
A Load-sharing Architecture for High Performance
Optimistic Simulations on Multi-core Machines

Roberto Vitali, Alessandro Pellegrini and Francesco Quaglia
DIIAG, Sapienza, Università di Roma

Abstract—In Parallel Discrete Event Simulation (PDES), the
simulation model is partitioned into a set of distinct Logical Pro-
cesses (LPs) which are allowed to concurrently execute simulation
events. In this work we present an innovative approach to load-
sharing on multi-core/multiprocessor machines, targeted at the
optimistic PDES paradigm, where LPs are speculatively allowed
to process simulation events with no preventive verification of
causal consistency, and actual consistency violations (if any)
are recovered via rollback techniques. In our approach, each
simulation kernel instance, in charge of hosting and executing a
specific set of LPs, runs a set of worker threads, which can be
dynamically activated/deactivated on the basis of a distributed
algorithm. The latter relies in turn on an analytical model that
provides indications on how to reassign processor/core usage
across the kernels in order to handle the simulation workload as
efficiently as possible. We also present a real implementation of
our load-sharing architecture within the ROme OpTimistic Sim-
ulator (ROOT-Sim), namely an open-source C-based simulation
platform implemented according to the PDES paradigm and the
optimistic synchronization approach. Experimental results for an
assessment of the validity of our proposal are presented as well.

I. INTRODUCTION

Parallel Discrete Event Simulation (PDES) techniques are
well known for being a classical means to develop simulation
systems featuring high performance, which is essential for dif-
ferentiated contexts, such as symbiotic systems or simulation-
based (time-critical) decision making. The basic idea underly-
ing these techniques is to partition the simulation model into
several distinct objects, also known as Logical Processes (LPs)
[1], which concurrently execute simulation events on clusters,
SMP/multi-core machines and/or even desktop grids [2].

In terms of architectural organization, LPs are typically
implemented as application-level callbacks (see, e.g., [3]),
each of which is in charge of manipulating the LP’s state
depending on the simulation event dispatched via the callback.
Also, multiple LPs are typically run within a same Operating
System process, referred to as simulation kernel, which is
in charge of performing all the housekeeping tasks, such as
determining the scheduling sequence for event processing at
the various LPs.

The main problem in the design/development of this type of
simulation platforms is synchronization, the goal of which is to
ensure causally-consistent (e.g. timestamp-ordered) execution
of simulation events at each concurrent LP. In literature,
several synchronization protocols have been proposed, among
which the optimism-oriented ones (e.g. the Time Warp pro-
tocol [4]) are highly promising. With these protocols, block-
until-safe policies for event processing are avoided, thus allow-
ing speculative computation, and causal consistency is guaran-

teed through rollback/recovery techniques, which restore the
system to a correct state upon the a-posteriori detection of
consistency violations.

As hinted, multiple LPs run within a same simulation kernel,
and according to its classical organization (see, e.g., [5]), this
process is single-threaded. As a consequence, the hosted LPs
are dispatched and run on top of an individual CPU-core.
By this organization, the typical literature approach aimed at
achieving effective parallel/distributed simulation runs, by op-
timizing the exploitation of the available computing resources,
is load balancing, which is based on migrating the application
load, namely the LPs, amongst different simulation-kernel
instances (i.e. different processes).

We hereby propose an orthogonal technique targeted at
optimistic PDES systems run on top of multi-core machines,
which is based on computing power (expressed in terms
of CPU-cores) dynamical reallocation over time towards the
different active simulation-kernel instances. Hence, we allow
a dynamical scale up/down in the number of worker threads
belonging to each kernel instance, which sustain the execution
of the whole set of LPs locally hosted by that same instance,
depending on whether LPs (dynamically) increase/decrease
their computing power demand. Overall, the load-sharing
approach is pursued, in terms of dynamical redistribution of
the whole simulation load across the set of available computing
resources. Further, dynamical scale up/down of the amount of
worker threads per simulation kernel instance is based on an
innovative analytic approach that we also present in this paper.

Our proposal is non-trivial, since (optimistic) simulation
platforms typically expose a reduced set of services, internally
handled by the simulation-kernel layer via a relatively reduced
set of data structures. Hence, the likelihood of conflicts in the
access to these data structures upon simultaneous executions
in kernel mode by multiple worker threads (each running on
top of a different CPU-core) may easily become a bottle-
neck. To address this issue we borrow from the top/bottom-
half programming paradigm, currently employed for handling
interrupts within modern, multi-core Operating Systems, to de-
sign multi-threaded optimistic simulation kernels guaranteeing
minimal length of wait-for-lock phases.

Beyond general design indications, we also present a real
implementation of our architectural proposal within ROOT-
Sim [6], namely an open-source optimistic simulation plat-
form implemented according to the optimistic synchronization
paradigm. Experimental data assessing the viability and the
relevance of the provided approach are also presented.

