
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324827421

Distributed memory and cpu management in cloud computing environment

Article in International Journal of Applied Engineering Research · January 2017

CITATION

1
READ

1

4 authors, including:

Pvss Gangadhar

National Informatics Centre

9 PUBLICATIONS 8 CITATIONS

SEE PROFILE

All content following this page was uploaded by Pvss Gangadhar on 06 November 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/324827421_Distributed_memory_and_cpu_management_in_cloud_computing_environment?enrichId=rgreq-5eb5e040dc7077923a898eac22a509c6-XXX&enrichSource=Y292ZXJQYWdlOzMyNDgyNzQyMTtBUzo2ODk4MzcwNDg4Njg4NjRAMTU0MTQ4MTM3NzAxMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/324827421_Distributed_memory_and_cpu_management_in_cloud_computing_environment?enrichId=rgreq-5eb5e040dc7077923a898eac22a509c6-XXX&enrichSource=Y292ZXJQYWdlOzMyNDgyNzQyMTtBUzo2ODk4MzcwNDg4Njg4NjRAMTU0MTQ4MTM3NzAxMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5eb5e040dc7077923a898eac22a509c6-XXX&enrichSource=Y292ZXJQYWdlOzMyNDgyNzQyMTtBUzo2ODk4MzcwNDg4Njg4NjRAMTU0MTQ4MTM3NzAxMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pvss_Gangadhar2?enrichId=rgreq-5eb5e040dc7077923a898eac22a509c6-XXX&enrichSource=Y292ZXJQYWdlOzMyNDgyNzQyMTtBUzo2ODk4MzcwNDg4Njg4NjRAMTU0MTQ4MTM3NzAxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pvss_Gangadhar2?enrichId=rgreq-5eb5e040dc7077923a898eac22a509c6-XXX&enrichSource=Y292ZXJQYWdlOzMyNDgyNzQyMTtBUzo2ODk4MzcwNDg4Njg4NjRAMTU0MTQ4MTM3NzAxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Informatics_Centre?enrichId=rgreq-5eb5e040dc7077923a898eac22a509c6-XXX&enrichSource=Y292ZXJQYWdlOzMyNDgyNzQyMTtBUzo2ODk4MzcwNDg4Njg4NjRAMTU0MTQ4MTM3NzAxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pvss_Gangadhar2?enrichId=rgreq-5eb5e040dc7077923a898eac22a509c6-XXX&enrichSource=Y292ZXJQYWdlOzMyNDgyNzQyMTtBUzo2ODk4MzcwNDg4Njg4NjRAMTU0MTQ4MTM3NzAxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pvss_Gangadhar2?enrichId=rgreq-5eb5e040dc7077923a898eac22a509c6-XXX&enrichSource=Y292ZXJQYWdlOzMyNDgyNzQyMTtBUzo2ODk4MzcwNDg4Njg4NjRAMTU0MTQ4MTM3NzAxMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 15972-15978

© Research India Publications. http://www.ripublication.com

15972

Distributed Memory and CPU Management in Cloud Computing

Environment

P.V.S.S. Gangadhar 1

Research Scholar & Scientist-D at National Informatics Centre (NIC),

Department of Information Technology,

GITAM Institute of Technology (GIT), GITAM University,

Visakhapatnam, Andhra Pradesh, India.

Orcid: 0000-0002-8548-8492

Dr. M. Venkateswara Rao 2

Professor, Department of Information Technology,

GITAM Institute of Technology (GIT), GITAM University,

Visakhapatnam, Andhra Pradesh, India.

Orcid: 0000-0002-7598-3473

Dr. Ashok Kumar Hota 3

Scientist-F at National Informatics Centre,

Ministry of Electronics & Information Technology (MIETY),

Govt. of India, NIC-OSU, Bhubaneswar, Odisha, India.

Orcid: 0000-0002-9117-1504

Dr. V. Venkateswara Rao 4

Professor, Department of Computer Science and Engineering,

Sri Vasavi Engineering College, Tadepalligudem, Andhra Pradesh, India.

