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Abstract

In this paper, we propose a new Generic Model 

Partitioning (GMP) algorithm for hierarchical, modular 

Discrete Event System Specification (DEVS) models. The 

GMP algorithm decomposes a given hierarchical model 

into a set of partition blocks and provides reasonable 

solutions for distinct partitioning problems based on a 

cost analysis methodology. The proposed algorithm 

minimizes model decomposition during the partitioning 

process and guarantees incremental quality of 

partitioning (QoP) improvements until a best partitioning 

is attained. Since a cost measure is a parametric method, 

subject to certain axioms, the proposed algorithm is 

generic and applicable any family of models provided 

there is a way to manipulate the appropriate cost 

information.  An application to partial differential 

equation simulation using activity as the cost measure is 

discussed.

1. Introduction 

For more than a decade, research has been conducted 

to develop Modeling and Simulation (M&S) frameworks 

over various distributed network infrastructures. As a 

result, numerous frameworks have been implemented to 

achieve a certain level of satisfaction with respect to 

connectivity, speedup, and resource utilization. By 

connecting numbers of computers that are loosely or 

tightly coupled in distributed network infrastructure and 

sharing resource information between M&S entities, 

desired M&S activities are conducted faster and more 

efficiently as compared the same activities on a 

standalone system. A certain level of interoperability and 

collaboration between M&S entities is also achieved in 

those frameworks. 

In distributed simulation, there are many issues 

effecting simulation performance. Time synchronization 

and communication overhead are some of the major 

issues. Those issues are mainly related to simulation 

entities (e.g., logical simulator, coordinator, and activator) 

that are involved in the actual simulation process. By 

synchronizing time information with desired accuracy and 

minimizing communication overhead between simulation 

entities, the overall performance of simulation becomes 

improved.  

Model partitioning is a major issues effecting 

simulation performance. Simulator performance can be 

significantly improved by optimally distributing 

simulation models into simulation entities before 

initiating the simulation process. Optimal model 

distribution is closely related to how models are 

partitioned and deployed to those entities. Thus, it is 

important to develop partitioning algorithms that can find 

optimal or, at least, acceptable partitioning results for 

given simulation models. Simulated annealing, random 

partitioning, and heuristic partitioning are some of them 

[1][2]. 

The main objective of this research is to design and 

implement a new generic model partitioning algorithm of 

hierarchical, modular Discrete Event Specification 

System (DEVS) models for distributed simulation[3]. To 

attain this goal, a new hierarchical model partitioning 

algorithm is designed based on a cost analysis 

methodology[4].  The cost analysis approach leads to 

algorithms that are concise, generic, and adaptable. The 

heterogeneous nature of models is captured and 

manipulated by the homogenous measure cost.

Furthermore, the proposed algorithm minimizes model 

decomposition during the partitioning process and 

guarantees incremental Quality of Partitioning (QoP). The 

incremental QoP property is used to produce better 

partitioning results until a desired partitioning solution is 

attained. Partitioning improvement occurs during the 

partitioning process. Improvements are denoted in the 

partitioning tree and are easily tractable through the tree 

hierarchy.

The remainder of this paper is organized as follows. 

Section 2 and 3 briefly introduce DEVS model 

partitioning and cost analysis methodology, respectively. 

Section 4 describes a new hierarchical model partitioning 

algorithm proposed in this paper. Section 5 shows how 

the proposed algorithm is applied to a partitioning 

problem. And, finally, Section 6 summarizes and 

concludes this paper.

2. DEVS Model Partitioning
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The Discrete Event System Specification (DEVS) 

formalism provides a means of specifying a mathematical 

object called a system[3]. Basically, a system has a time 

base, inputs, states, and outputs, and functions for 

determining next states and outputs given current states 

and inputs. Discrete event systems represent certain 

constellations of such parameters just as continuous 

systems do. For example, the inputs in discrete event 

systems occur at arbitrarily spaced moments, while those 

in continuous systems are piecewise continuous functions 

of time. DEVS supports hierarchical, modular model 

construction, with coupled models composed of both 

coupled model and atomic model components. The 

DEVJAVA environment[4][5] is an implementation of 

the DEVS formalism in Java that enables the modeler to 

specify models directly in its terms.  

