
DISTRIBUTED DISCRETE EVENT SIMULATION ARCHITECTURE WITH
CONNECTORS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İSMET ÖZGÜR ÇOLPANKAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2014

Approval of the thesis:

DISTRIBUTED DISCRETE EVENT SIMULATION ARCHITECTURE WITH
CONNECTORS

submitted by İSMET ÖZGÜR ÇOLPANKAN in partial fulfillment of the require-
ments for the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oğuztüzün
Supervisor, Computer Engineering Department, METU

Dr. Ahmet Kara
Co-supervisor, TÜBİTAK BİLGEM İLTAREN

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Assist. Prof. Dr. Selim Temizer
Computer Engineering Department, METU

Dr. Atilla Özgit
Computer Engineering Department, METU

Dr. Cumhur Doruk Bozağaç
TÜBİTAK BİLGEM İLTAREN

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: İSMET ÖZGÜR ÇOLPANKAN

Signature :

iv

ABSTRACT

DISTRIBUTED DISCRETE EVENT SIMULATION ARCHITECTURE WITH
CONNECTORS

Çolpankan, İsmet Özgür

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Halit Oğuztüzün

Co-Supervisor : Dr. Ahmet Kara

August 2014, 69 pages

In this thesis we propose a distributed approach to Simulation Modeling Architecture
(SiMA) with software connectors via Windows Communication Foundation (WCF)
as a middleware technology. SiMA is a DEVS-based modeling and simulation frame-
work developed in TÜBİTAK BİLGEM İLTAREN. Discrete Event System Specifica-
tion (DEVS) is a formalism that arranges complex system models with a well-defined
execution protocol. A connector is a first class entity which performs interaction
among components and plays an important role in a component-based architecture.
Connectors in Distributed SiMA are behavioral models that perform data conver-
sions between models which have communication data type mismatches and data
marshalling/unmarshalling for remote model communication. We claim that using
a connector instead of modifying an already developed model increases the model
reusability and keeps model developer from spending lots of time. We enable SiMA
to run in a distributed environment via WCF which is Microsoft’s distributed systems
technology. It offers Service Oriented Architecture (SOA) development environment
and lots of configurable features in a single .NET API. At the end we also compare
this approach with the existing distributed DEVS approaches in terms of base for-
malism, network layer technology, model partitioning, remote node synchronization
scheme and message exchange pattern.

v

Keywords: DEVS; SiMA; distributed DEVS; connectors; modeling and simulation

vi

ÖZ

BAĞLAYICILARI KULLANAN DAĞITIK KESİKLİ OLAY BENZETİM
MİMARİSİ

Çolpankan, İsmet Özgür

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Halit Oğuztüzün

Ortak Tez Yöneticisi : Dr. Ahmet Kara

Ağustos 2014 , 69 sayfa

Bu tezde Simülasyon Modelleme Altyapısı’na (SiMA) ara katman yazılımı olarak
WCF kullanarak yazılım bağlayıcıları ile dağıtık bir yaklaşım sunuyoruz. SiMA TÜ-
BİTAK BİLGEM İLTAREN’de geliştirilmiş DEVS tabanlı bir modelleme ve ben-
zetim çatısıdır. DEVS iyi tanımlanmış bir çalıştırma protokolü ile karmaşık sistem
modelleri düzenleyen bir biçimciliktir. Bağlayıcı, bileşenler arası etkileşim sağlayan
ve bileşen tabanlı mimarilerde önemli bir rol oynayan birincil sınıf bir öğedir. Da-
ğıtık SiMA’daki bağlayıcılar modeller arası iletişimdeki veri tipi uyumsuzluklarına
veri dönüştürme yapan ve uzak model iletişimi için veriyi seri bitlere çevirme/se-
kizli paralel akışa geri çevirme yapan davranışsal modellerdir. Önceden geliştirilmiş
bir modeli değiştirmek yerine bağlayıcı kullanmanın, modelin yeniden kullanılabi-
lirliğini arttırdığını ve model geliştiriciyi çok zaman harcamaktan kurtardığını iddia
ediyoruz. SiMA’nın Microsoft’un dağıtık sistem teknolojisi WCF kullanılarak dağı-
tık bir çevrede çalışmasını sağlıyoruz. Dağıtık SiMA SOA geliştirme ortamı ve tek
bir .NET uygulama programlama arayüzünde bir çok ayarlanabilen özellik sunar. Son
olarak bu yaklaşımı var olan dağıtık DEVS yaklaşımlarıyla temel biçimcilik, ağ kat-
man teknolojisi, model bölüntüleme, uzak birim eşzamanlama planı ve mesaj takas
şekli açılarından karşılaştırıyoruz.

vii

Anahtar Kelimeler: Kesikli olay benzetimi; SiMA; dağıtık DEVS; bağlayıcılar; mo-
delleme ve benzetim

viii

Dedicated to my family

ix

ACKNOWLEDGMENTS

I would like to express my special appreciation and thanks to my supervisor Assoc.
Prof. Dr. Halit Oğuztüzün for all the support and priceless advice on my research he
gave me. His motivation and immense knowledge helped me a lot in all the time of
research and writing of this thesis.

I would like to express my gratitude to my co-supervisor and colleague Dr. Ahmet
Kara for the insightful comments, useful remarks and engagement through the learn-
ing process of this thesis. His experience, patience and efforts have made completion
of this thesis possible.

I would like to thank my thesis committee members Prof. Ahmet Coşar, Assist. Prof.
Selim Temizer, Dr. Atilla Özgit, and Dr. Cumhur Doruk Bozağaç, who is also my
colleague, for brilliant comments and suggestions.

I would also like to thank TUBİTAK BİLGEM İLTAREN for supporting my graduate
studies.

I give my special thanks to my classmate, roommate, sports coach, flatmate and col-
league Ahmet Can Bulut for tolerating my madness through years of our undergradu-
ate and Master of Science studies. I am also grateful to Hüseyin Dirican for offering
me different aspects about almost everything. And I am very grateful to my beloved
Kübranur for her patience and support during my studies.

I would like to express my thanks to my parents and my brother. Words cannot
express how grateful I am for being in such a great family. Their prayers for me were
what sustained me thus far. Their unconditional love and support make me who I am.

Finally I am very thankful to Ferdi Tayfur for motivating me with his songs and
contributing to all my successes since high school.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 DEVS . 5

2.2 SiMA . 8

2.2.1 Formalism . 8

2.2.2 Architecture . 10

2.3 Connectors . 13

2.4 Windows Communication Foundation 15

xi

3 RELATED WORK . 17

3.1 DEVS/P2P . 18

3.2 DEVS/GRID . 20

3.3 DEVS/CLUSTER . 21

3.4 DEVS/RMI . 22

3.5 DEVS/SOA . 23

3.6 DEVS/PyRO . 24

3.7 Other Distributed DEVS Approaches 25

4 DISTRIBUTED SIMA . 29

4.1 Connectors in Distributed SiMA 29

4.1.1 Marshaller/Unmarshaller Connector 30

4.1.2 Data Conversion Connectors 31

4.1.3 Connector Roles According to Mehta Classification 32

4.2 WCF Services in Distributed SiMA 32

4.3 Distributed SiMA Architecture 34

4.3.1 Model Deployment 36

4.3.2 Simulation Build and Run 40

4.3.2.1 Distributed Scenario Analyzer 40

4.3.2.2 Distributed Model Linker 42

Partitioning Conditions 42

4.3.2.3 Distributed Model Builder 46

xii

4.3.2.4 KODO 48

4.3.2.5 Distributed Simulator 49

5 CASE STUDY . 51

5.1 Description of Models . 52

5.2 Scenario Build . 53

5.3 Discussion . 56

5.4 Evaluation . 57

6 CONCLUSION . 59

6.1 Distributed SiMA Approach 61

6.2 Future Work . 63

6.2.1 Connector Repository 63

6.2.2 Model Editor and KODO Adaptations 63

REFERENCES . 65

xiii

LIST OF TABLES

TABLES

Table 3.1 Overview of Distributed DEVS Approaches 27

Table 6.1 Comparing Different Distributed DEVS Approaches 62

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 DEVS Extensions and Frameworks 4

Figure 2.1 SiMA Architecture (reproduced from [24]) 10

Figure 2.2 SiMA Simulation Construction Pipeline (reproduced from [24]) . . 11

Figure 3.1 DEVS/P2P Architecture (reproduced from [14]) 19

Figure 3.2 DEVS/CLUSTER Simulation Mechanism (reproduced from [26]) . 21

Figure 3.3 DEVS/RMI Architecture (reproduced from [55]) 23

Figure 4.1 Marshaller/Unmarshaller Connectors 30

Figure 4.2 Remote Model Communication Sequence Diagram 31

Figure 4.3 Data Conversion Connectors . 32

Figure 4.4 Deployment Service Usage Sequence Diagram 33

Figure 4.5 Distributed SiMA Components 34

Figure 4.6 Deployment Diagram . 35

Figure 4.7 General System Flow Diagram 36

Figure 4.8 Deployment Service Start . 37

Figure 4.9 Deployment Activity Diagram . 38

Figure 4.10 Distributed SiMA Simulation Construction Pipeline 40

Figure 4.11 Hierarchical View of Making a Basic SiMA Scenario Distributed . 41

Figure 4.12 Invalid Partition Plan Definitions 42

Figure 4.13 Condition 1: Adding Remote Coupled Models 43

xv

Figure 4.14 Condition 1: Adding Marshaller/Unmarshaller Connectors and Mak-
ing New Couplings with New Models . 44

Figure 4.15 Condition 1: New Simulation Structure With Marshaller/Unmar-
shaller Connectors . 45

Figure 4.16 Condition 2: Adding Remote Coupled Models 45

Figure 4.17 Condition 3: Adding Remote Coupled Models 46

Figure 4.18 Remote Model Building . 47

Figure 4.19 Distributed Simulation Structure Example Overview 48

Figure 4.20 A DEVS Protocol Method Call via Remote Simulation Service . . 49

Figure 5.1 Models in the Case Study Scenario 52

Figure 5.2 Partition Plan Overview of Case Study Scenario 54

Figure 5.3 Master Node . 54

Figure 5.4 Slave Node 1 . 55

Figure 5.5 Slave Node 2 . 55

Figure 5.6 Case Study Scenario Test Results 57

xvi

LIST OF ABBREVIATIONS

API Application Programming Interface

CLI Common Language Infrastructure

CORBA Common Object Request Broker Architecture

DEVS Discrete Event System Specification

DEVSML DEVS Modeling Language

DLL Dynamic Link Library

DNS Domain Name Service

DS Deployment Service

GIG Global Information Grid

GIIS Grid Index Information Service

GUI Graphical User Interface

HLA High Level Architecture

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

KODO Code Generator

M&S Modeling and Simulation

OIDS Object ID Service

PS Port Service

PyRO Python Remote Objects

REST Representational State Transfer

RMI Remote Message Invocation

RPC Remote Procedure Call

RSS Remote Simulation Service

RT Real Time

SiMA Simulation Modeling Architecture

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

xvii

TCP Transmission Control Protocol

UDDI Universal Description Discovery and Integration

UDP User Datagram Protocol

WCF Windows Communication Foundation

WSDL Web Services Description Language

WSN Wireless Sensor Network

XML Extensible Markup Language

xviii

CHAPTER 1

INTRODUCTION

As Maria stated in [32] "A model is a representation of construction and working of

some system of interest". Simulation is the manipulation of a model in a compressed

time and space to understand the interactions of the parts of the system. Modeling

and simulation is the perception of the behavior of a system of interest. It is cheaper

and safer than conducting experiments such as collisions. Moreover, simulations can

be carried out faster than real time. Free configuration of models and environment

also helps to collect a wide range of information about a system.

Discrete Event System Specification (DEVS); which was introduced by Zeigler in

1976 [50], arranges complex system models with a well-defined execution protocol

in a formalism. DEVS defines a formal basis on structural and behavioral specifica-

tion of hierarchical complex model orchestration, and a simulation execution proto-

col. Furthermore, it consolidates the formalism by offering a hybrid system [38, 29],

continuous [30] and discrete event.

There are several implementations of DEVS formalism, such as: PowerDEVS [7],

DEVSimPy [10], DEVSJAVA [54], DEVSim++ [28]. In course of time, extended ver-

sions of DEVS formalism have been implemented, such as: Parallel DEVS [52, 16],

Cell DEVS [46], Real-Time DEVS [21], dynDEVS [45], dynPDEVS [19], SiMA-

DEVS [23, 24], dynamic SiMA-DEVS [17]. Among these formalisms Parallel DEVS

is used as a base for SiMA-DEVS formalism.

Complex model hierarchy, high level of detail in models and large simulations cause

the processor and memory of a computer to become insufficient to run simulations in a

1

reasonable time. Therefore, the need for a scalable performance leads to development

of parallel and distributed simulation systems. Distributed DEVS idea was launched

in 1985 by Zeigler [51] and until today lots of distributed DEVS applications have

been developed, including: DEVS/CLUSTER [26], SOAD [40], DEVS/RMI [55],

DEVS/MPI [12], DEVS/P2P [14], DEVS/REST [1] and DEVS/SOA [35]. Some of

them are shown in Figure 1.1 under the base formalism that they work.

