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Abstract 

Multimedia systems like Video-on-Demand 
systems require a good scheduling method to 
improve their services because of their real-time 
requirements. If such systems consist of multiple 
processors, then the scheduling problem 
becomes much important. Scheduling is an 
important problem for both computer science 
and operation research. It is proved that the 
complexity for scheduling problems is 
NP-complete and sometimes NP-hard depending 
on the constraints of the problems, implying the 
difficulties for finding a good scheduling 
approach. In this paper, we propose a method for 
multiprocessor real-time scheduling algorithm 
applicable for both computer science and 
operation research. Our method is general 
enough to solve different scheduling problems 
such as wafer lot dispatching and scheduling for 
behaviors of a robot soccer player. There are 
scheduling problems exist in multimedia systems 
with real-time constraints, although the 
scheduling problems for multimedia systems 
have some unique characteristics differ from 
process scheduling, we believe the generality 
nature of our method facilitates the possibility of 
our scheduling method to be helpful for 
multimedia systems to solve scheduling problems 
after some minor modifications. 

1. Introduction

Scheduling is an important problem for both 
computer science and operation research. 
Although computer scientists and operation 
researchers may focus on different issues such as 
timeliness for computer scientists and 
manufacturing cost for operation researchers, 
they share a common believe that a good 
scheduling approach can bring advantages such 
as improving efficiency and altering utilities of 
CPUs/machines.  

It is proved that the complexity for 
scheduling problems is NP-complete and 
sometimes NP-hard depending on the constraints 
of the problems [1], implying the difficulties for 
finding a good scheduling approach. Putting 
different requirements and metrics for the needs 
of different users to scheduling problems makes 

them more difficult to solve. For instance, for 
the people sharing a single CPU may love a 
scheduling method to be as fair and efficient as 
possible in most of the time but they would not 
appreciate the scheduler to preempt their jobs to 
service others for fairness’s sake when the jobs 
are time-critical.  

Traditional criteria for a good scheduling 
method include fairness, efficiency, response 
time, turnaround time and throughput [2]. These 
criteria are insufficient when we are dealing with 
real-time multiprocessor scheduling problem. 
For a real-time scheduling problem, the timing 
constraints are of most importance, and real-time 
metrics such as minimizing the number of 
missed deadlines and minimizing the total 
lateness would be preferred rather than 
traditional metrics such as minimizing schedule 
length. For the multi-processor problem, we do 
not only focus on “when to do what” but also 
“who to do what”. In other words, the scheduler 
must dispatch tasks to CPUs which is similar to 
the dispatching problem in a factory where jobs 
must be dispatched to machines. Thus we may 
take advantages from methods in operation 
research [3] to solve multi-processor problems 
and we may also provide a scheduling method 
suitable for both the computer science domain 
and the operation research domain. 

In this paper, we propose a method for 
multiprocessor real-time scheduling algorithm 
applicable for both computer science and 
operation research. We categorize processes 
(jobs) into different types and make use of them 
in our scheduling algorithm to reflect the 
characteristics of different processes and the 
needs of users. Although it is believed that there 
is no silver bullet for scheduling problem, we try 
to find the common characteristics shared 
between different scheduling issues and thus 
facilitate our method to be general enough to 
solve different scheduling problems such as 
wafer lot dispatching and scheduling for 
behaviors of a robot soccer player.  

There are scheduling problems existing in 
multimedia systems with real-time constraints 
[4]. To provide an acceptable performance for 
users of real-time multimedia systems, a nice 
scheduler is needed to provide guarantees to 
multimedia tasks which consists a set of jobs. 
Although the scheduling problems for 
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multimedia systems have some unique 
characteristics that differ from process 
scheduling, we believe the generality nature of 
our method facilitates the possibility of our 
scheduling method to be helpful for multimedia 
systems to solve scheduling problems after some 
minor modifications. Assuming that the 
multimedia system has prior information about a 
multimedia task’s execution including the arrival 
time and execution time, we are able to apply 
our scheduling method to multimedia systems. 
We can use the task segments introduced in our 
method to model the jobs in a multimedia task. 
Using the schedulability analysis provided in our 
scheduling method, a multimedia system is able 
to keep track of the loading conditions on 
different CPUs and dispatch multimedia tasks to 
different CPUs according to the result of the 
schedulability analysis.  