Orcid: 0000-0003-0131-4944

Abstract

To efficiently utilize the resources in a virtualized

environment; they need to be over committed. Over

commitment is the process of allocating more resources to a

virtual machine that is physically present on the host. It is

based on the principle that the majority of the Virtual

Machines will use only a small percentage of the resources

allocated to them at a given time. Nevertheless, circumstances

may happen when the resources required by the virtual

machines are more than the physical resources present on the

machine. The performance of the Virtual Machines will be

severely impacted in these situations. The majority cloud

providers usually have Service Level Agreements (SLAs)

with their clients and hence cannot allow virtual machines to

deliver a poor quality of service.

In this paper, we first study troubles that relate to the capacity

planning required when setting up applications into a

virtualized data center. We show how models of virtualization

overheads can be employed to precisely foresee the resource

needs of virtualized applications, allowing them to be easily

transitioned into a data center. We subsequently study how

memory similarity can be used to direct placement when

adding virtual machines to a data center, and exhibit how

memory sharing can be exploited to reduce the memory

footprints of virtual machines. This let for improved server

consolidation, sinking hardware and power costs within the

data center. Finally we investigate the problem of over

commitment of the CPU and memory resources. We

recommend a distributed resource scheduler (DRS) which

uses methods such as memory ballooning and virtual machine

live migration to solve the problems in CPU and memory over

commitment. We design architecture for distributed resource

scheduler (DRS) that is horizontally scalable and illustrate the

techniques involved in monitoring and memory ballooning

characteristics of the distributed resource scheduler (DRS).

Keywords: Cloud Computing, Virtualization, Virtual

Machine Image, Distributed Resource Scheduler, Distributed

Memory, Memory Management, Memory ballooning, virtual

machine live migration.

INTRODUCTION

Modern data centers are comprised of tens of thousands of

servers, and perform the processing for many Internet

business applications. Data centers are increasingly using

virtualization to simplify management and make better use of

server resources. With the advent of large scale cloud

computing, the users can get compute resources on demand

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 15972-15978

© Research India Publications. http://www.ripublication.com

15973

with flexible pricing models. Cloud vendors pool their

massive hardware resources and provide virtual machines on

top of it to the users. To best utilize the resources of a

virtualized cloud infrastructure, resource over commitment is

used. Allocating more virtual resources to a machine or a

group of machines than are physically present is called

resource over commitment. Since most applications will not

use all of the resources allocated to them at all the times, most

of the resources of a cloud provider will remain idle without

over commitment. Hence, this approach is more profitable and

less wasteful. Orthogonal to over commitment is the fact that

cloud vendors have to satisfy some SLAs (Service Level

Agreements) which they have with the users i.e. the promised

resources should be available to the users whenever they need

it. Distributed resource scheduling (DRS) is used to meet

these SLAs. This paper talk about the issues faced by these

huge data centers, and explains how virtualization can offer

pioneering solutions.

Background and Motivation

Internet and business applications are increasingly being

moved to large data centers that hold massive server and

storage clusters. Present data centers can hold tens or

hundreds of thousands of servers, and strategies are previously

being completed for data centers investing in excess of a

million servers [65]. A few data centers are placed to run

applications for a solitary company, such as the search-engine

groups run by Google. Supplementary data centers are

controlled by service providers that are able to rent storage

and computation resources to other customers at very low cost

due to their large scale. Cloud computing, that refers to

hosting platforms that rent data center resources to customers,

is becoming increasingly popular for running Internet

websites or business applications. In all of these data centers,

the massive amounts of computation power required to drive

these systems results in many challenging and interesting

distributed systems and resource management problems.

Virtualization promises to dramatically change how data

centers operate by breaking the bond between physical servers

and the resource shares granted to applications. Virtualization

can be used to “slice” a single physical host into one or more

virtual machines (VMs) that share its resources. This can be

helpful in a deploying environment where clients or

applications do not require the full power of a single server. In

this contect, virtualization provides an easy way to isolate and

partition server resources. The concept layer sandwiched

between the Virtual Machine and its material host also let for

superior control over resource management.