DEVS Model partitioning refers to the process of 

creating a set of partition blocks from given model(s) 

based on certain decision-making criteria. Numerous 

model partitioning algorithms have been developed in the 

last few decades. Among them, algorithms based on 

graph partitioning are mainly focused in this paper[1][2].  

Partitioning algorithms are mainly classified into 

random partitioning algorithm, partitioning improvement 

algorithm, and heuristic algorithm. The random 

partitioning algorithm is the simplest partitioning 

approach that creates a set of partition blocks with 

randomly selected models. The partitioning improvement 

algorithm refers to an algorithm in which the quality of 

partitioning is improved as partitioning proceeds[6][7]. 

The Kernighan-Lin algorithm performs partitioning by 

randomly assigning models to partition blocks at the 

initial time and swapping models between partition 

blocks during the partitioning process if swapping 

produces a better partitioning result[8]. The heuristic 

partitioning algorithm refers to any algorithm that uses 

domain-specific knowledge for performing the 

partitioning process. 

Partitioning algorithms can be realized by utilizing 

certain optimization techniques. The most widely used 

technique is simulated annealing. Simulated annealing is 

a general-purpose optimization technique based on a 

statistical methodology[9]. Partitioning algorithms can 

also be constructed based on geometric information of 

models. Recursive Coordinate Bisection (RCB) and 

Recursive Graph Bisection (RGB) are some of 

them[10][11].  

Hierarchical model partitioning is the process of 

building a set of partition blocks by decomposing or 

constructing hierarchical structures based on certain 

decision-making criteria. The hierarchical structure is 

generally represented by a tree structure. In the structure, 

a node having no children is an atomic (or non-

decomposable) node. A node having children is a coupled 

(or decomposable) node. The coupled node could contain 

other coupled nodes and a collection of atomic nodes. 

During partitioning, the hierarchical model structure may 

be dynamically permutated over time and space, if 

necessary. A partitioning policy specifies what kind of 

partitioning approach or technique is applied to models 

process. There are three partitioning policies which are 

widely accepted and applied in many application domain 

problems; flattening, deepening, and heuristic. Flattening

is a structural decomposition technique that transforms a 

hierarchical structure into non-hierarchical structure. 

Deepening, also known as hierarchical clustering, is a 

structural aggregation technique that transforms non-

hierarchical structure into hierarchical structure [12].  A 

heuristic policy is an ad-hoc policy that uses techniques 

other than those that are associated with flattening and 

deepening.

3. Cost Analysis Methodology 

Cost analysis is an analytical approach of abstracting 
heterogeneous resource information into homogeneous 
cost information and performing certain analytical 
operations with respect to the cost information. The 
methodology covers a wide spectrum of analytical 
activities ranging from harvesting cost information to 
performing sophisticated analytical operations regarding 
the information. Specifically, it copes with how to acquire 
cost information from particular resource information 
(cost harvesting); how to create cost information based on 
a certain generation scheme (cost generation); how to 
coalesce a group of small costs into a bigger cost (cost 

aggregation); how to compare a cost with another cost 
(cost evaluation); how to analyze cost information (cost 

analysis), etc.
A cost is an abstract value that represents the cost 

information of a model in the format of a particular data 

type such as a single value, a set of discrete objects, a 

range of continuous values, a probability distribution, a 

stochastic process, etc. A cost measure is a conceptual 

metric that captures heterogeneous resource information 

in terms of cost. Various metrics can be used to harvest, 

generate, and evaluate cost information based on distinct 

decision-making criteria. Complexity, I/O connectivity,

and behavior functions are some of the cost measures that 

are widely used. A cost function is a mathematical 

representation of a cost measure. It is an abstract function. 

