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Abstract: This article works toward a unification of two related concepts that underpin system-
theory-based modeling and simulation–the hierarchy of system specifications and morphisms and the
System Entity Structure (SES). The hierarchy organizes system specification along levels ranging from
behavior to structure capturing increasing knowledge of the system input/output processing and
state dynamics. The SES is a constructive ontology describing compositions of modular components
via coupling of input/output ports. Toward unification of these concepts, we propose an abstraction
of the SES called the MetaSES that supports the construction of complex systems of systems with
multiple components belonging to specified classes. Moreover, we place the MetaSES within a
computational framework with the goal of making it easier to design and build complex hierarchical
DEVS models and to communicate their structures and intended behaviors to foster continued reuse
and development. We discuss several examples of applications to illustrate how the MetaSES-based
enhancement of the hierarchy of system specifications and morphisms helps to push the boundaries of
complexity management in the theory and practice of modeling and simulation. Research directions
stemming from the proposed concepts are suggested.

Keywords: modeling and simulation; hierarchy of system specifications; system entity structure;
DEVS; discrete event system specification; metamodeling

1. Introduction

This article appears in the context of the Open Special Issue of Information Journal
called “Simulation Modeling Theory and Practice: Pushing the Boundaries”. The article
addresses the challenge of pushing the boundaries by extending the hierarchy of system
specifications and morphisms which has been formulated as a rigorous system-theoretic
foundation for modeling and simulation (M&S) theory and practice [1]. For readers who
are not familiar with the current state-of-the-art of M&S it is instructive to quote from the
solicitation for the special issue as written by the editors:

“In recent decades, modeling and simulation has evolved to the point where
it is now a recognized discipline and provides infrastructure for disciplines
spanning the whole spectrum of human knowledge, intellectual and practical
effects. The term “modeling and simulation” grants equal stress on both modeling
and simulation aspects of this discipline. The Modeling and Simulation Body of
Knowledge (M&S BoK) is a living work in process with the goal of establishing
a kernel of topics that categorically characterize the discipline of modeling and
simulation as it drives the progress of multifold disciplines in science, engineering,
and the arts. The essence of M&S is the creation of conceptual representations of
entities, relations, and processes describing a problem domain with the goal of
making them computationally executable artifacts. Such simulation models can
be used to perform experiments or to gain experience; both dimensions provide a
multitude of possibilities”.
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Within this broad context, we note that the development of families of coherent rep-
resentations of real-world phenomena (climate change, pandemics, global food supply,
etc.,) are needed to support the computational exploration of simulations ranging from
spreadsheet analysis to high-performance cloud-based execution [1]. We contend that
the long-term development of such families should be founded on a firm system theory
basis informed by model structures leveraging computational resources. Zeigler [2] pro-
posed a methodology based on the theory of modeling and simulation [3] founded on
system-theoretical concepts of Wymore [4] and others. In this article, we attempt to unify
two related concepts that underpin system-theory-based M&S–the hierarchy of system
specifications and morphisms and the System Entity Structure (SES). The hierarchy or-
ganizes system specification along levels ranging from behavior to structure capturing
increasing knowledge of the system input/output processing and state dynamics. The SES
is a constructive ontology describing compositions of modular components via coupling
of input/output ports. Toward unification of these concepts, we propose an abstraction
of the SES called the MetaSES that supports construction of complex systems of systems
with multiple components belonging to specified classes. Moreover, we place the MetaSES
within a computational framework with the goal of making it easier to design and build
complex hierarchical DEVS models and to communicate their structures and intended
behaviors to foster continued reuse and development.

The underlying methodology [2] critically employs the hierarchy of system specifica-
tions and morphisms as outlined:

• Use of system specification hierarchy and associated morphisms. The levels of sys-
tem specification range from lowest level behavior specification to highest level struc-
tural specification [3]. Corresponding to each system specification level is a morphic
relation appropriate to a pair of systems specified at that level. Morphisms at each
level are defined such that a morphism which preserves the structural features of one
system in another system at one level also preserves its features at all lower levels.

• Development Method. The morphisms at the Input/output Function and State Tran-
sition levels underlie the minimal realization and homomorphic image concepts
supporting the quest for minimal explanatory forms and computationally feasible
implementations. Validation of the latter proceeds via proofs and Discrete Event
System Specification (DEVS)-based simulations. The prioritization of behaviors for
first consideration is motivated by the desire to come up with, and define, building
blocks and architectural coupling patterns for ubiquitous, composable, and reusable
application [2].

• Minimal forms. In line with the hoary dictum of philosophy, Occam’s razor, we seek
explanations of behavior that contain only those assumptions that are necessary to the
explanation. However, the minimal realizations that we seek are based on concepts
formulated in mathematical systems theory derived from both linear systems theory
and finite automata theory [5]. Proving that a realization of a behavior is minimal in
this sense implies that it is a homomorphic image in relation to any implementation
of the same behavior. Moreover, definitions for state-based realization of behaviors
based on mathematical system theory and DEVS fundamentally include temporal and
probabilistic characteristics of system inputs, state, and outputs [3]. Moreover, they
provide a solid system-theoretical foundation and simulation modeling framework
for both low and high-performance computational support of complex phenomena
model development.

• Network construction. The hierarchy of system specifications includes levels for
definition of networks of components with coupling specification. This is exemplified
by the DEVS coupled model definition with its well defined coupling specification.
The proof of closure under coupling shows how resultant networks are equivalent to
basic models, and can be treated as such in hierarchical construction [3].

• Model formalism for Simulation and Design. DEVS enables formal and complete
description of hybrid continuous/discrete model components and subsystems. DEVS-
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based software tool sets provide atomic model and hierarchical coupled model spec-
ifications that support graphical description of the internals and interfaces of com-
ponent behavior combining energy, material, and information flows. The hybrid
DEV&DESS [3] formalisms enable expressing differential and algebraic equations
for energy-related internal variables intermixed with discrete behavior described in
state-based system form. Finally, transparent implementation of the canonical DEVS
abstract simulator for handling events and equations enable design of dedicated
simulation functionality.