II. RELATED WORK

Given that we aim at optimizing the use of the available
computing resources in face of dynamism and fluctuations
of the actual workload associated with the LPs involved in
the run, our work is naturally related to all the literature
solutions that have presented policies for load balancing in
the context of either conservative (e.g. [7]) or optimistic
simulation (e.g. [8]). Differently from these works (A) we
reassign the computing power, instead of the workload, across
the active simulation kernel instances, and (B) we rely on
an innovative, multi-threading oriented paradigm in order to
exploit dynamically scaled up/down power available to each
kernel instance. Also, our proposal can be considered as
orthogonal and complementary to the above results, when
considering that we target multi/many-core machines, while
the aforementioned load balancing schemes can be used for
load redistribution on distributed memory systems.

As for HLA-based simulation platforms (see, e.g., [9]),
multi-threading has been used to implement non-blocking
interoperability services across federations of simulators. The
strongest difference from our approach is that multi-threading
has been used to implement sector-specific functionalities,
while we use it as a means to overtake differentiated oper-
ations (including event processing), depending on dynamical
variations of the application level workload. In addition,
to the best of our knowledge, changes in the number of
worker threads has never been used to perform dynamical
optimizations in response to workload’s variations. It has
only been employed in master-slave simulation architectures
to cope with dynamical increase/decrease of the amount of
available computing resources (e.g. for simulation platforms
running on top of desktop grids [2]). However, in such a
context, concurrent threads operate on inherently partitioned
data, while we approach multi-threading in the presence of
shared (e.g. kernel-level) data structures.

When considering solutions specifically oriented to improve
the performance of simulation platforms on multi-core ma-
chines, one approach having relations with our proposal can be
found in [10]. However, this approach is targeted at a specific
architecture, namely the IBM cell processor, while our pro-
posal is general, thus being suited for differentiated multi-core
platforms. Also, the work in [10] is oriented to optimize the
simulation via task parallelization schemes that are orthogonal
to the power-reallocation scheme we present in this article.
Similar considerations can be made for other works which
address the issue of improving the performance of simulation
systems via the exploitation of hardware parallelism offered
by GPU architectures (see, e.g., [11]). These approaches are
mostly suited for data parallelism while we deal with more
general parallelism schemes, which are proper of the PDES
paradigm. Also, dynamic power reallocation across different
simulation kernel instances is not targeted by those works.

The work in [12] has recently presented an approach for
improving optimistic simulations on multi-core machines via
the employment of a global schedule mechanism relying on
a distributed event queue. Differently from this work, our
proposal targets the traditional case of local schedule, charac-

Application Level Software ()Unique LP identifier

Local Virtual Clock

input-queue output-queue state queue current state

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination detection

Commitment horizon

determination

Fossil collection

Network/shared-memory message passing

CPU scheduling

Priority determination and LP

dispatching

data structures

subsystems

Fig. 1: Reference architecture for optimistic simulation sys-
tems.

terized by higher scalability thanks to the avoidance of cross-
kernel synchronization operations while handling scheduling
tasks. Similar considerations can be made when considering
simulation architectures like ThreadedWarped [13], which uses
a global priority queue.

An approach similar in spirit to the one we propose has been
presented in [14]. One main difference between this work and
the present proposal lies on that we include in our load-sharing
architecture optimized approaches for the handling of statefull
CPU schedulers for PDES systems, providing constant-time
latency, which are not considered by the work in [14]. Also,
we rely on an fully innovative computing power reallocation
model, based on estimations of future workload, as opposed
to the approach in [14] where CPU-core assignment is deter-
mined only on the basis of performance indexes related to past
execution.

III. DESIGN INDICATIONS

A. Optimistic PDES Systems’ Fundamentals

In the optimistic PDES paradigm, LPs are allowed to
process their simulation events without preliminary verifying
that event-processing does no violate causality rules. Rather,
as soon as new events get available for a specific LP, they
are eligible for processing. This allows for great exploitation
of parallelism, since no block-until-safe rules are adopted. On
the other hand, in case a causality violation is revealed, due
to the arrival of an event to a destination LP that has already
processed other events with larger timestamps (namely events
in the future of the arriving one), this LP is rolled back to a
correct state value. Also, the effects on other LPs associated
with events that were produced by the rolling back LP during
the causally incorrect portion of the simulation are also undone
by the simulation kernel via proper messaging operations.
In Figure 1 we show the reference architectural organization
for optimistic simulation systems, as depicted by the seminal
paper in [4].

Input and output message queues are used to keep track
of simulation events exchanged across LPs, or scheduled by
an LP for itself. These are typically separated for different
LPs, so to afford management costs. For the input queues,
these costs are related to both event insertions and event

move from the past (already processed) to the future (not yet
processed) in case of rollback of a specific LP. The input-
queue is sorted by message (event) timestamps, while the
output-queue is sorted by virtual send-time, which corresponds
to the local virtual clock of the LP upon the corresponding
event-schedule operation. As discussed by several works (see,
e.g., [15]), the actual implementation of input queues can be
differentiated (e.g. heaps vs calendar queues), and possibly
tailored to and/or optimized for specific application contexts,
characterized by proper event-timestamp patterns (affecting the
insertion cost depending on the algorithm used to manage
the queue). On the other hand, output queues are typically
implemented as doubly-linked lists since insertions occur only
at the tail (i.e. according to non-decreasing values of the local
virtual clock). Also, deletions from the output-queues occur
either at the tail or at the head, but not at arbitrary positions.
Tail deletions occur upon a rollback operation, which undoes
the latest computed portion of the simulation at the involved
LP (1). Head deletions from the output-queues are related to
memory recovery procedures, which we shall detail later on
in this section.