Thus, for a single cost function, numerous 

implementations are possible. Cost aggregation is the 

process of coalescing a group of small costs into a bigger 

cost. By representing a group of costs by its aggregated 

cost, sophisticated relationships between costs can be 

significantly simplified. This makes manipulating cost 

information much easier with respect to cost analysis. 
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A cost tree is a tree structure that is created from a 

model that contains cost information. A node in the tree is 

either atomic or coupled. An atomic node is a terminal 

node containing no child nodes. A coupled node is an 

intermediate node holding more than one child node. 

Each node contains a model and its cost regardless of its 

classification type (i.e., atomic or coupled). The cost of 

the node is implicitly retrieved from its associated model 

or explicitly assigned to the node. A node is evaluated by 

retrieving the cost information of the node. An atomic 

node contains its own cost only and a coupled node keeps 

all costs of the node and its descendents that are reachable 

through the tree hierarchy.  Thus, the cost of a subtree 

starting from a particular node is acquired by simply 

retrieving cost information of the node without further 

expansion of the tree. It reduces considerably the amount 

of time and space required for parsing all descendants of 

the node and aggregating their costs during the cost 

evaluation process. 

Table 1. Cost Measures and  Cost Functions 

Cost measure Cost function Decision-making criteria 

I/O
connectivity

Size(Xmodel)*
Size(Ymodel)

The cost of a system is 
generally proportional to the 
number of I/O interfaces if the 
system is dedicated to serving 
I/O requests.

System
Complexity
(without I/O 
connectivity)

Size( model)

The cost of a system is 
represented by the number of 
internal states rather than the 
number of I/O access points if 
system performance relies on 
its complexity.

System
Complexity

(with I/O 
connectivity)

Size( model)*
Size(Xmodel)*
Size(Ymodel)

The cost of a system can be 
captured more appropriately by 
considering both I/O interfaces 
and system complexity 

System
Activity

Numberof
(Transitionmodel)

The cost of a system can be 
capture more appropriately by 
considering dynamic system 
behaviors. 

Xmodel: a set of input interfaces,  Ymodel: a set of input interfaces 

model: a set of internal states,

Transitionmodel:  internal transitions for a certain period of time[13] 

4. A Generic Model Partitioning (GMP) 

A new Generic Model Partitioning (GMP) algorithm 

for a hierarchical, modular Discrete Event System 

Specification (DEVS) model is proposed in this paper. 

The proposed algorithm decomposes a given hierarchical 

model into a set of partition blocks and provides solutions 

for distinct partitioning problems based on the cost 

analysis methodology. Unlike previous research on 

DEVS model partitioning[14][15], the GMP algorithm 

provides adaptability (or flexibility) for distinct 

partitioning requirements based on the cost analysis 

methodology. 

The algorithm is characterized by a set of generic cost 

measures for cost generation, cost evaluation, and cost 

aggregation. Since a cost measure is a parametric method, 

subject to certain axioms, the algorithm is generic and 

applicable to any family of models provided there is a 

way to manipulate the appropriate cost information. 

Activity is one of possible cost measure. However, the 

more general concept potentially includes other important 

determiners of simulation work such as number of 

messages sent and received. By applying one or more cost 

measures, a model is abstracted to a cost regardless of its 

complexity or heterogeneity. The homogeneity of the cost 

allows the proposed algorithm to be applicable to 

heterogeneous problems by simply changing cost 

measures without any modification of the algorithm itself. 

This is due to the homogeneous nature of the cost 

analysis methodology. Thus, the proposed algorithm is 

highly adaptable and can be applied to various application 

domains. 

The GMP algorithm minimizes model decomposition 

by breaking the given model only until a best partitioning 

result is attained, instead of fully decomposing the model 

before or during the partitioning process. With 

minimization of model decomposition, the GMP 

algorithm becomes less sensitive to the depth or the 

complexity of a hierarchical model. It makes the 

algorithm much more flexible and scalable compared to 

other partitioning algorithms based on full decomposition 

(or flattening). One unique feature of the GMP algorithm 

is its support for incremental Quality of Partitioning 

(QoP) improvement that guarantees partitioning results 

evolve into the best result without any degradation of 

QoP during the partitioning process. This allows the 

algorithm to produce a high degree of QoP for the given 

model. The QoP is easily traceable through a partitioning 

tree hierarchy. 

