
Distributing Simulation Work Based on Component Activity:

A New Approach to Partitioning Hierarchical DEVS Models

Sunwoo Park and Bernard P. Zeigler
The Department of Electrical and Computer Engineering,

University of Arizona, Tucson, Arizona, 85717

{Sunwoo, Zeigler}@ece.arizona.edu

Abstract

In this paper, we propose a new Generic Model

Partitioning (GMP) algorithm for hierarchical, modular

Discrete Event System Specification (DEVS) models. The

GMP algorithm decomposes a given hierarchical model

into a set of partition blocks and provides reasonable

solutions for distinct partitioning problems based on a

cost analysis methodology. The proposed algorithm

minimizes model decomposition during the partitioning

process and guarantees incremental quality of

partitioning (QoP) improvements until a best partitioning

is attained. Since a cost measure is a parametric method,

subject to certain axioms, the proposed algorithm is

generic and applicable any family of models provided

there is a way to manipulate the appropriate cost

information. An application to partial differential

equation simulation using activity as the cost measure is

discussed.

1. Introduction

For more than a decade, research has been conducted

to develop Modeling and Simulation (M&S) frameworks

over various distributed network infrastructures. As a

result, numerous frameworks have been implemented to

achieve a certain level of satisfaction with respect to

connectivity, speedup, and resource utilization. By

connecting numbers of computers that are loosely or

tightly coupled in distributed network infrastructure and

sharing resource information between M&S entities,

desired M&S activities are conducted faster and more

efficiently as compared the same activities on a

standalone system. A certain level of interoperability and

collaboration between M&S entities is also achieved in

those frameworks.

In distributed simulation, there are many issues

effecting simulation performance. Time synchronization

and communication overhead are some of the major

issues. Those issues are mainly related to simulation

entities (e.g., logical simulator, coordinator, and activator)

that are involved in the actual simulation process. By

synchronizing time information with desired accuracy and

minimizing communication overhead between simulation

entities, the overall performance of simulation becomes

improved.

Model partitioning is a major issues effecting

simulation performance. Simulator performance can be

significantly improved by optimally distributing

simulation models into simulation entities before

initiating the simulation process. Optimal model

distribution is closely related to how models are

partitioned and deployed to those entities. Thus, it is

important to develop partitioning algorithms that can find

optimal or, at least, acceptable partitioning results for

given simulation models. Simulated annealing, random

partitioning, and heuristic partitioning are some of them

[1][2].

The main objective of this research is to design and

implement a new generic model partitioning algorithm of

hierarchical, modular Discrete Event Specification

System (DEVS) models for distributed simulation[3]. To

attain this goal, a new hierarchical model partitioning

algorithm is designed based on a cost analysis

methodology[4]. The cost analysis approach leads to

algorithms that are concise, generic, and adaptable. The

heterogeneous nature of models is captured and

manipulated by the homogenous measure cost.

Furthermore, the proposed algorithm minimizes model

decomposition during the partitioning process and

guarantees incremental Quality of Partitioning (QoP). The

incremental QoP property is used to produce better

partitioning results until a desired partitioning solution is

attained. Partitioning improvement occurs during the

partitioning process. Improvements are denoted in the

partitioning tree and are easily tractable through the tree

hierarchy.

The remainder of this paper is organized as follows.

Section 2 and 3 briefly introduce DEVS model

partitioning and cost analysis methodology, respectively.

Section 4 describes a new hierarchical model partitioning

algorithm proposed in this paper. Section 5 shows how

the proposed algorithm is applied to a partitioning

problem. And, finally, Section 6 summarizes and

concludes this paper.

2. DEVS Model Partitioning

Proceedings of the International Workshop on Challenges of Large Applications in Distributed Environments (CLADE’03)
0-7695-1984-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

The Discrete Event System Specification (DEVS)

formalism provides a means of specifying a mathematical

object called a system[3]. Basically, a system has a time

base, inputs, states, and outputs, and functions for

determining next states and outputs given current states

and inputs. Discrete event systems represent certain

constellations of such parameters just as continuous

systems do. For example, the inputs in discrete event

systems occur at arbitrarily spaced moments, while those

in continuous systems are piecewise continuous functions

of time. DEVS supports hierarchical, modular model

construction, with coupled models composed of both

coupled model and atomic model components. The

DEVJAVA environment[4][5] is an implementation of

the DEVS formalism in Java that enables the modeler to

specify models directly in its terms.

DEVS Model partitioning refers to the process of

creating a set of partition blocks from given model(s)

based on certain decision-making criteria. Numerous

model partitioning algorithms have been developed in the

last few decades. Among them, algorithms based on

graph partitioning are mainly focused in this paper[1][2].