A messaging subsystem takes care of the exchange of
messages/antimessages across different simulation kernel in-
stances, whose content will be then reflected into the input
queue of the destination LP.

The state queue is the fundamental means for allowing
recoverability of the LP’s state to a previous snapshot when-
ever a causal inconsistency is detected (i.e. the LP receives
a message with timestamp lower than its current simulation
clock, or an antimessage that annihilates an already processed
event). The state queue is handled by the state management
subsystem, the role of which is to save/restore state images
(2). Additional tasks by this subsystem are related to (i)
performing rollback operations (i.e. determining what is the
most recent suited state which has to be restored from the
log), (ii) performing coasting forward operations (i.e. fictitious
reprocessing of intermediate events in between the restored log
and the point of the causality violation) and (iii) performing
fossil-collection operations (i.e. memory recovery, by getting
rid of all the events and states logs which belong to an already-
committed portion of the simulation). Several solutions have
been presented in literature for optimizing the performance of
the state-save/restore subsystem (see, e.g., [17]–[20]) and/or
for providing state-log/restore transparency vs the application
layer (see, e.g., [21], [22]). The latter aspect is crucial for
the usability of the optimistic paradigm, since it relates to
relieving the application programmer from the burden of

1The output messages at the tail of the output-queue, with send-time
greater than the logical time of the causality violation, are marked and
sent out towards the original destinations in the form of antimessages,
and are then removed from the output-queue. Antimessages are used for
annihilating previously sent messages so to notify the receivers about the
rollback occurrence at the source LP. Upon their arrival, chained rollback can
be generated in case the events carried by the originally sent messages have
already been processed by the destination LPs.

2Recently, approaches have been provided which substitute or complement
log-based state recoverability via reverse computation techniques [16]. In such
a case, recoverability also relies on having a reverse version of the application
code, which is able to backward apply changes occurred on the LP state since
the point of the causality violation.

designing/implementing low-level state-management tasks.
The Global Virtual Time (GVT) subsystem accesses the

message queues and the messaging subsystem in order to pe-
riodically perform a global reduction aimed at computing the
new value for the commit horizon of the simulation, namely
the time barrier currently separating the set of committed
events from the ones which can still be subject to a rollback.
This barrier corresponds to the minimum timestamp of not-
yet-processed or in-transit events. In addition, this subsystem
cares about termination detection, by either checking whether
the new GVT oversteps a given predetermined value, or by
verifying some (global) predicate (evaluated over committed
state snapshots), which tells whether the conditions for the
termination of the model execution are met. Finally, this
subsystem is also in charge of performing the so-called fossil
collection procedure, aimed at recovering memory buffers
currently keeping obsolete messages and logs, namely those
related to the newly-committed portion of the computation.
As for GVT computation, termination detection, and fossil
collection, the literature also offers a plethora of optimized
solutions, which are either general-purpose or tailored to
specific computing platforms such as shared-memory systems
vs clusters (see, e.g., [23], [24]).

Finally, a central point relates to the CPU-scheduling ap-
proach used to determine which LP, among the ones hosted
by a given simulation-kernel instance, must take control for
actual event processing activities. Although several proposals
have been made, the common choice is represented by the
Lowest-Timestamp-First (LTF) algorithm [25]. It selects the
LP whose pending next event has the minimum timestamp,
compared to pending next events of the other LPs hosted by
the same kernel. Coupled with the traditional single-threaded
approach for the implementation of the simulation kernel,
LTF has the advantage of avoiding the generation of causality
violations across the LPs hosted by the same kernel instance.
This is because these LPs are dispatched in a similar way
to what would happen on top of a sequential simulation
engine, which imposes a timestamp-ordered sequence of CPU-
schedule operations for all the events (across all the LPs).
Hence, rollbacks can be generated only in relation to events
scheduled between LPs hosted by different kernels, which
contributes to reduce the amount of rollbacks. Different de-
sign/implementation variants for LTF exist, among which a
basic (stateless) approach, exhibiting O(n) time complexity,
relies on traversing the pending next events across the input
queues of all the LPs. Recently, an O(1) statefull approach
has been provided [26], which is based on reflecting variations
of the priority (i.e. of the next event timestamp) of the LPs
into the CPU-scheduler state, which is done in constant-time,
and in determining the LP with the highest priority again in
constant time by running a query on the current CPU-scheduler
state.

B. Our Multi-threaded Proposal
A paradigm shift towards the design/implementation of

multi-threaded optimistic simulation kernels, entailing multi-
ple worker threads that can concurrently run any of the LPs
hosted on top of the same kernel instance, is non-trivial. In

particular, the following two key aspects must be carefully
addressed: (A) avoiding synchronization phases while running
in kernel mode to become a performance bottleneck, and (B)
avoiding loss of locality, which might (unacceptably) degrade
the efficiency of the caching hierarchy.