The GMP algorithm has two phases; initial partitioning

and evaluation-expansion-selection (E2S) partitioning. In

the initial partitioning phase, a root node of the 

partitioning tree is constructed. While, in the phase of E2S

partitioning, child nodes of the tree are constructed, 

evaluated, and expanded until a best partitioning result is 

attained. 

4.1. Initial Partitioning 

Initial partitioning creates a root node of a partitioning 

tree. The partitioning tree is a tree that is created during 

the partitioning process. The root node of the tree is built 

based on a cost tree and the number of partition blocks. 

The initial partitioning is started by creating a set of 

empty partition blocks. Once the partition blocks are 

created, each block will be populated with one or more 
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cost nodes. Those nodes are obtained from the cost tree 

by decomposing a specific node of the tree. The total 

number of cost nodes increases or decreases during the 

partitioning process.  Specifically, before assigning a cost 

node to an empty partition block, the total number of 

available cost nodes is compared to the requested number 

of partition blocks. If the number of nodes is smaller than 

the number of partition blocks, node expansion occurs. 

The node having the highest cost among the available 

coupled nodes is selected and expanded. Nodes expanded 

from the selected node become available along with 

existing cost nodes.  Expansion is repeated until the total 

number of cost nodes is equal to or larger than the 

number of partition blocks. After expansion, every 

partition block is filled with a cost node. Once all 

partition blocks become non-empty, the remaining cost 

nodes are distributed into those blocks based on some 

decision-making criteria. Evaluation of the initial 

partitioning result is done by applying a partitioning 

evaluation function to those blocks. To describe initial 

partitioning, we define the followings; 

Constant:

   T: a cost tree 

   p: a number of partition blocks 

Objects:

   PB: a partition block

   PBempty: an empty partition block 

   PBlowest: a partition block having the lowest cost 

   PBhighest: a partition block having the highest cost 

   Nodelowest: a node having the lowest cost 

   Nodehighest: a node having the highest cost 

   Nodecoupled: a coupled node 

Nodecoupled
highest  : a coupled node having the highest cost 

Operations:

    remove(node, c-list): remove a node, node, from the c-list   

 node  remove(node, c-list) 

    expand(node): expand a node, node

a set of child nodes of the node   expand(node)
        assignTo(node, PB): assign a node, node, into a partition block, PB 

With the above definitions, the initial partitioning 
algorithm is represented as follows   

1: PB[] Initial-partitioning(T, p)
2:    // phase 1: initialize c-list and p-array

3:  c-list = child nodes of a root node in T 

4:  p-array = PB[p] // create p empty partition blocks

5:  // phase 2: expand node(s), if necessary

6: while lengthOf(c-list) < numberOf(p-array) do

7: if c-list contains at least one Nodecoupled then

8:       c-list += expand(remove( Nodecoupled
highest ,c-list))

9:   else

10:       return error(“can’t expand…”)

11:    endif

12:   endwhile

13:   // phase 3 : fill empty partition blocks  

14:   while p-array contains an PBempty do

15:       assignTo(remove(Nodehighest,c-list), PBempty)

16:   endwhile

17:   // phase 4 : distribute nodes in c-list into partition blocks

18:   while c-list is not empty do  

19:      assignTo(remove(Nodelowest,c-list), PBlowest)

20:   endwhile

21:   return p-array  

22: endprocedure 

Algorithm 1. Initial Partitioning Algorithm 

4.2. Evaluation-Expansion-Selection (E
2
S) Partitioning 

Evaluation-Expansion-Selection (E2S) partitioning 

constructs, evaluates, and expands child nodes of a 

partitioning tree and increases the QoP until a best 

partitioning result is attained. The E2S partitioning is 

started by identifying the partition block having the 

highest cost given initial partitioning result that is stored 

at the root node of the partitioning tree. Once the block is 

identified as an expandable partition block, e-partition,

the existence of a coupled model is checked at the block. 