Zeigler [2] provides a detailed comparison with some prominent methodologies for
development of models of mind [6–8]. Although such methodologies support comparable
aspects of the above dimensions, they fail to integrate within their frameworks the compu-
tational unification for simulation provided by the hierarchy of systems specifications and
morphisms. More specifically, as we shall illustrate, multiple levels of the hierarchy may
be simultaneously at play in modeling or design necessitating the ability to conveniently
span the hierarchy levels. As Wilsdoft et al. [9] state, “Providing a structured representa-
tion of the various ingredients of simulation experiments in the form of metamodels and
collecting them in a repository improves knowledge sharing across application domains
and simulation approaches”. The framework discussed here provides a formal system the-
oretically grounded, and computational justified, approach to developing the metamodels
in a coherent and integrated manner.

Table 1 informally reviews the levels of system specification ranging from lowest
level behavior specification to highest level structural specification. Corresponding to each
system specification level is a morphic relation appropriate to a pair of systems specified at
that level. Morphisms at each level are defined such that a morphism which preserves the
structural features of one system in another system at one level also preserves its features
at all lower levels [3].The morphisms at the I/O Function and State Transition levels are the
ones that underlie the minimal realization and homomorphic image concepts supporting
the quest for minimal forms mentioned earlier. Examples are presented in the table that
relate to the applications of the methodology to be discussed in the sequel.

Table 1. Informal Description of the Levels of System Specification.

Level Specification Name What We Know at This Level Examples to Be Discussed in the Sequel

0 I/O Frame
How to stimulate the system with inputs;
what variables to measure and how to
observe them over a time base;

Input: set of symbols from an alphabet
Output: Boolean variable indicating
acceptance or not of input stream as
sequence in regular language

1 I/O Relation Time-indexed data collected from a source
system; consists of input/output pairs

Union of I/O Functions over all initial
states so that multiple output segments
may result from the same input segment
(depending on which state actually was in
force initially.)

2 I/O Function
Knowledge of initial state; given an initial
state, every input segment produces a
unique output segment.

Pairing of unique output value with input
segment of symbols indicating acceptance,
or not, of input stream as sequence in
regular language.

3 I/O System

How states are affected by inputs; given a
state and an input what is the state after the
input stimulus is over; what output event is
generated by a state.

This is the specification level at which the
minimal realization of an I/O Function
resides. For example, the acceptor with the
smallest number of states for a given
language is described at this level.
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Table 1. Cont.

Level Specification Name What We Know at This Level Examples to Be Discussed in the Sequel

4 Structured System
The I/O System state is described in terms of
a cross-product of state sets, such as a point
in a vector space.

The description of the Random Forest model
as it transits from global state to global state
under input and activation events.

5 Multi-component
System

The system is specified as composition of
components whose outputs are directly
linked to inputs of other components

The Verilog implementation of the Random
Forest model resides at this level where
components are tightly “wired” lacking the
ability to stand alone.

6 Network of Systems

Components and how they are coupled
together. The components can be specified at
lower levels or can even be structure systems
themselves–leading to hierarchical structure.

The SES-based implementation of the
Random Forest model resides at this level as a
composition of modular systems with explicit
coupling rather than hard wired connections.

2. Operationalizing the Hierarchy of System Specifications and Morphisms

Figure 1 illustrates a conceptual framework proposed to operationalize the hierarchy
of system specifications and morphisms. MetaSES is a meta-level abstraction of the compo-
nents and couplings of the System Entity Structure (SES) [10] that provides a computational
ontology to enhance modeling and simulation at the coupled model level of the hierarchy.
More explicitly, a MetaSES is an abstract specification of an SES that recognizes classes
of DEVS models as components and provides a high-level description of the port-to-port
coupling that routes message flow among such components. As such, a MetaSES leverages
the SES with concepts and tools that refine and extend existing ones to enhance support
for creating SESs and thereby exploit its ability to be transformed into simulateable DEVS
coupled models [11,12].
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Before proceeding to more detailed exposition, an example from Figure 6.4 in [13] is
instructive. That SES considers a Dating Game made up of a group of boys and a group
of girls, in which all boys say hello to each other, all girls say hello to each other, and girls
greet boys. A MetaSES abstraction of this SES would specify a pair of model classes (B,G)
and couplings: All B send Hello to all B, all G send Hello to all G, and all G send Greeting
to all B, as specified in constrained language form patterned after that for the SES described
in [13]. As shown in that example, with respective models resident in a model repository
for Boy and Girl components that can consume and transmit messages labeled Hello and
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Greeting, the SES can be automatically transformed into a simulateable model called the
Dating Game.

The MetaSES is an abstract specification of an SES that specifies classes of compo-
nents and a high-level description of the port-to-port coupling. Clearly, it needs to a lot
of elaboration to provide enough detail for a DEVS simulation. As shown in Figure 1,
elaboration can involve components (typically specified at the lower levels of the hier-
archy), coupling specifications (at the network of systems or coupled model levels) and
message/port specifications (spanning component and network levels). Nevertheless, the
information specified by the MetaSES is critical to a top down construction process and
offers a standalone abstraction that can unify separately developed models into a unified
family. Moreover, it provides an initial pattern from which to develop such a family through
the elaboration process to be discussed next.

