
A Multiprocessor Real-Time Process Scheduling Method

Kuan-Yu Chen, Alan Liu and Chiung-Hui Leon Lee
Dept. of Electrical Engineering, National Chung Cheng University

ionic@aiol.ee.ccu.edu.tw, aliu@ee.ccu.edu.tw

Abstract

Multimedia systems like Video-on-Demand
systems require a good scheduling method to
improve their services because of their real-time
requirements. If such systems consist of multiple
processors, then the scheduling problem
becomes much important. Scheduling is an
important problem for both computer science
and operation research. It is proved that the
complexity for scheduling problems is
NP-complete and sometimes NP-hard depending
on the constraints of the problems, implying the
difficulties for finding a good scheduling
approach. In this paper, we propose a method for
multiprocessor real-time scheduling algorithm
applicable for both computer science and
operation research. Our method is general
enough to solve different scheduling problems
such as wafer lot dispatching and scheduling for
behaviors of a robot soccer player. There are
scheduling problems exist in multimedia systems
with real-time constraints, although the
scheduling problems for multimedia systems
have some unique characteristics differ from
process scheduling, we believe the generality
nature of our method facilitates the possibility of
our scheduling method to be helpful for
multimedia systems to solve scheduling problems
after some minor modifications.

1. Introduction

Scheduling is an important problem for both
computer science and operation research.
Although computer scientists and operation
researchers may focus on different issues such as
timeliness for computer scientists and
manufacturing cost for operation researchers,
they share a common believe that a good
scheduling approach can bring advantages such
as improving efficiency and altering utilities of
CPUs/machines.

It is proved that the complexity for
scheduling problems is NP-complete and
sometimes NP-hard depending on the constraints
of the problems [1], implying the difficulties for
finding a good scheduling approach. Putting
different requirements and metrics for the needs
of different users to scheduling problems makes

them more difficult to solve. For instance, for
the people sharing a single CPU may love a
scheduling method to be as fair and efficient as
possible in most of the time but they would not
appreciate the scheduler to preempt their jobs to
service others for fairness’s sake when the jobs
are time-critical.

Traditional criteria for a good scheduling
method include fairness, efficiency, response
time, turnaround time and throughput [2]. These
criteria are insufficient when we are dealing with
real-time multiprocessor scheduling problem.
For a real-time scheduling problem, the timing
constraints are of most importance, and real-time
metrics such as minimizing the number of
missed deadlines and minimizing the total
lateness would be preferred rather than
traditional metrics such as minimizing schedule
length. For the multi-processor problem, we do
not only focus on “when to do what” but also
“who to do what”. In other words, the scheduler
must dispatch tasks to CPUs which is similar to
the dispatching problem in a factory where jobs
must be dispatched to machines. Thus we may
take advantages from methods in operation
research [3] to solve multi-processor problems
and we may also provide a scheduling method
suitable for both the computer science domain
and the operation research domain.

In this paper, we propose a method for
multiprocessor real-time scheduling algorithm
applicable for both computer science and
operation research. We categorize processes
(jobs) into different types and make use of them
in our scheduling algorithm to reflect the
characteristics of different processes and the
needs of users. Although it is believed that there
is no silver bullet for scheduling problem, we try
to find the common characteristics shared
between different scheduling issues and thus
facilitate our method to be general enough to
solve different scheduling problems such as
wafer lot dispatching and scheduling for
behaviors of a robot soccer player.

There are scheduling problems existing in
multimedia systems with real-time constraints
[4]. To provide an acceptable performance for
users of real-time multimedia systems, a nice
scheduler is needed to provide guarantees to
multimedia tasks which consists a set of jobs.
Although the scheduling problems for

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

multimedia systems have some unique
characteristics that differ from process
scheduling, we believe the generality nature of
our method facilitates the possibility of our
scheduling method to be helpful for multimedia
systems to solve scheduling problems after some
minor modifications. Assuming that the
multimedia system has prior information about a
multimedia task’s execution including the arrival
time and execution time, we are able to apply
our scheduling method to multimedia systems.
We can use the task segments introduced in our
method to model the jobs in a multimedia task.
Using the schedulability analysis provided in our
scheduling method, a multimedia system is able
to keep track of the loading conditions on
different CPUs and dispatch multimedia tasks to
different CPUs according to the result of the
schedulability analysis.