A performance bottleneck is found in the 
wafer lot dispatching problem due to the 
unbalanced loading conditions among different 
semiconductor fabrication tools. Experimental 
result shows that our scheduling method can 
improve the performance of tools by balancing 
the loads on tools. A multimedia system with 
multiprocessor may face the same performance 
bottleneck in the wafer lot dispatching problem, 
we believe that our method provides a solution 
to eliminate the performance bottleneck. 

We review some scheduling methods 
including branch-and-bound algorithm (B&B), 
earliest deadline first (EDF) and robust earliest 
deadline (RED) and discuss advantages and 
shortcomings of these scheduling methods in 
Section 2. After the review, we introduce our 
scheduling method in Section 3 including our 
scheduling model and method for schedulability 
according to the model. An analysis of the 
complexity of our scheduling method and a 
comparison with other methods are given. In 
Section 4, we demonstrate our scheduling 
method with two very different applications, 
wafer lot dispatching and scheduling for 
behaviors of a robot soccer player, to show the 
generality of our method. Finally, a conclusion 
and future work is given in Section 5.

2. Related Work 

In this section, we focus on the introduction of 
two scheduling methods: earliest deadline first 
(EDF) and branch-and-bound algorithm (B&B) 
[4]. We will also discuss the advantages and 
shortcomings of these two scheduling methods 
and provide some guidelines to construct our 
scheduling method. Before the introduction of 
the two scheduling methods, we will first discuss 
some important scheduling issues to facilitate 

the discovery of some improvements of the 
existing scheduling methods. 

Schedulability. A scheduling method should 
have the ability for schedulability analysis/test to 
provide some degree of guarantee for tasks with 
timing constraints. Off-line scheduling which 
analyze the performance of the scheduler can use 
schedulability test to examine whether the 
computation capability is enough or not for the 
tasks to meet their timing constraints [5]. For 
on-line scheduling, fault tolerance mechanisms 
rely on the guarantee provided by the scheduler 
to determine their behavior. In [2], there states a 
simple schedulability test for m periodic tasks 

with a formula 1
1

≤∑
=

m

i Pi

Ci
, where 

task i requires computation time Ci and having 
the period of Pi. The formula above deals only 
with periodic tasks and is inapplicable for 
aperiodic tasks which exist in most systems. In 
the scheduling method we propose, we provide 
the ability for schedulability test for both 
periodic and aperiodic tasks. 

Overloading. From the observation of the 
results in [6], we can find that overloading is the 
major performance bottleneck of the scheduler 
whether using earliest deadline first algorithm or 
rate monotonic algorithm. Unfortunately, 
overloading may occur even after an off-line 
scheduling/analyzing due to the dynamic 
characteristic of the scheduling environment. 
This again states the importance of the on-line 
schedulability test mentioned before. In this 
paper, we provide a method to calculate the 
workload of each CPU on-line to detect 
overloading and use the calculation results to 
lead the dispatching of tasks and thus avoid 
overloading. 

Task properties. There are some task 
properties such as value, task type and content 
switch time should be integrated into the 
consideration of scheduling. Most of us may 
agree with the viewpoint that the more we know 
about something, the better we can deal with it. 
For example, we can use the value of tasks to 
determine which task to reject when overloading 
occurs. The task type is another important 
property but being rarely discussed relatively. 
Different users may run different types of tasks, 
such as periodic and aperiodic, and different 
types of tasks should be scheduled in different 
manners. In our scheduling method, we take 
these task properties concerning timing 
constraints into scheduling considerations along 
with the context switch time which is important 
but often ignored. 

2.1 Earliest Deadline First (EDF) 

Proceedings of the IEEE Fifth International Symposium on Multimedia Software Engineering (ISMSE’03) 

0-7695-2031-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 30, 2010 at 00:05 from IEEE Xplore.  Restrictions apply. 



The scheduling policy for an EDF scheduler 
is quite simple. It always chooses the job 
(process) with the earliest deadline. There are 
many real-time systems using EDF scheduling 
algorithm not only because the simplicity nature 
of the algorithm but also because EDF has been 
proved to be optimal under many conditions [1].  