Partitioning algorithms are mainly classified into

random partitioning algorithm, partitioning improvement

algorithm, and heuristic algorithm. The random

partitioning algorithm is the simplest partitioning

approach that creates a set of partition blocks with

randomly selected models. The partitioning improvement

algorithm refers to an algorithm in which the quality of

partitioning is improved as partitioning proceeds[6][7].

The Kernighan-Lin algorithm performs partitioning by

randomly assigning models to partition blocks at the

initial time and swapping models between partition

blocks during the partitioning process if swapping

produces a better partitioning result[8]. The heuristic

partitioning algorithm refers to any algorithm that uses

domain-specific knowledge for performing the

partitioning process.

Partitioning algorithms can be realized by utilizing

certain optimization techniques. The most widely used

technique is simulated annealing. Simulated annealing is

a general-purpose optimization technique based on a

statistical methodology[9]. Partitioning algorithms can

also be constructed based on geometric information of

models. Recursive Coordinate Bisection (RCB) and

Recursive Graph Bisection (RGB) are some of

them[10][11].

Hierarchical model partitioning is the process of

building a set of partition blocks by decomposing or

constructing hierarchical structures based on certain

decision-making criteria. The hierarchical structure is

generally represented by a tree structure. In the structure,

a node having no children is an atomic (or non-

decomposable) node. A node having children is a coupled

(or decomposable) node. The coupled node could contain

other coupled nodes and a collection of atomic nodes.

During partitioning, the hierarchical model structure may

be dynamically permutated over time and space, if

necessary. A partitioning policy specifies what kind of

partitioning approach or technique is applied to models

process. There are three partitioning policies which are

widely accepted and applied in many application domain

problems; flattening, deepening, and heuristic. Flattening

is a structural decomposition technique that transforms a

hierarchical structure into non-hierarchical structure.

Deepening, also known as hierarchical clustering, is a

structural aggregation technique that transforms non-

hierarchical structure into hierarchical structure [12]. A

heuristic policy is an ad-hoc policy that uses techniques

other than those that are associated with flattening and

deepening.

3. Cost Analysis Methodology

Cost analysis is an analytical approach of abstracting
heterogeneous resource information into homogeneous
cost information and performing certain analytical
operations with respect to the cost information. The
methodology covers a wide spectrum of analytical
activities ranging from harvesting cost information to
performing sophisticated analytical operations regarding
the information. Specifically, it copes with how to acquire
cost information from particular resource information
(cost harvesting); how to create cost information based on
a certain generation scheme (cost generation); how to
coalesce a group of small costs into a bigger cost (cost

aggregation); how to compare a cost with another cost
(cost evaluation); how to analyze cost information (cost

analysis), etc.
A cost is an abstract value that represents the cost

information of a model in the format of a particular data

type such as a single value, a set of discrete objects, a

range of continuous values, a probability distribution, a

stochastic process, etc. A cost measure is a conceptual

metric that captures heterogeneous resource information

in terms of cost. Various metrics can be used to harvest,

generate, and evaluate cost information based on distinct

decision-making criteria. Complexity, I/O connectivity,

and behavior functions are some of the cost measures that

are widely used. A cost function is a mathematical

representation of a cost measure. It is an abstract function.

Thus, for a single cost function, numerous

implementations are possible. Cost aggregation is the

process of coalescing a group of small costs into a bigger

cost. By representing a group of costs by its aggregated

cost, sophisticated relationships between costs can be

significantly simplified. This makes manipulating cost

information much easier with respect to cost analysis.

Proceedings of the International Workshop on Challenges of Large Applications in Distributed Environments (CLADE’03)
0-7695-1984-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

A cost tree is a tree structure that is created from a

model that contains cost information. A node in the tree is

either atomic or coupled. An atomic node is a terminal

node containing no child nodes. A coupled node is an

intermediate node holding more than one child node.

Each node contains a model and its cost regardless of its

classification type (i.e., atomic or coupled). The cost of

the node is implicitly retrieved from its associated model

or explicitly assigned to the node. A node is evaluated by

retrieving the cost information of the node. An atomic

node contains its own cost only and a coupled node keeps

all costs of the node and its descendents that are reachable

through the tree hierarchy. Thus, the cost of a subtree

starting from a particular node is acquired by simply

retrieving cost information of the node without further

expansion of the tree. It reduces considerably the amount

of time and space required for parsing all descendants of

the node and aggregating their costs during the cost

evaluation process.