In this thesis, we propose a distributed approach to enable Simulation Modeling

Architecture (SiMA) to execute in a distributed environment. Our approach is us-

ing Windows Communication Foundation (WCF) [13] as an underlying middleware

technology and integrating the concept of software connectors for adaptation of dis-

tributed nodes and models. SiMA is a DEVS-based modeling and simulation frame-

work developed in TÜBİTAK BİLGEM İLTAREN. It implements the SiMA-DEVS

formalism which is an extended version of Parallel DEVS formalism as it is shown in

Figure 1.1.

WCF offers a set of APIs in the .NET framework [34] for establishing service-oriented

applications [13]. Core simulation engine of SiMA was developed in .NET frame-

work, hence WCF might be attuned to SiMA easily. Furthermore, in a WCF-to-WCF

application the fastest message encoding formatting and transfer protocol methods

can be utilized compared to the other facilities that WCF offers.

The increase in modeling complexity leads to utilization of already developed reusable

models. Furthermore, model reuse saves developers development effort and time, and

more importantly regression tests to verify and validate the modified model. However,

it is not always feasible to use a legacy model in a new simulation scenario in terms of

detail of computation and data types for communication among models. Connectors

engage at this point by providing interactions among components by transferring con-

trol or data, and playing important role in component-based architectures. Besides,

DEVS formalism is highly appropriate for a component-based framework design

when each model is considered as a component. Therefore, in our methodology we

have introduced use of connectors as introduced by Kara [25] for Distributed DEVS

environments to perform data conversions and data marshalling/unmarshalling.

The rest of the thesis is organized as follows: Chapter 2 describes subjects in the

2

background of our research, Chapter 3 provides distributed DEVS approaches related

to our research, Chapter 4 explains our approach in detail, Chapter 5 presents a case

study using our implementation and our discussions about the importance of our ap-

proach, and finally Chapter 6 includes our resultant comments and future work ideas.

3

DEVS

Parallel DEVS

Cell DEVS

Real-Time DEVS

dynDEVS dynPDEVS

SiMA DEVS

Dynamic SiMA
DEVS

Parallel Cell DEVS

Figure 1.1: DEVS Extensions and Frameworks

4

CHAPTER 2

BACKGROUND

2.1 DEVS

The DEVS formalism was first introduced in 1976 by Bernard Zeigler[50] to propose

a discrete event model simulated by a simulator engine. There are two kinds of mod-

els in the formalism; atomic and coupled. Atomic models are the indecomposable

simulation entities and they have the behavioral logic of the component. In DEVS

formalism an atomic model is defined as:

M = 〈X,S, Y, δint, δext, λ, ta〉
where

X is the set of external events

S is the set of states

Y is the set of output events

δint : S → S is the internal transition function

δext : Q×X → S is the external transition function, where

Q = {(s, e) |s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set, and

e is the elapsed time since last state transition

λ : S → Y is the output function

ta : S → R+
0,∞is the time advance function

External events X are the received events through input ports and the output events Y

are the events sent through output ports. These ports form the communication mech-

anism of models. The states S are determined by the time advance function ta and

5

executed sequentially. Internal transition function δint is applied for the calculation

of the new state of the model. Before internal transition function, output function λ

is executed to send the output events. External transition function δext is executed

when an event is received in elapsed time after last state transition e, and modifies the

current model state.

Coupled models can include both atomic and other coupled models, and they just

hold the coupling information of contained models. They make the DEVS structure

hierarchic. They do not have the behavioral logic. In original DEVS formalism a

coupled model is defined as:

CM = 〈X, Y,D, {Mi} , {Ii} , {Zi,j} , select〉
where

X is the set of input events

Y is the set of output events

D is the set of DEVS component names

for each i in D

{Mi} is a DEVS component model, can be either an atomic DEVS

model or a coupled DEVS model

{Ii} is the set of influencees of i, the components influenced by

i ∈ D ∪ {self}

for each j in Ii

{Zi,j} is the i to j output translation function

select is the tie-breaker function

X consists of the input events of the coupled model and Y consists of the output

events of the coupled model. D keeps the name of the component models. The set of

all influencees, I , describes the coupling network structure. Output event of a com-

ponent model is associated with a corresponding target component model by using

the influences and output to input translation functions. When a simultaneous state

transition occurs, select function is invoked and gives priority to a transition function

for tie-breaking. This selection generally depends on the implementer decision.

6

The DEVS formalism was enhanced to handle the transition function collision while

keeping the DEVS closure under coupling feature and hierarchical consistency. Thus

Parallel DEVS formalism was developed [16, 52]. In Parallel DEVS formalism the

atomic model structure is as:

M = 〈X,S, Y, δint, δext, δcon, λ, ta〉
where

X is the set of external events

S is the set of states

Y is the set of output events

δint : S → S is the internal transition function

δext : Q×Xb → S is the external transition function, where

Xb is a set of bags over elements in X

δext (s, e, φ) = (s, e)

Q = {(s, e) |s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set, and

e is the elapsed time since last state transition

δcon : S ×Xb → S is the confluent transition function

λ : S → Y b is the output function

ta : S → R+
0,∞is the time advance function

Different from DEVS, Parallel DEVS allows receiving more than one external events

in the same simulation step. When a component receives external events at the same

time of internal transition, confluent transition function δcon is applied. This transition

does external and internal transitions sequentially. The sequence can be decided by

the developer.

Parallel DEVS also removes the select function from the DEVS formalism. It is

not required since confluent transition handles the simultaneous events issue. The

modified coupled model structure of Parallel DEVS is as follows:

CM = 〈X, Y,D, {Mi} , {Ii} , {Zi,j}〉
where

X is the set of input events

7

Y is the set of output events

D is the set of DEVS component names

for each i in D

{Mi} is a DEVS component model

{Ii} is the set of influencees of i, the components influenced by

i ∈ D ∪ {self}

for each j in Ii

{Zi,j} is the i to j output translation function

2.2 SiMA

SiMA [24] is a modeling and simulation framework that is built on DEVS formalism.

For complex model construction it uses a strong formalism which extends the Par-

allel DEVS formalism. SiMA has two extensions to the parallel DEVS formalism;

strongly-typed inter model connection environment and direct feed through transition

function. In port definitions of models there are some constraints and this makes port

types type-safe. Moreover, the new transition function provides that in the same sim-

ulation time a model can receive data, make computation on it, and send the modified

data without any state change.

2.2.1 Formalism

In SiMA formalism an atomic model structure is [24]:

M = 〈X,S, Y, δint, δext, δcon, δdf , λ, ta〉
where

X is the set of external events arriving from set of input ports, Pin

Y is the set of output events sent from set of output ports, Pout where

Pin and Pout are the set of input and output ports such that

Pin = {(τ, Ix) |Γ→ τ ∧ Ix ⊆ X ∧ ∀x ∈ Ix, τ → x}, and

Pout = {(ρ,Oy) |Γ→ ρ ∧Oy ⊆ Y ∧ ∀y ∈ Oy, ρ→ y}, where

Γ is the XML Schema type system

8

τ, ρ are data types defined via XML Schema type system

δdf is the direct feed through transition function, where

PDFTin ∈ Pin × S → P ′
out ⊆ Pout

Port definitions in SiMA are made by using an XML Schema type system. Each input

port definition pair is unique in Pin. First element of a pair τ is a data type from the

XML Schema type system Γ. Second element of the pair is Ix input data value which

pairs off the data type τ . Similar semantic rules applly to output ports.

This strong typing in port definitions has some benefits [24]:

• In externally visible model interfaces there is a definition of a type semantic for

the modeling level information convenience and the run-time level data robust-

ness.

• The type system dependency helps the model construction and port matching

to be automated. Moreover, in SiMA architecture there are some tools for these

operations such as a code generator, a model linker and a model builder.

• In model implementation there are input/output ports and state managers. State

managers provide a run-time data type conformation control. They are bound to

the input/output ports in order to manage the data flow in a type-safe manner.

Thus, this makes the data transferring mechanism among models type-safe.

State managers also offer access to received events and methods to send events;

therefore, it simplifies the model development.

The new transition function δdf has its own port type, direct feed through port, in

order to process incoming events and send them in the same simulation interval. To

avoid deadlocks, an application independent loop-breaking logic is defined in this

port type. Processing incoming events and sending them in the same simulation time

property can be reached by adjusting the next time of a model to the current time of the

simulation and after required calculations setting it back to model’s normal interval

time. However, with the definition of a new transition function and its specific port

type some advantages are gained:

9

• Without any touch to the simulation engine or making custom implementations,

models gain a zero-lookahead behavior as a first class entity.

• While sharing states and communicating in the same simulation time interval

there may be loops and deadlocks. Thus, a specific port type implementation

makes it possible to obviate deadlocks and this makes model validity reliable.

2.2.2 Architecture

SiMA is a modeling and simulation framework through which one can develop mod-

els and execute simulations. There are two main components in SiMA; SiMA Core

and C++ Interface. While SiMA Core is implemented in .NET, C++ Interface is im-

plemented in both C++ and C++/CLI, which is a specialized C++ language in .NET

that is an adapter between C++ and .NET with respect to methods and data types [20].

Si
M

A
 C

o
re

 Distributed Simulation Adapter

Simulation Engine Core

Modeling
Framework

Connection
Ports

M
es

sa
gi

n
g

C
o

n
st

ru
ct

s

C
+

+
In

te
rf

ac
e

D
at

a
C

o
n

ve
rt

er
s Managed Modeling Adapter (C++/CLI)

Unmanaged Modeling Adapter (C++)

Figure 2.1: SiMA Architecture (reproduced from [24])

10

SiMA Core has five sub components as a framework. In Simulation Engine Core

DEVS simulation protocol is executed. It also provides the features of monitoring

and tracking of the simulations at run-time by introducing interfaces. It uses Model-

ing Framework and Connection Ports for the simulation execution. Modeling Frame-

work covers atomic model base classes and data types used in model development.

Connection Ports component includes port definition classes and connections. Dis-

tributed Simulation Adapter is an interface exposed for HLA adapters. Messaging

Constructs has all the base data type classes and rules for model and SiMA core

component communications.

SiMA supports model development in both .NET and C++ environments. C++ In-

terface layer presents a model development environment in C++. It consists of three

sub components. Unmanaged Modeling Adapter (C++) exposes same interfaces of

Modeling Framework but in pure C++. Managed Modeling Adapter (C++/CLI) al-

lows accessing to Unmanaged Modeling Adapter methods and data types. SiMA

core simulation engine runs in .NET, so this component helps the models developed

in C++ to be employed in simulation execution. Data Converters are the data seri-

alization adapters between .NET and C++ data types. KODO tool is used for the

auto-generation of data converter classes by model developers. SiMA has various

tool supports for the automatic simulation model construction. Figure 2.2 shows the

simulation construction pipeline with five tools in four steps.

Scenario
Analyzer

Scenario
Document

Data Type
Mapping Rules

XSLT

Model
Editor

Model
Linker

Model
Builder

KODO

Port Type
Mapping Rules

XML XML

KODO Data Type
Definitions

XML

Code Generation
Rules

XSLT

Port Data
Structures

Simulation
Models

Simulator

Figure 2.2: SiMA Simulation Construction Pipeline (reproduced from [24])

11

KODO plays a very important role in defining model initialization and port defi-

nitions for the model developer. It generates the serialization/deserialization codes

for the .NET-C++ interoperability, all port and initial data class generations. These

classes include the methods for the input configuration file accessing and state initial-

izations. It also generates the logic for serializing and type conversion. Moreover, it

provides methods for the trace information. KODO uses XML for the definitions and

generates all required classes.

Scenario Analyzer is one of the starting points in the simulation construction pipeline.

It takes a Scenario Document file as an input and sends the intermediary data to the

Model Linker. The Scenario Document consists of model definition, model coupling

information and initialization data of the models. After it analyzes the input file,

all atomic models defined in scenario are identified and composition of hierarchical

model is done.

Model Editor is the other way of starting the pipeline. In model editor, model cou-

pling information and port connections can be defined visually. After model devel-

opment in .NET or C++, all of the models are assembled in DLL files. Model editor

exposes a graphical user interface for the complex model definitions using compiled

model DLL files.

Model Linker takes the intermediary scenario definition file and separates the hier-

archical model definition and the initialization data of the atomic models. The first

output file consists of data type mapping information, port connection definitions,

names and locations of atomic models by keeping the hierarchical structure. The

second file is the SiMA configuration file including initialization data of the atomic

models.

Model Builder reads the model definitions and builds the model structure by creating

object instances of the models in memory. The root coupled model is returned as a

result of building process. SiMA simulator uses it for the simulation execution.