A performance bottleneck is found in the
wafer lot dispatching problem due to the
unbalanced loading conditions among different
semiconductor fabrication tools. Experimental
result shows that our scheduling method can
improve the performance of tools by balancing
the loads on tools. A multimedia system with
multiprocessor may face the same performance
bottleneck in the wafer lot dispatching problem,
we believe that our method provides a solution
to eliminate the performance bottleneck.

We review some scheduling methods
including branch-and-bound algorithm (B&B),
earliest deadline first (EDF) and robust earliest
deadline (RED) and discuss advantages and
shortcomings of these scheduling methods in
Section 2. After the review, we introduce our
scheduling method in Section 3 including our
scheduling model and method for schedulability
according to the model. An analysis of the
complexity of our scheduling method and a
comparison with other methods are given. In
Section 4, we demonstrate our scheduling
method with two very different applications,
wafer lot dispatching and scheduling for
behaviors of a robot soccer player, to show the
generality of our method. Finally, a conclusion
and future work is given in Section 5.

2. Related Work

In this section, we focus on the introduction of
two scheduling methods: earliest deadline first
(EDF) and branch-and-bound algorithm (B&B)
[4]. We will also discuss the advantages and
shortcomings of these two scheduling methods
and provide some guidelines to construct our
scheduling method. Before the introduction of
the two scheduling methods, we will first discuss
some important scheduling issues to facilitate

the discovery of some improvements of the
existing scheduling methods.

Schedulability. A scheduling method should
have the ability for schedulability analysis/test to
provide some degree of guarantee for tasks with
timing constraints. Off-line scheduling which
analyze the performance of the scheduler can use
schedulability test to examine whether the
computation capability is enough or not for the
tasks to meet their timing constraints [5]. For
on-line scheduling, fault tolerance mechanisms
rely on the guarantee provided by the scheduler
to determine their behavior. In [2], there states a
simple schedulability test for m periodic tasks

with a formula 1
1

≤∑
=

m

i Pi

Ci
, where

task i requires computation time Ci and having
the period of Pi. The formula above deals only
with periodic tasks and is inapplicable for
aperiodic tasks which exist in most systems. In
the scheduling method we propose, we provide
the ability for schedulability test for both
periodic and aperiodic tasks.

Overloading. From the observation of the
results in [6], we can find that overloading is the
major performance bottleneck of the scheduler
whether using earliest deadline first algorithm or
rate monotonic algorithm. Unfortunately,
overloading may occur even after an off-line
scheduling/analyzing due to the dynamic
characteristic of the scheduling environment.
This again states the importance of the on-line
schedulability test mentioned before. In this
paper, we provide a method to calculate the
workload of each CPU on-line to detect
overloading and use the calculation results to
lead the dispatching of tasks and thus avoid
overloading.

Task properties. There are some task
properties such as value, task type and content
switch time should be integrated into the
consideration of scheduling. Most of us may
agree with the viewpoint that the more we know
about something, the better we can deal with it.
For example, we can use the value of tasks to
determine which task to reject when overloading
occurs. The task type is another important
property but being rarely discussed relatively.
Different users may run different types of tasks,
such as periodic and aperiodic, and different
types of tasks should be scheduled in different
manners. In our scheduling method, we take
these task properties concerning timing
constraints into scheduling considerations along
with the context switch time which is important
but often ignored.