Table 1. Cost Measures and Cost Functions

Cost measure Cost function Decision-making criteria

I/O
connectivity

Size(Xmodel)*
Size(Ymodel)

The cost of a system is
generally proportional to the
number of I/O interfaces if the
system is dedicated to serving
I/O requests.

System
Complexity
(without I/O
connectivity)

Size(model)

The cost of a system is
represented by the number of
internal states rather than the
number of I/O access points if
system performance relies on
its complexity.

System
Complexity

(with I/O
connectivity)

Size(model)*
Size(Xmodel)*
Size(Ymodel)

The cost of a system can be
captured more appropriately by
considering both I/O interfaces
and system complexity

System
Activity

Numberof
(Transitionmodel)

The cost of a system can be
capture more appropriately by
considering dynamic system
behaviors.

Xmodel: a set of input interfaces, Ymodel: a set of input interfaces

model: a set of internal states,

Transitionmodel: internal transitions for a certain period of time[13]

4. A Generic Model Partitioning (GMP)

A new Generic Model Partitioning (GMP) algorithm

for a hierarchical, modular Discrete Event System

Specification (DEVS) model is proposed in this paper.

The proposed algorithm decomposes a given hierarchical

model into a set of partition blocks and provides solutions

for distinct partitioning problems based on the cost

analysis methodology. Unlike previous research on

DEVS model partitioning[14][15], the GMP algorithm

provides adaptability (or flexibility) for distinct

partitioning requirements based on the cost analysis

methodology.

The algorithm is characterized by a set of generic cost

measures for cost generation, cost evaluation, and cost

aggregation. Since a cost measure is a parametric method,

subject to certain axioms, the algorithm is generic and

applicable to any family of models provided there is a

way to manipulate the appropriate cost information.

Activity is one of possible cost measure. However, the

more general concept potentially includes other important

determiners of simulation work such as number of

messages sent and received. By applying one or more cost

measures, a model is abstracted to a cost regardless of its

complexity or heterogeneity. The homogeneity of the cost

allows the proposed algorithm to be applicable to

heterogeneous problems by simply changing cost

measures without any modification of the algorithm itself.

This is due to the homogeneous nature of the cost

analysis methodology. Thus, the proposed algorithm is

highly adaptable and can be applied to various application

domains.

The GMP algorithm minimizes model decomposition

by breaking the given model only until a best partitioning

result is attained, instead of fully decomposing the model

before or during the partitioning process. With

minimization of model decomposition, the GMP

algorithm becomes less sensitive to the depth or the

complexity of a hierarchical model. It makes the

algorithm much more flexible and scalable compared to

other partitioning algorithms based on full decomposition

(or flattening). One unique feature of the GMP algorithm

is its support for incremental Quality of Partitioning

(QoP) improvement that guarantees partitioning results

evolve into the best result without any degradation of

QoP during the partitioning process. This allows the

algorithm to produce a high degree of QoP for the given

model. The QoP is easily traceable through a partitioning

tree hierarchy.

The GMP algorithm has two phases; initial partitioning

and evaluation-expansion-selection (E2S) partitioning. In

the initial partitioning phase, a root node of the

partitioning tree is constructed. While, in the phase of E2S

partitioning, child nodes of the tree are constructed,

evaluated, and expanded until a best partitioning result is

attained.

4.1. Initial Partitioning

Initial partitioning creates a root node of a partitioning

tree. The partitioning tree is a tree that is created during

the partitioning process. The root node of the tree is built

based on a cost tree and the number of partition blocks.

The initial partitioning is started by creating a set of

empty partition blocks. Once the partition blocks are

created, each block will be populated with one or more

Proceedings of the International Workshop on Challenges of Large Applications in Distributed Environments (CLADE’03)
0-7695-1984-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

cost nodes. Those nodes are obtained from the cost tree

by decomposing a specific node of the tree. The total

number of cost nodes increases or decreases during the

partitioning process. Specifically, before assigning a cost

node to an empty partition block, the total number of

available cost nodes is compared to the requested number

of partition blocks. If the number of nodes is smaller than

the number of partition blocks, node expansion occurs.