We illustrate this process in Figure 2. The MetaSES generates a labelled directed graph
(digraph). This induces a labelled digraph generated by an unrestricted SES that is its
digraph morphic pre-image. Sub-digraphs of the latter result from further imposition of
constraints resulting in transformable SESs to be simulated in computational experiments.
An example of a class of neural nets illustrates this idea: The MetaSES on the lower right
specifies that such neural nets consist of classes of Neurons and Synapses which exchange
spikes (all Neurons send Spike to all Synapses, all Synapses send Spike to all Neurons).
The unrestricted digraph at the upper right specifies individual neurons and individual
synapses with all-to-all coupling connecting them (and no internal couplings within these
groups). We call this the free digraph pre-image generated by the MetaSES. Finally, the SES
at the bottom left eliminates most couplings so that only specified (neuron, synapse) and
(synapse, neuron) pairs are coupled.
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The discussion above is summarized succinctly as:

MetaSES for Neural Net:

• Classes: N, S
• Coupling: N sends Spike to S, S sends Spike to N

Free Digraph pre-image of MetaSES:

• Components: neurons in N, synapses in S
• Coupling: all-to-all N to S via Spike, all-to-all S to N via Spike
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Transformable SES:

• Components: neurons in N indexed 1,2, . . . |N|, synapses in S indexed by all pairs (i,j)
where i ! = j

• Coupling: each neuron sends Spike to the synapses with the same left index,

each synapse sends Spike to the neuron with the same right index
Note that the last version specifies the usual pattern where the synapse indexed by (i,j)

represents the effect of neuron i’s output on neuron j’s input.
Thus the concept of MetaSES can be seen as implemented in three stages: First, the

classes of components and the types of messages exchanged among them are laid out;
second, the implied components and couplings are generated; and third, a variety of poten-
tial system entity structures can be generated by placing more constraints on the component
numbers and their couplings. Note that stage 2 is algorithmic and can be automated while
stage 3 can be supported by suitable tools, thus opening up the potential for exploration of
much more complex spaces than previously possible. Appendix A.1 sketches an algorithm
for performing stage 2 which has been implemented in MS4 Me (Seo et al. 2013). In the
sequel, we illustrate the concept with variations that arise in specific applications: Artificial
Neural Nets, Language Acceptance and Generation, Dynamic Neuronal Ensembles and
Random Forests of Decision Trees. A summary of the notable features of each class evinced
by the MetaSES approach appears below. Operations on MetaSESs such as component ma-
nipulation, coupling modification, and message elaboration are illustrated in the examples
to be discussed.

Summary of MetaSES Application Examples

Table 2 provides a summary of the examples to be discussed that offers a perspective
on the range of complex model descriptions that the MetaSES can support.

Table 2. Summary of MetaSES application examples to be discussed.

Type of Network Model Hierarchy MetaSES Transformable SES

Artificial Neural Nets Single level Neurons and Synapses are
coupled via Spikes

Synapses are in one-one
correspondence with pairs
of Neurons

Language Acceptance Single level

Activation Nodes and
Elementary Perception Units
are coupled by Activate
signals to recognize external
input streams of symbols.

Activation and input have
distinct coupling patterns;
DeActivateable nodes enable
later solutions to win.

Language Generation Single level

Activation Nodes and
Elementary Generation Units
are coupled by Activate
signals to generate external
output streams of symbols.

Activation and output have
distinct coupling patterns;
Competing transitions vie for
activation with a bidding protocol.

Dynamic Neuronal Ensembles
Two level composition of
(1) Neurons and (2)
Neuron components

(1) Neurons at the top level of
a hierarchical composition are
coupled via Spikes.
(2) Neurons are composed of
dendrites, cellbody interacting
via fire signals and Spikes.

Axon outputs and dendrite
inputs are individual exposed
as ports at the Neuron level to
enable control of axon to
dendrite couplings.

Random Forest of Decision Trees
Two level composition of
(1) Decision trees and (2)
Decision tree components

(1) Forest composed of trees in
parallel composition with
output collector.
(2) Decision Tree is composed of
input image, Yes/No Decision
models and report nodes.

Yes/No Decision models,
receive external features from
the input image and channel
decision making via
downstream Activate signals to
final classification report notes.
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3. Application to Event-Based Language Processing

Application of the MetaSES paradigm to finite state language generation and recog-
nition will show its utility. Figure 3 illustrates a workflow that starts with a Finite State
Automaton (FSA) description which is mapped through all three stages just mentioned into
a MetaSES and then into an SES and finally, a DEVS coupled model that can be simulated
in software and/or implemented in hardware.
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The example of language acceptance/generation will illustrate how the MetaSES
concept enables abstract representation of the common structural features of a wide family
of models (regular language devices).

3.1. Finite State Language Acceptance

Based on background on DEVS representation of language acceptance and generation
in [14] consider the following MetaSES construction:

Given FSA = < Q,X,delta,qo,F>

where Q is a finite set of states,
X is an alphabet
Delta is a partial mapping from QxX to Q
qo is the initial state
F is a subset of Q, the final states, define the MetaSES as follows:

• Classes: AN (Activation Node), Elementary Perception Unit (EPU), First Arrival (FA)
• Coupling:

◦ FSA sends X to EPU, (external input coupling)
◦ EPU sends Activate to AN, (internal coupling)
◦ AN sends Activate to EPU,
◦ AN sends Activate to FA,
◦ FA sends Activate to FSA (external output coupling)

As depicted in Figure 4, the coupling pattern makes clear the types of components and
the interaction among them as mediated by the types of messages. We can see that external
alphabet inputs X arrive to the EPUs separately from the activation arrivals (this is distinct
from typical artificial neural nets (ANN) in which data arrival serves as both stimulus and
activation. Further the external output is an Activate message that is produced when a
DEVS input segment is recognized. When incorporated into a larger coupled model, this
output can serve to activate other downstream components such as decision elements.
Although this pattern is fairly simplistic, the utility of this representation will become more
apparent as additional features are introduced to handle more complex requirements.