The major shortcoming for EDF is the 
performance during overloading. Due to lacking 
the ability for schedulability analysis/test, EDF 
cannot detect the occurrence of overloading and 
thus cannot prevent or handle overloading as 
well.  

RED. Buttazzo and Stankovic [7][8] 
proposed robust earliest deadline (RED) to 
improve EDF algorithm. RED calculates 
residual time and workload of jobs as 
schedulability analysis. By using the 
schedulability analysis, RED algorithm is able to 
provide guarantees to jobs and executes its task 
rejection policy. The performance of RED under 
overloading is shown to be much better then 
EDF. Although RED provides a great idea for 
adding a schedulability analysis to EDF, RED 
has the limitation on the assumption of all jobs 
which are aperiodic and implicitly deals with 
different types of jobs. In our scheduling 
method, we follow the spirit of RED to provide a 
schedulability analysis and, furthermore, deal 
with both aperiodic and periodic jobs and 
provide a method to represent jobs of different 
types.  

2.2 Branch-and-Bound Algorithm (B&B) 

The branch-and-bound algorithm (B&B), 
introduced from the field of artificial 
intelligence, searches the problem space for 
optimal or near-optimal schedules [4]. A B&B 
scheduler takes following steps to search for 
solution:  

Step 1. Selection: The scheduler selects a 
vertex from a candidate set of vertices as a new 
search point. 

Step 2. Generation: The scheduler 
generates the children vertices of the selected 
vertices as new candidates to search. 

Step 3. Evaluation and pruning: Each child 
vertex generated in Step 2 is evaluated by the 
scheduler. Once the scheduler finds that a child 
vertex cannot reach a feasible solution, the child 
vertex is eliminated from the search space. After 
evaluation, the qualified vertices are put into a 
candidate set for the next selection step. 

A B&B scheduler iterates the above steps 
until a feasible solution is found or no more 
candidate vertex to explore. The B&B algorithm 
has the advantages of flexibility. The scheduling 
strategy can be changed for optimization of 
different metrics by applying different 

parameters such as vertex selection rule, vertex 
branching rule and vertex elimination rule [9]. 
The major shortcoming of the B&B algorithm 
comes from the exponential complexity of the 
space search. To apply the B&B algorithm for 
real-time scheduling where efficiency of the 
scheduler is a very important issue, the designer 
of a B&B scheduler must take extremely care for 
designing the pruning mechanism to improve the 
efficiency of the B&B scheduler. Our scheduling 
method can be viewed as a limited version of the 
B&B algorithm which searches only a very 
limited space to ensure the efficiency of the 
scheduler.

3. Method for Multiprocessor 
Real-Time Scheduling 

In this section, we introduce our scheduling 
method which is applicable for both 
uni-processor and multiprocessor real-time 
scheduling. The scheduling model including 
assumptions of our scheduling method, CPU 
timetable model and task model is provided in 
Section 3.1. In Section 3.2, we describe the 
schedulability analysis in our scheduling method 
and provide some guidelines for applying our 
method under different situations. Since 
efficiency of the scheduling algorithm is an 
important issue for real-time scheduling, we give 
a complexity analysis of our scheduling method 
in Section 3.3. A comparison with other 
scheduling methods is given in Section 3.4.  

Figure 1. Timetable for processors 
and a task to be scheduled 

3.1 Scheduling Model 

To facilitate our method to be general 
enough for both the computer science and the 
operation research domains, we establish our 
scheduling model with the concern for both 
domains. We assume the scheduling 
environment contains M processors and the 
value of M may vary with time. In other words, 
new processor may be dynamically added into 
the environment and some existing processor 
may also be removed from the environment. The 
scenario of adding or removing processors rarely 
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occurs in operation systems on computers but it 
happens occasionally in factories to add or 
remove machines (tools) for maintenance or 
repair. For a uniform notation, we use the term 
“tasks” for processes in the computer science 
domain and jobs in operation research domain. 
Tasks can be preemptive or non-preemptive and 
we assume there are no precedence constraints 
among tasks.  

