation the EM is stimulated with input data and produces with advancing 
simulation time output data depending on its internal state, its input, and (if stochastic simula-
tion is conducted) random elements. The aim of experimentation is to create SR that trigger 
conclusions for an intended purpose in reality. This implies that the experiments with the EM 
should be designed in a form that actually allows to do so, which implies that the selection of 
input data and the design of experiments is an extremely important topic. 
When experimenting with an EM, in principal the same mistakes can be made as if experi-
menting with the real system (although their direct impact is considered to be negligible due 
to the “unreal” nature of the simulation experiment). Deliberate setup of the experiment(s) is 
required to allow the desired gain of knowledge or experience. These mistakes are strongly 
dependent on the application domain from which the overall M&S needs originate and cannot 
be addressed by a generalized M&S V&V process. However, in addition to these errors in 
experimentation, there are also numerous mistakes typical for the planning and implementa-
tion of simulation experiments, which are addressed in the following. 
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 Figure 19: Dependencies between failures in the experimentation phase and errors in the SR 

The SR are intended to trigger conclusions concerning the behavior of the real system. They 
are produced by the user and accepted by the sponsor or a sponsor representative.  

• Input data source selection failure: During system analysis data is collected that will 
be used as input data or to generate input data for stimulation of the model. If this data 
is measured at an unsuitable related system, created by another invalid model, or oth-
erwise calculated in the wrong way, the model output will also be incorrect or unsuit-
able.  
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• Data preparation failure: Usually, if real input data or embedded data is available, it 
was recorded during experiments with the real system that were not explicitly done for 
the purpose of creating information for M&S. This data most probably must be edited 
before it can be used for stimulation of a model or for comparison to model output. 
When assessing correctness and suitability of runtime data, it should be transparent 
how this data was measured and recorded. 

• Experiment design failure: Besides the creation of an experiment setup (scenario) 
that does not represent a relevant constellation of real influences on the real system, 
the randomness incident to stochastic simulation must not be neglected. Any stochas-
tic simulation experiment needs to be repeated sufficiently often to guarantee statisti-
cal significance of the observed model behavior. The initialization of the RNG plays 
an important role; the single simulation runs need to be started with seed values that 
do not lead to undesired correlation between the random variables values over the dif-
ferent runs. 

• Experiment documentation failure: Although the experiments are conducted in ac-
cordance with all experimentation requirements, they are not documented properly. 
Meaningful knowledge about the experiments and the SR are lost. 

 
The experimentation phase is re-entered, when the EM or the runtime input data change or an 
error in the experiment design is detected. 

6.2 SR Documentation Requirements 
SR may be documented as graphs, tables, data streams (I/S/O traces), or videos; in some cases 
the visualization of model behavior over time may be relevant for stimulation of human be-
ings (training). SR always include model input data and model output, and should be stored in 
electronic data files, to allow further computer aided analysis and evaluation. The SR should 
contain (sample SR are given in Appendix C): 
1) Configuration control information: Required for configuration control and reference of 

earlier IP; includes an unique identifier.  
2) Execution environment: Identification or description of data bases and data collection 

tools. 
3) Experiment setup: Description of a set of input combinations under which the EM is 

executed and the rational for their selection, including  
a) Aim of experiment: Description of the desired insight from experimentation.  
b) Individual simulation run setup: For each individual simulation run, its input com-

binations and interaction with external elements need to be recorded. This includes: 
i) the initial state of the EM; 
ii) the model input over time; 
iii) any additional external stimulation, as human interaction or interoperation 

with black box input data producers. 
c) Run repetition: For stochastic simulation, often several repetitions of a run are re-

quired. The description includes: 
i) the number of repetitions of each experiment setup; 
ii) the initialization of RNG (seed). 

4) Input data documentation: (Reference to) description of used input data, including  
a) Origin/source: Identification of the data source, e.g., the (related) real system, or an-

other quantitative model;  
b) Age: Date of data recording; 
c) Data collection method and approximated or known measurement error: De-

scription of the circumstances under which the data was recorded, used tools for data 
recording, and approximated measurement error; 
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d) Data aggregation method: If the data was aggregated from other quantitative data, 
besides the above information, also the aggregation method needs to be known. 

5) Documentation of experiment execution: The documentation of the experiment includes 
for each executed run 
a) Documentation of EM behavior (I/S/O trace) over time: A data record of quantita-

tive model behavior; 
b) Running speed and response behavior report: This is of importance, if real time re-

quirements need to be assessed; 
c) Identification of warm-up period: In the beginning of the experiment, the internal 

state of the model may be unrealistic, because, for example, the appropriate number of 
objects in the system first needs to be instantiated; 

d) Identification of unusual/undesired/unexpected results: If there are any exceptions 
recognized during experimentation, these should be recorded. 

 
There should be a justification for each number no information is given for. The required in-
formation may change due to changing simulation aims.  

6.3 Potential Errors in the SR 
Even with a correct and suitable model, SR may be inadequate to support the solution of a 
given problem. This may be backtracked to invalid, incorrect, or unsuitable data or inadequate 
experimentation. There can be errors in the SR; the dependencies between failures during 
experimentation and errors in the SR are depicted in Figure 19. 

• Invalid runtime data (internal error): This may be due to inaccurate measurement, 
measurement at a unsuitable related system, measurements under wrong environ-
mental conditions, wrong derivation of theoretically created input data, fitting the 
wrong distribution function, or simply out-dated data. 

• Invalid value domain (internal error): If the input data used is beyond the input value 
domain the model was build for, it is pure coincidence, if the SR are valid. 

• Lack of statistical significance (internal error): In a stochastic simulation, the result 
of a single, too short simulation run often is nearly meaningless. A sufficiently high 
number of simulation runs must be executed, or if the experiment allows it, its dura-
tion needs to be sufficiently long. 

• Lack of reproducibility (internal error): The SR cannot be reproduced. This implies 
the assumption that the experiment design is incomplete or inconsistent. 

• Correlated random numbers (internal error): If the use of the RNG leads to unde-
sired correlations, dependencies in the SR may be detected that are not existent in the 
real world. 

• Unsuitable or non aim-oriented SR (transformation error): SR may, although cor-
rect, be too far away from the actual problem to help solving it. The experiment setups 
must be sufficiently close to the real situation to allow conclusions for reality. 

 
The V&V process shall cover all abstract errors identified above. They should be identified in 
an efficient way as early as possible. 

6.4 SR Internal V&V 
This section documents the goals of V&V sub-phase 5.1, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 20 visualizes their dependencies.  

• Required stage of model development: Experimentation completed 
• IP counterpart (transformation V&V only): N/A 
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• Sub-phase goal: Demonstrate correctness in form and self-consistency of the SR (ex-
periment design and model I/O behavior). This sub-phase aims to ensure that the ex-
periment design (experiments setup, number of experiment repetitions) allows the col-
lection of the required data, and that the observed model output approximates the re-
quired real system behavior with sufficient accuracy. Addressed errors include that  

o meaningless experiments are conducted, yielding useless output data; 
o the simulation runs are not harmonized to build a well-designed experiment; 
o the input data is not representative for the real scenario; and  
o observed model output cannot be explained with respect to the (expected) real 

system behavior. 
• Requirements for and consequences of sub-phase skipping: It is not recommended 

to skip this sub-phase. If the experiment design does not yield results that contribute to 
the solution of the user’s problem, the usefulness of the complete M&S project must 
be doubted. 

• Impact of error detection on model development: Regress by one phase. The ex-
periments have to be redesigned and repeated. 

• Sub-phase objectives: Demonstrate that 
o the SR (experiment design and the documented model I/O behavior) are cor-

rect in form (i.e., consistent with the SR documentation requirements); 
o the SR are internally consistent; 
o the design of the simulation experiments is problem oriented; 
o the input data represents the real environmental conditions with sufficient ac-

curacy; and 
o the model output reflects the real system behavior over time. 

• Proposed techniques for static analysis:  
o SR documentation completeness and correctness checking: Using a checklist 

or a template, the experiment design and the model output are checked for 
completeness and consistency with the template. This results in a completed 
SR checklist or template. 

o SR documentation internal consistency checking: By use of a template-based 
SR internal dependency matrix, the SR documentation is checked for internal 
consistency. This results in a completed SR internal consistency matrix. 

o Compare the simulation experiment setup to a (fictive) real experiment setup: 
If the setup of the simulation experiment was derived from a real experiment, 
analysis and comparison of both of them may reveal inadequate differences. 
Otherwise SMEs are asked, how they would plan the experiments, if they had 
complete control over the real system. 

• Proposed techniques for dynamic testing:   
o Monitoring of internal model behavior (instrumentation): Beside the in-

put/output data that is recorded during model execution, additional information 
(e.g. state variables) about the internal state of the submodels and their interac-
tion is made visible outside and recorded as I/S/O traces.  

• Proposed techniques for results evaluation:  
o Comparison between real results and the SR: If there are results from a similar 

real experiment available, they are compared to the SR and analyzed for differ-
ences submodel-wise. This can be performed by, e.g., visualization and face 
validation, a Turing test, or by statistical tests. 
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 Figure 20: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 5.1 

o Expert opinion: Experts judge, whether the simulation data could be the output 
of a real experiment. This can be achieved via visualization, followed by face 
validation. 

o Input data comparison: The input data used for model stimulation is compared 
to measured influences or other real input data to the real system. This can be 
performed by, e.g., visualization and face validation, a Turing test, or by statis-
tical tests. 

• External references, leveraged information, and reused V&V output: 
o SR checklist or template 
o SR internal dependency matrix 
o Real experiment setup 
o Real input reference data 

• Provided output: 
o Completed SR checklist or template 
o Completed SR internal consistency matrix 
o Experiment setup review statements 
o Input data assessment 
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o I/S/O traces 
o Results comparison statement 
o Results assessment statement 

6.5 EM to SR Transformation V&V 
This section documents the goals of V&V sub-phase 5.2, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 21 visualizes their dependencies.  