As for point (A), while different worker threads inherently
execute according to data partitioning paradigms once entered
application mode (since each LP handles its own application-
level data structures), care must be taken to avoid “lock-
everything effects” when running in kernel mode. The risk
for these effects is actually due to the relatively reduced
set of subsystems forming the optimistic simulation kernel
(compared, e.g., to those typically included within the kernel
of a general-purpose Operating System), and also to the
inherent strict coupling among the LPs (compared, e.g., to
the level of coupling of different processes running on top
of a conventional Operating System). Most notably, the data
structures requiring frequent updates, to be performed coher-
ently via proper kernel-level synchronization mechanisms, are
both input and output queues. Essentially, these data structures
represent the core of cross-LP dependencies, thus involving
update operations caused not only by activities executed by
the worker thread currently taking care of running the “queue-
owner LP”, but also by activities carried out by other worker
threads. Synchronizing accesses to these data structures via a
conventional locking mechanism would give rise to scalability
problems, exactly due to such a strict coupling. Also, it would
give rise to critical sections whose duration would depend
on the actual time complexity of the queue update operation
(which, as mentioned, might even unpredictably depend on the
specific event-timestamp pattern).

We note that the access to the LPs’ state queues (either
for saving or restoring a state image) does not induce thread
synchronization issues since the need for state log/recovery
operations is only an indirect reflection of cross-LP coupling,
caused by events scheduled across the LPs. In other words,
a single worker thread operates on the LP state queue at
any time, namely the worker thread that has taken care of
dispatching the LP for either forward or rollback execution.

As for point (B), we have that a multi-threaded simulation
kernel allows virtual addresses related to both application and
kernel level data structures (associated with whichever LP) to
be, in principle, accessible by any worker thread (since all
the worker threads associated with the same simulation kernel
instance operate within the same address space). However,
such an “unlimited” access policy would cause frequent inval-
idation/refill of, e.g., the top-level private caches of individual
CPU-cores, even when entailing processor affinity schemes
involving the worker threads.

1) Addressing Kernel Level Synchronization: The archi-
tectural organization we exploit to cope with the reduction
of synchronization costs while performing housekeeping op-
erations (see point A) borrows from our proposal in [14].
According to the proposed scheme, any housekeeping task
potentially crossing the boundaries of individual LPs’ data
structures is dispatched according to the same rules employed
to structure modern Operating System drivers, by organizing it

simulation kernel interrupt handling layer

messaging layer

LP_locks Bottom-Halves Queues

interrupt

Interrupt
(message/antimessage
from a remote kernel)

LP forward mode

running

LP rollback mode

running

message antimessagetop-half
(get lock and schedule

bottom -half)

Fig. 2: Top/bottom halves architecture.

according to top/bottom-half activities. Specifically, whenever
the need for the execution of such a task arises, it takes place
as an interrupt to be eventually finalized within a bottom-
half module. Hence, upon the interrupt occurrence, we do not
immediately finalize the task, thus not immediately locking
(or waiting for the lock) on the target data structure. Instead
we simply execute a light top-half module which registers the
bottom-half function associated with the interrupt finalization
within a per-LP bottom-half queue, resembling the Linux task
queue. The critical section accessing the bottom-half queue
takes constant time since each new bottom half associated
with the LP is recorder at the tail of the queue. Also, when
the bottom-half tasks currently registered for a given LP are
flushed, the corresponding chain of records is initially unlinked
from the corresponding bottom-half queue, which is again
done in constant time by unlinking the head element within
the chain from its base pointer.

A scheme related to the above architectural organization
is provided in Figure 2. Basically, the architecture relies
on a spin-lock array, named LP_locks, having one entry
for each LP hosted by the multi-threaded simulation kernel.
LP_locks[i] is used to implement the critical section for
the access to the bottom-half queue associated with the i-th
LP hosted by the kernel, either for inserting a new bottom-half
task to be eventually flushed, or for taking care of unlinking
the current chain, in order to flush the pending bottom-halves.
Techniques for the reduction of the performance impact of
spin-lock accesses have also been discussed in [14].

As soon as any worker thread becomes aware of a new
message/antimessage destined to the i-th locally hosted LP,
it accesses the i-th bottom-half queue within a critical sec-
tion that performs the insertion of the corresponding mes-
sage/antimessage delivery task. This occurs when the worker
thread either runs some locally hosted LPj in forward (resp.
rollback) mode, and this LP produces a new event (resp.
antievent) destined to the locally hosted LPi. A similar sit-
uation occurs when the worker thread performs some receive
operation via the messaging layer, which delivers a mes-
sage/antimessage incoming from some remote kernel instance
and destined to a locally hosted LP. As shown in Figure 2,
we logically mark all the above circumstances as interrupts,
which will be finalized via the bottom-half mechanism.