12

2.3 Connectors

“A software system’s architecture is the set of principal design decisions made about

the system” as pointed out by Taylor [44]. These design decisions are connected to

the organization of architectural elements, functional and nonfunctional properties,

interaction between system elements, and implementation. Components are the soft-

ware units providing services and requiring services. A comprehensive definition of a

component is given by Taylor [44]; “A software component is an architectural entity

that encapsulates a subset of the system’s functionality and/or data, restricts access to

that subset via an explicitly defined interface, and has explicitly defined dependencies

on its required execution context”.

Connectors are the architectural building blocks that manage the interactions among

components [3]. Some examples of interactions are procedure calls, method invo-

cations, data flow, communication protocol, and pipelines. Connectors have several

functionalities as component interactions; communication, coordination, conversion

and facilitation. Communication services manage the data transfers among compo-

nents. Coordination services transfer the control among components. Shared memory

access in a multi-threaded program, method invocations and function calls are exam-

ples of coordination services. Conversion services allow component interaction in

heterogeneous environments. They modify the data required by the receiver com-

ponent. They solve the mismatch issues in type, number, frequency and order of

the interactions. Facilitation services provide mechanisms such as load balancing,

scheduling, and control in concurrent systems to reduce inter dependencies among

components.

According to Bures [9] connectors are classified into four groups; procedure call,

messaging, streaming and blackboard. On the other hand, Mehta and his colleagues

[33, 44] proposes eight connector types; procedure call, event, data access, linkage,

stream, arbitrator, adaptor, and distributor. In our study, we take the classification of

Mehta into account.

Procedure Call Connectors: These connectors undertake the communication, coor-

dination and sometimes facilitation roles. Message invocations and procedure calls

13

provide the flow of control among components. The procedure calls use parameters

and return values, thus data transfer occurs. Object-oriented methods, operating sys-

tem calls, remote procedure calls (RPCs), and callback invocations are examples of

procedure call connectors.

Event Connectors: Flow of control among components by triggering events is man-

aged by the event connectors. In addition, data can be transferred by the event notifi-

cations as parameters. They play the communication and coordination roles. They are

more virtual than procedure call connectors since they can be activated or not accord-

ing to component behavior. They are mostly used in GUI (graphical user interface)

applications.

Data Access Connectors: They manage the accessing data of the data store com-

ponent. Saving or loading data may require a conversion in the format. Thus, com-

munication and conversion services are operated. Database queries and repository

accesses are examples of persistent data access connectors. Additionally, heap and

stack memory usage in programs, and caching mechanisms are the temporary data

access connector examples.

Linkage Connectors: They only provide facilitation services for the higher order

connectors . They can form binding between components before or during compi-

lation, or system execution. They can take role in configuration management, sys-

tem building, linking variables, procedures, functions, constants and types within the

linked components, and interaction protocols.

Stream Connectors: Large amount of data transfers and data transfer protocols in

client-server architectures are achieved by the stream connectors. They apply com-

munication services in their system. Pipes, TCP/UDP communication sockets, and

client-server middleware are some examples of stream connectors.

Arbitrator Connectors: They employ the facilitation and coordination services.

They channel the flow of control to resolve the conflicts between components. Shared

memory access synchronization in multi-threaded systems, scheduling and load bal-

ancing services are provided by arbitrator connectors. They ensure system reliability,

safety and security.

14

Adaptor Connectors: They bring interoperability characteristic to the components

that are not designed as interoperable. Required conversion and facilitation services

are provided by them. Mostly heterogeneous environments employ them in order to

establish communication policies and interaction protocols. Remote procedure call is

the basic form of these connectors.

Distributor Connectors: They never exist by themselves, but they help other con-

nectors, such as stream and procedure call. Information routing and interaction path

identification between components are performed by distributor connectors. They

provide the facilitation services. They are used mostly in distributed systems to iden-

tify the component locations and paths. Some example services of distributor connec-

tors are domain name service (DNS), routing and switching like network services.

2.4 Windows Communication Foundation

Windows Communication Foundation (WCF) is Microsoft’s distributed systems tech-

nology that covers the features of .NET distributed technologies in a single API[13]. It

facilitates building, deploying, and operating distributed application infrastructures.

It promotes the service-oriented architecture (SOA). It can provide the interaction

between client-server via SOAP, a WCF-to-WCF binary communication protocol,

other main WS-* specifications, peer-to-peer networking, inter-process communi-

cation protocols, and RESTful architecture [11]. The following are some of WCF

features [42]:

Service Orientation: WCF proposes a service oriented development environment.

SOA ensures data send and receive operations.

Interoperability: WCF supports the interoperability with applications built on other

distributed technologies.

Multiple Message Patterns: There are several message exchange patterns such as

one-way, duplex, request/reply patterns. In one-way messaging system one endpoint

sends a message and does not wait for the reply. In duplex channels callback methods

can be defined and not only does the source endpoint send a message, but also the

15

target endpoint can send a message to the source. In request/reply patterns source

endpoint sends a message and target endpoint replies.

Service Metadata: WCF uses some standards such as WSDL, XML Schema and

WS-Policy in publishing service metadata. It is published over HTTP, HTTPS, or

Web Service Metadata Exchange standards.

Data Contracts: In data transfer WCF uses the data contract property provided by

.NET framework. In order to be serializable by WCF, the data contract identifier is

added to implemented classes. This allows a service to generate the metadata of the

data type.

Security: Standards such as SSL or WS-SecureConversation can be applied to en-

crypt messages.

Multiple Transports and Encodings: Mostly used transport and encoding technique

is XML text encoded in SOAP messages over HTTP. Moreover, WCF allows sending

messages over TCP, pipes, or MS-MessagingQueue. Messages are also encoded in

binary format.

Reliable and Queued Messages: There are sessions implemented over WS-Reliable

Messaging using MS-Messaging Queue for the reliable message exchange.

Durable Messages: These are the never-lost messages due to network problems

while transferring. Durable messages are saved to a database and after re-establishing

the network connection, sending processes resume.

Extensibility: WCF offers several extensibility points. The service behaviors can be

customizable.

16

CHAPTER 3

RELATED WORK

This chapter consists of some Distributed DEVS approaches. Before describing them,

some features used by distributed DEVS implementations are explained in following

subjects:

Model Deployment: Model deployment is the initial process of Distributed DEVS

approaches. Before the simulation starts the DEVS model is partitioned and deployed

to nodes. Partitioning can be made according to some algorithms in master node or

manually. Among partitioning algorithms, mostly used one is the Cost-based hier-

archical model partitioning algorithm [37]. In some implementations hierarchical

DEVS model is converted to a non-hierarchical one. After partitioning, each parti-

tioned DEVS model is distributed over the remote nodes and is initialized to be made

ready for the simulation.

Time Management: Since DEVS models are being executed on remote nodes, there

has to be a synchronization among them in terms of simulation time. There are two

time management approaches in distributed DEVS implementations; conservative

and optimistic. In conservative scheme, global time which is maintained by a cen-

tral node is used between remote nodes. In every simulation step, central node gets

the minimum time and advances the simulation time, so this brings overhead over

network. However, it provides global time synchronization and it guarantees that dur-

ing simulation no time causality violation occurs. On the other hand, in optimistic

scheme each simulator manages its own simulation time without any synchronization

with the other remote simulators. When a time causality violation occurs, simula-

tion results after that time are thrown away and simulation is rolled back to the last

17

time the simulators were in synch. This requires time-tagged model data to be saved

for rolling back. Time Warp [27] is the most well-known algorithm for optimistic

approach. When a simulator receives an event or object with a prior time stamp ac-

cording to already processed events or objects, rollback happens and the simulator

reprocesses those events or objects in time stamp order.

Communication: Inter-model communication mechanism varies among distributed

DEVS architectures:

1. In system-central architectures, firstly, each model on each node sends events

to the coordinator of the corresponding node. After that, coordinator sends the

event package to the central coordinator located on central node. Central co-

ordinator dispatches the events through the network to the related coordinators

and coordinators send events to models.

2. A faster version of this approach is making each node center of communica-

tion, node-central architecture. In this approach, each model sends events to

its coordinator located on each node. Coordinators on each node make event

transfers by direct communication with remote coordinators.

3. The last approach discards all redundant data exchanges and enables direct

inter-model communication as if it is a non-distributed DEVS implementation.

3.1 DEVS/P2P

DEVS/P2P [14] is a distributed DEVS implementation that proposes a peer-to-peer

(P2P) simulation protocol to operate a DEVS simulation on a distributed and parallel

computing environment. The proposed protocol uses advantage of P2P infrastructure,

in which inter-connected peers share resources with each other without using any

centralized administrative system, to gain optimal performance compared to existing

protocols. As middleware it uses JXTA [48] technology which is a P2P network

system implementation. DEVS/P2P uses a customized distributed DEVS simulation

protocol in which each simulator blocks itself until receiving a "DONE" message

from all other simulators in each DEVS call. So decentralized conservative approach

18

is used in synchronization of remote simulators.

Payload_01

Payload_02
Payload_03

Autonomous Hierarchical
Model Partitioner DEVS model

Autonomous Model Deployer

Payloads

Model
Distributer

Network

Payload_01

Activator Generic
Simulator

DEVS
Atomic
Model

DEVS
Coupled
Model

Extended DEVS Simulation Environment

Model Deployment Simulation

Figure 3.1: DEVS/P2P Architecture (reproduced from [14])

The overall system can be inspected in two parts. The first part is the Autonomous

Model Deployer (AMD). Its task is partitioning DEVS model and dispatching the par-

titioned models over local and remote simulators. Firstly, Autonomous Hierarchical

Model Partitioner partitions the DEVS model according to the cost-based hierarchi-

cal model partitioning algorithm. After that, Model Distributer deploys partitioned

DEVS models to the local and remote simulators. The second part of the system is

Extended DEVS Simulation Environment (EDSE). All simulators have EDSE includ-

ing the Activator and the Generic Simulator (GS). AMD sends the model to Activator

through JXTA message exchange service. Then GS is created by the Activator and

calls the DEVS atomic or coupled simulator.

In inter-node communication, DEVS/P2P uses JXTA message which is a specialized

XML document. DEVS message is converted into JXTA message and is transferred

to the target remote model’s input port. In remote node this message is reconverted to

DEVS message. Source model’s output port is mapped to source node’s output JXTA

pipe. Similarly, target model’s input port is mapped to target node’s input JXTA pipe.

And these two pipes are connected to each other. Through the JXTA pipe, the target

model can receive the output message of the source model.

19

3.2 DEVS/GRID

In DEVS/GRID [41], Grid computing infrastructure is used for DEVS modeling and

simulation activities. DEVS/GRID proposes new functionalities to the existing DEVS

M&S frameworks as mentioned by Seo [41]: “cost-based hierarchical model parti-

tioning, dynamic coupling restructuring, automatic model deployment, remote sim-

ulator activation, self-communication setup, M&S name and directory service, etc.”

As middleware, Globus Toolkit which is widely used in grid computing is used. This

software provides high performance computational Grid resources usage. The net-

work infrastructure consists of interconnected Grid components which are high per-

formance computers, storage devices, etc.

There are three non-simulation components which are model partitioner, model de-

ployer and activator. Model partitioner uses hierarchical model partitioning and con-

structs a set of partition blocks with the help of a cost-based measurement system.

After forming a cost tree from the DEVS model the Generic Model Partitioning Al-

gorithm is performed in partition process. While creating partition blocks the original

structure of DEVS model can be broken. Thus, in each partition block restructuring

the coupled model according to new model information can occur. Then model de-

ployer takes place and identifies which nodes are joining the simulation by Grid Index

Information Service (GIIS). Partition block and the coupling data of it are packed in

a message and are sent to the activators on those nodes. The activators receive the

payload and set up remote simulators for simulation execution. After simulator cre-

ation, node information including IP address, name of the simulator, model name,

input/output ports, etc. is published through GIIS.

There are two communication channels in DEVS/GRID; user channel and system

channel. User channel’s objective is transferring output data of a model to an input

port of a remote model. System channel is used for synchronization. It synchronizes

and advances the simulation time and applies locks for data transfer synchronization.

The communication channels are constructed after remote simulators are launched

and information of each node is published. For optimization of communication chan-

nels some filtering, grouping and optimization methods are used.

20

There is no central coordinator for the simulation management in DEVS/GRID. Each

simulator calls DEVS methods individually. After calling each method, simulator

blocks itself until it receives all other simulators’ protocol messages via system chan-

nels. When the termination condition is encountered, the DEVS cycle ends.

3.3 DEVS/CLUSTER

The novelty of DEVS/CLUSTER [26] is transforming hierarchical DEVS model

structure into a non-hierarchical one to ease the synchronization of remote models.

DEVS/CLUSTER utilizes CORBA as a communication system which is designed

to perform collaboration between heterogeneous platforms, different programming

languages and operating systems. CORBA supports object oriented programming

paradigm and this suits the DEVS formalism. DEVS/CLUSTER is also a "multi-

threaded distributed simulation" that works on distributed nodes as multi-threaded.

This ensures that while processing external events no deadlock condition is encoun-

tered. DEVS/CLUSTER employs Time Warp algorithm [27] for time synchroniza-

tion.