The CPU and memory allocated to a virtual machine can be

dynamically attuned and live- migration methods let VMs to

be transparently moved between physical hosts without

impacting any running applications. As data centers continue

to deploy virtualized services, new problems have emerged

such as determining optimal VM placements and dealing with

virtualization overheads. At the same time, virtualization

allows for new and better solutions to existing data center

problems by permitting for quick, elastic resource

provisioning. The central theme of this paper is to explore

how virtualization can allow for application agnostic solutions

when dealing with challenges related to application

deployment, resource management, and reliability. In

particular, we attempt to reply the subsequent questions:

 How can we change applications running on resident

hardware to virtual machines while guarantee they take

delivery of enough resources regardless of

virtualization overheads?

 On what servers must we position new Virtual

Machines in categorizing to find the greatest level of

server consolidation?

 How can we powerfully manage server resources

regardless of extremely varying application workloads?

 How can we successfully connect and manage

numerous data centers?

 How can we ensure application reliability regardless of

unexpected disasters that can bring down entire data

centers?

The data-center atmosphere creates these challenges

particularly difficult since it requires solutions with high

scalability and extreme speed to respond quickly to

fluctuating Internet workloads.

RELATED WORK

Auto-Ballooning in Xen

Xen is a popular open-source, bare-metal hypervisor which

was developed by University of Cambridge Computer

Laboratory in 2003 and was the first hypervisor to support

paravirtualization. Support for full vritualization was later

added to it. Xen has autoballooning feature which works via

the autoballoon driver that exists in the Linux kernel.

Autoballooning implementation in our work has some key

differences to autoballooning in Xen, which have been

discussed later. It is important to understand both techniques

for comparison. To understand Xen hypervisor’s method of

autoballooning, it is first essential to understand transcendent

memory in Linux.

Transcendent Memory

Transcendent memory (tmem) [13] is a type of memory which

the linux kernel cannot directly enumerate, track or directly

address, but helps in more efficient utilization of memory by a

single kernel or load-balancing of memory between multiple

kernels in a virtualized environment. The implementation of

tmem is divided into two parts - frontend and backend.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 15972-15978

© Research India Publications. http://www.ripublication.com

15974

Frontend provides the interfaces for different types of data

which can be stored provided by tmem to the kernel, while

backend is the underlying implementation of storage/retrieval

methods. Two basic operations provided by the frontend are

’put’ and ’get’. If the kernel wants to save some data into

tmem, it uses the ’put’ operation while ’get’ is used to retrieve

the data.

Tmem Frontends

There are two tmem frontends in the Linux kernel which

cover two major types of kernel memory - anonymous pages

and file backed pages.

Cleancache: Cleancache is used for storing pages which are

backed by files on a disk. A kernel can choose to reclaim such

pages at the times of memory pressure. These pages are

evicted from memory. If the same page is to be used again, a

page fault happens and it is fetched from the disk. Before

evicting such a page, the kernel can choose to store it in

cleancache. If the operation succeeds, the page can possibly

be reclaimed from tmem at any later time, otherwise it has to

be reclaimed from disk.

Frontswap: Frontswap is used for storing swap pages. Linux

swap subsystem stores anonymous pages in a swap device

when it needs to evict them.

Tmem Backends

There are multiple backends for tmem - zcache, transcendent

memory for Xen, and RAMster. Tmem was originally

developed for Xen with Xen backend. The other backends

were created later. For autoballooning, we are only concerned

with the Xen backend.

Frontswap Self Shrinking

When kernel swaps out a page, it assumes that the page will

go to disk and may remain there for long time even if it is not

used again as kernel assumes disk space is less costly and

abundant.

Auto-Balloon Mechanism

Autoballooning in Xen requires transcendent memory. In

each guest, a autoballoon driver is present. A thread of the

driver runs periodically in some fixed time interval which sets

the target size of the guest.

Target=Committedpages+Reservedpages+Balloonreservedpag

esTarget=Committedpages+Reservedpages+Balloonreservedp

ages

Committed pages are the pages which are used by some

process and may reside either in memory or swap. Reserved

pages are the pages reserved from normal usage by the kernel.