Information 2023, 14, 22 8 of 20

Information 2023, 13, x FOR PEER REVIEW 8 of 21 
 

 

o AN sends Activate to FA, 
o FA sends Activate to FSA (external output coupling) 

As depicted in Figure 4, the coupling pattern makes clear the types of components 
and the interaction among them as mediated by the types of messages. We can see that 
external alphabet inputs X arrive to the EPUs separately from the activation arrivals (this 
is distinct from typical artificial neural nets (ANN) in which data arrival serves as both 
stimulus and activation. Further the external output is an Activate message that is 
produced when a DEVS input segment is recognized. When incorporated into a larger 
coupled model, this output can serve to activate other downstream components such as 
decision elements. Although this pattern is fairly simplistic, the utility of this 
representation will become more apparent as additional features are introduced to handle 
more complex requirements. 

 
Figure 4. FSA coupling pattern showing the types of components and their interaction. 

Carrying out the subsequent stages of the process in Figure 2, we obtain the MetaSES 
and the Transformable SES: 
Free Digraph pre-image of MetaSES: 
• Components:  
o {ANq | q ∈ Q} (Activation Node for each state) 
o {EPUx| x ∈ X} (EPU for each input element} 
o FA 
• Coupling:  
o FSA sends Activate to all AN (external input coupling) 
o FSA sends X to all EPU (external input coupling)  
o all EPU sends Activate to all AN,  
o all AN sends Activate to all EPU, 
o all AN sends Activate to FA, (internal coupling) 
o FA sends Activate to FSA (external output coupling) 
Transformable SES: 
• Components:  
o {ANq | q ∈ Q} (Activation Node for each state) 
o {EPUx,i | x ∈ X, i = 1,.. Number occurrences of x in delta} (There is one EPU for each 

occurrence of x, and it causes a distinct state transition so it must be identified 
uniquely) 

o FA 
• Coupling:  
o FSA sends Activate to ANq0 
o For each q in F, ANq sends Activate to FA,  

Figure 4. FSA coupling pattern showing the types of components and their interaction.

Carrying out the subsequent stages of the process in Figure 2, we obtain the MetaSES
and the Transformable SES:

Free Digraph pre-image of MetaSES:

• Components:

◦ {ANq | q ∈ Q} (Activation Node for each state)
◦ {EPUx| x ∈ X} (EPU for each input element}
◦ FA

• Coupling:

◦ FSA sends Activate to all AN (external input coupling)
◦ FSA sends X to all EPU (external input coupling)
◦ all EPU sends Activate to all AN,
◦ all AN sends Activate to all EPU,
◦ all AN sends Activate to FA, (internal coupling)
◦ FA sends Activate to FSA (external output coupling)

Transformable SES:

• Components:

◦ {ANq | q ∈ Q} (Activation Node for each state)
◦ {EPUx,i | x ∈ X, i = 1, . . . , Number occurrences of x in delta} (There is one EPU for each

occurrence of x, and it causes a distinct state transition so it must be identified uniquely)
◦ FA

• Coupling:

◦ FSA sends Activate to ANq0

◦ For each q in F, ANq sends Activate to FA,
◦ FA sends Activate to FSA
◦ FSA sends X to all EPU

Of the EPUs that recognize the input symbol, the one that has been last activated
will be the one to respond and activate the successor nodes–we describe the coupling to
implement this requirement in the following algorithm sketch:

Algorithm Sketch:
Assignment algorithm to properly restrict couplings of the form: all EPU sends Activate to all
AN, and all AN sends Activate to all EPU.
For each x ∈ X, index the occurrences of x
Define Dict = {(q,xi,q’) where q’ = delta(q,xi) and xi is the ith occurrence of x ∈ FSA}
For each triple (q,x,q’) ∈ Dict

Add couple: ANq sends Activate to EPUx,i
Add couple: EPUx,i sends Activate to ANq’
An example is shown in Figure 5, where the language L = {aba} in Figure 5a is realized

by the minimal realization automaton in Figure 5b, then mapped into the network sketched
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in Figure 5c, and finally into the coupled model in Figure 5d. There are two occurrences of
symbol a, viz, a1 and a2, one occurrence of b, and states s0, . . . , s3 with s0 being the initial,
and s3 the final state. In the network realization, there are two EPU recognizers for arrival
of a symbol and one EPU for b and there are activation nodes for each of the four states.
The external input is sent to each of the EPUs and when input arrives, there is exactly one
EPU that is in the active state which recognizes it and passes on the activation to successor
states via the corresponding activation nodes.
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3.2. Resolving Competing Solutions in Language Acceptance

The phenomenon of conflicting solutions, ubiquitously occurring in decision making
models, actually shows up in the implementation of FSAs discussed thus far. Resolving
such conflicts in the context of the DEVS realization will show how the behavior level of the
system specification hierarchy impacts the MetaSES at the high level. For example, were the final
state in Figure 5 to be incident with the initial state the accepted language would become
L = {aba} *. In the usual formulation, a string such as abaaba would be accepted rather
than the acceptable substring aba. This is because the end of the string is assumed to be
detectable to the acceptor and it stops only when the end is detected. However, in the case
of discrete event segments, an end marker is not available unless explicitly provided as an
input event. In the following we extend the development of [5] to show how to resolve
this problem.