The node having the highest cost among the available

coupled nodes is selected and expanded. Nodes expanded

from the selected node become available along with

existing cost nodes. Expansion is repeated until the total

number of cost nodes is equal to or larger than the

number of partition blocks. After expansion, every

partition block is filled with a cost node. Once all

partition blocks become non-empty, the remaining cost

nodes are distributed into those blocks based on some

decision-making criteria. Evaluation of the initial

partitioning result is done by applying a partitioning

evaluation function to those blocks. To describe initial

partitioning, we define the followings;

Constant:

 T: a cost tree

 p: a number of partition blocks

Objects:

 PB: a partition block

 PBempty: an empty partition block

 PBlowest: a partition block having the lowest cost

 PBhighest: a partition block having the highest cost

 Nodelowest: a node having the lowest cost

 Nodehighest: a node having the highest cost

 Nodecoupled: a coupled node

Nodecoupled
highest : a coupled node having the highest cost

Operations:

 remove(node, c-list): remove a node, node, from the c-list

 node remove(node, c-list)

 expand(node): expand a node, node

a set of child nodes of the node expand(node)
 assignTo(node, PB): assign a node, node, into a partition block, PB

With the above definitions, the initial partitioning
algorithm is represented as follows

1: PB[] Initial-partitioning(T, p)
2: // phase 1: initialize c-list and p-array

3: c-list = child nodes of a root node in T

4: p-array = PB[p] // create p empty partition blocks

5: // phase 2: expand node(s), if necessary

6: while lengthOf(c-list) < numberOf(p-array) do

7: if c-list contains at least one Nodecoupled then

8: c-list += expand(remove(Nodecoupled
highest ,c-list))

9: else

10: return error(“can’t expand…”)

11: endif

12: endwhile

13: // phase 3 : fill empty partition blocks

14: while p-array contains an PBempty do

15: assignTo(remove(Nodehighest,c-list), PBempty)

16: endwhile

17: // phase 4 : distribute nodes in c-list into partition blocks

18: while c-list is not empty do

19: assignTo(remove(Nodelowest,c-list), PBlowest)

20: endwhile

21: return p-array

22: endprocedure

Algorithm 1. Initial Partitioning Algorithm

4.2. Evaluation-Expansion-Selection (E
2
S) Partitioning

Evaluation-Expansion-Selection (E2S) partitioning

constructs, evaluates, and expands child nodes of a

partitioning tree and increases the QoP until a best

partitioning result is attained. The E2S partitioning is

started by identifying the partition block having the

highest cost given initial partitioning result that is stored

at the root node of the partitioning tree. Once the block is

identified as an expandable partition block, e-partition,

the existence of a coupled model is checked at the block.

If it exists, the coupled node having the highest cost is

identified as an expandable node, e-node. Otherwise, a

new partitioning block having the highest cost, excluding

previously selected blocks, is selected as the expandable

partition block. If a coupled node does not exist at the

newly identified partition block, the same procedure is

repeated until both an expandable block and an

expandable node are found. By expanding the expandable

node, a collection of cost nodes is created. If the

expandable block becomes empty after expanding the

node, the cost node having the highest cost in the

collection is assigned to the block. Remaining nodes in

the collection are distributed to partition blocks in

ascending order, as described in distribution phase in the

previous chapter. After distributing remaining nodes into

partition blocks, the partitioning result is compared to the

previous partitioning result. The cost measure, the

partitioning evaluation function, is used to perform the

cost comparison. If the new partition result is superior to

the previous one, the E2S partitioning is applied

recursively to find a better partitioning result. Otherwise,

the previous partitioning result is identified as a best

partitioning result for the given cost tree and the

requested number of partition blocks.

1: PB[] e-square-s-partitioning(PB[] p-array)

2: // phase 1: initialize e-array and e-partition

3: e-array = p-array

4: e-partition = a PBhighest in e-array

5: e-node = null

6: // phase 2: identify an expandable PB from e-array

7: while true do

8: if e-partition null then return p-array

9: else

10: if e-partition contains Nodecoupled then

11: e-node = Nodecoupled
highest in e-partition

12: if e-node null then break

13: else return p-array

Proceedings of the International Workshop on Challenges of Large Applications in Distributed Environments (CLADE’03)
0-7695-1984-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

14: endif

15: else

16: e-partition = select the PBhighest from e-array

17: excluding previously selected PBs

18: endif

19: endif

20: endwhile

21: // phase 3: expand e-node and put them into c-list

22: c-list = expand(remove(e-node,e-partition))

23: // phase 4: fill the e-partition with Nodehighest

24: // if e-partition is empty

25: if empty(e-partition) then

26: assignTo(remove(Nodehighest,c-list), e-partition)

27: endif

28: // phase 5: distribute nodes to e-array

29: while c-list is not empty do

30: assignTo(remove(Nodelowest,c-list), PBlowest)

31: endwhile

32: // phase 6: evaluate a new partitioning result

33: if superiorTo(evaluate(e-array), evaluate(p-array)) then

34: return e-square-p-partitioning(e-array)