Balloon reserved pages form the memory reserved by the

balloon driver to provide some extra memory for the kernel

caches and some room to grow for any process that may

demand more memory in the future. It defaults to 10% of the

total memory size of the guest. If the target is less than the

current RAM, the guest is ballooned down, else it is ballooned

up. There is a hysteresis counter which represents the number

of iterations it will take for the machine to balloon down to

target. So, each time self-ballooning process runs,

1) Memory=Current−Current−TargethysteresiscounterMe

mory=Current−Current−Targethysteresiscounter

2) Hysteresis counter is different for ballooning up and

down. There is also amin usable MB parameter, below

which machines cannot be ballooned. the consideration

of the risks (the value of the economic effects of the

implementation of the innovation is proportional to the

degree of the risk: the higher the risk, the higher the

potential impact of the innovation).

Memory Management in VMware ESX

VMware was founded in 1999 when it launched its

proprietary hypervisor which used binary translation

techniques for x86 virtualization. They later released an

enterprise class bare metal hypervisor called VMware ESXi.

ESX has very robust memory management and it introduced

several novel techniques as early as 2003 which are still being

used and have been implemented in other platforms.

Memory Reclamation Techniques

ESX uses several memory reclamation techniques.

Content-Based Page Sharing: In a virtualized environment,

several guests might be running common OS and some

common applications which means that there would be lots of

pages having the same content. Instead of keeping separate

copies of these pages for separate guests, the duplicate pages

are deleted and only one copy of the page is kept which is

marked Copy-On-Write(COW). When any of the guests

attempts to write to that page, a new copy of the page is

created by the kernel which is then modified. Linux kernel has

KSM(Kernel Same-Page Merging) [15] which performs the

same task and is used in virtualization by QEMU-KVM.

Memory Ballooning:

Page compression: In this case, the content of the page is

compressed and stored. When the page is accessed, its content

is decompressed.

Demand Paging: ESX server has a swap daemon which

handles hypervisor level swapping. The swap daemon gets the

target swap levels of each VM from the swapping policy and

selects the pages that need to be swapped.

Memory Reclamation Policies

The ESX server defines four memory states depending upon

which it employs the memory reclamation techniques. .

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 15972-15978

© Research India Publications. http://www.ripublication.com

15975

High: More than 6% of the total memory of the hypervisor is

free at this point. Only page sharing is employed in this state.

Soft: Free memory is between 6% and 4%. Page sharing is

active. Balloon driver also starts reclaiming idle memory..

Hard: Free memory is between 4% and 2%. The hypervisor

now aggressively starts reclaiming memory through

swapping. Page compression also becomes active. So, on page

reclamation, if it is compressible or shareable, it is

compressed/shared otherwise it is swapped out.

Low: Below 1% free memory. Along with memory

reclamation, ESX also blocks any new memory allocation by

any guest.

VIRTUALIZATION AND RESOURCE MANAGEMENT

With the advent of large scale cloud computing, the users can

get compute resources on demand with flexible pricing

models. Cloud vendors pool their massive hardware resources

and provide virtual machines on top of it to the users. To best

utilize the resources of a virtualized cloud infrastructure,

resource over commitment is used. Allocating more virtual

resources to a machine or a group of machines than are

physically present is called resource over commitment.

Since most applications will not use all of the resources

allocated to them at all the times, most of the resources of a

cloud provider will remain idle without over commitment.

Hence, this approach is more profitable and less wasteful.

Orthogonal to over commitment is the fact that cloud vendors

have to satisfy some SLAs (Service Level Agreements) which

they have with the users i.e. the promised resources should be

available to the users whenever they need it. Distributed

resource scheduling (DRS) is used to meet these SLAs.

Virtualization

Virtualization is one of the driving technologies behind IaaS

(Infrastructure as a Service). Virtualization makes it possible

to run multiple operating systems with different configurations

on a physical machine at the same time.

To run virtual machines on a system, a software layer called

hypervisor or virtual machine monitor (VMM) is required.

The hypervisor has the control of all the hardware resources

and can take away resources from one VM to give it to

another. The hypervisor also maintains the state of all the

VMs at all the times. It does these by trapping all the

privileged instructions executed by the guest VM and

emulating the resource they access. The hypervisor is

responsible for emulating all the hardware devices and

providing proper resource isolation between multiple

machines running on the same physical machine.

There are three different techniques used for virtualization [1]

which mainly differ in the way they trap the privileged

instructions executed by the guest kernel.