2.1 Earliest Deadline First (EDF)

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

The scheduling policy for an EDF scheduler
is quite simple. It always chooses the job
(process) with the earliest deadline. There are
many real-time systems using EDF scheduling
algorithm not only because the simplicity nature
of the algorithm but also because EDF has been
proved to be optimal under many conditions [1].

The major shortcoming for EDF is the
performance during overloading. Due to lacking
the ability for schedulability analysis/test, EDF
cannot detect the occurrence of overloading and
thus cannot prevent or handle overloading as
well.

RED. Buttazzo and Stankovic [7][8]
proposed robust earliest deadline (RED) to
improve EDF algorithm. RED calculates
residual time and workload of jobs as
schedulability analysis. By using the
schedulability analysis, RED algorithm is able to
provide guarantees to jobs and executes its task
rejection policy. The performance of RED under
overloading is shown to be much better then
EDF. Although RED provides a great idea for
adding a schedulability analysis to EDF, RED
has the limitation on the assumption of all jobs
which are aperiodic and implicitly deals with
different types of jobs. In our scheduling
method, we follow the spirit of RED to provide a
schedulability analysis and, furthermore, deal
with both aperiodic and periodic jobs and
provide a method to represent jobs of different
types.

2.2 Branch-and-Bound Algorithm (B&B)

The branch-and-bound algorithm (B&B),
introduced from the field of artificial
intelligence, searches the problem space for
optimal or near-optimal schedules [4]. A B&B
scheduler takes following steps to search for
solution:

Step 1. Selection: The scheduler selects a
vertex from a candidate set of vertices as a new
search point.

Step 2. Generation: The scheduler
generates the children vertices of the selected
vertices as new candidates to search.

Step 3. Evaluation and pruning: Each child
vertex generated in Step 2 is evaluated by the
scheduler. Once the scheduler finds that a child
vertex cannot reach a feasible solution, the child
vertex is eliminated from the search space. After
evaluation, the qualified vertices are put into a
candidate set for the next selection step.

A B&B scheduler iterates the above steps
until a feasible solution is found or no more
candidate vertex to explore. The B&B algorithm
has the advantages of flexibility. The scheduling
strategy can be changed for optimization of
different metrics by applying different

parameters such as vertex selection rule, vertex
branching rule and vertex elimination rule [9].
The major shortcoming of the B&B algorithm
comes from the exponential complexity of the
space search. To apply the B&B algorithm for
real-time scheduling where efficiency of the
scheduler is a very important issue, the designer
of a B&B scheduler must take extremely care for
designing the pruning mechanism to improve the
efficiency of the B&B scheduler. Our scheduling
method can be viewed as a limited version of the
B&B algorithm which searches only a very
limited space to ensure the efficiency of the
scheduler.

3. Method for Multiprocessor
Real-Time Scheduling

In this section, we introduce our scheduling
method which is applicable for both
uni-processor and multiprocessor real-time
scheduling. The scheduling model including
assumptions of our scheduling method, CPU
timetable model and task model is provided in
Section 3.1. In Section 3.2, we describe the
schedulability analysis in our scheduling method
and provide some guidelines for applying our
method under different situations. Since
efficiency of the scheduling algorithm is an
important issue for real-time scheduling, we give
a complexity analysis of our scheduling method
in Section 3.3. A comparison with other
scheduling methods is given in Section 3.4.

Figure 1. Timetable for processors
and a task to be scheduled

3.1 Scheduling Model

To facilitate our method to be general
enough for both the computer science and the
operation research domains, we establish our
scheduling model with the concern for both
domains. We assume the scheduling
environment contains M processors and the
value of M may vary with time. In other words,
new processor may be dynamically added into
the environment and some existing processor
may also be removed from the environment. The
scenario of adding or removing processors rarely

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

occurs in operation systems on computers but it
happens occasionally in factories to add or
remove machines (tools) for maintenance or
repair. For a uniform notation, we use the term
“tasks” for processes in the computer science
domain and jobs in operation research domain.
Tasks can be preemptive or non-preemptive and
we assume there are no precedence constraints
among tasks.