: scheduler

: coupled model

: atomic model

: schedule message

: I/O message

: model connection

Figure 3.2: DEVS/CLUSTER Simulation Mechanism (reproduced from [26])

Unlike other distributed DEVS implementations DEVS/CLUSTER converts the hi-

erarchical DEVS structure into a non-hierarchical one. This operation is carried out

21

without loss of information. Coupled models are removed and the hierarchical struc-

ture becomes flattened. Input/output ports of the atomic models lose connections

because before removal process they were connected to coupled models. Hence, new

connections are made directly between atomic models whether they reside in local or

remote node. A central scheduler is placed for the internal event scheduling in place

of coupled models.

3.4 DEVS/RMI

DEVS/RMI [55] focuses mostly the reconfiguration of the simulation structure dy-

namically in runtime unlike other approaches. It is a distributed version of DEVS-

JAVA [4, 39]. Its underlying communication technology is Java RMI. Because of

Java virtual machine implementation it is platform independent. RMI provides syn-

chronization in making remote method calls, so DEVS/RMI does not require an extra

time synchronization mechanism. RMI also handles serialization and marshalling for

the objects transferring between remote nodes. This object used as an entity object in

DEVSJAVA has to extend Java Serializable.

Partitioning can be performed in two ways; static or dynamic. In static partitioning,

before the simulation execution, main model is partitioned and distributed over re-

mote nodes. Dynamic partitioning is activated in runtime. When a dynamic model

partition is required, simulation cycle is stopped in simulation/model migration pro-

cess. After migration, simulation continues to simulation execution with new partition

plan.

DEVS/RMI is composed of 4 components; configuration engine, simulation con-

troller, monitoring engine and remote simulator. Configuration engine applies the

partitioning algorithm to the given model structure and sends the partition plan to

the simulation controller. In addition to this static partitioning, it can decide dynamic

partitioning by applying repartition algorithm to the model information received from

monitoring engine. Simulation controller manages the simulation with start, restart,

continue and stop commands. It also applies static and dynamic partitioning. It com-

mands the transportation of simulators and models to the remote nodes or creation

22

Model Structure

Configuration Engine

Simulation Controller

RMI
Naming

Remote
Simulator

Model

Machine 1

RMI
Naming

Remote
Simulator

Model

Machine 2

RMI
Naming

Remote
Simulator

Model

Machine 3

Monitoring Engine

Figure 3.3: DEVS/RMI Architecture (reproduced from [55])

of remote simulators on them. Monitoring engine gathers information of all models

in the simulation, keeps track of their actions and sends that information to the con-

figuration engine. Remote simulator maintains the DEVS simulator objectives as a

remote interface. It is created by the simulation controller and is connected to RMI

naming server in order to publish network address information with a unique name.

A related model is attached to remote simulator to process with and made ready for

the simulation start.

3.5 DEVS/SOA

The main distinction of DEVS/SOA [35] from other approaches is providing a solu-

tion to cross-platform distributed M&S in a client-server architecture using SOA. It

uses Java for the implementation. Messages between remote nodes are serialized with

SOAP. In communication, XML is used to make the system interoperable. Simula-

tion engine is developed as transparent to provide model level interoperability to the

23

developers and users. DEVS models can be developed in different languages and they

are represented in DEVSML, a specialized XML language for model definitions. Re-

mote simulators in DEVS/SOA behave as web services and composed of some core

features such as SOAP, WSDL and UDDI.

There are two kinds of simulation protocols in DEVS/SOA; centralized and real-time.

In centralized simulation, there resides a central coordinator in main server and it is

connected to all simulation services over network. At run-time, all output messages

are passed through this central coordinator since only it knows the coupling informa-

tion of all simulation services. In real-time simulation, wall-clock time takes over the

logical time in DEVS protocol execution. RT coordinator and RT simulation services

take part in execution. Output message of an RT simulation service is transferred

directly to the target RT simulation service since each of them knows the coupling

information. In centralized simulation, simulation time is controlled by the central

coordinator. However, in real-time simulation each simulator manages its own time.

DEVS/SOA also supports platform independent simulation execution. While one

simulation service works in DEVSJAVA, the other one can work in DEVSC++ [53].

Furthermore, the similar fact is eligible for the simulators. DEVSML provides a wide

environment for the multi-platform simulation definition. Between remote simula-

tors, platform independent messages wrapped with SOA framework are used and in

local communication these messages are converted to platform specific messages.

3.6 DEVS/PyRO

DEVS/PyRO [43] is designed to make quantitative analysis of reliability and per-

formance of different simulator designs with detection of failures in computational

and network resources. It is implemented in Python and uses pythonDEVS [36, 8].

PyRO which is an RMI-based python implementation is used in middleware layer.

Simulation protocol is executed asynchronously for performance.

DEVS/PyRO uses the solvers as a simulation protocol fashion and simulation is exe-

cuted by the communications between solvers. Each solver has a management inter-

face with the corresponding model. A coupled model’s solver is named coordinator.

24

Classical DEVS protocol is applied by root coordinator. All the atomic solvers, co-

ordinator and the root coordinator are atomic DEVS models. There are also three

important atomic DEVS models for fault detection, toleration and restoration; Mon-

itor, Log and Master Servers. Monitor server watches each remote node in order to

detect faults and notifies master server if required. Log server keeps information of

atomic solvers, coordinators, and the root coordinator from the logging ports. And

the master server manages the whole system. It knows the coupling information and

executes the DEVS simulation protocol.

When a simulation message is sent, target simulator is firstly searched locally by

looking into Local Coupling Table. If the target simulator is not there, Remote Cou-

pling Table is searched. All simulation messages wait for the callback, so although

simulation is executed asynchronously, it is always in sync.

3.7 Other Distributed DEVS Approaches

There are also some distributed DEVS approaches which utilize different DEVS for-

malisms; such as Cell DEVS [47] and Real-time DEVS [21], in the field. We do not

go into details of these since we have focused on Parallel DEVS and SiMA DEVS

formalisms. However, some information about approaches and architectures of them

is presented as:

PCD++ /.NET [18]: It can apply both Parallel DEVS and Cell DEVS formalisms.

For client-server routine, .NET Remoting API is used. As message transfer protocol

both HTTP and TCP are supported. Furthermore, both SOAP and binary encoding

formatters can be adopted in PCD++. Models are implemented in C++, thus, for the

message exchange C++/CLI is utilized.

DCD++ [31]: It can also apply both Parallel DEVS and Cell DEVS formalisms. On

the remote nodes Web Service technology with SOAP is adopted. Interoperability

between JAVA and C++ models is achieved through XML as a message transfer for-

mat. Both optimistic scheme with Time Warp algorithm, and conservative scheme

with synchronization messages or central simulation management are implemented.

25

Restful-CD++ [1]: As a middleware technology Representational State Transfer

(REST) is used. Restful-CD++ follows HTTP transfer protocol. The distributed sim-

ulation is maintained by a root coordinator. Simulation clock is managed by the

root coordinator. Simulation message is propagated downward in the hierarchy and

a ’DONE’ message is propagated upward until it reaches the root coordinator. Syn-

chronization is provided in this way.

RTDEVS/CORBA [15]: It is the real-time extension of DEVS/CORBA. Real-time

DEVS formalism is used. In the middleware, ACE/TAO extension of CORBA is

utilized to be in sync with real time. Coordinator no longer keeps components syn-

chronized as in DEVS/CORBA. In order to ensure conformity with the real time,

simulators in each node work asynchronously and a globally synchronized real-time

clock is used.

26

Table 3.1: Overview of Distributed DEVS Approaches

Formalism Middleware
Technology

Partitioning Synchronization
Scheme

Message
Exchange

DEVS/CLUSTER DEVS CORBA hierarchical to
non-hierarchical
structure

optimistic CORBA
remote
method
invocations

DEVS/GRID DEVS Globus cost-based
hierarchical
partitioning

conservative GIIS

DEVS/P2P DEVS JXTA autonomous
hierarchical
model
partitioning

conservative JXTA
message
format

DEVS/RMI DEVS JAVA/RMI applying
built-in
partition
algorithm

conservative JAVA
serializable
object

DEVS/PyRO DEVS PyRO/RMI user
specified or
automatic

conservative serialized
objects

DEVS/SOA Parallel
DEVS

GIG/SOA user specified conservative JAVA
serialization

PCD++/.NET Parallel
DEVS or
Cell DEVS

.NET
Remoting

user specified optimistic or
conservative

SOAP or
binary
encoding

DCD++ Parallel
DEVS or
Cell DEVS

Web Service user specified optimistic or
conservative

XML
format

Restful-CD++ Cell DEVS REST user specified conservative XML
messages
within HTTP
envelopes

RTDEVS/CORBA Real-Time
DEVS

ACE/TAO
extension
of CORBA

user specified conservative CORBA
remote
method
invocations

27

28

CHAPTER 4

DISTRIBUTED SIMA

Distributed SiMA is a framework that enables SiMA to execute in a distributed en-

vironment. It also aims to increase model reusability by bringing software connector

notion to M&S. Connectors in Distributed SiMA assist inter node communication and

adaptation of models in terms of port data types. Distinctively from other distributed

DEVS approaches Windows Communication Foundation is adopted as an underlying

middleware technology. Like SiMA core engine Distributed SiMA has been imple-

mented in .NET C#. Besides, WCF is convenient to adapt two .NET products with

each other in terms of performance. In Distributed SiMA most of the WCF features

mentioned in section 2.4 are benefited such as service oriented development envi-

ronment for simplicity, request/reply message exchange pattern for synchronization,

binary encoding over TCP transportation for performance and customized service

behavior for object serialization.

Novelty of our approach is the explicit use of connectors for adaptation of distributed

nodes and models via favorable WCF features in a distributed DEVS environment.

4.1 Connectors in Distributed SiMA

Distributed SiMA uses connectors which play important roles in simulation execution

since connectors play important roles in a component-based architecture. Connectors

in Distributed SiMA are the specialized atomic models. There are two kinds of con-

nectors in terms of the tasks they carry out: marshaller/unmarshaller connector and

data conversion connector.

29

4.1.1 Marshaller/Unmarshaller Connector

It consists of two built-in atomic models used in communication among remote mod-

els. If there is a port coupling between two models (coupled or atomic) located at

different nodes, a marshaller/unmarshaller connector is placed between the models in

order to serialize and deserialize the port data. The marshaller part of the connector is

placed in the source node, and the source model’s output port is connected to its input

port. Similarly the unmarshaller part of the connector is placed in the target node, and

its output port is connected to the target model’s input port. A port coupling of two

models in Figure 4.1a can be transformed for a distributed environment as in Figure

4.1b with marshaller/unmarshaller connectors.

Model 1 Model 2

Type1

Type2

(a) Located in the same node

Model 1

Marshaller 1

Marshaller 2 Unmarshaller 2

Unmarshaller 1

Network

Model 2

Type1 Type1

Type2 Type2

Serialized object

Serialized object

Marshaller/Unmarshaller Connector

Marshaller/Unmarshaller Connector

(b) Located in remote nodes

Figure 4.1: Marshaller/Unmarshaller Connectors

Conceptually, there is a one connector that performs marshalling and unmarshalling,

in addition to networking chores. In terms of implementation, it is composed of two

atomic DEVS models (one for marshalling, the other for unmarshalling), and the

underlying network. Marshalling/Unmarshalling connector uses direct feed through

transition port defined in SiMA formalism (Section 2.2.1). Therefore there is no sim-

ulation time step loss between remote models despite the connectors between them.

Atomic 1 sends data to Marshaller 1. In the same simulation time step Marshaller

30

1 serializes the data and sends it through network to Unmarshaller 1. Unmarshaller

1 deserializes the data and sends it to the Atomic 2. The sequence diagram in Fig-

ure 4.2 clarifies the operations. With the help of WCF there is no need for an extra

synchronization while sending port data through network. Because even if a remote

procedure call does not return a value, WCF ensures that it caller waits until calling

process is done.

Model 1 Marshaller 1 Unmarshaller 1 Model 2

dftPort.PutValue(message)

portService.PutValue(message)

receiverPort.PutValue(message)

Figure 4.2: Remote Model Communication Sequence Diagram

4.1.2 Data Conversion Connectors

Model continuity is a profitable characteristic when huge simulation projects are con-

sidered. Already implemented atomic models can be used in other projects with-

out modifications. Modelers might not want to break the integrity of already devel-

oped models since the verification and validation time of the modified model may

take more time than developing a new model. However, data types processed by

the legacy models might not match the data types of the new models. Evidently,

composable models may reflect the same real world entities and facts; however, they

might have non-identical data representations. These models have to communicate

with each other but port data types they are using are not the same. Data conversion

connectors [25] accomplish this bridging task. They receive a data packet in Type1,

apply conversion to it, and send it in Type2 like in Figure 4.3. They are implemented

by the model developers as atomic models. Distributed SiMA provides a base class

31

for the developers to develop connector models that utilize DFT ports for conversion

routines.