If it exists, the coupled node having the highest cost is 

identified as an expandable node, e-node. Otherwise, a 

new partitioning block having the highest cost, excluding 

previously selected blocks, is selected as the expandable 

partition block. If a coupled node does not exist at the 

newly identified partition block, the same procedure is 

repeated until both an expandable block and an 

expandable node are found. By expanding the expandable 

node, a collection of cost nodes is created. If the 

expandable block becomes empty after expanding the 

node, the cost node having the highest cost in the 

collection is assigned to the block. Remaining nodes in 

the collection are distributed to partition blocks in 

ascending order, as described in distribution phase in the 

previous chapter. After distributing remaining nodes into 

partition blocks, the partitioning result is compared to the 

previous partitioning result. The cost measure, the 

partitioning evaluation function, is used to perform the 

cost comparison. If the new partition result is superior to 

the previous one, the E2S partitioning is applied 

recursively to find a better partitioning result. Otherwise, 

the previous partitioning result is identified as a best 

partitioning result for the given cost tree and the 

requested number of partition blocks. 

1: PB[] e-square-s-partitioning(PB[] p-array)

2:    // phase 1: initialize e-array and e-partition

3:     e-array = p-array

4: e-partition = a PBhighest in e-array

5:    e-node = null 

6:    // phase 2: identify an expandable PB from e-array

7:    while true do

8:       if e-partition null then return p-array

9:       else

10:     if e-partition contains Nodecoupled then

11:        e-node = Nodecoupled
highest in e-partition

12:        if e-node null then break

13:        else return p-array
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14:        endif             

15:      else

16:        e-partition = select the PBhighest from e-array

17:                     excluding previously selected PBs 

18: endif

19:   endif 

20: endwhile

21: // phase 3: expand e-node and put them into c-list

22: c-list = expand(remove(e-node,e-partition))

23: // phase 4: fill the e-partition with Nodehighest

24: //               if e-partition is empty 

25: if empty(e-partition) then  

26:       assignTo(remove(Nodehighest,c-list), e-partition)

27:     endif

28: // phase 5: distribute nodes to e-array

29: while c-list is not empty do

30: assignTo(remove(Nodelowest,c-list), PBlowest)

31:  endwhile

32:  // phase 6: evaluate a new partitioning result

33:  if superiorTo(evaluate(e-array), evaluate(p-array)) then  

34:     return e-square-p-partitioning(e-array)

35:  else

36:     retrun p-array 

37:  endif

38: endprocedure 

Algorithm 2. Evaluation-Expansion-Selection (E2S)

Partitioning Algorithm  

5. Partitioning 1-Dimensional Activity 

Distribution Problem 

The DEVS formalism has been applied to a number of 

continuous as well as discrete phenomena[16][17]. The 

use of discrete events, rather than time steps, as a basis 

for simulation has been shown to reduce computation 

time by orders of magnitude in many applications 

[18][19][20] showed how discrete event abstraction 

captures information in rich continuous data streams in 

terms of events and their timed occurrences.  Recently, 

there has been significant progress in extending DEVS to 

represent partial differential equation (PDE) models. In a 

gas expansion shockwave problem, [21] showed that the 

time to execute the solution is significantly reduced when 

a discrete event integration scheme is employed compared 

to a representative conventional approach.  Recent theory 

suggests that speed advantages are to be expected for 

pdes that are characterized by heterogeneity in their time 

and space behavior.  In such cases, as exemplified by an 

outwardly moving shock wave, discrete events are a 

natural way to focus attention on the portions of the 

solution that are exhibiting high activity levels at the 

moment. In fact, theory suggests a way to characterize the 

activity of solutions over time and space independently of 

the solution technique that might be employed.  This 

activity measure, when divided by a quantum size, 

predicts the number of boundary crossings 

(computations) required by the DEVS simulator for the 

accuracy afforded by that quantum size.  Where 

significant heterogeneity of activity exists, the number of 

discrete event computations may be orders of magnitude 

lower than that required by a uniform allocation of 

computational resources across both space and time.   