In our scheduling method, we establish a 
timetable for each processor to facilitate the 
calculation of schedulability. The timetable 

consists of a set }:{ TtlL t ≤≤= 0  of 

workload information and T is the length of the 
time table. The workload information lt consists 
of the load of the processor at the specific time t 
and the tasks contributing the load. Figure 1 
shows the timetable of two processors and a task 
to be scheduled. Using the timetable model, the 
scheduling problem is transformed into a 
problem of finding a suitable timetable and a 
suitable position on the timetable to insert the 
task which is to be scheduled.  

Figure 2. Different task models for 
different types of tasks 

The task model in our scheduling method is 
similar to the timetables for the processors. Each 
task is modeled as a set of workload on the time 
axis. To represent different types of tasks, we 
provide different task models as shown in Figure 
2. We can model both periodic and aperiodic 
tasks using our task model. As illustrated in 
Figure 2(c), We use a deceased load value 

},;:{ TjijiL ll ji ∈≤≥=  in the time 

interval }b{ wtT ≤≤= , where b is the best 
execution time and w is the worst execution 
time, to represent a soft real-time task and allow 
two tasks to share one processor during 
underloading time interval 

}:{ 1≤+= ll
j
t

i
ttT  where l

j
t  denotes the 

load value contributed by task j at time t. We 
assume the maximum workload equals to 1 for a 
processor in any time instance. With the strategy 
to represent a load less then 1, we are able to 
represent the time interval which has a 
possibility for the processor to be either 

occupied or idle. This strategy may also be 
helpful for representing the context switching 
cost by adding a small amount of load beside the 
workload of the task as shown in Figure 2(d). 
The advantage of this strategy is to prevent the 
scheduler from being too pessimistic and, in the 
same time, prevent it from being too optimistic. 
A pessimistic scheduler always considers the 
worst execution time of tasks and is suitable for 
applications where timing constraints are critical 
and violations to the time constraints are 
absolutely not allowed. For some soft real-time 
applications, the utilization of the processor may 
be a more important issue so the pessimistic 
scheduler may not be preferred. From the other 
aspect, an optimistic scheduler always considers 
the best execution time of tasks and ignores the 
context switching time may not be allowed for 
hard real-time applications. Our scheduling 
method provides different task models for the 
user to choose according to his/her needs.  

3.2 Schedulability Analysis 

We use the timetables of processors and task 
models introduced in Section 3.1 to facilitate our 
schedulability analysis. We transform the 
scheduling problem into the problem of fitting 
the task into the timetables of processors. Our 
schedulability analysis tries to insert the task into 
a timetable and gathers information from 
insertion for future use. Before further 
introduction to our schedulability analysis, we 
introduce the concept of task segments first. To 
ease the calculation of schedulability analysis, 
we separate tasks, especially periodic tasks, into 
task segments. A task segment s consists of a 
continuous set 

}''',:{ ttttL l t <<∀>= 0  of workload 

greater then zero. After the segmentation, a task 

becomes a set }:{ miS si ≤≤= 1  of task 

segments and each task segment may have its 
own deadline. A periodic task is therefore 
transformed into a set of aperiodic task 
segments. Task segments also help our 
schedulability analysis to focus only on the time 
interval where the load value of the task is not 
equals to zero. 

Our algorithm for schedulability analysis for 
one task segment is described in Figure 3. In the 
algorithm, we check the timetable for space to 
insert the task segment. A task segment is able to 
insert into a timetable at time t if and only if the 

condition 1≤++ ll
sTB

t ∆∆  holds for all 

}:{ T
stt ∈=∆ , where l

TB
t ∆+  denotes the 

load value of the timetable at the time ∆+t ,
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Figure 3. The algorithm for schedulability analysis 

l
s
∆  denotes the load value of the task segment

s at the time ∆ . If the task segment cannot be 
inserted at time t, we shift the task segment to 
the right and try to insert the task segment at 
time t+1. After the schedulability analysis, we 
obtain the information of residual time. Positive 
residual time guarantees the task segment to 
meet its timing constraints while negative 
residual time indicates lateness of the task 
segment and we may apply a task rejection 
policy according to the residual time. Besides 
residual time, we obtain a collision value 

∑
∈∀

=
', Ttt

TB
tlC  where T’ = [t~t’’], t is the time 

value of the start point on the timetable TB we 
try to insert the task segment s and t’’ equals to 
the sum of t’ and l where t’ is the time value of 
the point we successfully insert s into TB and l is 
the length of s. The collision value can be used 
to compare the loading conditions of processors 
when the residual time from different processors 
make no differences, such as all residual time are 
positive or negative. 