2) Addressing Locality: In order to cope with locality,
we devise the adoption of affinity mechanisms such that a
worker thread belonging to a given simulation-kernel instance
is not allowed to run every LP hosted by that kernel. Instead,
it takes care of running a subset of these LPs, which are
currently selected as being affine to the worker thread. In other
words, we devise the use of temporary binding mechanisms
associating a subset of the locally hosted LPs to a specific
worker thread, which is therefore the only thread taking care of
running these LPs during a specific wall-clock-time window.
Among the activities executed by such a worker thread, we
have (i) the flushing of the bottom-half queues associated
with its affine LPs, and (ii) the dispatching of these LPs
for execution in time interleaved mode. We remark that the
binding of a specific LP to a worker thread is not meant to be
fixed, but can change over time, also in relation to variations
of the amount of worker threads belonging to a given kernel
instance. The policy according to which the locally hosted LPs
are reassigned to the worker threads which are currently active
within the kernel instance will be discussed in Section IV,
together with the performance model we use to re-allocate the
computing power (and hence worker threads) to the different
simulation-kernel instances.

Even though the above approach would seem natural, there
is one point that deserves further discussion, and ad-hoc
mechanisms targeted at improving the performance of the
simulation kernel, in particular on the side of CPU-scheduling
operations. As already mentioned, the reference approach for
determining the priority of the LPs is the LTF algorithm. In
case the adopted LTF scheduler implementation is based on the
statefull paradigm presented in [26], which supports constant-
time dispatching operation (thus allowing more efficient treat-
ment of simulation models with largely scale-up size) each
worker thread should keep its private LTF-scheduler’s data
structures, and the binding between an LP and a worker
thread (say WT1) would imply that this LP (and its priority)
is registered within this private CPU-scheduler state. Now,
considering the case in which the LP is dynamically reassigned
to a different worker thread (say WT2), we should atomically
remove the LP from the private data structure associated with
the LTF scheduler of WT1, and add it to the data structure
instantiating the private LTF scheduler of WT2. Beyond
creating a synchronization point across the different worker
threads (with a critical section the length of which depends
on the amount of LPs reassigned across the worker threads),
this would also adversely affect caching performance since the
update operations would anyway invalidate the cached portion
of the scheduler state on either WT1 or WT2, or would require
cache fill with the counterpart LTF-scheduler state, depending
on which thread actually carries out the atomic update. This
would lead to penalties especially for very large models, where
the hierarchical bit-maps organization provided by the statefull
approach in [26] would require non-minimal storage.

To overcome these problems, we introduce a mecha-
nism where an additional data structure, namely an array
dispatch_info, shared across all the worker threads, is
used to selectively keep CPU-scheduling information related

dispatch_info[j]j-th LP Bottom-Halves Queue

WT1 private

LTF scheduler

WT2 private

LTF scheduler

j-th LP Input-Queue

flush reflectreflect

update

refill
update

invalidate the j-th LP record
WT1 running the j-th LP
WT1 taking off the j-th LP
WT2 taking on the j-th LP

Fig. 3: LTF scheduler management upon normal and LP
handoff phases.

to each individual LP. Each entry is associated with a distinct
LP, and implements a very simple state machine keeping track
of (a) whether the LP is ready for dispatching (i.e. it has
a pending next event) and (b) what is its absolute priority
(i.e. the timestamp of such a pending next event). We note
that this array can be easily mapped in memory in a way
such that each entry results cache-aligned. Also, each worker
thread exclusively accesses the entries associated with the LPs
that are currently bind to it. Hence, no false cache sharing
(with associated cache invalidations) occurs across the worker
threads operating within the same kernel instance.

The information kept by dispatch_info[j] gets up-
dated and then reflected within the state of the LTF scheduler
of the worker thread currently handing the j-th LP (say
WT1) only upon the flush operation of the bottom-half queue
associated with this LP (eventually performed by WT1).

The role of the dispatch_info[j] entry becomes cen-
tral in case the j-th LP gets reassigned to a different worker
thread. In particular, upon the reassignment, the source worker
thread WT1 simply re-installs onto dispatch_info[j]
a state equivalent to the one currently registered within its
private LTF scheduler, and then removes the j-th LP from
this scheduler. At this point, the destination worker thread
(say WT2) only needs to install the current state kept by
dispatch_info[j] within its own LTF scheduler state
upon taking over the job of running this LP. Overall, no worker
thread accesses the LTF scheduler state of any other worker
thread, even upon reassigning the LPs across the threads,
thus avoiding at all the above discussed cache invalidation
problems. An example execution involving the access to
dispatch_info[j] is shown in Figure 3, where both
normal execution phases, with the j-th LP assigned to WT1,
and migration towards WT2 are shown. As a last observation,
the presence of dispatch_info[j] as a temporary buffer
where CPU-scheduling information are reflected across a
sequence of bottom-halves reduces the number of interactions
between any worker thread and its private LTF scheduler, thus
further increasing locality. In particular, in case the sequence
of bottom-halves induces multiple variations of the LP priority,
only one of these priorities is eventually reflected within the
LTF scheduler.

IV. THE LOAD-SHARING MODEL

In this section we provide a model for reallocating the
available computing resources (i.e. CPU-cores) to the different
simulation-kernel instances, depending on variations of the
workload associated with the LPs hosted by the kernel. Then
we discuss how to bind these LPs to the worker threads
operating within that kernel instance.