In our scheduling method, we establish a
timetable for each processor to facilitate the
calculation of schedulability. The timetable

consists of a set }:{ TtlL t ≤≤= 0 of

workload information and T is the length of the
time table. The workload information lt consists
of the load of the processor at the specific time t
and the tasks contributing the load. Figure 1
shows the timetable of two processors and a task
to be scheduled. Using the timetable model, the
scheduling problem is transformed into a
problem of finding a suitable timetable and a
suitable position on the timetable to insert the
task which is to be scheduled.

Figure 2. Different task models for
different types of tasks

The task model in our scheduling method is
similar to the timetables for the processors. Each
task is modeled as a set of workload on the time
axis. To represent different types of tasks, we
provide different task models as shown in Figure
2. We can model both periodic and aperiodic
tasks using our task model. As illustrated in
Figure 2(c), We use a deceased load value

},;:{ TjijiL ll ji ∈≤≥= in the time

interval }b{ wtT ≤≤= , where b is the best
execution time and w is the worst execution
time, to represent a soft real-time task and allow
two tasks to share one processor during
underloading time interval

}:{ 1≤+= ll
j
t

i
ttT where l

j
t denotes the

load value contributed by task j at time t. We
assume the maximum workload equals to 1 for a
processor in any time instance. With the strategy
to represent a load less then 1, we are able to
represent the time interval which has a
possibility for the processor to be either

occupied or idle. This strategy may also be
helpful for representing the context switching
cost by adding a small amount of load beside the
workload of the task as shown in Figure 2(d).
The advantage of this strategy is to prevent the
scheduler from being too pessimistic and, in the
same time, prevent it from being too optimistic.
A pessimistic scheduler always considers the
worst execution time of tasks and is suitable for
applications where timing constraints are critical
and violations to the time constraints are
absolutely not allowed. For some soft real-time
applications, the utilization of the processor may
be a more important issue so the pessimistic
scheduler may not be preferred. From the other
aspect, an optimistic scheduler always considers
the best execution time of tasks and ignores the
context switching time may not be allowed for
hard real-time applications. Our scheduling
method provides different task models for the
user to choose according to his/her needs.

3.2 Schedulability Analysis

We use the timetables of processors and task
models introduced in Section 3.1 to facilitate our
schedulability analysis. We transform the
scheduling problem into the problem of fitting
the task into the timetables of processors. Our
schedulability analysis tries to insert the task into
a timetable and gathers information from
insertion for future use. Before further
introduction to our schedulability analysis, we
introduce the concept of task segments first. To
ease the calculation of schedulability analysis,
we separate tasks, especially periodic tasks, into
task segments. A task segment s consists of a
continuous set

}''',:{ ttttL l t <<∀>= 0 of workload

greater then zero. After the segmentation, a task

becomes a set }:{ miS si ≤≤= 1 of task

segments and each task segment may have its
own deadline. A periodic task is therefore
transformed into a set of aperiodic task
segments. Task segments also help our
schedulability analysis to focus only on the time
interval where the load value of the task is not
equals to zero.

Our algorithm for schedulability analysis for
one task segment is described in Figure 3. In the
algorithm, we check the timetable for space to
insert the task segment. A task segment is able to
insert into a timetable at time t if and only if the

condition 1≤++ ll
sTB

t ∆∆ holds for all

}:{ T
stt ∈=∆ , where l

TB
t ∆+ denotes the

load value of the timetable at the time ∆+t ,

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

Figure 3. The algorithm for schedulability analysis

l
s
∆ denotes the load value of the task segment

s at the time ∆ . If the task segment cannot be
inserted at time t, we shift the task segment to
the right and try to insert the task segment at
time t+1. After the schedulability analysis, we
obtain the information of residual time. Positive
residual time guarantees the task segment to
meet its timing constraints while negative
residual time indicates lateness of the task
segment and we may apply a task rejection
policy according to the residual time. Besides
residual time, we obtain a collision value

∑
∈∀

=
', Ttt

TB
tlC where T’ = [t~t’’], t is the time

value of the start point on the timetable TB we
try to insert the task segment s and t’’ equals to
the sum of t’ and l where t’ is the time value of
the point we successfully insert s into TB and l is
the length of s. The collision value can be used
to compare the loading conditions of processors
when the residual time from different processors
make no differences, such as all residual time are
positive or negative.