Scheduling. We can apply schedulability 
analysis to both uni-processor and 
multiprocessor scheduling. For uni-processor 
scheduling, the schedulability analysis can be 
applied off-line as an analysis tool to discover 
overload conditions and online to provide 
guarantees and facilitate the task rejection 
mechanism. For multiprocessor scheduling, we 
use the architecture illustrated in Figure 4. We 
assume that the environment consists of a set 

}:{ MnP pn
≤≤= 1  of processors. The 

scheduler picks up a task with earliest deadline 
in the task queue for scheduling and uses 
schedulability analysis to obtain the residual 
time and collision value of the task on each 
processor. The scheduler then dispatches the task 
to the processor with a positive residual time and 
lowest collision value. A simple task rejection 
policy can be defined as rejecting the task if the 

condition 0<∈∀ RPp p:  holds where 

R p  denotes the residual time on the processor 

p.

Figure 4. Multiprocessor scheduling 

3.3 Complexity Analysis 

We assume all task segments having unit 
length since the length of the task segment is 
short compared with the length of the time table, 
T. From Figure 3 we can discover that the 
complexity of the schedulability analysis for one 
task segment is O(T). There are two stages in 
our multiprocessor scheduling method. The first 

Algorithm Schedulability Analysis (Task Segment S, Timetable TB, Shift TS)
Pre: S is a task segment to be scheduled to a processor with timetable TB.  

L(t) is the load value on TB at time t. 
l is the length of S and T is the length of TB. 
D is the deadline of S and D is less then T. 

Return: The residual time, R, of T, the collision value, C, of T in TB and the time 
shifted t 

Begin:
t:= start time of S + shift from previous segment TS; 
C:= 0; 
while( t < T ) 

if( T can be inserted into TB at time t ) 
for( t’:=0; t’ < l; t’:=t’+1) 

   C:= C + L(t+t’); 
  R = D – t – l;  

Return R, C, (t+TS); 
 else

C := C + L(t); 
t:= t+1;   

End while;  
R = D – T; 
Return R, C, (t+TS); 
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stage is an EDF algorithm to choose a task with 
the earliest deadline from the task queue and the 
complexity of EDF algorithm is O(n) where n is 
the number of tasks in the task queue. The 
second stage is to perform M schedulability 
analyses, which have complexity O(T), to M
processors and thus the complexity for the 
second stage is )O( TM × . (The complexity 
of the second stage can be reduced to O(T) if the 
schedulability analyses can proceed in parallel. ) 
The overall complexity for our multiprocessor 
scheduling to schedule one task segment is O(n)
if n > TM ×  and is )O( TM ×  otherwise. 
To produce a complete schedule for n tasks, the 
complexity is O(n2) if n > TM ×  and is 

)O( TMn ××  otherwise. For applications 
which require a high time resolution having a 
small n and a very large T, it may be 
disappointing because of the complexity being 
dominated by T. However, there are some 
applications, such as wafer lot dispatching, 
having a very large n and a relatively small T,
the performance of the scheduling algorithm 
may be satisfactory. We are working on a 
continuous representation for the timetable to 
eliminate the effects of T.   

3.4 Comparison with Other Scheduling 
Methods 

Our scheduling method incorporates EDF 
with a schedulability analysis. We also follow 
the spirit of RED to provide a schedulability 
analysis mechanism to facilitate the ability to 
provide guarantees and execute task rejection 
policy. Furthermore, we extend our method to 
multiprocessor scheduling and provide different 
task models to represent different types of tasks. 

Compared with the B&B algorithm, our 
scheduling method has a clear bound for 
complexity while a B&B scheduler may faces 
exponential complexity for space search if the 
pruning mechanism is not well designed. Our 
scheduling method can be viewed as a limited 
version of the B&B algorithm which searches 
only a very limited space to ensure the efficiency 
of the scheduler. We use the EDF algorithm as a 
vertex selection rule and insertion of the chosen 
task into timetables of processors as a vertex 
branching rule. The schedulability analysis acts 
as the lower-bound cost function and we keep 
only one vertex which has a positive residual 
time and the lowest collision value among all 
children vertices. 