35: else

36: retrun p-array

37: endif

38: endprocedure

Algorithm 2. Evaluation-Expansion-Selection (E2S)

Partitioning Algorithm

5. Partitioning 1-Dimensional Activity

Distribution Problem

The DEVS formalism has been applied to a number of

continuous as well as discrete phenomena[16][17]. The

use of discrete events, rather than time steps, as a basis

for simulation has been shown to reduce computation

time by orders of magnitude in many applications

[18][19][20] showed how discrete event abstraction

captures information in rich continuous data streams in

terms of events and their timed occurrences. Recently,

there has been significant progress in extending DEVS to

represent partial differential equation (PDE) models. In a

gas expansion shockwave problem, [21] showed that the

time to execute the solution is significantly reduced when

a discrete event integration scheme is employed compared

to a representative conventional approach. Recent theory

suggests that speed advantages are to be expected for

pdes that are characterized by heterogeneity in their time

and space behavior. In such cases, as exemplified by an

outwardly moving shock wave, discrete events are a

natural way to focus attention on the portions of the

solution that are exhibiting high activity levels at the

moment. In fact, theory suggests a way to characterize the

activity of solutions over time and space independently of

the solution technique that might be employed. This

activity measure, when divided by a quantum size,

predicts the number of boundary crossings

(computations) required by the DEVS simulator for the

accuracy afforded by that quantum size. Where

significant heterogeneity of activity exists, the number of

discrete event computations may be orders of magnitude

lower than that required by a uniform allocation of

computational resources across both space and time.

Since the DEVS hierarchical, modular framework

accommodates coupled models containing both discrete

and continuous components, it offers a scalable, efficient

framework for very large scale distributed simulation.

5.1. Approach

A simple 1-dimensional activity distribution is

presented in this section to show how the GMP algorithm

works. In this example, 1-dimensional distribution is

considered as cost distribution between models. A node

of a cost tree is defined by a pair of activity and spatial

information of a model. The activity and the spatial

information are represented by a positive value and 1-

dimensional distance (or offset) between a model and a

reference point, respectively. The reference point can be

set to the left-most or the right-most point of the given

cost distribution. An activity distribution and its

corresponding cost tree are shown in Figure 1. Since the

cost tree contains no hierarchical structure, the second

part of the GMP algorithm, (i.e., E2S partitioning) is not

required to solve this problem.

To implement the GMP algorithm for this problem, we

need to specify abstract functions and objects introduced

in the algorithm precisely. Thus, we define the following

before applying the GMP algorithm to the given

partitioning problem.

activity

distance
(4, 1) (6, 2) (8, 3) (19, 4) (11, 5) (7,6) (5,7)

Activity Distribution

60

(4,1) (6,2) (8,3) (19,4) (11,5) (7,6) (5,7)

Avg = 60/3 = 20

PB 1 PB 2 PB 3

Cost Tree

PB : Partition Block

F = 18 F = 23F = 19

Figure 1. Activity Distribution and Associated Cost Tree

Constants;

p: the total number of partition blocks

mi: the total number of cost nodes in PBi

Objects;

Node
i
 : A pair of an activity value and an offset value

Nodei
activity : Activity value of a node, Node

i

Nodei
offset : Offset value of a node, Node

i

Proceedings of the International Workshop on Challenges of Large Applications in Distributed Environments (CLADE’03)
0-7695-1984-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

Noderoot : Root node of a cost tree

Noderoot
avg : Average of total activity of Noderoot (i.e.,

Noderoot
activity

p
)

Nodelowest : the node having the lowest cost

 Nodelowest
i 1..k
min Nodei

offset ,

where, Nodei c list k lengthOf(c list)

PBi
aggregated : Cost aggregation of a partition block, PBi

PBi
aggregated Node j

Activity

j 1

mi

 , Node j PBi

PBlowest : the PB having the lowest cost aggregation value

PBlowest
j 1..p
min PB j

aggregated
 Operations;

addTo(Nodei ,PBi): add Node
i
 into PBi and return updated PBi

PB
i

' addTo(Nodei ,PBi)

removeFrom(Nodei ,PBi) : remove Node
i
 from PBi and return

 updated PBi

PB
i

' removeFrom(Nodei ,PBi)

In additions to above definitions, when a node is

assigned to a partition block, the following node

assignment rules should be obeyed.