• Required stage of model development: Experimentation completed 
• IP counterpart (transformation V&V only): EM 
• Sub-phase goal: Demonstrate completeness of the SR in content and consistency with 

the EM. This includes the demonstration that the input data is technically interoper-
able with the EM, that the experiment design takes the simulation method into account 
(here: stochastic vs. deterministic simulation), and that the model output is correctly 
stored in the output data base. Explicitly addressed errors include that 

o an insufficient number of experiment repetitions is executed (stochastic simu-
lation); 

o Byzantine errors occur during data I/O (e.g., little endian vs. big endian); 
o the input data accuracy (number of bytes) is insufficient;  
o EM internal input models are unsuitable representations of the real influences. 

• Requirements for and consequences of sub-phase skipping: It is not recommended 
to skip this sub-phase. Experiment design that does not consider the characteristics of 
the EM (e.g., the simulation method) is at best inefficient, and yields misleading SR at 
worst.  

• Impact of error detection on model development: Regress by one phase. The ex-
periments need to be redesigned giving consideration to the simulation method chosen 
for the EM and executed again.  

• Sub-phase objectives: Demonstrate that 
o all input data is provided and all output data is recorded in a correct and suit-

able data format; 
o the experiment design takes the simulation method into account; and 
o the SR are reproducible. 

 
• Proposed techniques for static analysis:  

o EM-SR completeness and consistency checking: By using a template-based 
EM-SR dependency matrix, a trace from each input, state, and output parame-
ter to the associated recorded data items is created, and documented in the EM-
SR consistency matrix. This also includes a “simulation method – experiment 
design consistency check”, as stochastic models require different experiment 
designs than deterministic models. The simulation runs for stochastic models 
must be sufficiently often repeated (with different seeds for the random num-
ber generator) to produce SR with statistical significance, or stay in steady 
state for a sufficiently long time. Also needs to be ensured that a self-driven 
model is not fed with a data trace, and a trace driven model gets more input 
than just the initialization data. 

• Proposed techniques for dynamic testing:   
o Internal data representation monitoring: Input data read from an input stream 

or a configuration file is made visible by the EM for a reviewer, who assesses 
the suitability of the data reading / writing procedure.  
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o Input data interval assertions: It is automatically checked, whether the input 
data lies within the valid input range. Extreme distortions during data reading 
may be detected this way (e.g., sign errors). 

o Experiment duplication: The experiments setup documentation is analyzed and 
the experiment repeated. If it is not possible to reproduce the previously re-
corded EM I/O behavior, a problem is detected. 
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 Figure 21: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 5.2 

 
• Proposed techniques for results evaluation:  

o Data interpretation review: The monitored input data is compared to the input 
data in the data base. Differences indicate a problem. 

• External references, leveraged information, and reused V&V output:  
o EM-SR dependency matrix 

• Provided output:  
o Assertion violation report 
o I/S/O trace 
o EM-SR traceability matrix 
o Data interpretation statement 
o Experiment repeatability statement 

6.6 FM to SR Transformation V&V 
This section documents the goals of V&V sub-phase 5.3, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 22 visualizes their dependencies.  

• Required stage of model development: Experimentation completed 
• IP counterpart (transformation V&V only): FM 
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• Sub-phase goal: Confirm completeness of SR in content and consistency with the 
FM. This includes the demonstration that distribution functions for self-driven models 
are suitable representations of the real external influences. Explicitly addressed errors 
include that:  

o the input data used for initialization and configuration of the internal data gen-
erators (distribution functions) results in an unsuitable representation of the 
real external influences. 

o the EM internal distribution functions do not reflect the (empirical) distribution 
functions of the scenario data. 

• Requirements for and consequences of sub-phase skipping: This is a confirmation 
sub-phase. If it was previously ensured that the data is preprocessed in the FM as as-
sumed for the experiment design, this sub-phase can be skipped. (This is most likely 
the case, if the data was recorded during the same system analysis activities, which 
also are the foundation of the CM. However, if a new experiment was created, or data 
from another source is used, serious problems can be revealed during this sub-phase.) 

• Impact of error detection on model development: Regress by two phases. The EM 
has to be checked for specification violation (partial repetition of software develop-
ment). Implementation and experimentation need to be repeated.  
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 Figure 22: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 5.3 

• Sub-phase objectives: Confirm that 
o all input data lies within the formally specified ranges; 
o internal input models (e.g., distribution functions) reflect real external influ-

ences as intended in the experiment design (consistency between distribution 
functions); 
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o any internal aggregation of output values is consistent with the planned output 
post-processing. 

• Proposed techniques for static analysis: 
o FM-SR completeness and consistency checking: By reusing the FM-EM and 

EM-SR traceability matrices from 4.2 and 5.2, and using a template-based FM-
SR dependency matrix, a trace from each formally specified model input and 
output to the associated data items is created, and documented in the FM-SR 
consistency matrix. Formally specified model inputs and outputs without asso-
ciated data items (and vice versa) indicate a problem. 

• Proposed techniques for dynamic testing:   
o Monitoring of internal data generation (instrumentation): During experimenta-

tion with a self-driven stochastic model, after reading the distribution parame-
ters from the data base all internally generated data is made available, and all 
output data is monitored prior to aggregating it by statistical means. 

o Assertion checking: The input parameters are secured with assertions that only 
accept input data within the acceptable intervals as defined in the FM.  

• Proposed techniques for results evaluation:  
o Goodness of fit analysis: By implementation of statistical tests it is examined, 

whether the internally generated data fit the FM internal distribution functions.  
• External references, leveraged information, and reused V&V output:  

o Completed FM-EM traceability matrix from 4.2 
o FM-SR dependency matrix 
o Completed EM-SR traceability matrix from 5.2 

• Provided output: 
o Assertion violation statement 
o Goodness of fit statement 
o I/S/O traces 
o Completed FM-SR traceability matrix 

6.7 CM to SR Transformation V&V 
This section documents the goals of V&V sub-phase 5.4, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 23 visualizes their dependencies.  

• Required stage of model development: Experimentation completed 
• IP counterpart (transformation V&V only): CM 
• Sub-phase goal: Confirm completeness of the SR in content and consistency with the 

CM. It should be ensured that input data semantics and input parameter semantics are 
identical. Inconsistent units (e.g., miles vs. kilometers) or inconsistencies between co-
ordinate systems are typical errors that are detected during this sub-phase. 

• Requirements for and consequences of sub-phase skipping: This is a confirmation 
sub-phase. If it is sure that the CM border is correctly and suitably formalized (V&V 
sub-phase 4.2), and that the input data shows the formal characteristics as required for 
the FM (V&V sub-phase 5.3), this sub-phase can be skipped. The input values are 
most likely to be interpreted by the EM as intended during their recording or genera-
tion, if they originate form the same system analysis effort as the CM. However, if the 
input data comes from a different source, the assessment of consistency between 
model input parameter semantics and input data semantics is essential for the credibil-
ity of the SR. 
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• Impact of error detection on model development: Regress by three phases. Partial 
repetition of the model development phases from model formalization through ex-
perimentation.  

• Sub-phase objectives: Confirm that  
o the EM internal semantic interpretation of the input data values is consistent 

with the semantics of the recorded or generated input data; 
o the input data intervals do not exceed the input data interval for, which the un-

derlying model was created; 
o the semantics of the output given in the experimental framework (which later 

will be used for interpretation) is consistent with the EM output parameter se-
mantics; 

o the EM behaves as intended with the CM during all experiments. 
• Proposed techniques for static analysis:  

o CM-SR completeness checking and consistency tracing: By reusing the CM-
FM and FM-SR traceability matrices from V&V sub-phases 3.2 and 5.3, and 
the use of a template based CM-SR dependency matrix, a trace from each CM 
input and output parameter to the associated contents of the experiment de-
scription or recorded model output is created, and documented in the CM-SR 
traceability matrix. CM contents without associated SR contents (and vice 
versa) indicate a problem. 

o Data recording report review: It is analyzed, whether the instrumentation of the 
real system and the accuracy of the measurement devices allow the recording 
of data with the same semantics as the input parameters of the model. 

• Proposed techniques for dynamic testing:   
o Monitoring of internal data interpretation (instrumentation): During experi-

mentation, all input data is made available as interpreted by the EM after read-
ing it from the data base, and all output data is monitored prior to writing it to 
the data base. The behavior of the executable submodels is recorded as I/S/O 
traces. 

o Assertion checking: Using the behavior propositions identified during V&V 
sub-phases 2.1 and 2.2, the input parameters are secured with assertions that 
only accept input data within the defined intervals.  

• Proposed techniques for results evaluation:  
o Visualization and face validation: The modeler judges, whether the model be-

haves with the input data as intended. 
o Automated behavior propositions violation detection: The I/S/O traces are 

post-processed by language acceptance automata, which only accept those 
I/S/O traces that are compliant with their underlying behavior propositions. 

• External references, leveraged information, and reused V&V output:  
o Completed CM-FM traceability matrix from 3.2 
o CM-SR dependency matrix 
o Completed FM-SR traceability matrix from 5.3 
o Data recording report 
o CM behavior propositions from 2.1 and 2.2 

• Provided output: 
o Assertion violation report 
o Completed CM-SR traceability matrix 
o Data suitability statement 
o I/S/O trace 
o I/O behavior suitability statement 
o Proposition violation statement 
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propositions from 2.1 and

2.2

Behavior
propositions

violations detection

Propositions
violations statement
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 Figure 23: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 5.4 

6.8 SPD to SR Transformation V&V 
This section documents the goals of V&V sub-phase 5.5, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 24 visualizes their dependencies.  

• Required stage of model development: Experimentation completed 
• IP counterpart (transformation V&V only): SPD 
• Sub-phase goal: Confirm completeness of SR in content and consistency with the 

SPD. The focus of V&V activities lies on the confirmation that all required experi-
ments were executed according to their specifications, using suitable data for a suit-
able model. Explicitly addressed errors include experiment designs that deviate from 
the required experimental framework. 

• Requirements for and consequences of sub-phase skipping: This is a confirmation 
sub-phase. If it was previously shown that the CM (including its experimental frame-
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work) satisfies the requirements stated in the SPD (V&V sub-phase 2.2), and that the 
semantics of the CM border and the actually implemented experimental framework are 
consistent (V&V sub-phase 5.4), this sub-phase may be skipped.  

• Impact of error detection on model development: Regress by four phases. If the 
model results do not satisfy the requirements of the SPD, an error occurred between 
system analysis and experiment. 

• Sub-phase objectives: Confirm that all required experiments were executed according 
to their specifications. 