Since the DEVS hierarchical, modular framework 

accommodates coupled models containing both discrete 

and continuous components, it offers a scalable, efficient 

framework for very large scale distributed simulation. 

5.1. Approach 

A simple 1-dimensional activity distribution is 

presented in this section to show how the GMP algorithm 

works. In this example, 1-dimensional distribution is 

considered as cost distribution between models. A node 

of a cost tree is defined by a pair of activity and spatial 

information of a model. The activity and the spatial 

information are represented by a positive value and 1-

dimensional distance (or offset) between a model and a 

reference point, respectively. The reference point can be 

set to the left-most or the right-most point of the given 

cost distribution. An activity distribution and its 

corresponding cost tree are shown in Figure 1. Since the 

cost tree contains no hierarchical structure, the second 

part of the GMP algorithm, (i.e., E2S partitioning) is not 

required to solve this problem. 

To implement the GMP algorithm for this problem, we 

need to specify abstract functions and objects introduced 

in the algorithm precisely. Thus, we define the following 

before applying the GMP algorithm to the given 

partitioning problem. 

activity

distance
(4, 1) (6, 2) (8, 3) (19, 4) (11, 5) (7,6) (5,7)

Activity Distribution

60

(4,1) (6,2) (8,3) (19,4) (11,5) (7,6) (5,7)

Avg = 60/3 = 20

PB 1 PB 2 PB 3

Cost Tree

PB : Partition Block

F = 18 F = 23F = 19

Figure 1. Activity Distribution and Associated Cost Tree

Constants;

p: the total number of partition blocks 

mi: the total number of cost nodes in PBi

Objects;

Node
i
 : A pair of an activity value and an offset value   

Nodei
activity : Activity value of a node, Node

i

Nodei
offset : Offset value of a node, Node

i
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Noderoot : Root node of a cost tree 

Noderoot
avg : Average of total activity of Noderoot  (i.e., 

Noderoot
activity

p
)

Nodelowest : the node having the lowest cost  

                  Nodelowest  
i  1..k
min Nodei

offset  ,

where, Nodei  c  list  k  lengthOf(c  list)

PBi
aggregated : Cost aggregation of a partition block, PBi

PBi
aggregated  Node j

Activity

j  1

mi

 , Node j  PBi

PBlowest : the PB having the lowest cost aggregation value 

PBlowest  
j  1..p
min PB j

aggregated  
     Operations; 

addTo(Nodei ,PBi ): add Node
i
 into PBi and return updated PBi

PB
i

'  addTo(Nodei ,PBi )

removeFrom(Nodei ,PBi ) : remove Node
i
 from PBi and return  

                                                  updated PBi

PB
i

'  removeFrom(Nodei ,PBi )

In additions to above definitions, when a node is 

assigned to a partition block, the following node 

assignment rules should be obeyed. 

    Rule I: if (PBlowest
activity   )

addTo(Nodelowest ,removeFrom(Node( ,0),PBlowest ))

    Rule II: if PBlowest
aggregated  Nodelowest  Noderoot

avg  
addTo(Nodelowest ,PBlowest )

   Rule III:  Otherwise,    

if (Node( ,0)  PBany )
addTo(Nodelowest ,removeFrom(Node( ,0),PBany ))

else

    else addTo(Nodelowest ,PBlowest )

In these assignment rules, it is assumed that every PB is 

initially created with a node, Node( ,0) . The node acts 

as an empty PB indicator. Rule I is applied when a node 

is assigned to a PB at very first time. Initially, the 

aggregated activity value of every PB is infinity. Thus, 

any PB can be identified as PB
lowest

. Once PB
lowest

 is 

identified, Node
lowest

, which is removed from the 

component list, c-list, is added into PB
lowest

 after removing 

the empty PB indicator, Node( ,0)  from the partition 

block. Rule II is applied when the sum of 

PB
lowest

aggregated and Node
lowest

is equal to or less than Node
root

avg .

Rule III is applied when the sum of 

PB
lowest

aggregated and Node
lowest

 is larger than Node
root

avg  or Node
lowest

is larger than Node
root

avg .