Model 1

Type1 to Type2
Data Conversion

Connector

Model 2

Type2 to Type1
Data Conversion

Connector

Type1

Type1

Type2

Type2

Figure 4.3: Data Conversion Connectors

4.1.3 Connector Roles According to Mehta Classification

Mehta and his colleagues stated eight connector types mentioned in Section 2.3; pro-

cedure call, event, data access, linkage, stream, arbitrator, adaptor, and distributor. A

connector may have more than one type among them.

Marshaller/Unmarshaller connectors are procedure call connectors since they make

remote procedure calls. They are also linkage connectors as they are not defined as

a simulation entity before simulation construction, but they are inserted to simula-

tion when a remote model port data transportation is needed. They establish the WCF

communication protocol and serializes data to be sent over network, so they are adap-

tor connectors.

Data conversion connectors are mostly adaptor connectors, because they provide

data conversion service among components. They also form binding between differ-

ent typed models and this makes them linkage connectors.

4.2 WCF Services in Distributed SiMA

There are four services in Distributed SiMA that are provided by the SOA feature of

WCF: Deployment Service (DS), Remote Simulation Service (RSS), Port Service (PS)

32

and Object ID Service (OIDS).

Deployment Service: Purpose of Deployment Service is creating a model deploy-

ment interface that is used by the central node. All nodes joined in the distributed

simulation open a Deployment Service and central node takes the role of the client.

The central node can get the names of remotely located models, deploy models, test

them and order nodes to start Remote Simulation Service.

Master Node Slave Node 1

deploymentService.DeployModels(modelPack1)

Slave Node 2

deploymentService.DeployModels(modelPack2)

Figure 4.4: Deployment Service Usage Sequence Diagram

Remote Simulation Service: For this service, central node is a client again that

connects the other nodes via Remote Simulation Service. Central node builds and

maintains the simulation execution with the help of this service. It sends required in-

formation to the other nodes for distributed simulation construction and builds remote

model couplings on them. After distributed simulation construction, SiMA protocol

is maintained by central node via this service.

Port Service: This service is used for the data transfer between ports of remote mod-

els. For each port coupling of a data type, one Port Service is started on the receiver

model. The source model connects to this service in distributed simulation construc-

tion process.

Object ID Service: It is used for keeping the integrity of SiMA port data usage

principle. In classical SiMA, the objects transferring port data are created before the

33

first transfer and a unique object id is assigned to them by the simulator. Not to break

this uniqueness, central node hosts the Object ID Service and provides the generated

unique id when a node requests.

4.3 Distributed SiMA Architecture

We used the existing SiMA implementation as a basis to develop Distributed SiMA.

We added new packages, extended the core classes, and modified some classes for

the distributed version. As shown in Figure 2.1 SiMA already has a distributed sim-

ulation adapter for interoperability. We did not touch it, but we implemented new

packages. Figure 4.5 shows the added components: Distributed SiMA, Model De-

ployment Server and Model Deployment Client.

Distributed SiMA
SiMA

Builder

Model Deployment Server

Runtime

SiMA

Distributed SiMA

Linker

Model Deployment Client

IModelDeploymentService

Figure 4.5: Distributed SiMA Components

The central node managing the whole system by deploying models, building simula-

tion, and executing simulation is called the Master Node. Other remote nodes joining

the simulation execution are called Slave Nodes. The only difference in package dis-

tribution between master and slave nodes is that Model Deployment Client works

34

in master node and Model Deployment Server works in slave nodes as illustrated in

Figure 4.6.

<< Master Node >>

Model Deployment Client

Distributed SiMA

Builder

Runtime SiMA

Linker

Model Deployment Server

Distributed SiMA

Builder

Runtime SiMA

Linker

<< Slave Node >>

IModelDeploymentService

Figure 4.6: Deployment Diagram

Distributed SiMA could be examined in two main phases with respect to distributed

simulation execution: model deployment, and simulation build and run as illustrated

in Figure 4.7.

35

User initializes model
deployment and test

Models are deployed
Deployed models are
tested in each node

Deployment process
finishes and user is
notified

User initializes the
simulation build
process

Model instances are
created in each node and
port couplings are
established

Simulation building
process finishes and user
is notified

User initializes the
simulation run

Simulation runs in
distributed environment

User interaction Master and Slave nodes

Not working properly

Working properly

M
o

d
el

 D
ep

lo
ym

en
t

Si
m

u
la

ti
o

n
 B

u
ild

 a
n

d
 R

u
n

Simulation finishes and
user is notified

User collects the
simulation output

Figure 4.7: General System Flow Diagram

4.3.1 Model Deployment

This phase covers identifying slave nodes, establishing connections, deploying and

testing of models in them. Before all of these, slave nodes must be ready for the

model deployment. For the model deployment slave nodes need starting the Model

Deployment Server and creating a service listener for the connection. We use Win-

dows services that operate in the background, and are managed by the operating sys-

tem. We developed a Windows service to instantiate the Deployment Service. In

order to make a slave node ready for model deployment and distributed simulation

execution, the following steps are to be performed (Figure 4.8).

36

User copies the
necessary files to the
target slave node

User installs the
Windows service

Windows service starts

Windows service hosts
Deployment Service

Deployment Service
starts to listen for the
connection requests

User Interaction Operating System – Windows Deployment Service

Figure 4.8: Deployment Service Start

1. User copies the necessary files to each target slave node: distributed SiMA

execution DLLs and Windows service installation file.

2. User installs the Windows service.

3. Windows service starts.

4. Windows service hosts Deployment Service.

5. Deployment Service starts to listen for the connection requests until someone

manually stops it or computer is shut down.

Slave nodes behave like servers after these steps and start to listen via Deployment

Service port for the connection requests. This service is used in the deployment phase

of Distributed SiMA. The activity diagram in Figure 4.9 indicates the parts of the de-

ployment phase in order. User initializes the model deployment process with the dis-

tributed scenario definition document which consists of model definition, coupling in-

formation, initialization parameters of models, and endpoint addresses of slave nodes

added to coupled or atomic model definitions.

37

User initializes model
deployment and test

Identify Slave Nodes

DistributedScenarioDocument.xml

Connect to Slave Nodes

Get Models Check Models

Deploy Models Test Models

Start Remote Simulation
Service

Finalize model
deployment and test

Exists

Not exists

Working properly

Not working properly

User Interaction Master Node

Figure 4.9: Deployment Activity Diagram

1. Identify Slave Nodes: From the input XML document called DistributedSce-

narioDocument the endpoint addresses of slave nodes are gathered. Endpoint

address format is:

<WCFBindingTypeSpecifier>//<IpAddress>:<PortNumber>/<ServiceName>

Example: net.tcp//127.51.52.05:24000/ModelDeploymentService

WCF bindings (defined by WCFBindingTypeSpecifier) represent the commu-

nication mechanism to be used while communicating with an endpoint and how

WCF channels provide the required communication features. We use nettcp-

binding in communication. This binding provides an optimized cross-machine

communication between WCF applications. In order to use this binding, the

two connected applications must be WCF applications.

2. Connect to Slave Nodes: Endpoint address information of a slave is enough to

make connection between the master and the slave nodes. Master node connects

38

to all slave nodes through Model Deployment Service.

3. Get Models: Master node gets the model names from each slave.

4. Check Models: Master node has the information of which model will be lo-

cated on which slave node. Hence, master node checks if each slave has the

corresponding models.

5. Test Models: Master node tests those remote models to indicate that they are

correctly installed on the slave node with the help of a testing interface proposed

by models.

6. Deploy Models: If a Check and Test operation fails on a slave node, master

node deploys the necessary models to the slave node via WCF.

7. Start Remote Simulation Service: At the end of the model deployment phase

a new process is created in the master node for the simulation build and run. We

use multi-processes instead of multi-threads because if an error occurs during

simulation build and run, Deployment Service will continue execution to serve

new connection requests. In slave nodes, preparation for the simulation build

and run is finished with the followings:

(a) Master node calls a method from the Model Deployment Service for the

Remote Simulation Service start on slave nodes.

(b) In slave node a new process is created.

(c) An inter process communication (IPC) channel is established between

main and new process for the data exchange. Additionally an operating

system level mutex provided by .NET framework is used for the process

synchronization.

(d) Remote Simulation Service starts to listen for the incoming connection

requests in created process.

(e) Remote Simulation Service endpoint address information is sent to main

process through the IPC channel.

(f) The method called from Master node returns the endpoint information.

(g) The main process on slave node starts to sleep until awakened by the cre-

ated process when the simulation ends with or without any error.

39

4.3.2 Simulation Build and Run

Model Deployment guarantees that all simulation models are dispatched over the net-

work and tested on the corresponding slave nodes. In this phase distributed simulation

will be built and run. Distributed SiMA employs basic SiMA simulation construction

pipeline showed in Figure 2.2 as a base and extends it to build distributed simulation.

Again master node maintains the system building process. The distributed version of

the SiMA simulation construction pipeline is in Figure 4.10.

Distributed
Scenario
Analyzer

Distributed
Scenario

Document

Data Type
Mapping Rules

XSLT

Distributed
Model
Linker

Distributed
Model
Builder

KODO

Port Type
Mapping Rules

XML XML

KODO Data Type
Definitions

XML

Code Generation
Rules

XSLT

Port Data
Structures

Simulation Models
in Distributed
Environment

Distributed Simulator

Figure 4.10: Distributed SiMA Simulation Construction Pipeline

4.3.2.1 Distributed Scenario Analyzer

Distributed Scenario Analyzer starts the distributed simulation construction pipeline.

In Distributed SiMA, Scenario Document is modified as Distributed Scenario Docu-

ment that includes the definition of the partition plan. User writes Deployment Ser-

vice (DS) endpoint address of a slave node inside the definition of the model (atomic

or coupled) he wants to work as remote. This modification on scenario document is

enough to make a basic SiMA scenario distributed. Distributed Scenario Analyzer

takes a Distributed Scenario Document file as an input and creates an intermediary

data for Distributed Model Linker. The Distributed Scenario Document consists of

model definition, model coupling information with remote node endpoint addresses,

40

and initialization data of the models.

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 1 DS endpoint

Slave 1 DS endpoint

Slave 2 DS endpoint

Slave 3 DS endpoint

Slave 4 DS endpoint

Make distributed

Figure 4.11: Hierarchical View of Making a Basic SiMA Scenario Distributed

Hierarchical view of a basic SiMA scenario definition can be observed on the left

side of the Figure 4.11. Coupling information is defined in XML syntax inside the

scenario definition file. According to the given partition Atomic2 and Atomic3 will

work remotely on Slave 1, Coupled 3 on Slave 2, Atomic8 on Slave 3, and Atomic9

on Slave 4. Remaining models will work locally on Master. This document is also

used in model deployment processes.

While defining the partition plan the only constraint is that a remote coupled model

cannot contain a remote atomic or coupled model. As illustrated in the Figure 4.12

invalid definitions are highlighted and a valid scenario definition is defined on the

right hand side.

41

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 3 DS endpoint

Slave 1 DS endpoint

Slave 2 DS endpoint

Slave 4 DS endpoint

Slave 5 DS endpoint

Delete invalid definitions

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 3 DS endpoint

Slave 1 DS endpoint

Slave 2 DS endpoint

Slave 4 DS endpoint

Slave 5 DS endpoint

Figure 4.12: Invalid Partition Plan Definitions

4.3.2.2 Distributed Model Linker

Distributed Model Linker is the core component among the others taking role in the

pipeline. It prepares the distributed simulation structure to be built. The intermediary

scenario received from Distributed Scenario Analyzer is separated into two files in

this component. One of the files is the distributed model link map file including

the coupling information, model definitions, and port connection definitions using

a hierarchical style. The other file is the distributed simulation configuration file

consisting of initialization data of the atomic models.

User specifies the required data conversion connectors; however, the document does

not include marshaller/unmarshaller connector definitions. Distributed Model Linker

inserts them where they are required. There are some conditions to be considered

while partitioning the remote models in order to make some optimizations.

Partitioning Conditions

Condition 1 Each slave node has only one remote model

This is the basic condition which does not require any operation except forming mod-

els defined as remote and their port connection definitions. Firstly, Distributed Model

42

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 2 DS endpoint

Slave 1 DS endpoint

Slave 3 DS endpoint

Slave 4 DS endpoint

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 2 RSS endpoint

Slave 1 RSS endpoint

Slave 3 RSS endpoint

Slave 4 RSS endpoint

Remote1_1

Remote2_1

Remote3_1

Remote4_1

Add Remote Coupled Models

Figure 4.13: Condition 1: Adding Remote Coupled Models

Linker adds remote coupled models covering the models defined as remote for each

slave node as displayed in Figure 4.13. In addition, it changes the Deployment Service

(DS) endpoint addresses to Remote Simulation Service (RSS) endpoint addresses and

writes them near remote coupled models.

Numbers in the names of the remote coupled models specify the index number of

slave nodes and the remote session number held for each slave node respectively. The

logic of remote sessions will be explained in the second condition. After restructuring

the model hierarchy with remote coupled models, Distributed Model Linker analyzes

the new structure and adds marshaller/unmarshaller connectors according to remote

model connections as displayed in Figure 4.14. Moreover, the existing connections

are altered and new connections are made with the new connectors.