• Proposed techniques for static analysis:  
o SPD-SR completeness checking and consistency tracing: By reusing the SPD-

CM and CM-SR traceability matrices from V&V sub-phases 2.2 and 5.4, and 
by using a template based SPD-SR dependency matrix, a trace from each re-
quired experiment to the associated contents of the experiment description or 
recorded model output is created, and documented in the SPD-SR traceability 
matrix. Experiments required in the SPD without associated SR contents (and 
vice versa) indicate a problem. 

o Experiment review: Differences between the required experiments and the 
conducted experiments are analyzed and evaluated. 

• Proposed techniques for dynamic testing:  N/A 
• Proposed techniques for results evaluation: N/A 
• External references, leveraged information, and reused V&V output:  

o Completed SPD-CM traceability matrix from 2.2 
o SPD-SR dependency matrix 
o Completed CM-SR traceability matrix from 5.4 

• Provided output: 
o Experiment compliance statement 
o Completed SPD-SR traceability matrix 

 

Confirm that all required experiments were
executed according to their specification

Experiments review

Experiments
compliance statement

SPD-SR completeness
checking and consistency

tracing

SPD-SR
dependencies matrix

Completed SPD-SR
traceability matrix

Completed
SPD-CM traceability matrix

from 2.2

Completed CM-SR
traceability matrix from 5.4

 
 Figure 24: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 5.5 

6.9 SN to SR Transformation V&V 
This section documents the goals of V&V sub-phase 5.6, potential errors explicitly searched 
for, derived V&V objectives, proposed V&V techniques, their required inputs, and the out-
puts (V&V evidence) provided by them. Figure 25 visualizes their dependencies.  
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• Required stage of model development: Experimentation completed 
• IP counterpart (transformation V&V only): SN 
• Sub-phase goal: Confirm completeness of the SR in content and consistency with the 

SN. This sub-phase focuses mainly on the confirmation that the SR contribute to the 
solution of the user’s problem.  

 

Confirm that the SR contribute to the
solution of the user's problem

Expert results review

Results adequacy
statement

SN-SR completeness
checking and consistency

tracing

SN-SR
dependencies matrix

Completed SN-SR
traceability matrix

Completed
SN-SPD  traceability

matrix from 1.2

Completed
SPD-SR traceability

matrix from 5.5

 
 Figure 25: Dependencies between the objectives, techniques, inputs, and outputs of V&V 

sub-phase 5.6 

 
• Requirements for and consequences of sub-phase skipping: This is a confirmation 

sub-phase. As long as the SPD documents the SN (which was demonstrated in V&V 
sub-phase 1.2), and the SR satisfy the SPD (V&V sub-phase 5.5), this sub-phase can 
be skipped. Its objectives should definitely have been addressed during earlier V&V 
activities.  

• Impact of error detection on model development: (Partial) repetition of the whole 
model development process. 

• Sub-phase objectives: Confirm that the SR contribute to the solution of the user’s 
problem. 

• Proposed techniques for static analysis:  
o SN-SR completeness checking and consistency tracing: By reusing the Sn-

SPD and SPD-SR traceability matrices from V&V sub-phases 1.2 and 5.5, and 
by using a template based SN-SR dependency matrix, a trace from each de-
sired insight into the real system to the associated contents of the experiment 
description or recorded model output is created, and documented in the SN-SR 
traceability matrix. Needed insights without associated SR contents (and vice 
versa) indicate a problem. 

o Expert review: The experiment design and the model output are reviewed for 
plausibility. If M&S results contradict other available “conventional” knowl-
edge, an explanation for this contradiction should be found. 

• Proposed techniques for dynamic testing:  N/A 
• Proposed techniques for results evaluation: N/A 
• External references, leveraged information, and reused V&V output:  

o Completed SN-SPD traceability matrix from 1.2 
o SN-SR dependency matrix 
o Completed SPD-SR traceability matrix from 5.5 
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• Provided output: 
o Results adequacy statement 
o Completed SN-SR traceability matrix 
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 SPD CM FM EM SR 
SR     (5.1) Demonstrate that 

• the SR (experiment design and the 
documented model I/O behavior) are 
correct in form (i.e., consistent with 
the SR documentation requirements); 

• the SR are internally consistent; 
• the design of the simulation experi-

ments is problem oriented; 
• the input data represents the real 

environmental conditions with suffi-
cient accuracy; and 

• the model output reflects the real 
system behavior over time. 

 
EM    (4.1) Demonstrate that 

• the EM, its supplemental information, and the 
implemented experimental framework are correct 
in form (i.e., consistent with the EM documenta-
tion requirements), 

• the contents of the EM and its supplemental 
information are consistent with each other, 

• the EM is stable, reliable, and testable software 
(i.e., consistent with Software Engineering “best 
practice”), 

• the simulation infrastructure (including time 
management and random number generation) is 
consistent with its specification, and 

• the distributed executable submodels are techni-
cally interoperable, if applicable. 

 
 

(5.2) Demonstrate that 
• all input data is provided and all 

output data is recorded in a correct 
and suitable data format; 

• the experiment design takes the 
simulation method into account; and 

• the SR are reproducible. 
 

FM   (3.1) Demonstrate that 
• the FM, its supplemental information, and 

the formally specified experimental frame-
work are correct in form (i.e., consistent 
with the required FM template) and con-
sistent with each other; 

• there are no syntax or semantic errors in 
the FM i.e., the FM is consistent with the 
modeling formalism specification; 

• there is no ambiguity in the FM. 
 

(4.2) Demonstrate that  
• the chosen implementation technique of the 

simulation infrastructure is suitable for the formal-
ism the FM is based on, 

• the EM structure is complete and consistent with 
FM, 

• the EM implements the internal behavior and 
interactions completely and consistently with the 
FM, 

• all random number distributions are implemented 
as defined in the FM, and 

• data types and algorithms are transformed to 
digitally computable form acceptably 

 

(5.3) Confirm that 
• all input data lies within the formally 

specified ranges; 
• internal input models (e.g., distribution 

functions) reflect real external influ-
ences as intended in the experiment 
design (consistency between distribu-
tion functions); 

• any internal aggregation of output 
values is consistent with the planned 
output post-processing. 
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 SPD CM FM EM SR 
CM  (2.1) Demonstrate that 

• the CM (including its supplemental 
information and the conceptually de-
scribed experimental framework) is cor-
rect in form (i.e., consistent with the re-
quired CM template), 

• all contents of the CM are consistent with 
each other, 

• all contents of the CM (including struc-
ture, embedded data, anticipated behav-
ior, and experimental framework) are un-
ambiguous and factually correct (consis-
tent with domain knowledge),  

• the data sources are suitable, and 
• all data are sufficiently accurate. 
 

(3.2) Demonstrate that 
• the FM completely and consistently re-

flects the symbolic structure and behavior 
description of the CM; 

• further (formalism enforced) abstraction 
and idealization is suitable and correct 
(algorithms, approximation methods, 
data); 

• the formally specified experimental frame-
work is complete and consistent with the 
conceptually described experimental 
framework of the CM, including input mod-
els and distribution functions. 

 

(4.3) Confirm that  
• the executable submodel structure is consistent 

with the description of the submodel structure 
provided in the CM; 

• the heuristics and algorithms implemented in the 
EM for internal submodel behavior and submodel 
interaction, including their further abstraction for 
implementation due to digitalization, yield behav-
ior data with sufficient accuracy; 

• the (actually observed) EM behavior is consistent 
with domain knowledge. 

 

(5.4) Confirm that  
• the EM internal semantic interpretation 

of the input data values is consistent 
with the semantics of the recorded or 
generated input data; 

• the input data intervals do not exceed 
the input data interval for, which the 
underlying model was created; 

• the semantics of the output given in 
the experimental framework (which 
later will be used for interpretation) is 
consistent with the EM output parame-
ter semantics; 

• the EM behaves as intended with the 
CM during all experiments. 

 
SPD (1.1) Demonstrate that 

• the SPD is correct in form (i.e., 
consistent with the required SPD tem-
plate); 

• all contents of the SPD are consistent; 
• all contents of the SPD are factually 

correct (i.e., consistent with domain 
knowledge); 

• all contents of the SPD are unambigu-
ous; 

all contents of the SPD are testable. 

(2.2) Sub-phase objectives: Demonstrate that  
• the model border (I/O parameters, their 

semantics, their accuracy), 
• the degree of abstraction and idealiza-

tion, 
• the model structure and hierarchical 

decomposition, 
• the representation of time,  
• the anticipated model behavior (including 

embedded data), and 
• the experimental framework 
meet the requirements. 

(3.3) Confirm that  
• the FM is complete in content and consis-

tent with the SPD;  
• the symbolic behavior specification in the 

FM is as accurate as required; and 
• the FM is compliant with the required 

formal framework. 
 

(4.4) Confirm that  
• real time requirements are met; 
• the observed model behavior is within the 

specified behavior constraints; 
• the software functionality is implemented as 

required; 
• the EM is compliant with the required technical 

framework (platform, interactivity, interoperability). 
 

(5.5) Confirm that all required experi-
ments were executed according to their 
specifications. 
 

SN (1.2) Demonstrate that 
• the model border (I/O parameters, 

accuracy, update conditions) is defined 
as needed; 

• all developmental constraints (concep-
tual modeling requirements, formaliza-
tion requirements, implementation re-
quirements) are defined as needed; 

• the experimental framework is defined 
as needed; 

• the specified test cases allow the 
assessment of acceptability criteria 
satisfaction. 

 
 

(2.3) Confirm that 
• the model border (including anticipated 

accuracy of parameters),  
• the degree of abstraction, 
• the model structure and hierarchical 

decomposition, 
• the representation of time,  
• the model behavior (including embedded 

data), and 
• the experimental framework 

allow the needed experimentation.  

(3.4) Confirm that 
• the model border allows the needed 

experimentation (stimulation and observa-
tion), and 

• the FM behavior description (including 
embedded data) is as accurate as 
needed. 

 

(4.5) Confirm that 
• the EM duplicates the behavior of the real system 

as needed; 
• the EM works with other systems as needed; 
• the EM allows experimentation as needed. 
 

(5.6) Confirm that the SR contribute to 
the solution of the user’s problem. 
 