To start, we review the formulation of language acceptance starting at the I/O Function
level of the hierarchy of systems specifications (Figure 6a). In Figure 6b we display some
I/O segment pairs and a simple automaton example in Figure 6c. In the latter, the initial
state is s0 and the final states are s1 and s2 so that the accepted language is L = {a, aa}.
The I/O Function that implements language acceptance outputs an Activate sometime
after the end of the input segment. As illustrated in the first I/O pair of 6b, we use the
absence in further input within a set duration (shown as t2 − t1) to make this judgement.
As shown in in the second I/O pair in Figure 6b, the occurrence of an event within this
interval (here a second letter a) should suppress the output that would have occurred, thus
enabling continuation of processing, in this case to accept the segment representing successive
letter a’s.
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To implement this approach in a manner that is compatible with the generic formu-
lation of the MetaSES, we extend the Activation node as illustrated in Figure 7, calling it
Activation Node with Hold (ANWH). As before, it can send an Activate signal after being
activated and as before, this signal goes to the EPUs dictated by the transitions out of the
state it represents in the FSA. However, after a duration, HoldTime, it is also scheduled to
send a Spike output–unless de-activated by a DeActivate input. In a composition, the Spike
gets released downstream to indicate that the input segment has been recognized. This will
happen unless an external input event arrives and deactivates the node thus recognizing
that the segment is not yet over.
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The MetaSES is then extended to reflect the impact of the extended class as shown
in Figure 8. We see additional couplings that enable the external input also to (1) send a
De-Activate signal to ActivateNodeWHold elements (later these will be restricted to those
representing final states) and (2) to send an Activate signal to the First Arrival node that is
different from the Activate signal that is sent to the appropriate EPUs.
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Officially, the extensions to the MetaSES and the Transformable SES are given here:

MetaSES: Given FSA = <Q,X,delta,qo,F>

• Coupling:

◦ FSA sends X as DeActivate to AN
◦ AN sends Spike as Activate to FA

Transformable SES:

• Coupling:

◦ For each q in F, FSA sends X as DeActivate to ANq
◦ For each q in F, ANq sends Spike as Activate to FA,
◦ FA sends Activate to FSA

Note that although we have not shown this to be true, the solution is a minimal
realization of the required behavior and therefore must be homomorphically represented
in any realization- the minimal realization of the DEVS version requires |F| more states.
We see that contrary to current neuromorphic representations the architectural coupling
patterns characterized in the MetaSES must enable stimuli both to serve as sensory inputs
as well as deactivation events and activations to be sent from the same source at different
times from different output ports to different receivers.

Our approach has illustrated how it is necessary to span the levels of the specification
hierarchy to simultaneously take account of both structure and behavior needed to achieve
desired functionality. This includes consideration of how the solution is reflected at the
level of the MetaSES.

3.3. Finite State Language Generation

As shown in Figure 9, by replacing perception by generation, we obtain Elementary
Generation Units (EGU)s that produce output symbols when activated and interact with
Activation Nodes in the same manner as for language recognition. As shown below, the
MetaSES in this case is essentially the same as for the latter except for the output of symbols
rather than activation.

Information 2023, 13, x FOR PEER REVIEW 12 of 21 
 

 

MetaSES in this case is essentially the same as for the latter except for the output of 
symbols rather than activation.  
MetaSES: Given FGA = < Q,X,delta,qo,F> 
• Classes: AN (Activation Node),Elementary Generation Unit (EPU) 
• Coupling:  
o FGA send Activate to AN (external input coupling) 
o EGU sends X to FGA, (external output coupling) 
o EGU sends Activate to AN,  
o AN sends Activate to EGU,  
o EGU sends Bid to EGU 

 
Figure 9. MetaSES for language generation. 

The Free Digraph pre-image and the transformable SES follow the same pattern as 
for the language recognition case. The additional interaction involving the Bid message is 
discussed next.  

3.4. Resolving Competing Outputs in Language Generation 
The Elementary Generation Unit (EGU) shown in Figure 10, outputs its designated 

symbol after being activated. Competition arises when two or more EGUs are activated 
simultaneously as happens when they represent transitions emerging from the same state 
in the underlying FGA. To resolve this competition, EGUs first bid for the right to send 
their output with the winner determined as the one that first emits the bid output with 
the time randomly determined. This accounts for the self-coupling for the Bid message 
shown in the MetaSES of Figure 10.  

 
Figure 10. Implementation at state level of requirements of Figure 10. 

Figure 9. MetaSES for language generation.

MetaSES: Given FGA = < Q,X,delta,qo,F>



Information 2023, 14, 22 12 of 20

• Classes: AN (Activation Node), Elementary Generation Unit (EPU)
• Coupling:

◦ FGA send Activate to AN (external input coupling)
◦ EGU sends X to FGA (external output coupling)
◦ EGU sends Activate to AN,
◦ AN sends Activate to EGU,
◦ EGU sends Bid to EGU

The Free Digraph pre-image and the transformable SES follow the same pattern as
for the language recognition case. The additional interaction involving the Bid message is
discussed next.

3.4. Resolving Competing Outputs in Language Generation

The Elementary Generation Unit (EGU) shown in Figure 10, outputs its designated
symbol after being activated. Competition arises when two or more EGUs are activated
simultaneously as happens when they represent transitions emerging from the same state
in the underlying FGA. To resolve this competition, EGUs first bid for the right to send
their output with the winner determined as the one that first emits the bid output with the
time randomly determined. This accounts for the self-coupling for the Bid message shown
in the MetaSES of Figure 10.
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Appendix A.2 provides the SES and DEVS Network Model generated for recognition
of L = {a,aa} as an example of generating the transformable SES and from an initial MetaSES:

3.5. Summary: MetaSES Enhancement of System Specification

In summary, we have shown how the concept of MetaSES provides a high-level ab-
straction that enhances the hierarchy of system specifications as illustrated in Figure 1. The
particular example of language acceptance and generation has illustrated how the concept
enables abstract representation of the common structural features of a wide family of
models (regular language devices) as well as considerations of the necessary modifications
of the common basis to achieve desired functionality (specific recognition and generation).
Further, as illustrated in Appendices A.1 and A.2, tools can support the transformation of
MetaSES specifications through the identified stages into executable simulation models.
Many examples, including for the regular language case, have been implemented as a
proof-of-concept in MS4 Me [15]. In the sequel, we consider further extensions of the
concept to hierarchical compositions and then as a basis for further research.