A. Computing Power Reallocation

Our approach to computing power reallocation relies on
a distributed algorithm according to which a given kernel
instance activates/deactivates a certain number of worker
threads with the aim at maximizing the global event rate
(namely, the global amount of committed simulation events
per wall-clock-time unit) across all the simulation kernels. This
algorithm allocates the C available cores/processors to the K
simulation-kernel instances currently running on a machine.
We suggest the periodic GVT determination as a good instant
to proceed with cores/processors reallocation routines. The
power reallocation algorithm works according to the following
steps:
Step 1. Each simulation-kernel instance ki, with i ∈ [1,K],
hosts a set of LPs, the cardinality of which is numLP ki .
ki associates with each LPl (where l ∈ [1, numLP ki]) a
workload factor Ll, which we define as the wall-clock time
for advancing the local virtual time of LPl of one unit. The
workload factor Ll is computed by ki on the basis of the
total number of simulation events currently registered as to be
processed within the corresponding input-queue, and having
timestamp that falls within a distance in the future equal to the
last GVT advancement (3), normalized to the local virtual time
advancement they would produce, weighted by the average
CPU time for event processing by LPl, that is:

Ll =
ql × δl

LV T ql
l − LV T 1

l

where ql is the amount of pending events within the event-
queue of LPl, LV T i

l is the timestamp associated with the i-th
pending event along the queue, and δl is the average CPU
requirement for event processing by LPj along that chain of
pending events. We note that, among the above parameters, ql
and LV T i

l are known in advance, since they are a function
of the current state of the input-queue of LPl. Instead, δl is
not known in advance since it expresses the average cost for
events that have not yet been actually processed. Anyway,
it can be approximated by using an exponential mean over
already processed events (e.g. events belonging to previous
GVT cycles).

3Taking into account only those events that are expected to be actually
processed according to a future GVT estimation based on the last GVT
advancement sample well fits power reallocation performed at each GVT.
Additionally, it avoids biases caused by scenarios where computing power
is assigned to a simulation kernel that mostly has LPs with events having
timestamps much in the future, since these events are not representative of
the real simulation workload in the immediate future of the simulation run,
and if fast executed they will likely be rolled back.

Step 2. ki computes the total workload as:

Lki =

numLPki∑
l=1

Ll

Step 3. ki determines the maximum degree of parallelism
it can accomplish. This is done in relation to that each LP
must execute events serially, i.e., no two worker threads can
simultaneously take on the execution of the same LP. Hence,
the maximum degree of parallelism is determined by the
number of knapsacks of LPs, such that the LPs within a same
knapsack would globally induce the same workload as the
LP associated with the highest workload factor. Obviously,
one knapsack will consist of a unique LP, namely the one
associated with the highest workload factor. This task is
performed in several steps:
• Workload factors for the LPs hosted by ki are non-

increasingly ordered (let us call them in this order as
Ll1 , Ll2 , . . . , LlH);

• As hinted, the first (i.e. the highest) factor Ll1 is taken
as the reference value, and the knapsack formed by LPl1

is defined;
• The other knapsacks are built by aggregating the remain-

ing LPs according to a 0-1 one-dimensional multiple
knapsack problem solving algorithm. This is an NP-
Complete problem, whose integral solution is non-trivial.
So we decided to follow a procedure such that we allow
an ideally infinite set of J sacks to be used, J = [1,∞],
and for each of them, we rely on the greedy approx-
imation approach proposed by George Dantzig [27] in
which we relax the constraint on the size of the sack, by
allowing a maximum “overflow” of about 30%. At each
step of the algorithm, ∀i ∈ [2, H] the j-th knapsack’s
size Knj is updated as Knj = Knj + Lli , and is thus
considered full if the size constraint is violated. In that
case, a “new” sack is created (i.e. j is increased) and
begins to be filled, until the total workload is distributed
across the whole set of sacks;

• The optimal number of worker threads required by the
simulation kernel is W ki = j.

Step 4. ki notifies the tuple 〈W ki , Lki〉 to a master kernel (4);
Step 5. The master kernel computes the total system’s work-
load:

Ltot =

K∑
k=1

Lki

Step 6. A preliminary estimation of the number of cores to
be allocated to ki is performed as:

Tki
=

⌊
Lki

Ltot
· C
⌋

enforcing at least Tki
= 1.

Step 7. A refined estimation is then calculated:

T ′ki
=

{
Tki

if Tki
≤W ki

W ki if Tki > W ki

4The master kernel can be identified via a distributed consensus protocol,
or can be known a-priori, e.g., specified at compile time, depending on the
actual simulation platform.

Step 8. If
∑K

k=1 T
′
ki
< C, it means that there are CPU-cores

still available. In this case, all the kernels are non-increasingly
ordered by resource allocation remainder Rki = (W ki −T ′ki

),
and until there are CPU-cores still available, they are allocated
in a round-robin fashion.
Step 9. The master kernel notifies to each kernel ki the tuple
〈j, T ′kj

〉∀j.