Table A: V&V objectives overview 
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 SPD CM FM EM SR 
SR     • Completed SR checklist or 

template 
• Completed SR internal 

consistency matrix 
• Experiment setup review 

statements 
• Input data assessment 
• I/S/O traces 
• Results comparison state-

ment 
• Results assessment state-

ment 
 

EM    • Completed EM checklist or template 
• Completed EM internal consistency matrix 
• Software QA report and products 
• EM control flow graph 
• EM object flow graph 
• EM flow graph test cases and test results 
• RNG analysis report, random numbers se-

quences, and RNG statement 
• EM integration test cases and EM integration 

test results 
• Simulation control analysis report 
• Simulation control test cases 
• Simulation control test results 
 

• Assertion violation report 
• I/S/O trace 
• EM-SR traceability matrix 
• Data interpretation statement 
• Experiment repeatability 

statement 
 

FM   • FM check protocols, token se-
quences, parse trees 

• Completed FM checklist or tem-
plate 

• Completed FM internal consistency 
matrix 

• FM interfaces consistency state-
ment 

 

• Simulation infrastructure analysis statement 
• Simulation infrastructure test cases 
• Simulation infrastructure test results 
• EM results and I/S/O traces 
• EM-FM results comparison statement 
• Completed FM-EM consistency matrix 
• Flow graph comparison statement 
• Distribution generator analysis statement 
• Goodness of fit statement 
• Interface analysis statement 
 

• Assertion violation statement 
• Goodness of fit statement 
• I/S/O traces 
• Completed FM-SR traceabil-

ity matrix 
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 SPD CM FM EM SR 
CM  • Completed CM checklist or tem-

plate 
• Completed CM internal consis-

tency matrix 
• Extracted behavior propositions 

for each submodel 
• Additional CM test cases  
• Interpreted CM behavior record 
• CM structure factual correctness 

statements 
• CM assumptions catalogue 
• Data suitability statements 
 

• Completed CM-FM traceability 
matrix 

• FM object flow graphs and com-
parison statements 

• FM control flow graphs and com-
parison statements 

• FM assertions violations report 
• FM behavior propositions violations 

report 
• FM interpretation results 
• FM analytical solution results 
• FM flow graphs review statement 
 

• Completed EM-CM traceability matrix 
• Assertion violations report 
• Documented sensitivity plausibility statement 
• Flow graph comparison statement 
• EM I/S/O traces 
• EM behavior plausibility statement 
• EM behavior propositions violation statement 
 

1) Assertion violation report 
• Completed CM-SR traceabil-

ity matrix 
• Data suitability statement 
• I/S/O trace 
• I/O behavior suitability state-

ment 
• Proposition violation state-

ment 

SPD • Completed SPD checklist or template, 
including correctness statement 

• Completed SPD internal consistency matrix  
• SPD factual correctness statement 
• SDP test cases 
 

• Completed SPD-CM traceability 
matrix  

• CM structure compliance state-
ment 

• Additional CM test cases 
• Additional CM behavior proposi-

tions  
• CM behavior compliance state-

ment 
• CM assumptions compliance 

statement  
 

2) Completed SPD-FM traceability 
matrix 

• Additional FM interpretation results 
• Additional FM analytical solution 

results 
• FM behavior requirements compli-

ance statement 

• Performance characteristics 
• Pass/fail assessment 
• Functional test results 
• Documented features availability statement 
• Completed SPD-EM traceability matrix 
• EM installation and integration test results 
• EM compliance test results 
 

• Experiment compliance 
statement 

• Completed SPD-SR trace-
ability matrix 

 

SN • SPD adequacy statement 
• Completed SN-SPD traceability matrix 
• Additional test cases with predicted out-

comes and pass/fail criteria 
 

• Completed CM-SN traceability 
matrix 

• Additional CM interpreted behav-
ior (oracles) 

• Behavior propositions adequacy 
statement 

• CM structure adequacy statement 
• CM behavior adequacy statement 
• CM assumptions adequacy 

statement 
 

• Completed SN-FM traceability 
matrix 

• FM flow graph adequacy statement 
• Additional FM test cases 
• Additional FM results 
• FM behavior adequacy statement 
 

• Completed SN-EM traceability matrix 
• EM application results 
• EM usability statement 
• EM results adequacy statement 
 

• Results adequacy statement 
• Completed SN-SR traceabil-

ity matrix 
 

Table B: V&V evidence overview



 

  



 
 
 
 
 

APPENDIX C 

“AN DER POINT SÜD” 
 

 
 
This appendix documents the Intermediate Products generated during an M&S sample pro-
ject. The model is not a result of a real road traffic simulation study, but a simplified example 
to demonstrate the application of the V&V Triangle. All questions are pure fiction; however, 
a real intersection with real hard measured data was used. The model development and execu-
tion was documented in accordance with the documentation requirements for Intermediate 
Products provided in the main document. 
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1 SPONSOR NEEDS 
(Documented according to the Sponsor Needs template in Appendix A of the main docu-
ment.) 

1.1 Configuration Control 
Version Identifier: ADP-SN-V1 

1.2 Purpose and Background 

1.2.1 General Problem Set 
Individual traffic increases more quickly than the expansion of the traffic infrastructure, 
which leads especially in large cities to traffic jams or traffic breakdowns during rush hours. 
As constructional changes of the road network usually are expensive and most often possible 
only in limited form, the potentials and limits of different traffic control policies shall be ex-
plored. 
Usually, the intersection between “An der Point Süd” and the Autobahn exit and entrance 
“München Riem” to BAB 94 is subjected only to light traffic. However, during trade shows at 
the “Neue Messe München”, peak load is created that requires a more efficient handling of 
vehicle traffic.  

1.2.2 Examination Aim 
Several policies for controlling the lights at the affected intersection are available (Appendix 
C.1), but the performance of the intersection operated with different light timing policies is 
unknown. Observations of the queuing behavior of vehicles in heavy traffic situations are 
required to support the selection of the most appropriate lights control strategy. 

1.2.3 Motivation for Modeling and Simulation 
Applying the different policies for lights control for a representative period of time at the in-
tersection, and reprogramming of the lights control device is more expensive than running a 
simulation study. Usually traffic is too low to allow meaningful evaluation, and during trade 
shows, experimentation may result in undesired, unnecessary traffic obstruction.  

1.2.4 Modeling and Simulation Aim and Purpose  
The aim of M&S is to reflect the vehicles behavior in the intersection, to allow simulation of 
the traffic flow under application of selected policies for lights control. The aim of simulation 
is to duplicate the dynamic flow of traffic over time. The purpose of M&S is to gain quantita-
tive performance data for the different policies, to support a more objective identification of 
the most appropriate lights timing policy.  

1.3 Scenario Description 

1.3.1 Idealized General Description 
Vehicles approach the lights choosing a lane appropriate for their destination. The incoming 
vehicles on each lane are counted by electromagnetic induction loops. The vehicle rate per 
minute is recorded in a data base. Vehicles ac- and decelerate as required, avoiding collisions 
with other vehicles according to the traffic rules defined by German law, and wait when fac-
ing red lights. The length of each queue is recorded frequently. 
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1.3.2 Influence Parameters 
• The intensity of traffic needs to be considered. It is given by the mean arrival rate of 

vehicles for each incoming lane, which is available as [#vehicles / 60s]. 
• The switching behavior of the traffic lights controls the decrease of queue lengths. It is 

defined by the switching logic of lights control, which is available as a table contain-
ing the durations and order of lights colors. 

1.3.3 Goal Parameters 
• Queue length is observed. It is defined by the number of vehicles on each lane in front 

of a lights, the length of each vehicle [m], and the space between them [m], yielding 
the total length of the queue in [m]. 

• Waiting time of a vehicle in the intersection is defined as the duration of time during 
which the vehicle moves slower than 1m/s, and is measured in [s]. It shall be recorded 
for each vehicle. 

1.3.4 Acceptable Limitations 
The examination of rare traffic situations in the intersection is not intended, therefore a fault-
free operation mode of the lights may be assumed. Accidents or road constructions that block 
one or more lanes in the intersection do not need to be considered. It is assumed that all traffic 
participants behave properly and do not cause crashes. Critical weather conditions that may 
influence the behavior of the vehicles are out of scope of the examination. In addition, lane 
changing behavior and overtaking behavior are excluded during the experiment. It is assumed 
that all vehicles have chosen their appropriate lane prior to entering the intersection area. 

1.4 Operation Environment 

1.4.1 Operation Platform and Operating System  
Personal Computer with Windows NT 4.0, or higher. 

1.4.2 Interoperability  
No requirements, a stand alone solution is acceptable. 

1.4.3 Man-Machine-Interfaces 
No interactivity is required; the simulation output shall be available after the simulation exe-
cution in text files. 

1.5 Worst Case Impacts Statement 
When applying the strategy for lights control identified as most appropriate during simulation, 
the impact on traffic has to be observed. No safety related measures are modified, the danger 
for human health is assumed to be negligible. Minor economic damage may be caused by 
increase of jamming. This will be resolved by returning to the previously established lights 
control strategy. The expenses for the simulation study are negligible. The worst case impact 
of failure of this simulation study is considered to be low. 
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2 STRUCTURED PROBLEM DESCRIPTION 
(Documented according to the Structured Problem Description template in Appendix A of the 
main document.) 

2.1 Configuration Control 
Version Identifier: ADP-SPD-V1, based on ADP-SN-V1 

2.2 Sub-Aims Hierarchy 
Overall aim: Analyze the traffic flow in the intersection under consideration and variation of 
the intensity of traffic and the lights control strategy. 

• Sub-aim 1: Observe the dynamic behavior of vehicle queues over time, extract the sta-
tistical queue length characteristics. 

• Sub-aim 2: Observe the dynamic flow of each individual vehicle and its waiting time 
over time, extract statistical waiting time characteristics for all vehicles. 

2.3 Model I/O Requirements 

2.3.1 Conceptual Description 

2.3.1.1 Consider the following influence parameters 
• Lights switching table: This table controls the (cyclic) switching of lights over time. 

This input is relevant, as the influence of the lights control strategy on traffic is sub-
jected to examination. The lights control table may contain all allowed lights combina-
tions, but must comply to the law regulations for traffic lights switching. (E.g., the du-
ration of the yellow phase may not be changed, and the duration for “red in both inter-
secting directions” must not fall below the allowed minimum). Lights control strate-
gies applied for simulation must be approved as acceptable strategies separately. 