4. MetaSES for Hierarchical Compositions

Since the SES supports hierarchical construction and the MetaSES specifies SESs, it
can also specify hierarchical compositions. We will formulate a MetaSES construction for a
hierarchically constructed neural net model that is closer to real biological counterparts
than typical artificial models to show the benefits of such construction. In [16] the neuron
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model is composed of dendrites, cellbody and axons. Dendrites receive input messages from
other neuron’s axons and transmit them to the cellbody which releases a fire signal to its
attached axons when threshold-type conditions are met. Using DEVS’s dynamic structure
capability, the cellbody can alter the axon structural composition in learning mode. Axons
produce output weighted with respect to the available neurotransmitter.

As illustrated in Figure 11, the MetaSES for both network and neuron levels the
extensions to the Transformable SESs are given here:

MetaSES for NN

• Classes: Neuron, N
• Coupling:

◦ Neuron sends Spike to Neuron

MetaSES for Neuron

• Classes: Dendrite (D), CellBody (CB), Axon (A)
• Coupling:

◦ N sends Spike to D, (external input coupling)
◦ D sends Spike to CB,
◦ CB sends Fire to A,
◦ A sends Spike to N, (external output coupling)

Transformable SES for NN:

• Components:

◦ Neurons, N

• Coupling:

◦ All Neuron sends Spike to all Neuron

Transformable SES for Neuron, N

• Classes: Dendrite (D), CellBody (CB), Axon (A)
• Coupling:

◦ N sends Spike to all D, (external input coupling)
◦ All D sends Spike to CB,
◦ CB sends Fire to all A,
◦ All A sends Spike to N, (external output coupling)
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In the implementation of (Vahie 2000) each dendrite receives its inputs from some
other neuron’s axonal output connections. Further, each dendrite can handle up to three
input connections and each connection has its own weighting factor. To represent this in the
transformable SES, we expose the axon output ports to become visible at the neuron level.

Instead of “All A sends Spike to N” we have

◦ For each ai in components of A, ai sends Spike to N as Spikei.

Similarly, instead of “N sends Spike to all D”, we have

◦ For each di in components of D, N sends Spikei to di.

Then, we can limit couplings of dendrites of neuron N to axons of neuron N’ to any
specified subset of couplings from identified output ports of N to identified input ports of N’.

5. MetaSES and Model Continuity: DEVS Random Forest AI/ML Models

Random Forest models are collections of binary decision trees that classify input
data sets, showing superior performance with data sets of very high variance [17]. (A
binary decision tree is a digraph G = <Nodes,Edges> where for any edge we have eith((er
outdegree(edge) = 2 (for interi-or nodes) or outdegree(edge) = 0 (for leaves.) Each node
has a non-negative level (node) such that level(root) =0 and level(node) = length of path
from root to the node.) Taking the trees as components, a forest becomes a hierarchical
parallel composition of such trees. The MetaSES in Figure 12a helps us understand the
similarities and differences between the tree component models and the network models
just discussed. As in the case of language acceptance, the external input coupling has both
Activate and sensory input, X in the MetaSES for binary decision tree models. As before,
the Transformable SES consistent with the MetaSES provides the information needed to
generate a simulateable DEVS model. This structure is built on the underlying decision
tree with the Activate message connecting the root to the leaves by traversing the tree
incrementally. As illustrated in Figure 12b, the external input X, is decomposed into features
which are coupled to nodes with same label. Interior nodes are populated by YesNoDecision
models [2] that compare their associated feature values against their assigned thresholds
to determine the child node (left or right) to be activated. Channeled by such decisions,
activation traverses a path from root to a leaf node, which reports the estimated class to
which the input image belongs. Figure 12c illustrates the DEVS representation of a Random
Forest as a parallel composition of decision trees which outputs to a collector that computes
the winning class as the one getting the most votes. As simulation models, such compositions
can be studied for their temporal behavior shown as suggested in Figure 12c (bottom).

The MetaSES approach facilitates executing the “model continuity” property of DEVS
where the same specification employed for directing simulation model construction can
be adopted for actual implementation as well. In the application underlying Figure 12d,
we have implemented a workflow in which model structures (binary trees parameterized
by thresholds and feature associations) are combined within the overall MetaSES pattern
(Figure 12d) to create an SES that is transformed into a DEVS simulation model. On
the other hand, the same information is used to write a Verilog specification of a Field-
Programmable Gate Array (FPGA) implementation of the Random Forrest data classifier.
Similar to the SES realization, the Verilog path “wires” components at the lower level
of the system specification (interior node decision models and leaf classifier reporters)
together to create the multi-level circuit realization. However, a notable difference in such
“wiring” is that the SES manifests explicit coupling of input and output ports of modular
DEVS components. In contrast, the Verilog equivalent of the SES is not so explicit as such
ports are represented as parameters whose values are to be set by the appropriate parent–
child connections required to form the binary tree. Referring to the hierarchy of system
specifications of Figure 1, whereas the SES-based implementation exists at the Network of
Systems Level (as a composition of modular systems), the Verilog implementation resides
at the Multicomponent System Level where components are more tightly “wired” with
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less ability to stand alone. We remark on the relative benefits of a truly modular DEVS
hardware design process in the Discussion/Conclusions.
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6. Implication of MetaSES for Modeling and Simulation Methodology

Having elucidated the concept of MetaSES and its relation to the hierarchy of sys-
tems and morphisms, we turn to examining implications of this concept for aspects of
modeling and simulation methodology including multi-resolution modeling, model reposi-
tories, cyber-physical system design and automated code generation. Research directions
stemming from the proposed concepts are suggested in these contexts.