B. Binding LPs to Worker Threads

At this stage, our load-sharing model relies on a mechanism
for binding the numLP ki LPs hosted by ki to the T ′ki

worker
threads currently running within this kernel instance. To fulfil
this task, we again exploit knapsack approaches. In particular,
the reference knapsack for the binding process is computed
as the average load each worker thread is expected to sustain,
namely Lki/T ′ki

. Then, every worker thread fills in its own
knapsack, by preferentially selecting the LPs that were already
affine to that worker thread, which again favors locality. Also
in this case we use a tolerance on the knapsack fulfillment
according to Dantzig’s methodology.

V. EXPERIMENTAL STUDY

A. Test-bed Platform

We have implemented the proposed load-sharing architec-
ture within ROOT-Sim, which is an open source C/MPI-
based simulation package targeted at POSIX systems [6],
which implements a general-purpose parallel/distributed sim-
ulation environment relying on the optimistic synchronization
paradigm.

ROOT-Sim offers a very simple programming model based
on the classical notion of simulation-event handlers (both for
processing events and for accessing a committed and globally
consistent state image upon GVT calculations), to be imple-
mented according to the ANSI-C standard, and transparently
supports all the services required to parallelize the execution.

Among the main features offered by ROOT-Sim we can
mention completely transparent recoverability of the state of
the LPs achieved through proper hooking of dynamic mem-
ory allocation/release [22], plus ad-hoc code instrumentation
schemes that allow incremental determination of dirty state
portions [28] and that, ultimately, allow dynamical switch
between different state log/restore schemes depending on the
proper dynamics of the application layer [29].

The single-threaded version of ROOT-Sim also offers in-
novative transparent supports for LP migration and load bal-
ancing [30], which will be considered as a reference for the
assessment of the currently presented load-sharing version in
terms of the ability to exploit the computing resources offered
by a multi-core machine when the actual simulation workload
dynamically varies over time.

Integration of the load-sharing approach within ROOT-
Sim has been based on pthread technology, and on the
reorganization of the kernel level data structures in order to (i)
provide per-thread private data, and (ii) cache aligned kernel-
level memory buffers so to avoid false cache sharing across
the worker threads within the same multi-threaded kernel
instance. The latter target has been achieved by exploiting the

posix_memalign API, plus the usage of proper padding
schemes within data structures allowing cache alignment for
sequences of records, such as arrays of values. As for the
accesses to the MPI layer, used to transfer messages across
different kernel instances, in our architecture they can be
symmetrically issued by any of the worker threads operating
within a given kernel instance. Given that the MPI layer
does not natively support multi-threading, we have included a
wrapper that synchronizes these accesses transparently towards
the worker threads via the embedding of critical sections
protected by spin-locks.

Finally, the hardware architecture used for testing our pro-
posal is a 64-bit NUMA machine, namely an HP Proliant
server, equipped with four 2GHz AMD Opteron 6128 pro-
cessors and 64GB of RAM. Each processor has 8 CPU-cores
(for a total of 32 CPU-cores) that share a 10MB L3 cache
(5118KB per each 4-cores set), and each core has a 512KB
private L2 cache. The operating system is 64-bit Debian 6,
with Linux kernel version 2.6.32.5.

B. Application Benchmarks
In order to evaluate different aspects of the proposed load-

sharing architecture, we have conducted experiments on two
different application benchmarks, namely PCS (Personal Com-
munication System) and Traffic. For space constraint we cannot
provide a detailed description of these benchmarks, which can
anyhow be found in [14].

PCS implements a simulation model of wireless commu-
nication systems adhering to GSM technology, where com-
munication channels are modeled in a high fidelity fashion
via explicit simulation of power regulation/usage and interfer-
ence/fading phenomena on the basis of the current state of
the corresponding cell. The power regulation model has been
implemented according to the results in [31]. This benchmark
has been configured in order to provide a constant workload
across all the LPs during the whole simulation run. This has
been done in order to measure the actual overhead of the
load-sharing architecture, while not taking advantages from
its ability to reallocate CPU-cores, given the constancy of the
workload. For this scenario, we have run experiments with
1024 wireless cells (where one cell is modeled by an individual
LP), each one handling 1000 wireless channels.

The Traffic benchmark simulates a complex highway system
(at a single car granularity), where the topology is a generic
graph, where nodes represent cities or junctions and edges rep-
resent the actual highways. Every node is described in terms of
car inter-arrival time and car leaving probability, while edges
are described in terms of their length. At startup phase, the
simulation model is asked to distribute the highway’s topology
on a given number of LPs. Every LP therefore handles the
simulation of a node or a portion of a segment, the length of
which depends on the total highway’s length and the number
of available LPs.

We have simulated the whole Italian highway network on
top of 1024 LPs. We have discarded the highway segments
in the islands in order to simulate an undirected connected
graph, which allows having the actual workload migrating
overall the highway. The topology has been derived from

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 10 20 30 40 50 60 70

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-Clock Time (seconds)

Throughput PCS

Multithread (4k)
Multithread (8k)

Multithread (16k)
Multithread (32k)

Single Thread

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 10 20 30 40 50 60 70

Serial Executor

Fig. 4: Simulation throughput for the PCS benchmark.