• Vehicle inter arrival times for each direction and lane: This influence parameter con-
trols the density of traffic in each direction. The density of traffic must be considered 
when judging the appropriateness of a lights control strategy. The unit of the arrival 
rate is [#vehicles/time interval]. It may never be negative, and its maximum is limited 
by the maximum speed observed and the space each vehicle occupies. 

2.3.1.2 Allow observation of the following goal parameters 
• Queue length: This parameter reflects samples of the number of vehicles on the lanes 

before passing the traffic lights. The sampling rate may be varied. This parameter is 
required to observe the simulated dynamic change of queue lengths. An estimate of 
the queue length in [m] can be created from the number of vehicles, their estimated 
lengths and the accumulated length of the spaces in between them. 

• Waiting times of vehicles: Reflects the accumulated time a vehicle spends waiting at 
red lights or in the intersection in [s]. This parameter is required to judge the impact of 
the lights switching strategy on the drivers. As time is experienced by drivers subjec-
tively and relatively, accuracy requirements are average. 

2.3.2 Formal Specification 
The mean inter arrival time shall be used as a parameter for an appropriate statistical distribu-
tion function to generate input streams of vehicles. 
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2.3.3 Technical Implementation 
The modification of the input parameters lights switching table and vehicle inter arrival times 
shall be simple; configuration files are preferred. The desired output values shall be recorded 
in txt-files that can be read with any text editor. 
Data exchange during run-time with other models, hardware systems, or a man-machine inter-
face is not required. 

2.4 Model Structure and Behavior Requirements 

2.4.1 Conceptual Description 

2.4.1.1 A priori identified structural elements 
• Vehicles: These are the atomic units for the desired observations. The traffic flow de-

pends on the behavior of the individual vehicles. Their generation depends on the ve-
hicle arrival rate. 

• Traffic Lights: Main control instance for the traffic flow. The influence of the modifi-
cation of the lights behavior is subjected to examination. Their switching behavior will 
be controlled by the lights switching table. 

• Intersection geometry: The impact of the queues on the remaining traffic (e.g., block-
ing lanes) depends on the queue lengths and the geometry of the intersection. The in-
tersection geometry will not be manipulated during a simulation run. 

• Pedestrians (ignore!): The number of pedestrians in the observed intersection area 
usually is negligible and does not impact the flow of vehicles. 

 
The behavior of the structural elements identified above shall be analyzed and appropriately 
modeled. 

2.4.1.2 Imported structural elements 
No structural elements are imported form other models, nor are other data models used. 

2.4.1.3 A priori identified cause effect dependencies 
The following cause-effect dependencies shall be considered in the model: 

• red lights cause vehicles to stop; 
• slower predecessors cause vehicle to decelerate to predecessor’s velocity; 
• narrow curves cause vehicles to decelerate; 
• free road causes vehicles to accelerate to maximum desired velocity. 

2.4.1.4 A priori identified behavioral constraints 
There is no overtaking in the intersection area.  

2.4.2 Formal Specification 
For the formal specification of the structural dependencies, the appropriate UML diagrams, 
DEVS, or Z shall be used. The behavior of the vehicles shall be unmistakably defined using 
kinematic equations. All other behavior is to be specified within the appropriate diagrams of 
the UML, or Z. 

2.4.3 Technical Implementation 
To enhance the reuse of encoded structural elements of the model in similar models, an ob-
ject-oriented approach shall be taken during implementation.  
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2.5 Experimental Requirements 

2.5.1 Conceptual Description 
Simulation experiments shall be executed for the intersection under “standard load”. Then the 
load shall be systematically increased to extremely heavy traffic. 

2.5.2 Formal Specification 
No formal specification of the experimental design is required. 

2.5.3 Technical Implementation 
A script file shall allow to automatically repeat experiments, to change the model parameters, 
and to manage recording of simulation results. 
Simulation experiments shall be conducted on a Windows NT4.0 PC, or higher. 
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3 CONCEPTUAL MODEL 
(Documented according to the Conceptual Model template in Appendix A of the main docu-
ment.) 

3.1 Configuration control 
Version Identifier: ADP-CM-V1, based on ADP-SPD-V1 

3.2 Model Overview 
The model “An der Point Süd” is an abstracted and idealized representation  of an intersection 
close to the “Neue Messe München”. It allows the observation and examination of intersec-
tion performance (vehicle queuing behavior), depending on the chosen lights control policy 
and the chosen traffic load. For this purpose, the behavior of the individual vehicles in the 
intersection is modeled. 

3.3 Structure and Behavior Description 

3.3.1 Overall Model Layer 
The description of the input and output parameters of the overall conceptual model is given 
below. Neither input, nor output comply to any particular standard. 

3.3.1.1 Intersection Input 
• Inter arrival time: Arriving vehicles will be generated within the model during simula-

tion. For each incoming lane i an input parameter λi must be set that controls the den-
sity of each stream of incoming vehicles. The unit of the inter arrival time is [s], al-
lowed values are within the interval [1; ∞], considered accuracy are two decimal 
places. These parameters are initialized once and do not change over simulation time. 

• Lights control table: A cyclic switching pattern for the lights is read from a switching 
table. This table contains the lights states with a set of color codes [red, redyellow, 
green, yellow] to control each lights in the intersection, and the duration [s] of the 
state. This table must be initialized at the beginning of a simulation experiment and 
does not change over simulation time. 

3.3.1.2 Intersection Output 
• Inter arrival rate: Relative frequency of numbers of vehicles actually generated per 

minute for each lane. This is an output parameter for control purposes, as the inter ar-
rival time (input parameter) is derived from the inter arrival rates provided in the data 
files. It will be available during simulation in an interval of 60s of simulation time. 

• Queue length for each lane: Samples of queue lengths. It will be available during 
simulation in an interval of 5s of simulation time. 

• Waiting time per vehicle for each lane: Accumulated time [s] during which the vehicle 
moves slower than 1 m/s, considered accuracy are two decimal places. This becomes 
available whenever a vehicle leaves the intersection. 

3.3.1.3 Intersection structure description  
The overall model intersection consists of three sub-models: 

• LightsCtrl: Controls the switching behavior of the lights. 
• Vehicle: Reflects a vehicle in the intersection. Multiple instances of the sub-model will 

exist.  
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• Intersection Geometry: Models the geometric layout (lanes, stopping lines, positions 
of lights) of the intersection. 

 
The dependencies between the submodels are sketched in Figure 1.  

 

LightsCtrl

Intersection 
Geometry

Vehicle

modifies

considers
considers

Intersection
 

Figure 1: Sketch of the overall conceptual model 

3.3.1.4 Intersection behavior description  
The behavior of the overall model is defined by the behavior of the submodels on layer 1 and 
their interaction. 

3.3.2 Submodels Layer 1 

3.3.2.1 Structure Description of Intersection Geometry 
The foundation of the intersection geometry is the CAD drawing provided in Appendix C.2. 
According to the lanes in the intersection, it is assumed that vehicles follow paths that inter-
sect, fork, or join with other vehicle paths, as depicted in Figure 2. Width information of the 
lanes is omitted, as only queue lengths are of interest. The pieces of the paths between join-
ing, forking, or intersection points are called “tracks” in the following. The intersection ge-
ometry is modeled as a network of tracks, interconnected by nodes. The length of the tracks 
given in Table 1 was extracted from the CAD drawing, scaled 1:500. Although the CAD 
drawing is just a faxed copy, it is assumed that the resulting scale error is negligible. 
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Figure 2: Nodes and tracks in the intersection, mapped on lanes 

 
• Each track has a given length, a node where it origins from (source node), and a desti-

nation node. Tracks in curves have no radius, but a speed limed at a given position on 
the track (velLimit and velLimitPos) that is derived from the radius. Tracks and nodes 
are not decomposed any further. 

• To each track a queue is assigned, managing the vehicles on the track. The length of 
each queue is passed on to the overall model level and provided as model output every 
5 s of simulated time. The capacity of the queue is limited by the length of the track 
and the length of the vehicles on the track.  

 
Tracks are connected by nodes. Figure 3 depicts the assignment of identifiers to the tracks and 
the association between tracks and nodes. Nodes do not have any spatial expansion. 

• A source node reflects the point where vehicles enter the area of observation. The in-
put parameter “arrival rate” is passed down form the overall model layer and consid-
ered in the source nodes for generation of vehicles.  

• A lights node reflects the point where the first vehicle stops at red lights (white line on 
the road). Its states are blocked and free. 

• A fork node reflects a point where drivers may choose between two directions. 
• An intersect node reflects the intersection of two paths. Note, the two intersecting 

paths have different priority according to traffic regulations. Its states are blocked and 
free, which affects the lower prioritized lane through it. 

• A join node reflects the point where two paths join. Note, the two joining paths have 
different priority according to traffic regulations. Its states are blocked and free, which 
affects the lower prioritized lane entering it. 

• A drain node reflects the point where the vehicle leaves the area of observation. 
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Figure 3: Paths and nodes with Ids 

 
PATH Length velLimitPos velLimit 
p01 35,00 -1 -1 
p02 35,00 -1 -1 
p03 30,00 -1 -1 
p04 28,75 -1 -1 
p05 39,35 -1 -1 
p06 40,61 -1 -1 
p07 5,18 -1 -1 
p08 6,42 -1 -1 
p09 8,32 -1 -1 
p10 6,08 -1 -1 
p11 4,37 -1 -1 
p12 6,08 3 7 
p13 2,46 1 7 
p14 3,40 -1 -1 
p15 2,80 -1 -1 
p16 30,00 -1 -1 
p17 14,13 -1 -1 
p18 3,16 -1 -1 
p19 3,18 -1 -1 
p20 3,64 -1 -1 
p21 4,48 -1 -1 
p22 2,05 -1 -1 
p23 0,96 -1 -1 
p24 5,78 -1 -1 
p25 30,00 -1 -1 
p26 1,25 -1 -1 

PATH Length velLimitPos velLimit 
p27 12,23 -1 -1 
p28 2,90 -1 -1 
p29 5,98 -1 -1 
p30 2,51 -1 -1 
p31 2,51 -1 -1 
p32 5,62 -1 -1 
p33 16,42 -1 -1 
p34 16,85 -1 -1 
p35 30,00 -1 -1 
p36 16,96 8 5 
p37 12,75 6 5 
p38 9,30 -1 -1 
p39 17,11 -1 -1 
p40 6,57 -1 -1 
p41 6,88 -1 -1 
p42 8,45 -1 -1 
p43 8,59 -1 -1 
p44 8,44 -1 -1 
p45 72,71 50 7 
p46 50,20 -1 -1 
p47 50,23 -1 -1 
p48 60,00 -1 -1 
p49 60,00 -1 -1 
p50 55,50 -1 -1 
p51 4,50 -1 -1 
   

Table 1: Tracks data 
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3.3.2.2 Behavior Description of Intersection Geometry 
The intersection geometry is mainly passive, the only self-driven changes are initiated by the 
node “source”. The structure of the intersection description is static and does not change.  
The state of the intersection is defined by:  

• the parameter values of the source nodes which are constant over a simulation run; 
• the colors of its lights. They are changed by LightsCtrl; 
• the positions of the vehicles. They are changed by the vehicles themselves; 
• the states of the intersect nodes and the join nodes; 
• the numbers of vehicles in the drain nodes and their accumulated waiting times. 