Full Virtualization with Binary Translation: In this approach,

user mode code runs directly on CPU without any translation,

but the non-virtualizable instructions [2] in the guest kernel

code are translated on the fly to code which has the intended

effect on the virtual hardware.

Hardware Assisted Full Virtualization: To make

virtualization simpler, hardware vendors have developed new

features in the hardware to support virtualization. Intel VT-x

and AMD-V are two technologies developed by Intel and

AMD respectively which provide special instructions in their

ISA (Instruction Set Architecture) for virtual machines and a

new ring privilege level for VM. Privileged and sensitive calls

are set to automatically trap to the VMM, removing the need

for either binary translation or paravirtualization. It also has

modified MMU with support for multi level page tables [3]

and tagged TLBs.

Paravirtualization. This technique requires modification of

the guest kernel. The non-virtualizable/privileged instructions

in the source code of the guest kernel are replaced with hyper

calls which directly call the hypervisor [4]. The hypervisor

provides hyper call interfaces for kernel operations like

memory management, interrupt handling, and communication

to devices. It differs from full virtualization, where

unmodified guest kernel is used and the guest OS does not

know that it is running in a virtualized environment.

Hypervisors can be bare-metal hypervisors or hosted

hypervisors. A Bare-metal hypervisor runs directly on the

physical hardware while the hosted hypervisor runs on top of

conventional operating systems. There are several hypervisors

available in the market with VMWare ESX and Xen [4] being

the popular bare-metal hypervisors, while KVM-QEMU [5, 6]

being a popular hosted hypervisor which runs on top of the

Linux operating system. KVM is a kernel module providing

support for hardware assisted virtualization in Linux while,

QEMU is a user space emulator. KVM uses QEMU mainly

for emulating the hardware [7]. So, both these pieces of

software work together as a complete hypervisor for linux.

KVM-QEMU and Xen are open source while ESX is

proprietary. For the purpose of this paper, we will refer to

KVM-QEMU wherever hypervisor is used unless specified

otherwise.

Virtualization provides a number of benefits other than

resource isolation, which makes it the fundamental technology

behind IaaS.

It provides the ability to treat disks of virtual machine as files

which can be easily snapshotted for backup and restore.

It provides ease of creation of new machines and deployment

of applications through pre-built images of the file system of

the machine.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 15972-15978

© Research India Publications. http://www.ripublication.com

15976

Virtual machines can be easily migrated or relocated if the

physical machines may require maintenance or develop some

failure.

Ease in increasing the resource capacity (RAM or CPU cores)

of the machine at runtime by CPU or memory hotplug [8], or

otherwise.

Since the hardware resources are emulated by the hypervisor,

there is an opportunity for over commitment of CPU and

memory resources here.

Memory Overcommitment and Ballooning

In memory overcommitment, more memory is allocated to the

virtual machines(VM) than is physically present in hardware.

This is possible because hypervisors allocate memory to the

virtual machines on demand. KVM-QEMU treats all the

running VMs as processes of the host system and uses malloc

to allocate memory for a VM’s RAM. Linux uses demand

paging for its processes, so a VM on bootup will allocate only

the amount of memory required by it for booting up, and not

its whole capacity.

On demand memory allocation in itself is not enough to make

memory overcommitment a viable option. There is no way for

the hypervisor to free a memory page that has been freed by

the guest OS. Hence a page once allocated to a VM always

remains allocated. The hypervisor should be able to reclaim

free memory from the guest machines, otherwise the memory

consumption of guest machines will always keep on

increasing till they use up all their memory capacity. If the

memory is overcommitted, all the guests trying to use their

maximum capacity will lead to swapping and very poor

performance.

There exists a mechanism called memory ballooning to

reclaim free memory from guest machines. This is possible

through a device driver that exists in guest operating system

and a backend virtual device in the hypervisor which talks to

that device driver. The balloon driver takes a target memory

from the balloon device. If the target memory is less than the

current memory of the VM, it allocates

(current−target)(current−target) pages from the machine and

gives them back to the hypervisor. This process is called

balloon inflation. If the target memory is more than the current

memory, the balloon driver frees required pages from the

balloon. This process is called balloon deflation. Memory

ballooning is an opportunistic reclamation technique and does

not guarantee reclamation. The hypervisor has limited control

over the success of reclamation and the amount of memory

reclaimed, as it depends on the balloon driver which is loaded

inside the guest operating system.