Scheduling. We can apply schedulability
analysis to both uni-processor and
multiprocessor scheduling. For uni-processor
scheduling, the schedulability analysis can be
applied off-line as an analysis tool to discover
overload conditions and online to provide
guarantees and facilitate the task rejection
mechanism. For multiprocessor scheduling, we
use the architecture illustrated in Figure 4. We
assume that the environment consists of a set

}:{ MnP pn
≤≤= 1 of processors. The

scheduler picks up a task with earliest deadline
in the task queue for scheduling and uses
schedulability analysis to obtain the residual
time and collision value of the task on each
processor. The scheduler then dispatches the task
to the processor with a positive residual time and
lowest collision value. A simple task rejection
policy can be defined as rejecting the task if the

condition 0<∈∀ RPp p: holds where

R p denotes the residual time on the processor

p.

Figure 4. Multiprocessor scheduling

3.3 Complexity Analysis

We assume all task segments having unit
length since the length of the task segment is
short compared with the length of the time table,
T. From Figure 3 we can discover that the
complexity of the schedulability analysis for one
task segment is O(T). There are two stages in
our multiprocessor scheduling method. The first

Algorithm Schedulability Analysis (Task Segment S, Timetable TB, Shift TS)
Pre: S is a task segment to be scheduled to a processor with timetable TB.

L(t) is the load value on TB at time t.
l is the length of S and T is the length of TB.
D is the deadline of S and D is less then T.

Return: The residual time, R, of T, the collision value, C, of T in TB and the time
shifted t

Begin:
t:= start time of S + shift from previous segment TS;
C:= 0;
while(t < T)

if(T can be inserted into TB at time t)
for(t’:=0; t’ < l; t’:=t’+1)

 C:= C + L(t+t’);
 R = D – t – l;

Return R, C, (t+TS);
 else

C := C + L(t);
t:= t+1;

End while;
R = D – T;
Return R, C, (t+TS);

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

stage is an EDF algorithm to choose a task with
the earliest deadline from the task queue and the
complexity of EDF algorithm is O(n) where n is
the number of tasks in the task queue. The
second stage is to perform M schedulability
analyses, which have complexity O(T), to M
processors and thus the complexity for the
second stage is)O(TM × . (The complexity
of the second stage can be reduced to O(T) if the
schedulability analyses can proceed in parallel.)
The overall complexity for our multiprocessor
scheduling to schedule one task segment is O(n)
if n > TM × and is)O(TM × otherwise.
To produce a complete schedule for n tasks, the
complexity is O(n2) if n > TM × and is

)O(TMn ×× otherwise. For applications
which require a high time resolution having a
small n and a very large T, it may be
disappointing because of the complexity being
dominated by T. However, there are some
applications, such as wafer lot dispatching,
having a very large n and a relatively small T,
the performance of the scheduling algorithm
may be satisfactory. We are working on a
continuous representation for the timetable to
eliminate the effects of T.

3.4 Comparison with Other Scheduling
Methods

Our scheduling method incorporates EDF
with a schedulability analysis. We also follow
the spirit of RED to provide a schedulability
analysis mechanism to facilitate the ability to
provide guarantees and execute task rejection
policy. Furthermore, we extend our method to
multiprocessor scheduling and provide different
task models to represent different types of tasks.