Marshaller/unmarshaller connectors are inserted at the same levels as their corre-

sponding source/target models. They are named with the same number as suffixes

of marshaller part of the connectors with the counterpart unmarshaller part of the

connectors. After making new couplings Port Service (PS) endpoint addresses are

written near marshaller-unmarshaller connections. In Figure 4.15 new simulation

structure after marshaller/unmarshaller connectors is illustrated clearly.

43

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 2 RSS endpoint

Slave 1 RSS endpoint

Slave 3 RSS endpoint

Slave 4 RSS endpoint

Remote1_1

Remote2_1

Remote3_1

Remote4_1

Couplings in selected segment before
marshaller/unmarshaller connectors

Coupled1 Atomic1

Atomic1 Atomic2

Atomic2 Coupled2

Coupled2 Coupled1

Couplings in selected segment after
marshaller/unmarshaller connectors

Coupled1 Atomic1

Atomic1 Marshaller1

Marshaller1 Unmarshaller1

Unmarshaller1 Atomic2

Atomic2 Marshaller2

Marshaller2 Unmarshaller2

Unmarshaller2 Coupled2

Coupled2 Marshaller3

Marshaller3 Unmarshaller3

Unmarshaller3 Coupled1

New couplings with New Models
PS 1 endpoint

PS 2 endpoint

PS 3 endpoint

Figure 4.14: Condition 1: Adding Marshaller/Unmarshaller Connectors and Making

New Couplings with New Models

Condition 2 A slave node has more than one distinct remote model

Slaves may have more than one remote model. If there is not any connection among

them, this condition takes the charge. For each model defined as remote, one re-

mote coupled model is created. WCF opens a session for each of them and they are

processed unaware of each other. There is an instance context per session and this

maintains lifetime of each session separately. Sessions are indicated with the last

number in the remote coupled model name as in Figure 4.16.

44

Slave Node 1

Slave Node 2

Master Node

Coupled1

Atomic1

Remote1_1

Remote2_1

Atomic2

Coupled2

Atomic3

Atomic4

Local connection

Remote connection

Marshaller1

Unmarshaller3

Unmarshaller2

Marshaller3

Unmarshaller1

Marshaller2

Figure 4.15: Condition 1: New Simulation Structure With Marshaller/Unmarshaller

Connectors

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 1 DS endpoint

Slave 1 DS endpoint

Slave 2 DS endpoint

Slave 2 DS endpoint

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 1 RSS endpoint

Slave 1 RSS endpoint

Slave 2 RSS endpoint

Slave 2 RSS endpoint

Remote1_1

Remote1_2

Remote2_1

Remote2_2

Add Remote Coupled Models

Figure 4.16: Condition 2: Adding Remote Coupled Models

45

Marshaller/unmarshaller connectors are inserted and new connections are made sim-

ilar to condition 1.

Condition 3 A slave node has more than one connected remote models

In order to maximize local communication, if there are connected models defined as

remote in the same slave node they are taken in the same remote coupled model as

displayed in Figure 4.17.

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 1 DS endpoint

Slave 1 DS endpoint

Slave 2 DS endpoint

Slave 2 DS endpoint

Coupled0

Coupled1

Atomic1

Atomic2

Coupled2

Atomic3

Atomic4

Atomic5

Coupled3

Atomic6

Atomic7

Atomic8

Atomic9

Slave 1 RSS endpoint

Slave 2 RSS endpoint

Slave 2 RSS endpoint

Remote1_1

Remote2_1

Remote2_2

Add Remote Coupled Models

Slave 2 DS endpoint

The connections between models defined as remote

Atomic2 Coupled2

Atomic8 Atomic9

Figure 4.17: Condition 3: Adding Remote Coupled Models

4.3.2.3 Distributed Model Builder

Distributed Model Builder is the constructor of the Distributed SiMA. It manages

the creation of instances of model classes. It establishes one root coupled model

by combining the instances according to hierarchical structure for each node. This

hierarchical structure is obtained from the distributed model link map file produced

by Distributed Model Linker. For the models to be run in master node, it builds them

locally. And for the remote models it commands the slave nodes to build the remote

coupled models via Remote Simulation Service. There are also remote model proxies

located in the master node for each remote coupled model. Their task is to provide

a communication setup in order to communicate with Remote Simulation Service.

46

They are images of the remote coupled models in master node. Distributed Simulator

manages the distributed simulation on master node as if it is local. It thinks that

all models are located in one computer. Actually remote model proxies create this

illusion.

At the initialization phase of the construction process Distributed Model Builder

opens an Object ID Service (OIDS) on master node. This service provides an access

facility for the object id generator working on Distributed Simulator. SiMA ensures

that all port data objects created have unique ids in simulation. These ids are gener-

ated by SiMA simulator. To conserve this logic, OIDS is opened in master node and

slave nodes request ids from simulator. After preparing OIDS, remote model building

process commits in the following steps shown in Figure 4.18 by the master node.

Creates a remote
model proxy on
master node

Remote model proxy
connects to Remote
Simulation Service

Prepares sub files
containing the
coupling information
and initialization data

Sends these files via
remote model proxy

Commands slave node
to build models

Slave node connects
to OIDS

Figure 4.18: Remote Model Building

1. Distributed Model Builder creates a remote model proxy on master node.

2. Remote model proxy connects to Remote Simulation Service located on the

slave node.

3. Distributed Model Builder prepares two sub files including only the remote

coupled model coupling information and initialization data to be created on

related slave node.

4. These files are sent via remote model proxy to the slave node.

5. Build model command is sent to slave node and remote coupled model in-

stance is created with the given coupling information and initialization data on

the slave node.

6. Slave node connects to OIDS.

47

This instance includes all remotely defined models without remote port connections.

In order to connect remote ports marshaller/unmarshaller connectors should be ready

on associated nodes. Remote port connections are established in two steps: a Port

Service (PS) is opened in unmarshaller part of the connector and the counterpart

marshaller part of the connector connects it. Here in Figure 4.19 there is an overview

of the constructed distributed simulation system of the example from Figure 4.17.

Coupled0

Coupled1

Atomic1

Atomic2 Coupled2

Atomic3 Atomic4

Atomic5

Coupled3

Atomic6 Atomic7

Atomic8 Atomic9

Remote1_1 Remote2_1 Remote2_2

MASTER
NODE

Remote1_1_Proxy

Remote2_1_Proxy Remote2_2_Proxy

UMC1 MC2

MC1 UMC2

MC3 UMC4

UMC3 MC4

MC5 UMC6

UMC5 MC6

SLAVE
NODE 1

SLAVE
NODE 2

RSS RSS RSS PS

PS

PS

PS

PS

PS

Figure 4.19: Distributed Simulation Structure Example Overview

4.3.2.4 KODO

KODO is not adjusted to distributed SiMA since the port and initial data classes gen-

erated are used as they are. Actually in WCF user specifies the port data classes

transported through network by tagging them with Data Contract property. The .NET

framework detects that the class will be serialized by WCF. However, we did not de-

velop a new distributed version of KODO or modify the generated classes. Because

it brings some work load and also ruins the easiness of making an already developed

SiMA scenario distributed. One would have to run the new distributed KODO to add

Data Contract property to all generated classes. We resolved this problem by chang-

ing the Port Service data serialization behavior. In default WCF expects to serialize

only Data Contracts. With the changing service serialization behavior, all port data

classes can be serialized into the object class which is the base class of all classes in

.NET. This feature of WCF serialization behavior can be used because of WCF-to-

48

WCF communication. There is not a cross-platform communication and we can use

the benefits of WCF-to-WCF communication in both data transport optimization and

serialization.

4.3.2.5 Distributed Simulator

Distributed Simulator maintains the simulation execution as in SiMA. However, it is

distributed since there are remote model proxies in place of the actual models. At

the management level Parallel DEVS protocol is applied. Simulation execution is

synchronized in terms of simulation time management as a default because of its cen-

tral architecture and request/reply feature in remote procedure calls of WCF. There is

no need for an extra global or local simulation time synchronization among remote

nodes. Considering the distributed DEVS systems mentioned in Chapter 3 time man-

agement scheme of Distributed SiMA can be named as conservative but not with a

global time synchronization mechanism. There is a sequence diagram of a Parallel

DEVS protocol method in Figure 4.20. Distributed Simulator gets the next active

time of the models to find the minimum next time. Different from the classical SiMA

there will be a network delay cost in terms of the process time of the method.

Distributed
Simulator

Remote Model
Proxy

Remote Coupled
Model

Generic Model

genericModel.GetNextTime()

remoteSimulatorService.GetNextTime()

genericModel.GetNextTime()

nextTime

nextTime

nextTime

Figure 4.20: A DEVS Protocol Method Call via Remote Simulation Service

49

50

CHAPTER 5

CASE STUDY

This chapter includes a case study to demonstrate Distributed SiMA. The scenario

used in the case study is a wireless ad hoc sensor network [49]. There are two kinds

of sensor models in the scenario: detailed sensor model and regular sensor model.

There is also a sink model gathering sensor information. A logger model is used to

trace the local and distributed models’ activities. A platform model is used as a tar-

get to be detected by sensors and make them send detection information to the sink

model. Moreover, there are connectors; RegularToDetailedSensorInfo and Detailed-

ToRegularSensorInfo connector between regular sensor models and detailed sensor

models, and DetailedToRegularPlatformInfo connector between platform and regular

sensor models. All scenario models and relations between them are observed from

Figure 5.1. As the aim of this case study is not a WSN evaluation, the implementation

of models does not reflect the exact calculations needed to be done in a real wireless

ad hoc sensor network.

51

Platform
Model

Logger Model

Sink Model

Regular Sensor Info

Detailed Platform Info

Sensor Model
Sensor Model

Sensor Model
Sensor Model Regular

Sensor Model

Detailed
Sensor Model Detailed

Sensor Model Detailed
Sensor Model Detailed

Sensor Model Detailed
Sensor Model

Regular Platform Info

Detailed Sensor Info

Connector

Connector

Connector

Detailed Sensor Info

Regular Sensor Info

Figure 5.1: Models in the Case Study Scenario

5.1 Description of Models

Regular Sensor Model: Regular Sensor Model forwards the sensor information re-

ceived from other sensor models to the closest sensor model until the information

reaches to the sink model. It also receives the platform information from the Platform

Model. If the platform is in range of the Regular Sensor Model, it processes the data

and sends the data to the sink through sensors. It expects the sensor information in

type of Regular Sensor Info from its input port and sends the sensor information with

the same type. Also it receives the platform information in type of Regular Platform

Info.

Detailed Sensor Model: The task of Detailed Sensor Model is the same as a Regular

Sensor Model; however, it processes the data in a detailed form. Thus its calcula-

tions need more CPU time. It receives and sends the sensor information with type of

52

Detailed Sensor Info. And it receives the platform information with type of Detailed

Platform Info.

Sink Model: The Sink Model initiates the WSN and keeps track of the platform

position. It receives Detailed Sensor Info from all sensors and sends Detailed Sensor

Info to them. The received sensor information consists of position of the sensor and

the platform, signal strength, and some id numbers related to the sensor.

Logger Model: It receives the Detailed Sensor Info typed data from the sensor mod-

els and Detailed Platform Info typed data from the Platform Model, and writes the

logs to an XML file.

RegularToDetailedSensorInfo Connector Model: This data conversion connector

takes charge in converting the Regular Sensor Info type to Detailed Sensor Info. It

converts the data received from Regular Sensor Models and sends it to Detailed Sen-

sor Models, Sink Model and Logger Model.

DetailedToRegularSensorInfo Connector Model: This data conversion connector

takes charge in converting the Detailed Sensor Info type to Regular Sensor Info. It

converts the data received from Detailed Sensor Models and Sink Model, and sends

it to Regular Sensor Models.

DetailedToRegularPlatformInfo Connector Model: This data conversion connec-

tor takes charge in converting the Detailed Platform Info type to Regular Platform

Info. It converts the data received from Platform Model, and sends it to Regular

Sensor Models.

5.2 Scenario Build

Distributed SiMA is tested with 2 slave nodes. Partition plan of the models is shown

in Figure 5.2. Slave Node 1 has 25 Detailed Sensor Models, one Sink Model, one

Logger Model and one RegularToDetailedSensorInfo Connector Model. Slave Node

2 has 25 Regular Sensor Models, one DetailedToRegularSensorInfo Connector Model

and one DetailedToRegularPlatformInfo Connector Model. Additionally, Master Node

runs one Platform Model.