Compared with Chen’s competitive neural 
network approach [10], the complexity of our 
scheduling method is lower and we do not have 
the problems with initial states of the neural 
network and the rate of convergence.

4. Applications 

In this section, we introduce two 
applications: wafer lot dispatching and 
scheduling for behaviors of a robot soccer 
player, the former is under evaluation at TSMC 
and the latter application is the result of an NSC 
project. We believe the generality nature shown 
in our method facilitates the possibility of our 
scheduling method to be helpful for other 
domains with timing constraints, such as 
multimedia systems, to solve scheduling 
problems. 

4.1 Wafer Lot Dispatching 

Figure 5: Model of the stage flow 
Wafer lot dispatching is a complex yet 

important problem in semiconductor fabrication. 
Our goal is aimed to provide dispatching 
decisions to the supervisor of a specific zone in 
TSMC. The specific zone consists of a set 

}:{ MnP pn
≤≤= 1  of tools to process 

critical stages. Each lot may have hundreds of 
stages and tens of critical stages among them in 
its workflow. As illustrated in Figure 5, lots 
enter the specific zone to process a critical stage 
and leave the zone to process non-critical stages. 
When a lot enter the zone for the first time, the 
supervisor must make a decision to dispatch the 
lot to a specific tool. After the lot had been 
processed on a specific tool once for a critical 
stage, it has to process all its critical stages on 
the same tool since processing the critical stages 
of a lot on different tools will cause an 
unacceptable yield drop. Due to the 
characteristics of critical stages, a poor 
dispatching decision may cause some tools in the 
zone to be idle while others are overloading and 
queued with a lot of lots. We use task segments 
to model critical stages of a lot and use 
schedulability analysis to discover overloading 
conditions and thus to determine the best tool for 
dispatching.  
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Table 1. The simulation result for wafer lot dispatching 

Table 1 shows the simulation result for our 
lot dispatching method. Values in the table 
denote the average load/day of a tool. From the 
table we can see that before applying our 
scheduling method for lot dispatching, the load 
on tools are extremely unbalanced. At day 0, T2, 
T4 and T5 are idle for the entire day while T1, 
T3 and T6 are having heavy loads. After 
applying our scheduling method, the loads for 
tools are balanced and the utilization of tools 
may also be promoted since our scheduling 
method smoothes the flow of lots. 

4.2 Scheduling for Behaviors of a Robot 
Soccer Player 

In our previous work [11], we construct a 
software system for the robot soccer player. We 
adopt a behavior-based approach using motor 
schemas for low-level control. There is no 
problem for our robot soccer player to run its 
behaviors on a personal computer (PC) but when 
we try to port our robot soccer player from a 
software system to a hardware robot, we must 
consider the scheduling problem for behaviors 
since the onboard CPU is much slower than the 
PC’s. We can use our scheduling method to 
schedule the behaviors onboard. Currently, the 
physical robot is still under construction but our 
analysis shows a promising result. 

5. Conclusion 

In this paper, we propose a method for 
multiprocessor real-time scheduling. In our 
method, we incorporate EDF and a 
schedulability analysis. To meet the needs of 
different users, we provide different task models 
for different types of tasks such as periodic, 
aperiodic, hard real-time and soft real-time. The 
complexity for our scheduling method to 
produce a complete schedule for n tasks is O(n2)
if n > TM ×  and is )O( TMn ××

otherwise. The complexity is acceptable for 
some applications where n is large and T is 
relative small. We are working on a continuous 
representation to improve the efficiency of our 
scheduling algorithm. 

Our scheduling method is general enough to 
be applied to different domains such as wafer lot 
dispatching and scheduling of behaviors of a 
robot soccer player. The simulated result shows 
our scheduling method balances the loads among 
tools for semiconductor fabrication. We believe 
the generality nature shown in our method 
facilitates the possibility of being useful for 
other domains with timing constraints, such as 
multimedia systems, to solve scheduling 
problems. 
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