 
The only self-driven sub-model in intersection geometry is the 

• vehicle source: For initialization, the inter arrival time is read from the input of the 
overall model. As time advances, the vehicle sources “produce” vehicles following an 
exponential distribution. The inter-arrival rates preset defines, how frequently vehicles 
are generated in each source. 

 
Behavioral constraint: 

• The minimum inter arrival time must not be lower than 0.27 s – with a maximum 
speed of 15 m/s and a vehicle length of 4 m this would imply that the absolute dis-
tance between the rear buffer of the predecessor and the front buffer of the successor is 
negative. 

 
Any other changes within the intersection are driven by LightsCtrl or Vehicle. LightsCtrl 
switches the state of node “lights” between blocked (red, redyellow, yellow) and free (green, 
black). Vehicles queue in the queues on the tracks, and leave the queues on their own again. 

3.3.2.3 LightsCtrl Structure Description 
Reflects the main control device of all lights in the complete intersection. Changes the lights 
colors [red, redyellow, green, yellow, black] over time, according to the lights switching table 
read during initiation. LightsCtrl is intended to model the I/O behavior of the main lights con-
trol device. Its output attributes are a vector of color codes (one color for each group of lights 
in the intersection), indicating the color codes of all lights within the intersection. LightsCtrl 
is not decomposed any further. 
 

Lights color: FV01  
Lights color: FV02 
Lights color: FV03 
Lights color: FV04 
Lights color: DN05 

LighsCtrl 

Switching Table [NrStates] [Lights colors, duration] 

3.3.2.4 LightsCtrl Behavior Description 
The switching tables reprinted in Appendix C.1 document the switching patterns for the con-
trol of the real lights in the intersection. The values of the output parameters of lightsCtrl are 
intended to exactly reflect the behavior specified for the real lights. Lights Control is com-
pletely self-driven, uninterruptible, and updates its outputs FV01 – FV04 and DN05 after the 
expiration of the duration of each state. The switching information is read from the configura-
tion file in the beginning of each run. The state of lightsCtrl is defined by the current colors of 
the lights (lights color vector). The state transitions are triggered by the expiration of each 
state’s duration.  
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Behavioral constraints: 

• A lights cycle (FVxx) must always be red – redyellow – green – yellow – red.  
 

3.3.2.5 Vehicle Structure Description 
The sub-model vehicle reflects a single vehicle. It moves through the intersection with a given 
speed, decelerates and accelerates as appropriate, occupies space, or blocks the road. Each 
vehicle has a length, indicating the space it occupies (front bumper to rear bumper). The posi-
tion of a vehicle is defined by the track it is on and the position on the track. The vehicle 
structure is not decomposed any further. 
 

Length = 4m 
Desired Velocity = 15 m/s 
Preferred Acceleration = 3 m/s2 
Preferred Deceleration = -4 m/s2 
Current Velocity ∈ [0; 15] m/s 
Current Ac-/Deceleration ∈ {]-∞; 0], 3} m/s2 
Current Path ∈ {1, 2, …, 51} 

Vehicle 

Current Position ∈ [0; pathLength] 
 
Length, Desired Velocity, Preferred Ac- / Deceleration are equal for all Vehicles.  

• The length was taken from the technical data sheet of the VW Golf III.  
• The desired velocity of 15 m/s (=54 km/h) is assumed to be representative for the 

cruising speed in a German city with speed limit of 50 km/h.  
• Preferred acceleration and deceleration are guesses. The acceleration of 3 m/s2 is based 

on the assumption that speedy acceleration can easily accelerate a car from standing to 
100 km/h (ca. 27.78 m/s) in 10 seconds. The preferred deceleration is a pure guess. 

 
The slight deviations in these values are not considered to be relevant for the examination of 
queuing behavior. The vehicle is not decomposed any further. The vehicle records its time in 
the intersection and its waiting time. Also it provides these times as output on leaving the in-
tersection. 

3.3.2.6 Vehicle Behavior Description 
When the vehicle is instantiated and enters the modeled cutout of reality, it is assumed to 
travel with its desired velocity vdes or the allowed velocity vallow, whichever is lower. The posi-
tion xi+1 of the vehicle after time ∆t is updated according to its previous position xi and its 
current velocity vi. The velocity is updated according to the vehicle’s acceleration a and the 
target velocity vtar. 
 
 tavv ii ∆+=+1  (1)
 
If vi+1 ≤ vtar (for a > 0 and vi ≤ vtar), or vi+1 ≥ vtar (for a < 0 and vi ≥ vtar), xi+1 is determined 
directly: 
 

 2
1 2

1 tatvxx iii ∆+∆+=+  (2)

 
Otherwise, the fraction ∆tchange of ∆t is determined, after which vtar is reached.  
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Then vi+1 = vtar, and  
 

 ( )changetarchangechangeiii ttvtatvxx ∆−∆⋅+∆+∆+=+
2

1 2
1  (4)

 
Afterwards, a is set to 0. 
 
The vehicle checks frequently for obstacles in its path and determines the required decelera-
tion until the next check. The allowed velocity depends on the distance to the next obstacle. If 
there is no obstacle ahead, the vehicle accelerates with the preferred acceleration apospref to its 
desired velocity. The following reasons cause the vehicle to change its acceleration below 
zero (deceleration). 

• Red lights ahead: When approaching the lights, the necessity of deceleration is calcu-
lated as a function of the own current velocity vi and the remaining distance to the 
lights xlights – xi.  

 

 ( )ilights

i

xx
v

a
−

−
=

2

2

 (5)

 
If the required deceleration a is lower then the preferred deceleration anegpref (which 
means, there is a need to decelerate), or if  
 

 2

2
1 tatvxx posprefiilights ∆+∆≤−  (6)

 
(which means that accelerating as preferred carries the vehicle too far), a is considered 
to be the constant deceleration that makes the vehicle stop exactly at the lights to 
achieve vtar = 0. Otherwise, the red lights are not (yet) considered as an obstacle. 

 
• Narrow curve ahead: The necessity of deceleration when approaching a narrow curve 

is calculated as a function of the current own velocity vi, the remaining distance to the 
xLimit of the curve (velLimitPos), and the speed vLimit that is recommended in the curve 
(velLimit), compared to the assumed preferred deceleration.  

 

 
( ) ( )

( )iLimit

iLimit

iLimit

iLimitiLimiti
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 (7)

 
If the required deceleration a is lower then the preferred one anegpref (which means 
there is a need to decelerate), or  
 

 2

2
1 tatvxx posprefiiLimit +≤− . (8)
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a is considered to be the constant deceleration that makes the vehicle pass the  
velLimitPos xLimit with exactly the target velocity vtar = vLimit. 
 

• Slower vehicle ahead: It is assumed that each vehicle holds a safety distance to its 
predecessor that depends on its own speed and its predecessor’s speed. Idealizing the 
complex process of safety distance determination and regulation, we assume that there 
is a velocity limit for each vehicle, which equals the velocity of its predecessor. The 
position of this velocity limit moves behind the predecessor, following it in the safety 
distance. 
First the estimated position xpredestim and estimated velocity vpredestim of the predecessor 
after ∆t are determined. The safety distance xsafe is calculated as min(vi, vpredestim) + 1m 
+ xsize. (This is a rough translation of a rule of thumb for safety distance determination, 
recommended by the German AAA.) Then the required deceleration a is calculated: 
 

 ( )isafepredestim

ipredestim

xxx
vv

a
−−

−
=

2

22

 (9)

 
If the required deceleration a is lower then the preferred deceleration anegpref (which 
means there is a need to decelerate), or  
 

 2

2
1 tatvxxx posprefiisafepredestim ∆+∆≤−−  (10)

 
a is considered to be the constant deceleration that makes the vehicle pass a “follow 
point” xpredestim – xsafe with exactly the target velocity vtar = vpredestim. 
 

• “Blocked” intersect ahead: The vehicle must yield to vehicles on lanes with higher 
priority, if lanes intersect. If an intersect node is blocked and the velocity is higher 
than the allowed velocity, a constant deceleration is calculated that fully stops the ve-
hicle at the intersect node, if necessary. It accelerates again, when the intersect node 
becomes unblocked. 

 
• “Blocked” join ahead: The vehicle must yield to vehicles on lanes with higher priority, 

if lanes intersect. If a join node is blocked, the vehicle fully stops at the intersect node, 
if necessary. It accelerates again, when the join node becomes unblocked. 

 
If several conditions apply, the required deceleration for all of them is calculated separately, 
and the lowest is chosen. 
 
Other actions: 

• “Block” and “free” intersect or join node: If a vehicle closes in to an intersect or join 
node on the higher prioritized path, it “blocks” the node for all vehicles approaching 
on the lower prioritized path, if it passes it during the next three seconds, constant ve-
locity assumed. The node becomes unblocked by the vehicle again, if it is passed, or 
the vehicle’s velocity decreases, until the 3s blocking condition becomes unvalid.  