 Rule I: if (PBlowest
activity)

addTo(Nodelowest ,removeFrom(Node(,0),PBlowest))

 Rule II: if PBlowest
aggregated Nodelowest Noderoot

avg
addTo(Nodelowest ,PBlowest)

 Rule III: Otherwise,

if (Node(,0) PBany)
addTo(Nodelowest ,removeFrom(Node(,0),PBany))

else

 else addTo(Nodelowest ,PBlowest)

In these assignment rules, it is assumed that every PB is

initially created with a node, Node(,0) . The node acts

as an empty PB indicator. Rule I is applied when a node

is assigned to a PB at very first time. Initially, the

aggregated activity value of every PB is infinity. Thus,

any PB can be identified as PB
lowest

. Once PB
lowest

 is

identified, Node
lowest

, which is removed from the

component list, c-list, is added into PB
lowest

 after removing

the empty PB indicator, Node(,0) from the partition

block. Rule II is applied when the sum of

PB
lowest

aggregated and Node
lowest

is equal to or less than Node
root

avg .

Rule III is applied when the sum of

PB
lowest

aggregated and Node
lowest

 is larger than Node
root

avg or Node
lowest

is larger than Node
root

avg .

Initial partitioning is started by creating p partition

blocks followed by computing Node
root

avg . Each partition is

populated with an empty PB indicator, Node(,0) . The

phase 2 of initial partitioning, expansion, is skipped

because the given problem has no hierarchical structure

and the p is (considerably) less than the total number of

models in the cost tree. The phase 3 of the algorithm,

filling, is also skipped because every PB has Node(,0) .

In phase 4 of the algorithm, distribution, all children

nodes of the given cost tree are assigned to the

component list, c-list. Initial partitioning is achieved by

removing Node
lowest

 from the list and assigning it

to PB
lowest

aggregated until the list becomes empty. Node

assignment should be performed based on node

assignment rules described above.

The given 1-dimensional activity distribution example

can be considered as a hierarchical model partitioning

problem if we assume an activity value can be

decomposed into a set of smaller activity values. In the

above example, we implicitly presume every activity

value in the activity distribution is non-breakable value.

Instead, we assume an activity value in the distribution

can be composition of smaller activity values, here. The

decomposable activity distribution and its associated cost

tree are shown in Figure 2.

In the tree, spatial information of each child of a

coupled node is represented by appending a relative offset

from its parent node into its parent’s offset value (e.g., 4.2

and 4.2.2). In addition to definitions in initial partitioning,

we define the following to realize E2S partitioning

60

(4,1) (6,2) (8,3) (19, 4) (11,5) (7,6) (5,7)

Avg = 60/3=20
Cost Tree

(1,4.1) (17,4.2) (1,4.3) (8,5.3)

(4,4.2.1) (10,4.2.2) (3,4.2.3)

(1,5.1) (2,5.2)

distance
(4, 1) (6, 2) (8, 3) (19, 4) (11, 5) (7,6) (5,7)

Activity Distribution
Decomposable
 Activities

(4,2.1) (2,2.2)

Figure 2. Decomposable Activity Distribution and
Associated Cost Tree

 Constant;

ArrayPB : a collection of partition blocks

 Objects;

PBmax : PBi satisfying
i 1..p
max PBi

aggregated

PBmin : PBi satisfying
i 1..p
min PBi

aggregated
PBselected : PBmax except for previously selected PBmax

PBprev : PB satisfying
i selected
max PBi

max(offset) PBselected
min(offset)

PBnext : PB satisfying
i selected

min PBi
min(offset) PBselected

max(offset)

 Operations;

Proceedings of the International Workshop on Challenges of Large Applications in Distributed Environments (CLADE’03)
0-7695-1984-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

evaulte(ArrayPB) : Cost disparity between PBmax and PBmin of

 ArrayPB. that is, PBmax
aggregated PBmin

aggregated

superiorTo(ArrayPB ,Array
PB

') :

true, evaluate(ArrayPB) evaluate(Array
PB

')

false, otherwise

Also, additional node assignment rules are listed as

follows

Rule IV: if PBprev
aggregated Nodelowest Noderoot

avg
addTo(Nodelowest ,PBprev)

 Rule V: if PBnext
aggregated Nodehighest Noderoot

avg
addTo(Nodehighest ,PBnext)

Rules in E2S partitioning are used to redistribute a part

of costs of the PBmax into its neighbor(s) (i.e., PB
prev

 and

PB
next

). Based on the previous partitioning result, E2S

partitioning is performing by expanding a particular node

of PBmax and creating a new partitioning result. Once the

result is created, it is compared with the previous

partitioning result by executing operation superiorTo(). If

the new result is better than the previous one, partitioning

recursively continues until no better partitioning result is

attainted. The previous partition result is initially assigned

to initial partitioning result.