6.1. Implications for Multi-Resolution Modeling

Multiresolution modeling (MRM) helps to construct a collection of partial models,
each oriented to one or more objectives as was illustrated with an example of Unmanned
Autonomous Vehicles (UAV)s in a fleet possessing economic “earn your keep” mechanisms
and modification of fleet size [18]. Higher-resolution models are created by removing
assumptions that were previously added while including more refined representations
to address the affected constraints and requirements. Meanwhile, checks for consistency
of predictions between related base and lumped models are made using appropriate
morphisms. The targeted base model is the one that would be achieved if, and, when
all simplifying assumptions that have been made are removed in this iterative process.
However, in a dynamic environment, the emerging family of lumped models provides
the flexibility needed to address the various requirements as they unfold in lieu of an
idealized base model. The hierarchy of system specifications and morphisms/SES provides
the mathematical and computational concepts and tools needed for MRM methodology.
The MetaSES proposed here enhances the hierarchy/SES to enable the construction of
more complex lumped models and their integration in the family of models for a given
SoS. Research on the MRM methodology and the MetaSES is needed to work out the
concept and tool support needed to bring these concepts into the practice of modeling
and simulation.
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6.2. Implications for Simulation Modeling Repositories

Model repositories that ease the process of storing and reusing previously developed
artifacts can usher in a new paradigm in model development with numerous advan-
tages [19]. As mentioned above, repositories based on meta-model representations of the
various ingredients of simulation experiments improve knowledge sharing across applica-
tion domains and simulation approaches [9]. However, challenges persist in developing
such repositories for modeling artifacts in general [20] and simulation models in particu-
lar [19]. In the meantime, a large backlog of legacy simulation models has accumulated
over the years that is potentially exploitable for re-use in solving newly arising problems
at relatively low cost and quick turn-around. However, the interpretation of model appli-
cability and integration of models with others in a repository is a labor-intensive activity
currently performed only by human modelers with assistance of subject matter experts.
On the foundation of the hierarchy of system specifications and morphisms, the relation
between simulation models and experimental frames (EF) has been formalized to support
frame applicability to models in the service of composability and reuse. This provides
the basis for a methodology to semantically characterize simulation models to support
discovery and composition for legacy model curation [2]. Further, [21] presented a compu-
tational approach to represent and evaluate approximate parameter morphisms between
pairs of models in support for such operations. Further research on data structures based
on MetaSES concepts is needed to enable creating base/lumped pairs and their imposition
of an organization of models in a repository.

6.3. Implications for Cyber-Physical System Design

The Discrete Event System Specification (DEVS) formalism has been recognized to
support generic open architectures that allow incorporating multiple engineering domains
within integrated simulation models. [22]) developed a modeling framework based on
Model-Based System Engineering [23] methodology providing a clear separation between
the specification of the models and their (computational) implementation. This improves
the understanding of the system behavior and favors the incremental design and refinement
of models facilitating scalability, maintainability, and reusability. The objective of this
development is to overcome the limitations of non-DEVS optimizers that reduce the space
of possible solutions to dynamic optimization problems. An example, optimizing UAV
trajectories and sensor strategies in target-search missions require exploring large numbers
of alternatives and large scale environments efficiently. While demonstrating the power of
DEVS to support such exploration, Bordón-Ruiz et al. [24] in concert with many other DEVS-
based simulation developments, do not take the next step of deploying the SES to accelerate
the exploration. Exceptions exist such as Folkerts et al. [11]. The composability reusability
feature of SES development methodology results in significant reduction in time to develop
families of models to explore complex design spaces [12]. An essential feature of the SES
in supporting exploration of models with large numbers of heterogeneous components is
the concept of multi-aspects. This concept serves to describe the decomposition of an entity
into specifiable numbers entities of the same class (see [10] for complete exposition). The
MetaSES introduced here expands on this concept to enable a higher level of specification
that maps into multi-aspects at the next lower level. Additionally, since the end results of
MetaSESs are ordinary SESs the latter can be employed within more inclusive SESs [15].
This was illustrated by the parallel composition of decision trees in Figure 12.

6.4. Implications for Automated Code Generation

We have mentioned above how tools can be developed to further support the de-
velopment of the MetaSES concept and its integration into the hierarchy of models and
morphism for more automated development. Such development should follow practices
of metamodeling, model transformation, and code generation, as, e.g., demonstrated by
Alshareef et al. [25] in their implementation of a capability to create activity diagrams and to
map them into executable activity-based models in the DEVS Markov formalism. Software
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environments such as Eclipse and its modeling framework host plugins that enable model
development based on metamodel descriptions [26,27] and the generation of executable
code from such descriptions [28,29]. These linguistic tools can be applied to the elaboration
of the MetaSES through the stages described above and illustrated in the Appendix A.
Implementations of this kind can extend existing implementations of the SES such as in
Java, [15], Python [11] or XLanguage [30]. However, experience has shown that there are
limitations in such tools that prevent translations that are possible by directly coded string
manipulation. Questions about how to manage such transformations need to be addressed
through direct experience.

7. Conclusions

We have developed a new concept, that of MetaSES, that aims to achieve a unification
of the hierarchy of system specifications and morphisms and the System Entity Structure
(SES). The MetaSES supports the construction of complex systems of systems with multiple
components belonging to specified classes. We demonstrated computational tools that
need to be developed toward the goal of making it easier to design and build complex
hierarchical DEVS models and to communicate their structures and intended behaviors to
foster continued reuse and development. Several examples of application were given to
illustrate how the MetaSES-based enhancement of the hierarchy of system specifications and
morphisms helps to push the boundaries of complexity management in theory and practice
of modeling and simulation toward the enhanced capability to explore large design spaces.
Such design spaces are characteristic of problems with deep uncertainty with inadequate
or incomplete information about the system and the outcomes of interest [31]. Formulation
of such problems employing the MetaSES and the hierarchy of systems specifications and
morphisms is proposed here to help conduct exploratory modeling and simulation analysis
in the search for robust solutions addressing new challenges in the theory and practice of
modeling and simulation.