 
Behavioral constraints: 

• FIFO / No overtaking: On a single path, no overtaking is allowed. If a vehicle over-
takes its predecessor, there is an error in the model. 
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3.3.3 Object Inheritance Hierarchies 
Source, lights, fork, intersect, drain, and join are nodes. No other inheritance is defined. 
 

Source 
Lights 
Fork 
Intersect 
Join 

node 

Drain 
 

3.3.4 Integrated Predefined Submodels 
No predefined sub-models were integrated. 

3.4 Evaluated Information of the Real System 
• Lights switching diagrams, Appendix C.1 
• CAD drawing of intersection, scale 1:500, Appendix C.2 
• Induction loops data, Appendix C.3 
• Technical data sheet of VW Golf III (length) 
• Visual, subjective perception of intersection layout 
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4 FORMAL MODEL 
(Documented according to the Formal Model template in Appendix A of the main document.) 

4.1 Configuration Control Information 
Version Identifier: ADP-FM-V1, based on ADP-CM-V1 

4.2 Identification of the Formalism 
The complete Formal Model was specified using the DEVS formalism, introduced in [Zeigler, 
Praehofer, and Kim 2000] 

4.3 Structure and Behavior Description 
ColorCodes = {„red“, „yellow“, „green“, „redyellow“, “black”} 
 
|Intersects| = 12;  
|Joins| = 5;  
|Lights| = 9; 
|lightsGroups| = 5; 
|lightsStates| = 14; 
|Tracks| = 51; 
|Sources| = 9; 
|Drains| = 6; 
|Queues| = |Tracks| + |Sources| + |Drains|  
 
LightsStatesTab = {(ai,j)i = 1,...,|lightsStates|, j = 1,...,|lightsGroups| + 2 : 

// id in 1st column 
ai,j ∈ {1, 2, ..., |lightsStates|}  for i = 1,..., |lightsStates|, j = 1  
// duration in 2nd column 
ai,j ∈ R0

+  for i = 1,..., |lightsStates|, j = 2 
// color codes in 3rd to last column 
ai,j ∈ ColorCodes  
for i = 1,..., |lightsStates|, j = 3,..., |lightsGroups| + 2 

} 
 

4.3.1 LightsCtrl (Layer 1 Submodel) 
 
LightsCtrl is defined in Parallel DEVS as 
 

DEVSlightsCtrl = (XM, YM, S, δext, δint, δcon, λ, ta),  
 
where 

InPorts = {„LightsStatesTab“}, where  
XLightsStatesTab = LightStatesTab  

 
XM = {(p, v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 
 
OutPorts = {„LightsVec“}, where  

YLightsVec = ColorCodes|LightsGroups| 
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YM = {(p, v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 
 
// State is  

current phase, phase duration σ ∈ R0
+, current lightStatesTable L ∈ A 

 
S = {„initial“, „prepLightsState(1)“, ... , „prepLightsState(|lightsStates|)“} × R0

+ × A 
 
δext (phase, σ, L, e, („LightsStatesTab“, x)) 
 = („prepLightsState1“, 0, x)  if phase = „initial“ 
 = (phase, σ - e, L)   otherwise 
 
δint (phase, σ, L) 
 = („prepLightsState2“, l1,2, L) if phase = „prepLightsState(1)“ 
 = („prepLightsState3“, l2,2, L) if phase = „prepLightsState(2)“ 
 ... 

= („prepLightsState(|lightsStates|)“, l13,2, L) if phase = „pre-
pLightsState(|lightsStates| - 1)“ 

= („prepLightsState1“, l|lightsStates|,2, L) if phase = „pre-
pLightsState(|lightsStates|)“ 

 
δcon (s, ta(s), x) = δext (δint (s), 0, x) 
 
λ (phase, σ, L) 
 = (LightsVec, (l1,3, …, l1,|lightsGroups|)T) if phase = prepLightsState(1) 
 = (LightsVec, (l2,3, …, l2, |lightsGroups|)T) if phase = prepLightsState(2) 
 ... 

= (LightsVec, (l|lightsStates|,3,…, l|lightsStates|,|lightsGroups|)T) if phase = pre-
pLightsState(|lightsStates|) 

 
ta (phase, σ, L)  

= ∞ if phase = “initial” 
= σ otherwise 

  

4.3.2 IntersGeom (Layer 1 Submodel) 
IntersGeom is defined in Parallel DEVS as 
 

DEVSIntersGeom = (XM, YM, S, δext, δint, δcon, λ, ta),  
 
where 

InPorts = {“LightsVec”, “VehicleVec”}, where  
XLightsVec = ColorCodes|LightsGroups|, where 
XVehicleVec = Vn where  

n is the number of vehicles and 
V = N × N × R0

+ × R0
+ × R 

 
XM = {(p, v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 
 
OutPorts = {„NodesStatesVec“, “QLengthVec”}, where  

YNodesStatesVec = {“free”, “blocked”}|Intersects| + |Joins| + |Lights|  
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YQLengthVec = N0 
|Queues|  

 
YM = {(p, v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 
 
// State is defined by  

phase ∈ {passive, update},  
time σ to ql update ∈ R0

+,  
qLengthsVec ∈ N0 

|Queues|,  
lightsStates ∈ {„free“, „blocked“}|Lights|,  
joinsStates ∈ {„free“, „blocked“}|Joins|,  
intersectsStates ∈ {„free“, „blocked“}|Intersects|,  
 

S = {„passive“, „update“} × R0
+ × N0 

|Queues| × {„free“, „blocked“}|Intersects| × {„free“, 
„blocked“}|Joins| × {„free“, „blocked“}|Lights| 
 
δext (phase, σ, queueSV, lightsSV, joinsSV, intersectsSV, e, („LightsVec“, x)) 
 = („update“, σ - e, queueSV, getNewLightsSV(x), joinsSV, intersectsSV) 
 
 where  
  getNewLightsSV(x) :  

ColorCodes|LightsGroups| → {„free“, „blocked“}|Lights| 
 
δext (phase, σ, queueSV, lightsSV, joinsSV, intersectsSV, e, („VehicleVec“, x)) 

= („update“, σ - e, getNewQueueSV(x), lightsSV, getNewJoinsSV(x), get-
NewIntersectsSV(x)) 
 
where  

  getNewQueueSV(x) : Vn → N0 
|Queues|  

  getNewJoinsSV(x) : Vn → {„free“, „blocked“}|Joins| 
  getNewIntersectsSV(x) : Vn → {„free“, „blocked“}|Intersects| 
 

    // report 
δint (“passive”, σ, queueSV, lightsSV, joinsSV, intersectsSV) 
 = (“passive”, reportIntervall, queueSV, lightsSV, joinsSV, intersectsSV) 
 

 // return to report state after update 
δint (“update”, σ, queueSV, lightsSV, joinsSV, intersectsSV)   
 = (“passive”, σ, queueSV, lightsSV, joinsSV, intersectsSV) 
 
δcon = (s, ta(s), x) = δext (δint (s), 0, x) 
 
λ (“passive”, σ, queueSV, lightsSV, joinsSV, intersectsSV) 
 = (“QLengthVec”, queueSV)  
 
λ (“update”, σ, queueSV, lightsSV, joinsSV, intersectsSV) 
 = (“NodesStatesVec”, (lightsSV, joinsSV, intersectsSV)) 
 
ta (phase, σ, queueSV, lightsSV, joinsSV, intersectsSV)  

= σ    if phase = “passive” 
= 0    if phase = “update”; 
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4.3.3 VehicleGen (Layer 2 Submodel “Vehicle Source”) 
VehicleGen is defined in Parallel DEVS as 
 

DEVSVehicleGen = (XM, YM, S, δext, δint, δcon, λ, ta),  
 
where 

InPorts = {„InterArrTVec“}, where  
XInterArrTVec = (R0

+)|Gen| , |Gen| = 9 
 
XM = {(p, v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 
 
OutPorts = {„NewVehicle“}, where  

YNewVehicle = V where V = N × N × R0
+ × R0

+ × R 
 
YM = {(p, v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 
 
// State is  

phase ∈ {“initial”, “generating”}, gen interval σ ∈ R0
+, interArrT ∈ R0

+ 
 
S = {“initial”, “generating”} × R0

+ × R0
+ 

 
δext (phase, σ, interArrT, e, („InterArrTVec“, x)) 
 = („generating“, 0, getOwnInterArrT(x)) if phase = „initial“ 
 = (phase, σ - e, interArrT)   otherwise 
 
δint (“generating”, σ, interArrT) 
 = („generating“, exp(interArrT), interArrT) 
 
δcon (s, ta(s), x) = δext (δint (s), 0, x) 
 
λ (“generating”, σ, interArrT) 
 = (“VehicleData”, getVehicleData()) 
 
ta (phase, σ, L)  

= σ if phase = “generating” 
= ∞ otherwise 

 

4.3.4 VehicleCtrl (Layer 1 Submodel) 
 
VehicleCtrl is defined in Parallel DEVS as 
 

DEVSvehicleCtrl = (XM, YM, S, δext, δint, δcon, λ, ta),  
 
where 
 

InPorts = {„nodesStatesVec“, “NewVehicle”}, where  
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XNodesStatesVec = {„free“, „blocked“}|Intersects| × {„free“, „blocked“}|Joins| ×{„free“, 
„blocked“}|Lights| 

XNewVehicle = V, where V = N × N × R0
+ × R0

+ × R 
 
XM = {(p, v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 
 
OutPorts = {„TWait“, “VehicleVec” }, where  

YTWait = R0
+ 

YVehicleVec = Vn where n is number of vehicles  
 
YM = {(p, v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 
 
// State is  

phase ∈ {“updating”},  
time-step σ ∈ R0

+,  
vehicleVec ∈ Vn,  
mapState ∈ {„free“, „blocked“}|Intersects| × {„free“, „blocked“}|Joins| ×{„free“, 

„blocked“}|Lights| 
 
 
S = {“updating”} × R0

+ × Vn × {„free“, „blocked“}|Intersects| × {„free“, „blocked“}|Joins| 

×{„free“, „blocked“}|Lights| 
 
δext (“updating”, σ, vehicleVec, mapState, e, („NewVehicle“, x)) 
 = („updating“, σ - e, addVehicle(x), mapState) 
 
δext (“updating”, σ, vehicleVec, mapState, e, („NodesStatesVec“, x)) 
 = (“updating”, σ - e, vehicleVec, x)    
 