Initial partitioning is started by creating p partition 

blocks followed by computing Node
root

avg . Each partition is 

populated with an empty PB indicator, Node( ,0) . The 

phase 2 of initial partitioning, expansion, is skipped 

because the given problem has no hierarchical structure 

and the p is (considerably) less than the total number of 

models in the cost tree. The phase 3 of the algorithm, 

filling, is also skipped because every PB has Node( ,0) .

In phase 4 of the algorithm, distribution, all children 

nodes of the given cost tree are assigned to the 

component list, c-list. Initial partitioning is achieved by 

removing Node
lowest

 from the list and assigning it 

to PB
lowest

aggregated  until the list becomes empty. Node 

assignment should be performed based on node 

assignment rules described above.

The given 1-dimensional activity distribution example 

can be considered as a hierarchical model partitioning 

problem if we assume an activity value can be 

decomposed into a set of smaller activity values. In the 

above example, we implicitly presume every activity 

value in the activity distribution is non-breakable value.  

Instead, we assume an activity value in the distribution 

can be composition of smaller activity values, here. The 

decomposable activity distribution and its associated cost 

tree are shown in Figure 2.

In the tree, spatial information of each child of a 

coupled node is represented by appending a relative offset 

from its parent node into its parent’s offset value (e.g., 4.2 

and 4.2.2). In addition to definitions in initial partitioning, 

we define the following to realize E2S partitioning 

60

(4,1) (6,2) (8,3) (19, 4) (11,5) (7,6) (5,7)

Avg = 60/3=20
Cost Tree

(1,4.1) (17,4.2) (1,4.3) (8,5.3)

(4,4.2.1) (10,4.2.2) (3,4.2.3)

(1,5.1) (2,5.2)

distance
(4, 1) (6, 2) (8, 3) (19, 4) (11, 5) (7,6) (5,7)

Activity Distribution
Decomposable
    Activities

(4,2.1) (2,2.2)

Figure 2. Decomposable Activity Distribution and 
Associated Cost Tree 

   Constant;

ArrayPB : a collection of partition blocks 

    Objects;

PBmax : PBi satisfying 
i 1..p
max PBi

aggregated     
      

PBmin : PBi satisfying 
i  1..p
min PBi

aggregated  
PBselected : PBmax  except for previously selected PBmax

PBprev : PB satisfying 
i selected
max PBi

max(offset )  PBselected
min(offset ) 

PBnext : PB satisfying 
i selected

min PBi
min(offset )  PBselected

max(offset )

    Operations;
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evaulte(ArrayPB ) : Cost disparity between PBmax and PBmin of  

                      ArrayPB. that is, PBmax
aggregated  PBmin

aggregated

superiorTo(ArrayPB ,Array
PB

' ) :

true, evaluate(ArrayPB )  evaluate(Array
PB

' )

false, otherwise

Also, additional node assignment rules are listed as 

follows 

Rule IV: if PBprev
aggregated  Nodelowest  Noderoot

avg  
addTo(Nodelowest ,PBprev )

      Rule V: if PBnext
aggregated  Nodehighest  Noderoot

avg  
addTo(Nodehighest ,PBnext )

Rules in E2S partitioning are used to redistribute a part 

of costs of the PBmax into its neighbor(s) (i.e., PB
prev

 and 

PB
next

). Based on the previous partitioning result, E2S

partitioning is performing by expanding a particular node 

of PBmax  and creating a new partitioning result. Once the 

result is created, it is compared with the previous 

partitioning result by executing operation superiorTo(). If

the new result is better than the previous one, partitioning 

recursively continues until no better partitioning result is 

attainted. The previous partition result is initially assigned 

to initial partitioning result. 

Figure 3 shows how E2S partitioning is performed for 

the given 1-dimensional decomposable activity 

distribution example. The root of a partitioning tree, 

node1, is equivalent to the initial partitioning result. The 

partition block, which has costs, 11, 7, and 5, is selected 

as e-partition and the cost node having the cost 11 in the 

partition block is identified as e-node and is expanded to 

nodes having costs 1, 2, and 8. After distributing these 

expanded nodes into partition blocks, a new partitioning 

result, node2, is obtained. Since the new result is superior 

to the previous result in terms of cost disparity, the E2S

algorithm continues to find a better partitioning result. 