Figure 3 shows how E2S partitioning is performed for

the given 1-dimensional decomposable activity

distribution example. The root of a partitioning tree,

node1, is equivalent to the initial partitioning result. The

partition block, which has costs, 11, 7, and 5, is selected

as e-partition and the cost node having the cost 11 in the

partition block is identified as e-node and is expanded to

nodes having costs 1, 2, and 8. After distributing these

expanded nodes into partition blocks, a new partitioning

result, node2, is obtained. Since the new result is superior

to the previous result in terms of cost disparity, the E2S

algorithm continues to find a better partitioning result.

During the partitioning process, node3 and node4 of the

partitioning tree are constructed. Since the partitioning

evaluation value of node4 is not superior to the evaluation

value of node3, the algorithm terminates with returning

the contents of node3 as the final partitioning result. Other

nodes in the figure, node5, node6 , and node7 are shown to

show possible alternative choices during the partitioning

process. Those nodes implies inferior partitioning results

as compared to nodes associated with the final

partitioning result (i.e., node2, and node3). Figure 4

shows the partitioning result of the given 1-dimensional

decomposable activity distribution example.

4, 6, 8

19

11, 7, 5

4, 6, 8

19, 1

2, 8, 7, 5

4, 6, 8, 1

17, 1, 1

2, 8, 7, 5

F = 5

F = 4

F = 3

4, 6, 8, 1

4,10,3,1,1

2, 8, 7, 5

F = 3

Node 1

Node 2

Node 3

Node 4

4, 6, 8

1, 17, 1

11, 7, 5
F = 5

Node 5

4, 4,2, 8

19, 1

11, 7, 5
F = 4

Node 6

4,4,2,8,1

19, 1

11, 7, 5
F = 3

Node 7

Figure 3. The Partitioning Tree of the Example

Figure 4. Partitioning Result of the Example

6. Conclusions

Unlike previous research on DEVS model partitioning,

the proposed algorithm provides adaptability (or

flexibility) for distinct partitioning requirements based on

cost analysis methodology. It also minimizes model

decomposition during the partitioning process and

guarantees incremental quality of partitioning (QoP)

improvement until a best partitioning result is attained. In

the algorithm, a series of cost measures for cost

generation, cost evaluation, and cost aggregation is

introduced. Since a cost measure is a parametric method,

subject to certain axioms, the proposed algorithm is

generic and applicable any family of models provided

there is a way to manipulate the appropriate cost

information. Activity is an important cost measure to

which the GMP algorithm is applicable. In recent

experiments, we have demonstrated that activity closely

predicts the number of transitions and the execution time

required by a DEVS simulator for a PDE. There is an

overhead that is required in DEVS simulation but this is

of constant order. The overhead becomes negligible,

60

(4,1) (6,2) (8,3) (7,6) (5,7)

Avg = 60/3=20
Cost Tree

(1,4.1) (17,4.2) (1,4.3) (8,5.3)

(4,4.2.1) (10,4.2.2) (3,4.2.3)

(1,5.1) (2,5.2)

PB 1

PB 2

PB 3
F = 19

F = 19

F = 22

(4,2.1) (2,2.2)

Proceedings of the International Workshop on Challenges of Large Applications in Distributed Environments (CLADE’03)
0-7695-1984-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

relative to traditional time stepped computation, for large

numbers of cells or when the per-cell transition cost is

relatively large.

Owing to its generic nature of the cost analysis

methodology, the proposed algorithm is highly adaptable

and can be applied to various application domain models

and simulations. With minimization of model

decomposition, the suggested algorithm becomes less

sensitive to the depth or the width of a given hierarchical

model. It makes the algorithm much flexible and scalable

compared to other partitioning algorithm based on full

decomposition (or flattening). One unique feature is to

guarantee incremental QoP improvement during

partitioning process. This allows the algorithm to produce

high QoP for the given hierarchical model. The QoP is

easily traceable through a partitioning tree hierarchy.

We plan to do follow up work in which the proposed

algorithm is extended to deal with dynamically changing

cost. This will allow us to consider PDE and other

models that exhibit heterogeneity in their behaviors over

time and space. The goal is to track and predict dynamic

activity patterns enabling their distributed simulations to

be restructured during run time to focus resources, using

discrete event scheduling, on regions where activity is

highest and to distribute active regions among computing

units to equalize simulation work.