Application to the exploration of large design search spaces will drive the need to
research and develop tools to support MetaSES concepts as they evolve. In our discussion
of the implication of MetaSES for modeling and simulation methodology, we considered
some areas of application and suggested open research directions. We indicated that
research on the MetaSES is needed to work out the concept and tool support needed
to bring these concepts into wider use of multi-resolution modeling methodology. In
discussing implications for simulation modeling repositories, we indicated that further
research on data structures based on MetaSES concepts is needed to enable the creation of
base/lumped pairs and their imposition of an organization of models in a repository. For
implications in the cyber-physical system design area, we noted that the MetaSES enables a
higher level of system specification that maps into multi-aspects at the next lower level and
that more research is needed on how to support and exploit such specifications. Finally,
research is needed to apply automated code generation to elaborate the MetaSES through
the designated stages. However, we noted that although developments of this kind can
extend existing implementations of the SES, there appear to be limitations in such tools and
that questions about how to manage such transformations need to be addressed through
direct experience in their application.

Funding: This research was partially supported by RTSync internal funding and received no
external funding.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: I would like to thank Sang Won Yoon, and Christian Koertje, Graduate Re-
search Associate at the Watson Institute for Systems Excellence at The State University of New
York at Binghamton, NY, and Tosiron Adegbija, and Kama Laruen Svaboda of the Electrical and
Computer Engineering Dept., the University of Arizona, for their help in working on the Random
Forest example.

Conflicts of Interest: The author declares no conflict of interest.



Information 2023, 14, 22 18 of 20

Appendix A.

Appendix A.1. Transformation of MetaSES Specifications through the Identified Stages into
Executable Simulation Models

Construction of Coupled DEVS model from MetaSES description
We construct the free digraph represented by the MetaSES and then the coupled model
derived from it. For simplicity we consider only internal couplings. The mapping to
external couplings can be handled with the same approach.
MetaSES G = <Nodes,Edges> where Nodes = Classes = {A}, e ∈ Edges implies
e = (A,(op,ip),B), and A, B ∈ Classes (where we allow A = B).
FreeDigraph generated by G: Given cardinality of A, |A|, for each A ∈ Classes, we have
FG = < Nodes,Edges> where Nodes = Disjoint Union of Components of A in Classes, where
components of A = {a1,a2, . . . ,a|A|,} and Edges = { (ai,(op,ip), bj)| ai, ∈ Components of A,
bj, ∈ Components of B, and e = (A,(op,ip),B) is an edge in G.
The Coupled DEVS Model constructed from FG,
N(FG) = < D, {Md|d ∈ D, IC>
Where D = Nodes of FG and for each d ∈ D, Md is a DEVS model with input ports, IPd,
and output ports, OPd.
Here, IPd = {ip| there is an edge ∈ G of the form (A, (op,ip), B), where d ∈ B } (ip is the
input port for some specified coupling)
OPd = {op| there is an edge ∈ G of the form (A, (op,ip), B), where d ∈ A } } (op is the output
port for some specified coupling)
For each edge e = (A,(op,ip),B) ∈ Edges of G, each component ai of A and each component
bj of B, we add a coupling pair (ai,(op,ip), bj) to IC. Thus we have all-to-all coupling from
components of A to components of B for every pair of classes A, B mentioned in the
MetaSES, G.
Thus, IC = < ((ai,op), (bj,ip) | (ai,(op,ip), bj) is an edge of FG>

Algorithm sketch to write the Free SES i given MetaSES, G

Given DEVS models MA, MB, MC,.. for Classes A,B,C, . . .
and given respective sizes NA,NB,NC, . . . define an SES to construct the DEVS coupled
model N(FG)
Define a string s = “”;

1. Create HashSets for each class, X ∈ Classes

HSX = {id0_X, id1_X,..,}

2. Write the first line for the SES:

s + = “From the system perspective, N is made of “;
For each X ∈ Classes
For each x ∈ HSX
s + = x+”,”;
s + = “!”;

3. Write the internal coupling:

For each pair (A,B) for which there is an edge e = (A,(op,ip),B) ∈ G
For each a ∈ HSA
For each b ∈ HSB
s + = “From the system perspective,
“+a+” sends “+op+” to “+b+” as “+ip+”!”

Appendix A.2. Example of SES and DEVS Network Model Generated from MetaSES: Recognition
of L = {a,aa}

From the fsa perspective, FSAAARecNet is made of FirstArrival, XN1_EPU,XN2_EPU,
passive_ActivationWHold, TwoA_ActivationWHold, and OneA_ActivationWHold!!
From the fsa perspective, passive_ActivationWHold sends Activate to XN1_EPU!
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From the fsa perspective, XN1_EPU sends Activate to OneA_ActivationWHold!
From the fsa perspective, OneA_ActivationWHold sends Activate to XN2_EPU!
From the fsa perspective, XN2_EPU sends Activate to TwoA_ActivationWHold!
From the fsa perspective,FSAAARecNet sends Activate to passive_ActivationWHold!
From the fsa perspective, OneA_ActivationWHold sends outSpike to FirstArrival as inX!
From the fsa perspective, TwoA_ActivationWHold sends outSpike to FirstArrival as inX!
From the fsa perspective, FirstArrival sends outY to FSAAARecNet as outActivate!
From the fsa perspective, FSAAARecNet sends inX to XN1_EPU as inSpike!
From the fsa perspective, FSAAARecNet sends inX to OneA_ActivationWHold as inDeActivate!
From the fsa perspective, FSAAARecNet sends inX to TwoA_ActivationWHold as inDeActivate!
From the fsa perspective, FSAAARecNet sends inX to XN2_EPU as inSpike!
From the fsa perspective, FSAAARecNet sends inX to OneA_ActivationWHold as inDeActivate!
From the fsa perspective, FSAAARecNet sends inX to TwoA_ActivationWHold as inDeActivate
The network DEVS model generated from this SES is shown in Figure A1.
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