δint (“updating”, σ, vehicleVec, mapState) 
 = (“updating”, TIME_STEP, update(vehicleVec), mapState) 
 
 where update(vehicleVec) : Vn → Vn 
 
δcon (s, ta(s), x) = δext (δint (s), 0, x) 
 
λ (“updating”, σ, vehicleVec, mapState) 
 = (“VehicleVec”, vehicleVec)  
 = (“TWaitVec”, tWaitofArrivedVehicles(vehicleVec)) 
 
ta (phase, σ, L) = σ 
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4.3.5 Intersection (Overall Integrated Layer 0 Model) 
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Figure 4: Sketch of the Coupled Model "Intersection" 

 
The coupled DEVS specification of Intersection is 
 
 N = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC), 
 
where 

InPorts = {„InterArrTVec“, “LightsStatesTab”}, where  
XInterArrTVec = (R0

+)|Gen| , |Gen| = 9 
XLightsStatesTab = LightsStatesTab 

X = {(p, v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 
 
OutPorts = {„TWait“, “QLengthVec” }, where  

YTWait = R0
+ 

YQLengthVec = N0 
|Queues| 

 
Y = {(p, v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 
 
D = {LightsCtrl, IntersGeom, VehicleCtrl, VehicleGen1, VehicleGen2,…, Vehi-

cleGen9} 
 
MVehicleGen1 = MVehicleGen2 = … = MVehicleGen9 = MVehicleGen 

 
EIC = {((N, „InterArrTVec“), (VehicleGen1, „InterArrTVec“),(VehicleGen2, „Inte-

rArrTVec“), …, (VehicleGen9, „InterArrTVec“)), ((N, “LightsStatesTab”), 
(LightsCtrl, “LightsStatesTab”))} 

 
EOC = {(( IntersGeom, “QLengthVec”), (N, “QLengthVec”)), ((VehicleCtrl, 

„TWait“), (N, „TWait“))} 
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IC = {((VehicleGen1, “NewVehicle”), (VehicleGen2, “NewVehicle”), …, (Vehicle-
Gen9, “NewVehicle”), (VehicleCtrl, “NewVehicle”)), ((LightsCtrl, “Lights-
Vec”), (IntersGeom, “LightsVec”)), ((intersGeom, “NodesStatesVec”), (Ve-
hicleCtrl, “nodesStatesVec”)), ((VehicleCtrl, “VehicleVec”), (IntersGeom, 
“VehicleVec”))} 
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5 EXECUTABLE MODEL 
(Documented according to the Executable Model template in Appendix A of the main docu-
ment.) 

5.1 Configuration Control Information 
Version Identifier: ADP-EM-V1, based on ADP-FM-V1 

5.2 Runtime Environment 
MS Windows 2000 PC, SLX Professional [Henriksen 1998]. The model behavior is visual-
ized with Proof Animation [Wolverine 2003]. 

5.3 SW Description 
All input to the model is provided by the file “ExpFile.txt”. 
Output is recorded in the files  

• “vehicleTimes.txt” : Each vehicle inserts its alive time and its waiting time. 
• “IntersStateTraj.txt” : Whenever the state of the layer 1 submodel intersection geome-

try changes, this is recorded here. 
• “AnDerPointAnimV2.atf” : This is the simulation trace file required for the visualiza-

tion of model behavior. 
The SLX code files are attached on the CD-ROM. 

5.4 Simulation Infrastructure 
The simulation infrastructure provided by SLX was used. More information about it can be 
obtained at [Wolverine 2003] 

5.5 Standards Summary 
No standards were applied for the implementation of the model. 
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6 SIMULATION RESULTS 

6.1 Configuration Control Information 
Version Identifier: ADP-SR-V1, based on ADP-EM-V1 

6.2 Execution Environment 
An excerpt of the experiment setup file (ExpFile) is documented in Appendix C.4. The model 
output was written into .txt file, and post-processed with MS Excel. 

6.3 Experimental Design 

6.3.1 Aim of Experimentation 
The performance of the intersection is observed, using three different lights control strategies 
and different intensities of traffic. The accumulated waiting times of the vehicles are supposed 
to contribute to the identification of the most appropriate lights switching pattern. 

6.3.2 Experiment Setup 

6.3.2.1 Density of Traffic Flow 
There are three intersection entries, which will be distinguished during experimentation: 
• North: Sources s11, s12, s51 
• South: Sources s21, s22, s23 
• West: Sources s31, s32, s41 
 
The density of traffic on one entry road is assumed to be equally distributed and parameter-
ized for all three lanes. 
 
The density of traffic is discretized into  three categories: 
• Low traffic density: The inter arrival time between vehicles is 60 seconds 
• Medium traffic density: The inter arrival time between vehicles is 30 seconds 
• High traffic density: The inter arrival time between vehicles is 10 seconds 
 
The inter arrival time for low traffic was derived from the induction sensors data documented 
in the associated files.  

6.3.2.2 Applied lights switching patterns: 
The following lights switching patterns are distinguished: 
  

Id Duration 
[s] 

FV01 FV02 FV03 FV04 DN05 

1 25 green green red red black 
2 3 yellow green red red black 
3 1 red green red red black 
4 1 red green redyellow red black 
5 3 red yellow green red black 
6 2 red red green red black 
7 1 red red green red green 
8 1 red red green redyellow green 
9 20 red red green green black 
10 3 red red yellow yellow black 
11 2 red red red red black 
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Id Duration 
[s] 

FV01 FV02 FV03 FV04 DN05 

12 1 red redyellow red red black 
13 1 redyellow green red red black 
14 6 green green red red black 

Table 2: Switching Pattern 1 

The differentiation between state 1 and state 14 is due to the necessity to have a green period 
of 25 seconds after initiation of this switching program. 
 

Id Duration 
[s] 

FV01 FV02 FV03 FV04 DN05 

1 20 green green red red black 
2 3 yellow green red red black 
3 2 red green redyellow red black 
4 3 red yellow green red black 
5 2 red red green red black 
6 1 red red green red green 
7 1 red red green redyellow green 
8 28 red red green green black 
9 3 red red yellow yellow black 
10 2 red red red red black 
11 1 red red yellow red red black 
12 1 red yellow green red red black 
13 22 green green red red black 

Table 3: Switching Pattern 2 

 
Id Duration 

[s] 
FV01 FV02 FV03 FV04 DN05 

1 15 green green red red black 
2 3 redyellow green red red black 
3 1 red green red red black 
4 1 red green redyellow red black 
5 17 red green green red black 
6 3 red redyellow green red black 
7 2 red red green red black 
8 1 red red green red green 
9 1 red red green redyellow green 
10 10 red red green green black 
11 3 red red redyellow redyellow black 
12 2 red red red red black 
13 1 red redyellow red red black 
14 1 redyellow green red red black 
15 28 green green red red black 

Table 4: Switching Pattern 3 

6.3.2.3 Experiment Duration 
Each single simulation run lasts 3600 seconds (1 hour) of simulated time. This is assumed to 
include a sufficient number of stochastic vehicle generations to grant statistical relevance. 

6.3.2.4 Experiment Overview  
For each lights switching table, simulation runs with traffic density parameters documented in 
Table 5 are executed, yielding a total of 81 simulation runs in the experiment. 
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6.4 Input Data Documentation 
Table 5 documents the initialization values of the  model input parameters for each simulation 
run of the experiment. 
 

Run ID Density N Density S Density W Density N 
(s) 

Density S 
(s) 

Density W 
(s) 

1 L L L 60 60 60 
2 M L L 30 60 60 
3 L L M 60 60 30 
4 L M L 60 30 60 
5 M L M 30 60 30 
6 M M L 30 30 60 
7 L M M 60 30 30 
8 M M M 30 30 30 
9 H L L 10 60 60 
10 L L H 60 60 10 
11 L H L 60 10 60 
12 H L H 10 60 10 
13 H H L 10 10 60 
14 L H H 60 10 10 
15 H H H 10 10 10 
16 H M M 10 30 30 
17 M M H 30 30 10 
18 M H M 30 10 30 
19 H M H 10 30 10 
20 H H M 10 10 30 
21 M H H 30 10 10 
22 L H M 60 10 30 
23 L M H 60 30 10 
24 M H L 30 10 60 
25 M L H 30 60 10 
26 H M L 10 30 60 
27 H L M 10 60 30 

Table 5: Combinations of incoming traffic densities 
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6.5 Results – Excerpts 

 
Figure 5: Excerpt of the post-processed simulation output data 
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Figure 6: Comparison of the three different lights control strategies under heavy traffic from all direc-

tions 
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APPENDIX C.1 – LIGHTS SWITCHING TABLES 
Table 1 

 
Table 2 

 
Table 3 
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APPENDIX C.2 – CAD SKETCH 
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APPENDIX C.3 – EXEMPLARY INDUCTION SENSOR DATA 
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APPENDIX C.4 – EXCERPT OF THE EXPERIMENT SETUP FILE 
81   //overall number of runs 
 
Run1LLL  //run identifier 
 
60   // north mean vehicle inter arrival time 
60 
60 
60   // south mean vehicle inter arrival time 
60 
60 
60   // west mean vehicle inter arrival time 
60 
60 
 
14   // number of lights phases 
 
25 green green red red black 
3 yellow green red red black 
1 red green red red black 
1 red green orange red black 
3 red yellow green red black 
2 red red green red black 
1 red red green red green 
1 red red green orange green 
20 red red green green black 
3 red red yellow yellow black 
2 red red red red black 
1 red orange red red black 
1 orange green red red black 
6 green green red red black 
 
3600  // seconds of simulation time 
 
 
Run1MLL //run identifier 
 
30  // north mean vehicle inter arrival time 
30 
30 
60  // south mean vehicle inter arrival time 
60 
60 
60  // west mean vehicle inter arrival time 
60 
60 
 
14  // number of lights phases 
 
25 green green red red black 
3 yellow green red red black 
1 red green red red black 
1 red green orange red black 
3 red yellow green red black 
2 red red green red black 
1 red red green red green 
1 red red green orange green 
20 red red green green black 
3 red red yellow yellow black 
2 red red red red black 
1 red orange red red black 
1 orange green red red black 
6 green green red red black 
 
3600  // seconds of simulation time 