Virtual Machine Live Migration

VM live migration [11] is a technique to migrate a running

VM from one host to another without shutting it down. Live

migration involves migrating the disk, memory and CPU

states of the running VM to the destination host and resuming

the VM there. Migrating disk can be as easy as just copying

the disk to destination or using a file-system shared over the

network like Network File System (NFS). There are two

popular techniques for migrating the VM memory and state:

Pre-Copy Live Migration: It follows an iterative page

copying technique wherein first, all the pages of the VM are

copied to the destination. From next iteration onward, only the

pages which were dirtied during the previous iteration are

copied to the destination. This process continues till the page

dirtying speed is less than the page transfer speed. Then the

VM at the source is stopped, remaining dirty pages and VM

state is copied to the destination, and the VM is resumed at the

destination. QEMU-KVM uses pre-copy live migration [12].

Post-Copy Live Migration: The VM is stopped at the source,

its state is copied to the destination, and the VM resumed

there. The pages of the VM are transferred to the destination

in background, with the pages that are immediately demanded

by the VM via page fault given the highest priority in transfer.

Thus, the performance of the VM is degraded before its

working set is transferred.

The migration time of a VM is the time taken to resume the

VM on the destination after triggering the migration. There is

also a small amount of downtime involved in live migration in

which the VM is neither running on the host, nor on the

destination. Live migration of VMs connected to a network is

especially tricky because the new VM has to assigned the

same IP address and all the packets have to rerouted to the

new destination without any delay to prevent packet loss and

downtime of any service running inside the VM which uses

the network.

Resource Management in Cloud

Resource management is an essential technique to utilize the

underlying hardware of the cloud efficiently. The role of the

resource manager is to manage the allocation of physical

resources to the virtual machines deployed on a cluster of

nodes in a cloud. Different resource management systems may

have different aims depending upon the needs. For a private

cloud like in an educational institution, the most common aim

might be to maximize performance of the virtual machines

while minimizing the operational costs of the cloud

infrastructure.

Minimizing operational costs involves minimizing the number

of physical machines used. This can be achieved through

overcommitment of resources. Resource overcommitment

comes with some new problems like hotspot elimination and

where to schedule new incoming VMs to minimize chances of

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 15972-15978

© Research India Publications. http://www.ripublication.com

15977

hotspot. If the total capacity of the virtual machines running

on a physical machine is more than the total capacity of the

physical machines, a situation may arise wherein the VMs

may want to use a sum total of more resources than are

present. Not satisfying those resource requirements may lead

to violation of SLAs and poor performance of the VMs. This

situation is called a hotspot. A distributed resource scheduler

(DRS) is a piece of software that runs on different nodes in the

cluster and handles dynamic resource allocation to different

VMs in the cluster.

Memory ballooning and live migration of VM can help in

mitigating hotspots. The basic idea is that if a VM is short on

memory, ballooning can be used to take away some memory

from another guest on the same host which has some free

memory and give it to the needy guest. If none of the guests

have any free memory, the host is overloaded. A guest has to

be migrated from this host to another host while taking into

account the overall load of the cluster. This might sound

simple, but there are several challenges involved in this

process. Some of the challenges are determining the amount

of free memory a VM can give away without affecting its own

performance, determining whether benefits of migration are

more than performance loss, selecting which virtual machine

to migrate such that maximum benefit is achieved out of the

migration, selecting destination host to minimize the chances

of future migrations, filtering intermittent spikes from

resource usage graph of VMs to determine their actual load

profile and distributed monitoring of VMs which can scale to

a large number of machines. In this paper, we address large

scale monitoring and ballooning of virtual machines.

CONCLUSION

Resource overcommitment is an essential technique for

efficient use of resources in a cloud infrastructure. There are

several hurdles in overcommitment which have not been

addressed completely yet. Most of the studies in this field

focus on just a part of the problem, but do not solve it as a

whole. The sub problems that have attracted most attention is

the optimal placement of virtual machines depending on their

demands. But many of these studies do not take the dynamic

nature of resource demand of the VMs or the performance

degradation during live migration into account. Through this

paper, we have tried to solve this problem by taking the whole

picture into account, and not just a part of it.