During the partitioning process, node3 and node4 of the 

partitioning tree are constructed. Since the partitioning 

evaluation value of node4 is not superior to the evaluation 

value of node3, the algorithm terminates with returning 

the contents of node3 as the final partitioning result. Other 

nodes in the figure, node5, node6 , and node7 are shown to 

show possible alternative choices during the partitioning 

process. Those nodes implies inferior partitioning results 

as compared to nodes associated with the final 

partitioning result (i.e., node2, and  node3 ). Figure 4

shows the partitioning result of the given 1-dimensional 

decomposable activity distribution example. 

4, 6, 8

19

11, 7, 5

4, 6, 8

19, 1

2, 8, 7, 5

4, 6, 8, 1

17, 1, 1

2, 8, 7, 5

F = 5

F = 4

F = 3

4, 6, 8, 1

4,10,3,1,1

2, 8, 7, 5

F = 3

Node 1

Node 2

Node 3

Node 4

4, 6, 8

1, 17, 1

11, 7, 5
F = 5

Node 5

4, 4,2, 8

19, 1

11, 7, 5
F = 4

Node 6

4,4,2,8,1

19, 1

11, 7, 5
F = 3

Node 7

Figure 3. The Partitioning Tree of the Example 

Figure 4. Partitioning Result of the Example 

6. Conclusions 

Unlike previous research on DEVS model partitioning, 

the proposed algorithm provides adaptability (or 

flexibility) for distinct partitioning requirements based on 

cost analysis methodology. It also minimizes model 

decomposition during the partitioning process and 

guarantees incremental quality of partitioning (QoP) 

improvement until a best partitioning result is attained. In 

the algorithm, a series of cost measures for cost 

generation, cost evaluation, and cost aggregation is 

introduced. Since a cost measure is a parametric method, 

subject to certain axioms, the proposed algorithm is 

generic and applicable any family of models provided 

there is a way to manipulate the appropriate cost 

information. Activity is an important cost measure to 

which the GMP algorithm is applicable. In recent 

experiments, we have demonstrated that activity closely 

predicts the number of transitions and the execution time 

required by a DEVS simulator for a PDE. There is an 

overhead that is required in DEVS simulation but this is 

of constant order. The overhead becomes negligible, 

60

(4,1) (6,2) (8,3) (7,6) (5,7)

Avg = 60/3=20
Cost Tree

(1,4.1) (17,4.2) (1,4.3) (8,5.3)

(4,4.2.1) (10,4.2.2) (3,4.2.3)

(1,5.1) (2,5.2)

PB 1

PB 2

PB 3
F = 19

F = 19

F = 22

(4,2.1) (2,2.2)
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relative to traditional time stepped  computation, for large 

numbers of cells or when the per-cell transition cost is 

relatively large.  

Owing to its generic nature of the cost analysis 

methodology, the proposed algorithm is highly adaptable 

and can be applied to various application domain models 

and simulations. With minimization of model 

decomposition, the suggested algorithm becomes less 

sensitive to the depth or the width of a given hierarchical 

model. It makes the algorithm much flexible and scalable 

compared to other partitioning algorithm based on full 

decomposition (or flattening). One unique feature is to 

guarantee incremental QoP improvement during 

partitioning process. This allows the algorithm to produce 

high QoP for the given hierarchical model. The QoP is 

easily traceable through a partitioning tree hierarchy.

We plan to do follow up work in which the proposed 

algorithm is extended to deal with dynamically changing 

cost. This will allow us to consider PDE and other  

models that exhibit heterogeneity in their behaviors over 

time and space. The goal is to track and predict dynamic 

activity patterns enabling their distributed simulations to 

be restructured during run time to focus resources, using 

discrete event scheduling, on regions where activity is 

highest and to distribute active regions among computing 

units to equalize simulation work. 
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