Compared with the B&B algorithm, our
scheduling method has a clear bound for
complexity while a B&B scheduler may faces
exponential complexity for space search if the
pruning mechanism is not well designed. Our
scheduling method can be viewed as a limited
version of the B&B algorithm which searches
only a very limited space to ensure the efficiency
of the scheduler. We use the EDF algorithm as a
vertex selection rule and insertion of the chosen
task into timetables of processors as a vertex
branching rule. The schedulability analysis acts
as the lower-bound cost function and we keep
only one vertex which has a positive residual
time and the lowest collision value among all
children vertices.

Compared with Chen’s competitive neural
network approach [10], the complexity of our
scheduling method is lower and we do not have
the problems with initial states of the neural
network and the rate of convergence.

4. Applications

In this section, we introduce two
applications: wafer lot dispatching and
scheduling for behaviors of a robot soccer
player, the former is under evaluation at TSMC
and the latter application is the result of an NSC
project. We believe the generality nature shown
in our method facilitates the possibility of our
scheduling method to be helpful for other
domains with timing constraints, such as
multimedia systems, to solve scheduling
problems.

4.1 Wafer Lot Dispatching

Figure 5: Model of the stage flow
Wafer lot dispatching is a complex yet

important problem in semiconductor fabrication.
Our goal is aimed to provide dispatching
decisions to the supervisor of a specific zone in
TSMC. The specific zone consists of a set

}:{ MnP pn
≤≤= 1 of tools to process

critical stages. Each lot may have hundreds of
stages and tens of critical stages among them in
its workflow. As illustrated in Figure 5, lots
enter the specific zone to process a critical stage
and leave the zone to process non-critical stages.
When a lot enter the zone for the first time, the
supervisor must make a decision to dispatch the
lot to a specific tool. After the lot had been
processed on a specific tool once for a critical
stage, it has to process all its critical stages on
the same tool since processing the critical stages
of a lot on different tools will cause an
unacceptable yield drop. Due to the
characteristics of critical stages, a poor
dispatching decision may cause some tools in the
zone to be idle while others are overloading and
queued with a lot of lots. We use task segments
to model critical stages of a lot and use
schedulability analysis to discover overloading
conditions and thus to determine the best tool for
dispatching.

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

Table 1. The simulation result for wafer lot dispatching

Table 1 shows the simulation result for our
lot dispatching method. Values in the table
denote the average load/day of a tool. From the
table we can see that before applying our
scheduling method for lot dispatching, the load
on tools are extremely unbalanced. At day 0, T2,
T4 and T5 are idle for the entire day while T1,
T3 and T6 are having heavy loads. After
applying our scheduling method, the loads for
tools are balanced and the utilization of tools
may also be promoted since our scheduling
method smoothes the flow of lots.

4.2 Scheduling for Behaviors of a Robot
Soccer Player

In our previous work [11], we construct a
software system for the robot soccer player. We
adopt a behavior-based approach using motor
schemas for low-level control. There is no
problem for our robot soccer player to run its
behaviors on a personal computer (PC) but when
we try to port our robot soccer player from a
software system to a hardware robot, we must
consider the scheduling problem for behaviors
since the onboard CPU is much slower than the
PC’s. We can use our scheduling method to
schedule the behaviors onboard. Currently, the
physical robot is still under construction but our
analysis shows a promising result.

5. Conclusion

In this paper, we propose a method for
multiprocessor real-time scheduling. In our
method, we incorporate EDF and a
schedulability analysis. To meet the needs of
different users, we provide different task models
for different types of tasks such as periodic,
aperiodic, hard real-time and soft real-time. The
complexity for our scheduling method to
produce a complete schedule for n tasks is O(n2)
if n > TM × and is)O(TMn ××

otherwise. The complexity is acceptable for
some applications where n is large and T is
relative small. We are working on a continuous
representation to improve the efficiency of our
scheduling algorithm.