In this paper, we have identified some of the major problems

faced in overcommitment of CPU and memory resources in a

virtualized environment. We have described some of the

relevant work done in this area and their limitations.

REFERENCES

[1] Q. Ali, “Scaling web 2.0 applications using Docker

containers on vSphere 6.0,”

http://blogs.vmware.com/performance/2015/04/scaling-

web-2-0-applicationsusing-docker-containers-vsphere-

6-0.html, 2015, (Accessed on 03/21/2016).

[2] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci,

and M. Trubian, “Resource Management in the

Autonomic Service-Oriented Architecture,” in

Proceedings of the 2006 IEEE International Conference

on Autonomic Computing (ICAC 2006), June 2006,

pp. 84–92.

[3] J. Anselmi, E. Amaldi, and P. Cremonesi, “Service

Consolidation with End-to-End Response Time

Constraints,” in Proceedings of 34th Euromicro

Conference on Software Engineering and Advanced

Applications (SEAA 2008.), September 2008, pp. 345–

352.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica et al., “A view of cloud computing,”

Communications of the ACM, vol. 53, no. 4, pp. 50–

58, 2010.

[5] B. Arnold, S. A. Baset, P. Dettori, M. Kalantar, I. I.

Mohomed, S. J. Nadgowda, M. Sabath, S. R. Seelam,

M. Steinder, M. Spreitzer, and A. S. Youssef,

“Building the ibm containers cloud service,” IBM

Journal of Research and Development, vol. 60, no. 2-3,

pp. 9:1–9:12, March 2016.

[6] M. Assuncao, M. Netto, B. Peterson, L.

Renganarayana, J. Rofrano, C. Ward, and C. Young,

“CloudAffinity: A framework for matching servers to

cloudmates,” in Proceedings of the 2012 IEEE Network

Operations and Management Symposium (NOMS

2012), April 2012, pp. 213–220.

[7] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol,

Discrete-event system simulation. Prentice Hall, 2010.

[8] P. Barham et al., “Xen and the art of virtualization,” in

Proceedings of the 19th ACM Symposium on

Operating Systems Principles (SOSP 2003), October

2003, pp. 164–177.

[9] L. A. Barroso and U. H¨ olzle, “The case for energy-

proportional computing,” Computer, vol. 40, no. 12,

pp. 33–37, Dec. 2007.

[10] C. L. Belady and D. Beaty, “Roadmap for datacom

cooling,” ASHRAE journal, vol. 47, no. 12, p. 52,

2005.

[11] A. Beloglazov and R. Buyya, “Energy efficient

allocation of virtual machines in cloud data centers,” in

Proceedings of the 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing

(CCGrid 2010), May 2010, pp. 577–578.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 15972-15978

© Research India Publications. http://www.ripublication.com

15978

[12] “Adaptive threshold-based approach for energy-

efficient consolidation of virtual machines in cloud data

centers,” in Proceedings of the 8th International

Workshop on Middleware for Grids, Clouds and e-

Science, December 2010, pp. 4:1–4:6.

[13] F. Caglar, S. Shekhar, and A. Gokhale, “A performance

Interference-aware virtual machine placement strategy

for supporting soft realtime applications in the cloud,”

Institute for Software Integrated Systems, Vanderbilt

University, Nashville, TN, USA, Tech. Rep. ISIS-13-

105, 2013.

[14] R. Calheiros and R. Buyya, “Energy-efficient

scheduling of urgent Bag-of-Tasks applications in

clouds through DVFS,” in Proceedings of the 6th IEEE

International Conference on Cloud Computing

Technology and Science (CloudCom 2014), December

2014, pp. 342–349.

[15] R. N. Calheiros, M. A. Netto, C. A. De Rose, and R.

Buyya, “EMUSIM: an integrated emulation and

simulation environment for modeling, evaluation, and

validation of performance of cloud computing

applications,” Software: Practice and Experience, vol.

43, no. 5, pp. 595–612, 2013.