53

Detailed Sensor
Model 1

Sink Model Logger Model

RegularToDetailedSensorInfo
Connector Model

x25 << slave node 1 >>

Regular Sensor
Model 1

DetailedToRegularSensorInfo
Connector Model

x25

DetailedToRegularPlatformInfo
Connector Model

Platform Model

<< slave node 2 >>

<< master node >>

Figure 5.2: Partition Plan Overview of Case Study Scenario

MASTER NODE

Platform Model

Marshaller 1 Marshaller 2

 Unmarshaller 1
(located on Slave Node 1)

 Unmarshaller 2
(located on Slave Node 2)

Detailed Platform Info

Figure 5.3: Master Node

54

Detailed
Sensor Model 1

Sink Model Logger Model

RegularToDetailedSensorInfo
Connector Model

SLAVE NODE 1

Unmarshaller 1 Unmarshaller 3

Detailed
Sensor Model 2

x25

Detailed Platform Info

Regular Sensor Info

Detailed Sensor Info

 Marshaller 1
(located on Master Node)

 Marshaller 3
(located on Slave Node 2)

Marshaller 4

 Unmarshaller 4
(located on Slave Node 2)

Figure 5.4: Slave Node 1

Regular Sensor Model 1

DetailedToRegularSensorInfo
Connector Model

SLAVE NODE 2

Unmarshaller 2 Unmarshaller 4

Regular Sensor Model 2

x25

Detailed Platform Info

Regular Sensor Info

Detailed Sensor Info

 Marshaller 2
(located on Master Node)

 Marshaller 4
(located on Slave Node 1)

Marshaller 3

 Unmarshaller 3
(located on Slave Node 1)

Regular Platform Info

DetailedToRegularPlatformInfo
Connector Model

Figure 5.5: Slave Node 2

55

After the construction of the system, node overviews are as shown in Figures 5.3,

5.4, and 5.5 with created remote coupled models, inserted marshaller/unmarshaller

connectors and established port connections.

5.3 Discussion

To specify component interactions user-defined connectors are the most flexible ap-

proach [2]. There are also some studies for the definitions of connector roles in a

component-based architecture, for example Balek’s studies [6, 5]. Our data conver-

sion connectors are the adaptors that tie two or more atomic model components de-

signed to interoperate. However, it can be considered that adding new models to a

scenario brings burden to the simulator and slows the simulation execution. More-

over, one has to develop the new data conversion connector model.

For example, there are two already developed and tested scenarios. The first one uses

Detailed Sensor Models and the second one uses Regular Sensor Models. In a new

scenario we want to use both sensor models. There are two ways in order to prepare

a scenario like this: modifying one type of sensor model to convert the received data

when it is making calculations and again convert the calculated data back to send,

or developing data conversion connectors. We implemented the case study scenario

without data conversion connectors. We removed all the data conversion connectors

and modified the Regular Sensor Model to adapt the new environment. Input and

output port data types changed to detailed ones. Required conversions are done before

calculations and before sending the calculated data. By doing this we achieved two

results:

1. We executed the simulation with and without data conversion connectors and

the simulation execution time did not change. Thus, a connector is not a burden

to the simulator.

2. The Regular Sensor Model had 182 lines at first. After the modification 18

lines were changed and 26 new lines are added. As a ratio 10% of code lines

is modified and 14% of code lines is added. Thus, when atomic models con-

sist of massive data and calculations are considered, modifying them for the

56

adaptation to the new scenario models costs developer more than anticipated.

5.4 Evaluation

We have conducted some tests on the case study scenario and obtained the data shown

in Figure 5.6. The scenario is executed both with data conversion connectors as DCC

and without them. The X axis of the chart shows the number of Detailed Sensor

Model as DS and Regular Sensor Model as RS in the scenario. The Y axis of the chart

shows the wall clock time of simulation execution in seconds. The result data shows

that when number of sensor models in the scenario increases, Distributed SiMA ex-

ecutes faster than SiMA. Moreover, in distributed simulation execution, the effect

of data conversion connectors is unremarkable with only 0.5% increase in execution

time. There is an unanticipated result: in the scenario with 50DS-50RS SiMA exe-

cuted, simulation is executed faster with data conversion connectors. Because with

data conversion connectors 200 port connections are established between Detailed

Sensor Models and Regular Sensor Models. However, when data conversion con-

nectors are removed 5000 port connections are established and this slows down the

execution.

0

100

200

300

400

500

600

700

800

900

10 DS - 10 RS 25 DS - 25 RS 50 DS - 50 RS

Local

Local without DCC

Distributed

Distributed without DCC

139 138 141 140

699 703

842

355

825

356
398 403

W
al

l C
lo

ck
 T

im
e

 in
 S

e
co

n
d

s

Number of Sensor Models
DS: Detailed Sensor, RS: Regular Sensor

Figure 5.6: Case Study Scenario Test Results

57

58

CHAPTER 6

CONCLUSION

In this thesis, we have proposed a distributed approach for SiMA via WCF. WCF

takes charge in communication and transportation among distributed nodes. More-

over, our approach use connectors which provide adaptation of distributed nodes and

models and increase model reuse. Compared to other distributed DEVS implementa-

tions Distributed SiMA brings novelty in these three points:

1. Distributed SiMA uses SiMA-DEVS formalism

2. In order to increase model reusability, and distributed node and model adap-

tation, connectors are used

3. WCF is adopted in the network communication and data transportation layer

In development process of Distributed SiMA, by the help of direct feed transition

functionality, connectors are not a burden to simulation execution in terms of time

step. Both data conversion and data marshalling/unmarshalling operations are done

in the same simulation step. In fact, this feature can be achieved with classical DEVS

formalism by setting next execution time of those models to zero. Nevertheless, direct

feed through transition function simplifies the management of this feature while pre-

venting simulation from deadlock conditions. Moreover, a data conversion connector

increases model reusability by placing between a new and a legacy model. This also

hinders developers from applying regression tests for the validation and verification.

If a data conversion connector was not placed, the legacy model would have to be

modified to be compatible with the new scenario models. Benefits of connectors can

be listed as:

59

1. Modularity and object-oriented design approach usage which is supported strongly

by the DEVS [50] increases when connectors are used [25].

2. Development time is decreased since developing a new atomic model is faster

than modifying an already developed atomic model. The existing atomic model

would be implemented by another person, so it may be hard to understand the

code and change it. Also the model may have a lot of lines of code and again

this increases the changing time.

3. When we change an existing atomic model, we disrupt the code integrity. It

was a verified atomic model when it was used in previous scenario. Therefore,

the modified atomic model needs to be verified, and unit and regression tests

have to be done. Connectors save developer from these issues.

4. Since we do not change the existing model and use it as it is, model reusability

is promoted.

According to the statistics given in Section 5.3, this situation causes 10% of code

lines to be modified and 14% of code lines to be added for our case. In addition,

this operation removes the validation and verification properties of it. Moreover, it is

easier to develop a data conversion connector in a shorter time. On the other hand,

marshaller/unmarshaller connector facilitates the port data serialization/deserializa-

tion operations along the network. For example, if a marshaller part of the connector

was not placed at the source node, connection with the corresponding unmarshaller

part of the connector would have to be made and the data serialization operation

would have to be done in source model. When a marshaller part and an unmarshaller

part of a connector are placed mutually at remote nodes, client/server connection is

automatically done in Distributed SiMA. This procedure has to be implemented in

model if marshaller or unmarshaller part of the connector is removed.

There are roles of connectors in the literature. While data conversion connectors are

adaptor and linkage connectors, marshaller/unmarshaller connectors are also proce-

dure call connectors in addition to adaptor and linkage in terms of Mehta’s and his

colleagues’ classification of connectors [33].

60

In Distributed SiMA most of the WCF features are utilized. These features and uti-

lization ways are given as:

1. Service oriented development environment: This provides a simple develop-

ment environment. It presents a service interface in a server and a client makes

remote procedure calls after connecting the service. In service interface since

data type to be sent and received is specified, no extra data type transport defi-

nition is needed.

2. Request/reply message exchange pattern: This feature plays the most impor-

tant role in simulation execution in a distributed environment. When a client

makes a remote procedure call, it waits for a reply from the server. With the

help of this no extra synchronization mechanism needs to be implemented. It

ensures that the distributed simulation execution is always in sync.

3. Binary encoding over TCP transportation: This feature is used since all dis-

tributed nodes run a WCF application. The main benefit of it is the fastest way

of communication among WCF-to-WCF applications.

4. Extensibility: In order to make explicit use of binary encoding possible, we

customized the service behavior. Thus, a .NET serialized object can be trans-

ported through network.

6.1 Distributed SiMA Approach

In Chapter 3 we have described various distributed DEVS approaches. And here is a

table summing up those information with the Distributed SiMA approach.

DEVS is the underlying formalism in all distributed DEVS approaches, but DEVS\SOA

uses an upgraded version of DEVS, parallel DEVS formalism, and Distributed SiMA

uses SiMA formalism.

Middleware technologies vary from Globus providing control over grid computers,

and JXTA enabling processing in a peer-to-peer network system to RMI and WCF

which are common in RPCs in an object-oriented fashion.

When partitioning is considered, there are algorithms applied on the DEVS root cou-

61

Table 6.1: Comparing Different Distributed DEVS Approaches

Formalism Middleware
Technology

Partitioning Synchronization
Scheme

Message
Exchange

DEVS/CLUSTER DEVS CORBA hierarchical to
non-hierarchical
structure

optimistic CORBA
remote
method
invocations

DEVS/GRID DEVS Globus cost-based
hierarchical
partitioning

conservative GIIS

DEVS/P2P DEVS JXTA autonomous
hierarchical
model
partitioning

conservative JXTA
message
format

DEVS/RMI DEVS JAVA/RMI applying
built-in
partition
algorithm

conservative JAVA
serializable
object

DEVS/PyRO DEVS PyRO/RMI user
specified or
automatic

conservative serialized
objects

DEVS/SOA Parallel
DEVS

GIG/SOA user specified conservative JAVA
serialization

Distributed SiMA SiMA WCF user specified conservative .NET
binary
serialized
objects

pled model to partition the models efficiently in terms of resource usage and cross-

node communication. DEVS/CLUSTER firstly transforms the hierarchical DEVS

structure into a non-hierarchical one and after that partitions the models. While DE-

VS/GRID uses a cost-based hierarchical partitioning algorithm, DEVS/RMI applies

a built-in algorithm for partitioning. Moreover, in DEVS/PyRO, DEVS/SOA and

Distributed SiMA user specifies the partition plan.

As a synchronization scheme only DEVS/CLUSTER implements an optimistic ap-

proach which uses Time Warp algorithm to synchronize when it is broken. DEVS/-

GRID ensures the synchronization with protocol messages. DEVS/RMI and DE-

VS/PyRO is always synchronized with the help of RMI technology. Similarly, Dis-

tributed SiMA is always in sync due to WCF.

Each message exchange format depends on the implemented language and working

environment. DEVS/P2P uses JXTA message format since it uses JXTA as a mid-

dleware. DEVS/CLUSTER sends or receives data by remote method invocations in

62

CORBA. DEVS/RMI and DEVS/SOA use JAVA serialized objects since they are dis-

tributed versions of DEVS/JAVA and the language allows it. Besides, Distributed

SiMA uses .NET binary serialized data since in a WCF-to-WCF application it is a

fast way of transfer compared to other options [11].

6.2 Future Work

6.2.1 Connector Repository

Distributed SiMA automatically places marshaller and unmarshaller part of the mar-

shaller/unmarshaller connector mutually on the remote nodes. However, data con-

version connectors are implemented and defined in Distributed Scenario Document

by developers. In order to automatize these operations there can be a repository in-

cluding data conversion connectors located in a remote server [22]. The Distributed

Scenario Document is analyzed before simulation construction and incompatible port

data types among models are detected. This connector repository is searched for the

required data conversion connector models and they can be downloaded. And also

definitions of them can be added to the file automatically.

6.2.2 Model Editor and KODO Adaptations

Although there is a Model Editor in basic SiMA simulation construction pipeline, it

is not adapted for Distributed SiMA yet. Model Editor generates Scenario Document

after a user prepares a scenario via GUI. To enable a SiMA simulation to work on

Distributed SiMA only endpoint addresses of remote nodes are written next to model

definitions in Scenario Document. Model Editor can be adapted to Distributed SiMA

for arranging a distributed scenario visually.

KODO generates the initialization and port data classes for both SiMA and Dis-

tributed SiMA. In Distributed SiMA for the transportation of port data through net-

work, service behavior of Port Service is modified and all port data are serialized

into .NET objects. However, WCF offers a property that can be added to the classes

to be transported through network without changing service behavior. This should

63

save users from extra type castings and speeds up the marshalling/unmarshalling pro-

cesses.

64

REFERENCES

[1] Khaldoon Al-Zoubi and Gabriel Wainer. Performing Distributed Simulation
with RESTful Web-services. In Winter Simulation Conference, WSC ’09, pages
1323–1334. Winter Simulation Conference, 2009.

[2] Robert Allen. A Formal Approach to Software Architecture. PhD thesis,
Carnegie Mellon, School of Computer Science, January 1997. Issued as CMU
Technical Report CMU-CS-97-144.

[3] Abdelkrim Amirat, Mourad Oussalah, et al. Reusable Connectors in
Component-Based Software Architecture. In Proceedings of the ninth inter-
national symposium on programming and systems,(ISPS 2009), pages 28–35,
2009.