7. References

[1] A. Pothen, "Graph Partitioning Algorithms with
Applications to Scientific Computing," Parallel Numerical

Algorithms, pp. 323-368, 1997.
[2] P. Fjallstrom, "Algorithms for Graph Partitioning:A

Survey," Computer and Information Science, vol. 3, 1998.
[3] B.P. Zeigler, H.P. Praehofer, and T.G. Kim, “Theory of

Modeling and Simulation,” Academic Press, 2000.
[4] S. Park, “Cost-based Hierarchical Model Partitioning for

Distributed Simulation of Hierarchical, Modular DEVS
Models,” Ph D. dissertation, university of Arizona, may.
2003.DEVSJAVA software, http://www.acims.arizona.edu

[5] B.P. Zeigler, H.S. Sarjoughian. “Introduction to DEVS
Modeling and Simulation with JAVA: A Simplified
Approach to HLA-Compliant Distributed Simulations”,
http://www.acims.arizona.edu, 2001.

[6] A. Frieze and M. Jerrum, "Improved approximation
algorithms for MAX k-CUT and MAX BISECTION,"
Alogorithmica, vol. 18, pp. 61-77, 1994.

[7] M. R. Banan and K. D. Hjelmstad, "Self-organization of
architecture by simulated hierarchical adaptive random
partitioning," presented at International Joint Conference of
Neural Networks (IJCNN), 1992.

[8] B. Kernighan and S. Lin, "An Efficient Heuristic Procedure
for Partitioning Graph," The Bell System Technical

Journal, vol. 49, pp. 291-307, 1970.

[9] V. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
"Optimization by simulated annealing," Science, vol. 220,
pp. 671-680, 1983.

[10] M. J. Berger and S. H. Bokhari, "A Partitioning Strategy
for Non-Uniform Problems across Multiprocessors," IEEE

Transactions on Computers, vol. 36, pp. 570-580, 1987
[11] H. D. Simon, "Partitioning of Unstructured Problems for

Parallel Processing," Computing Systems in Engineering,
vol. 2, pp. 135-148, 1991.

[12] Y. Z. a. G. Karypis, "Evaluation of Hierarchical Clustering
Algortithms for Document Datasets," CIKM 2002, 2002.

[13] B.P. Zeigler, “The brain-machine disanalogy revisited”,
BioSystems, Vol. 64, pp. 127-140, 2002

[14] G. Zhang and B.P. Zeigler, "Mapping Hierarchical Discrete
Event Models to Multiprocessor Systems: Algorithm,
Analysis, and Simulation," J. Parallel and Distributed

Computers, Vol. 9, pp. 271-281, 1990.
[15] K.H. Kim, T.G. Kim and K.H. Kim, “Hierarchical

Partitioning Algorithm for Optimistic Distributed
Simulation of DEVS Models,” Journal of Systems
Architecture, Vol. 44, pp. 433-455, 1998.

[16] J. Ameghino, A. Tróccoli, G. Wainer. “Models of Complex
Physical Systems using Cell-DEVS”, Proceedings of the
Annual Simulation Symposium, Seattle, Washington, 2001.

[17] Alexandre Muzy, Eric Innocenti, Antoine Aiello, Jean-
Francois Santucci, and Gabriel Wainer. “Cell-DEVS
Quantization Techniques in a Fire Spreading Application”,
Winter Simulation Conference, San Diego, California,
2002.

[18] B. P. Zeigler, G. Ball, et al., Bandwidth Utilization/Fidelity
Tradeoffs in Predictive Filtering. Simulation
Interoperability Workshop, Orlando, 1999.

[19] B. P. Zeigler, G. Ball, et al., Implementation of the DEVS
Formalism over the HLA/RTI: Problems and Solutions.
Simulation Interoperability Workshop, Orlando, FL, 1999.

[20] Zeigler, B. P., H. Cho, et al., "Quantization Based Filtering
in Distributed Discrete Event Simulation." Journal of
Parallel and Distributed Computing 62(11): 1629-1647,
2002.

[21] J. Nutaro, B. P. Zeigler, R.Jammalamadaka,
S.Akerkar,"Discrete Event Solution of Gas Dynamics
within the DEVS Framework:Exploiting Spatiotemporal
Heterogeneity", Intl. Conf. Computational Sci, Melbourne
Australia, July 2003

8. Acknowledgement

This research has been supported in part by NSF Grant

No. DMI-0122227, “Discrete Event System Specification

(DEVS) as a Formal Modeling and Simulation

Framework for Scaleable Enterprise Design" and in part

by the Scientific Discovery through Advanced

Computing (SciDAC) program of the DOE, grant number

DE-FC02-01ER41184.

Proceedings of the International Workshop on Challenges of Large Applications in Distributed Environments (CLADE’03)
0-7695-1984-9/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