[16] M. Chen, H. Zhang, Y.-Y. Su, X. Wang, G. Jiang, and

K. Yoshihira, “Effective VM sizing in virtualized data

centers,” in Proceedings of the 2011 IFIP/IEEE

International Symposium on Integrated Network

Management (IM 2011), May 2011, pp. 594–601.

[17] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz,

“Energy efficiency for large-scale MapReduce

workloads with significant interactive analysis,” in

Proceedings of the 7th ACM European Conference on

Computer Systems, April 2012, pp. 43–56.

[18] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz,

“Analysis and lessons from a publicly available Google

cluster trace,” University of California, Berkeley, Tech.

Rep., 2010.

[19] P. DELFORGE, “Energy efficiency, data centers—

NRDC,” http://www.nrdc.org/ energy/data-center-

efficiency-assessment.asp, (Accessed on 02/18/2016).

[20] B. H. Li, X. Chai, and L. Zhang, “New advances of the

research on cloud simulation,” in Advanced Methods,

Techniques, andApplications inModeling and

Simulation, vol. 4 of Proceedings in Information and

Communications Technology, pp. 144–163, 2012.

[21] S. Jafer, Q. Liu, and G. Wainer, “Synchronization

methods in parallel and distributed discrete-event

simulation,” Simulation Modelling Practice andTheory,

vol. 30, pp. 54–73, 2013.

[22] R. Fujimoto, A. Malik, and A. Park, “Parallel and

distributed simulation in the cloud,” SCS Modeling and

Simulation Magazine, pp. 1–10, 2010.

[23] A. W. Malik, A. J. Park, and R. M. Fujimoto, “An

optimistic parallel simulation protocol for cloud

computing environments,” SCS M&S Magazine, vol.

4, 2010.

[24] A. J´avor and A. Fur, “Simulation on the Web with

distributed models and intelligent agents,” Simulation,

vol. 88, no. 9, pp. 1080–1092, 2012.

[25] IEEE Std 1516.1-2010, IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture

(HLA), Framework and Rules Specification, 2010.

[26] IEEE Std 1516.2-2010, IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture

(HLA), Object Model Template (OMT) Specification,

2010.

[27] IEEE Standard, 1516.1-2010—IEEE Standard for

Modeling and Simulation (M&S) High Level

Architecture (HLA)—Federate Interface Specification,

2010.

[28] Google, "Google App Engine", (2012), [online].

Available: cloud.google.com [Nov 1, 2012].

[29] Amazon, "Amazon Elastic Compute Cloud (Amazon

EC2)", (2012), [online]. Available:

aws.amazon.com/ec2/ [Nov 1, 2012].

[30] Microsoft, "Windows Azure.", (2012), [online].

Available:windowsazure.com [Nov 1, 2012].

[31] IBM, "SmartCloud." (2012), [online]. Available:

ibm.com/cloudcomputing [Nov 1, 2012].

[32] P. Mell and T. Grance, "The NIST definition of cloud

computing(draft)," NIST special publication, vol. 800,

p. 145.

[33] A. Desai, "Virtual Machine." (2012), [online].

Available:

http://searchservervirtualization.techtarget.com/definiti

on/virtualmachin

[34] 34. VMWare, "vSphere ESX and ESXi Info Center.",

(2012), [online]. Available:

vmware.com/products/vsphere/esxi-and-esx [Nov 1,

2012].

[35] Microsoft, "Windows Virtual PC.", (2012), [online].

Available: http://www.microsoft.com/windows/virtual-

pc/ [Nov 1, 2012].

[36] Xen, "Xen Hypervisor.", (2012), [online]. Available:

http://www.xen.org/products/xenhyp.html [Nov 1,

2012].

[37] Microsoft, "Hyper-V Server 2012.", (2012), [online].

Available: microsoft.com/server-cloud/hyper-v-server/

[Nov 1, 2012].

[38] KVM, "Kernel-based Virtual Machine.", (2012),

[online]. Available: linux-kvm.org [Nov 1, 2012].

[39] Oracle, "VirtualBox.", (2012), [online]. Available:

virtualbox.org [Nov1, 2012]

View publication statsView publication stats

https://www.researchgate.net/publication/324827421