Our scheduling method is general enough to
be applied to different domains such as wafer lot
dispatching and scheduling of behaviors of a
robot soccer player. The simulated result shows
our scheduling method balances the loads among
tools for semiconductor fabrication. We believe
the generality nature shown in our method
facilitates the possibility of being useful for
other domains with timing constraints, such as
multimedia systems, to solve scheduling
problems.

Acknowledgement

This research was supported in part by the
National Science Council under grant NSC
91-2213-E-194-004.

References

[1] J. A. Stankovic, M. Spuri, M. Natale, and
G.C. Buttazzo, “Implications of classical
scheduling results for real-time systems”, IEEE
Computer, vol.28, no.6, pp.16-25, June 1995.

[2] A. S. Tanenbaum and A. S. Woodhull,
“Operaing Systems: Design and
Implementation”, Chapter 2, Prentice Hall,
1997.

[3] F. Wang, Z. Wang, S. Yang and D. Chen,
“Solving Nonstandard Job-Shop Scheduling
Problem by Loading Balance of Machines
Scheduling Algorithm”, in Proc. of the 4th world
congress on Intelligent Control and Automation,
June 2002, pp. 2338-2341,

Day
Tool

0 1 2 3 4 5 6 7 8 9 AVG

T1 0.71 0.71 0.54 0.88 0.88 0.46 0.67 0.79 0.79 0.54 0.697

T2 0 0.42 0.88 0.83 0.25 0.58 0.88 0.71 0.88 0.83 0.626

T3 0.71 0.71 0.79 0.38 0.88 0.71 0.79 0.83 0.92 0.88 0.76

T4 0 0.21 0.63 0.71 0.83 0.83 0.83 0.83 0.79 0.17 0.583

T5 0 0.67 0.79 0.71 0.21 0.63 0.71 0.79 0.79 0.67 0.597

T6 0.88 0.38 0.54 0.63 0.83 0.88 0.79 0.75 0.83 0.71 0.722

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

[4] S. Wang, K. J. Lin and S. Peng, “BWE: A
Resource Sharing Protocol for Multimedia
Systems with Bandwidth Reservation”, in Proc.
of the 4th international symposium on
Multimedia Software Engineering (MSE),
December 2002, pp. 158-165

[5] K.Ramamritham and J.A. Stankovic,
“Scheduling Algorithms and Operating Systems
Support for Real-Time Systems”, in Proc. of the
IEEE, vol. 82, No. 1 , Jan 1994, pp. 55-67.
[6] G. Wainer, “Implementing Real-Time
Scheduling in a Time-Sharing Operating
System”, ACM Operating Systems Review, July
1995

[7] G. Buttazzo and J. Stankovic, “Adding
Robustness in Dynamic Preemptive
Scheduling”, in Responsive Computer Systems:
Steps Toward Fault-Tolerant Real-Time
Systems, Edited by D. S. Fussell and M. Malek,
Kluwer Academic Publishers, Boston, 1995.

[8] G. Buttazzo and Stankovic, “RED: Robust
Earliest Deadline Scheduling”, Technical
Report, Dept. of Computer Science, University
of Massachusetts, TR-93-25, 1993

[9] J. Jonsson, K. G. Shin, “A Parametrized
Branch-and-Bound Strategy for Scheduling
Precedence-Constrained Tasks on a
Multiprocessor System”, in Proceedings of the
International Conference on Parallel Processing
(ICPP), 1997 , pp. 158-165.

[10] R-M Chen, Y-M Huang, and C-Y Lin,
“Competitive Neural Network to Solve
Real-Time Scheduling “, in Proceedings of
International Computer Symposium (CD-ROM),
2002

[11] K. Chen and A. Liu, “A Design Method for
Incorporating Multidisciplinary Requirements
for Developing a Robot Soccer Player”, in Proc.
of the 4th international symposium on
Multimedia Software Engineering (MSE),
December 2002, pp. 25-32

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03)

0-7695-2031-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore. Restrictions apply.