[4] ASU. Arizona Center For Integrative Modeling and Simulation.
http://acims.asu.edu/software/devsjava, last visited on June 2014.

[5] Dusan Bálek. Connectors in software architectures. Technical report, Charles
University, Czech Republic, 2002.

[6] Dusan Bálek and Frantisek Plasil. Software Connectors and Their Role in
Component Deployment. In Proceedings of the IFIP TC6 / WG6.1 Third In-
ternational Working Conference on New Developments in Distributed Appli-
cations and Interoperable Systems, pages 69–84, Deventer, The Netherlands,
2001. Kluwer, B.V.

[7] Federico Bergero and Ernesto Kofman. PowerDEVS: a tool for hybrid system
modeling and real-time simulation. SIMULATION, 2010.

[8] Jean Sébastien Bolduc and Hans Vangheluwe. The Modelling and Simulation
Package PythonDEVS for Classical Hierarchical DEVS. MSDL technical re-
port MSDL-TR-2001-01, June 2001.

[9] Tomas Bures and Frantisek Plasil. Scalable element-based connectors. In Pro-
ceedings of SERA, 2003.

[10] L. Capocchi, J. F Santucci, B. Poggi, and C. Nicolai. DEVSimPy: A Collabo-
rative Python Software for Modeling and Simulation of DEVS Systems. In En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
2011 20th IEEE International Workshops on, pages 170–175, June 2011.

65

[11] David Chappell. Dealing with Diversity: Understanding WCF Communication
Options in the .NET Framework 3.5. September 2007.

[12] Bin Chen and Xiao-gang Qiu. MPI-Based Distributed in DEVS Simulation. In
Proceedings of the 2009 Third International Symposium on Intelligent Informa-
tion Technology Application - Volume 02, IITA ’09, pages 78–81, Washington,
DC, USA, 2009. IEEE Computer Society.

[13] Steven Cheng. Microsoft Windows Communication Foundation 4.0 Cookbook
for Developing SOA Applications. Packt Publishing Ltd, 2010.

[14] Saehoon Cheon, Chungman Seo, Sunwoo Park, and Bernard P. Zeigler. Design
and implementation of distributed DEVS simulation in a peer to peer network
system. Advanced Simulation Technologies Conference–Design, Analysis, and
Simulation of Distributed Systems Symposium. Arlington, USA, 2004.

[15] Y.K. Cho, Bernard P. Zeigler, and H.S. Sarjoughian. Design and Implementa-
tion of Distributed Real-time DEVS/CORBA. In Systems, Man, and Cybernet-
ics, 2001 IEEE International Conference on, volume 5, pages 3081–3086 vol.5,
2001.

[16] Alex Chung Hen Chow and Bernard P. Zeigler. Parallel DEVS: A Parallel, Hier-
archical, Modular, Modeling Formalism. In Proceedings of the 26th Conference
on Winter Simulation, WSC ’94, pages 716–722, San Diego, CA, USA, 1994.
Society for Computer Simulation International.

[17] Fatih Deniz, M Nedim Alpdemir, Ahmet Kara, and Halit Oğuztüzün. Sup-
porting dynamic simulations with Simulation Modeling Architecture (SiMA):
a Discrete Event System Specification-based modeling and simulation frame-
work. Simulation, 88(6):707–730, 2012.

[18] Bo Feng and G. Wainer. A .NET Remoting-Based Distributed Simulation Ap-
proach for DEVS and Cell-DEVS Models. In Distributed Simulation and Real-
Time Applications, 2008. DS-RT 2008. 12th IEEE/ACM International Sympo-
sium on, pages 292–299, Oct 2008.

[19] Jan Himmelspach and Adelinde M. Uhrmacher. Processing Dynamic PDEVS
Models. In Proceedings of the The IEEE Computer Society’s 12th Annual In-
ternational Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, MASCOTS ’04, pages 329–336, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[20] Gordon Hogenson. Foundations of C++/CLI: The Visual C++ Language for
.NET 3.5. Springer, Dordrecht, 2008.

[21] Joon Sung Hong, Hae-Sang Song, Tag Gon Kim, and Kyu Ho Park. A Real-
Time Discrete Event System Specification Formalism for Seamless Real-Time

66

Software Development. Discrete Event Dynamic Systems, 7(4):355–375, Octo-
ber 1997.

[22] Ahmet Kara. A Methodology for Cross-Resolution Modeling in DEVS using
Event-B Refinement. PhD thesis, Graduate School of Natural and Applied Sci-
ences, Middle East Technical University, 2014.

[23] Ahmet Kara, Doruk Bozağaç, and Mahmut Nedim Alpdemir. Simülasyon Mod-
elleme Altyapısı (SiMA): DEVS Tabanlı Hiyerarşik ve Modüler bir Modelleme
ve Koşum Altyapısı. İkinci Ulusal Savunma Uygulamaları Modeleme ve Simu-
lasyon Konferansı (USMOS), 2007.

[24] Ahmet Kara, Fatih Deniz, Doruk Bozağaç, and M. Nedim Alpdemir. Simula-
tion Modeling Architecture (SiMA), a DEVS Based Modeling and Simulation
Framework. In Proceedings of the 2009 Summer Computer Simulation Con-
ference, SCSC ’09, pages 315–321, Vista, CA, 2009. Society for Modeling &
Simulation International.

[25] Ahmet Kara, Halit Og̃uztüzün, and M. Nedim Alpdemir. Heterogeneous DEVS
Simulations with Connectors and Reo Based Compositions (WIP). In Pro-
ceedings of the 2014 Spring Simulation Multiconference, SpringSim ’14, pages
291–296, San Diego, CA, USA, 2014. Society for Computer Simulation Inter-
national.

[26] Ki-Hyung Kim and Won-Seok Kang. CORBA-based, multi-threaded dis-
tributed simulation of hierarchical DEVS models: transforming model structure
into a non-hierarchical one. In Computational Science and Its Applications–
ICCSA 2004, pages 167–176. Springer, 2004.

[27] Ki Hyung Kim, Yeong Rak Seong, Tag Gon Kim, and Kyu Ho Park. Distributed
Simulation of Hierarchical DEVS Models: Hierarchical Scheduling Locally and
Time Warp Globally. Trans. Soc. Comput. Simul. Int., 13(3):135–154, Septem-
ber 1996.

[28] Tag Gon Kim, Chang Ho Sung, Su-Youn Hong, Jeong Hee Hong, Chang Beom
Choi, Jeong Hoon Kim, Kyung Min Seo, and Jang Won Bae. DEVSim++
Toolset for Defense Modeling and Simulation and Interoperation. The Journal
of Defense Modeling and Simulation: Applications, Methodology, Technology,
8(3):129–142, 2011.

[29] E. Kofman, M. Lapadula, and E. Pagliero. PowerDEVS: A DEVS-Based En-
vironment for Hybrid System Modeling and Simulation. Technical Report
LSD0306, School of Electronic Engineering, Universidad Nacional de Rosario,
Rosario, Argentina, 2003.

[30] Ernesto Kofman and Sergio Junco. Quantized-state Systems: A DEVS Ap-
proach for Continuous System Simulation. Trans. Soc. Comput. Simul. Int.,
18(3):123–132, September 2001.

67

[31] Rami Madhoun and Gabriel Wainer. Studying the Impact of Web-services
Implementation of Distributed Simulation of DEVS and Cell-DEVS Models.
In Proceedings of the 2007 Spring Simulation Multiconference - Volume 2,
SpringSim ’07, pages 267–278, San Diego, CA, USA, 2007. Society for Com-
puter Simulation International.

[32] Anu Maria. Introduction to modeling and simulation. In Proceedings of the
29th Conference on Winter Simulation, WSC ’97, pages 7–13, Washington, DC,
USA, 1997. IEEE Computer Society.

[33] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a taxon-
omy of software connectors. In Proceedings of the 22Nd International Confer-
ence on Software Engineering, ICSE ’00, pages 178–187, New York, NY, USA,
2000. ACM.

[34] Jose Luis Latorre Millas. Microsoft .Net Framework 4.5 Quickstart Cookbook.
Packt Publishing Ltd, 2013.

[35] Saurabh Mittal, José L. Risco-Martín, and Bernard P. Zeigler. DEVS/SOA: A
Cross-Platform Framework for Net-centric Modeling and Simulation in DEVS
Unified Process. Simulation, 85(7):419–450, July 2009.

[36] MSDL. Modeling, Simulation and Design Lab.
http://msdl.cs.mcgill.ca/projects/projects/DEVS/PythonDEVS, last visited
on June 2014.

[37] Sunwoo Park. Cost-based Partitioning for Distributed Simulation of Hierarchi-
cal Modular DEVS Models. PhD thesis, 2003. AAI3090011.

[38] Herbert Praehofer. System Theoretic Formalisms For Combined Discrete-
Continuous System Simulation. International Journal of General Systems,
19(3):226–240, 1991.

[39] H Sarjoughian and Bernard P. Zeigler. DEVSJAVA: Basis for a DEVS-based
collaborative M&S environment” proceedings of the International Conference
on Webbased Modeling & Simulation. San Diego, CA, 1998.

[40] Hessam Sarjoughian, Sungung Kim, Muthukumar Ramaswamy, and Stephen
Yau. A Simulation Framework for Service-oriented Computing Systems. In
Proceedings of the 40th Conference on Winter Simulation, WSC ’08, pages 845–
853. Winter Simulation Conference, 2008.

[41] Chungman Seo, Sunwoo Park, Byounguk Kim, Saehoon Cheon, and Bernard P.
Zeigler. Implementation of distributed high-performance DEVS simulation
framework in the Grid computing environment. 2004.

[42] John Sharp. Microsoft Windows Communication Foundation Step by Step. Mi-
crosoft Press, 2007.

68

[43] Eugene Syriani, Hans Vangheluwe, and Amr Al Mallah. Modelling and
Simulation-based Design of a Distributed DEVS Simulator. In Proceedings of
the Winter Simulation Conference, WSC ’11, pages 3007–3021. Winter Simu-
lation Conference, 2011.

[44] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture: Foun-
dations, Theory, and Practice. Wiley Publishing, 2009.

[45] A. M. Uhrmacher. Dynamic Structures in Modeling and Simulation: A Re-
flective Approach. ACM Trans. Model. Comput. Simul., 11(2):206–232, April
2001.

[46] Gabriel Wainer. CD++: A Toolkit to Develop DEVS Models. Softw. Pract.
Exper., 32(13):1261–1306, November 2002.

[47] Gabriel Wainer and Norbert Giambiasi. Timed Cell-DEVS: Modeling and Sim-
ulation of Cell Spaces. In Discrete Event Modeling and Simulation Technolo-
gies, pages 187–214. Springer, 2001.

[48] Brendon J. Wilson. JXTA. Pearson Education, 2002.

[49] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor net-
work survey. Comput. Netw., 52(12):2292–2330, August 2008.

[50] Bernard P. Zeigler. Theory of Modelling and Simulation. A Wiley-Interscience
Publication. John Wiley, 1976.

[51] Bernard P. Zeigler. Discrete Event Formalism For Model Based Distributed
Simulation. In SCS Conf. Distributed Simulation, pages 3–7, 1985.

[52] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of Modeling
and Simulation. Academic Press, Inc., Orlando, FL, USA, 2nd edition, 2000.

[53] Bernard P. Zeigler, Yoonkeon Moon, Doohwan Kim, and George Ball. The
DEVS Environment for High-Performance Modeling and Simulation. IEEE
Comput. Sci. Eng., 4(3):61–71, July 1997.

[54] Bernard P. Zeigler and Hessam S Sarjoughian. Introduction to DEVS Modeling
and Simulation With Java: Developing Component-based Simulation Models.
Technical Document, University of Arizona, 2003.

[55] Ming Zhang, Bernard P. Zeigler, and Phillip Hammonds. DEVS/RMI-An Auto-
Adaptive and Reconfigurable Distributed Simulation Environment for Engineer-
ing Studies. ITEA Journal, 2005.

69

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND
	DEVS
	SiMA
	Formalism
	Architecture

	Connectors
	Windows Communication Foundation

	RELATED WORK
	DEVS/P2P
	DEVS/GRID
	DEVS/CLUSTER
	DEVS/RMI
	DEVS/SOA
	DEVS/PyRO
	Other Distributed DEVS Approaches

	DISTRIBUTED SiMA
	Connectors in Distributed SiMA
	Marshaller/Unmarshaller Connector
	Data Conversion Connectors
	Connector Roles According to Mehta Classification

	WCF Services in Distributed SiMA
	Distributed SiMA Architecture
	Model Deployment
	Simulation Build and Run
	Distributed Scenario Analyzer
	Distributed Model Linker
	Partitioning Conditions

	Distributed Model Builder
	KODO
	Distributed Simulator

	CASE STUDY
	Description of Models
	Scenario Build
	Discussion
	Evaluation

	CONCLUSION
	Distributed SiMA Approach
	Future Work
	Connector Repository
	Model Editor and KODO Adaptations

	REFERENCES