[32], and the traffic parameters have been tuned according to
the measurements provided in [33]. This second application
benchmark provides a highly dynamic workload that varies
over time across the involved LPs. This type of benchmark
has been used in order to assess the goodness of the load-
sharing architecture in terms of its ability to reallocate the
computing power depending on the actual needs.

C. Results with the PCS Benchmark

For the PCS benchmark we have measured the cumulated
event rate (expressed as the amount of cumulated committed
events per wall-clock-time unit), for the case of different
configurations of the multi-threaded kernel. In particular, exe-
cutions with 4, 8, 16, 32 simulation kernels (each one starting
with 8, 4, 2, 1 worker thread respectively) have been run.
As pointed out before, for PCS the workload is constant and
evenly distributed. Hence this benchmark has been adopted to
only assess the overhead by the load-sharing architecture (not
its ability to cope with dynamic workloads). We have initially
set the frequency of call inter-arrival to each cell to the value
τA = 0.8, which gave rise to average channel utilization factor
on the order of 30% and to average event granularity on the
order of 30 microseconds. This is relatively fine, thus being
a good test case for the evaluation of the overhead by the
load-sharing approach.

The results are shown in Figure 4, where all the samples
have been obtained as the average over 10 runs all done with
different pseudo-random seeds. We have reported different
curves, one of which is related to a classical single-threaded
execution of the simulation kernel, in which case we always
have 32 kernel instances of ROOT-Sim, each one running
on top of a different CPU-core. This curve is used as the
baseline for the assessment of the overhead by the multi-
threaded organization.

The configuration with 4 kernels shows the maximal over-
head (expressed via an increase in the wall-clock-time required
for committing the same amount of events as for the single-
threaded case), which is in the order of 20%. Increasing the
number of simulation kernels provides a reduction in the over-
head, which looks about 13-15%. We note that, although the
workload is constant, small fluctuations due to the probability
distribution ruling the generation of the events can arise, which

are therefore captured by our architecture. Nevertheless, this
sensibility enhances the reassignment’s overhead, as long as
the time spent in this operation is not rewarded by the new
worker threads’ configuration. We recall that these data have
been achieved for relatively fine event granularity, thus further
supporting the viability of our proposal, since applications
exhibiting coarser-grained events would absorb better the
actual overhead by the load-sharing architecture. Also, we
should note that the parallel approaches provide a super-
scalar speedup with respect to a serial executor (based on the
calendar-queue [34]), which indicates that they are actually
competitive.

In order to assess punctual dynamics associated with the
load-sharing approach, we report additional measurements.
In particular, to provide quantitative data related to potential
variations of the execution locality and its effects, we have
decided to focus on three parameters:
• The latency for taking a checkpoint of the LP state.
• The latency for reloading a previously taken checkpoint

in case of rollback.
• The event execution latency.
The first two parameters are associated with memory in-

tensive operations, since each log or restore operation entails
spanning across the LP state or the log buffer in read mode.
They represent therefore a good test case for determining how
efficiently these read operations are supported thanks to the
effects of the caching hierarchy. On the other hand, the event
execution latency is a reflection of the locality expressed by
the application, and of how well such a locality is supported
via the caching system. These data have been gathered by
further expanding the set of values for independent parameters.
Specifically, the call inter-arrival time τA has been varied
between 0.4 and 1.2, thus generating application-level con-
figurations with coarser and finer event granularity, compared
to the case τA = 0.8. Also, we have performed experiments
with multi-threaded kernel configurations entailing up to 32
worker threads.

By the results, shown in Figure 5, we see how both
the restore cost and the event processing cost do not show
significant variations in any of the considered configurations.
At the same time, the log cost provided by the multi-threaded
architecture is fairly comparable to the one achieved by the
single-threaded architecture for a number of worker threads
up to 4 per kernel. On the other hand, an increase of the log
latency is noted for the case of 8 or more worker threads.
This denotes a slightly reduced locality and/or an increase of
thread contention while accessing the malloc library for allo-
cating log buffers, impacting this type of operation. However,
this operation is typically executed infrequently (by properly
optimizing the tradeoff between checkpointing overhead and
restore overhead [29]), thus leading the increased latency to
be likely affordable.

On the other hand, we report in Figure 6 the values of the ef-
ficiency (namely the percentage of non-rolled back events) for
all the investigated configurations. By these data we see how
the multi-threaded architecture allows for efficiency values
quite close to those achieved with the single-threaded architec-

 10

 15

 20

 25

 30

 35

 40

 45

 50

Single 32 T 16 T 8 T 4 T 2 T 1 T

La
te

nc
y

µs

Log Cost

τA = 0.4 τA = 0.8 τA = 1.2

 150

 200

 250

 300

 350

 400

 450

 500

 550

Single 32 T 16 T 8 T 4 T 2 T 1 T

La
te

nc
y

µs

Restore Cost

τA = 0.4 τA = 0.8 τA = 1.2

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

Single 32 T 16 T 8 T 4 T 2 T 1 T

La
te

nc
y

µs

Event Cost

τA = 0.4 τA = 0.8 τA = 1.2

Fig. 5: Costs of log/restore operations and event processing.

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

Single 32 T 16 T 8 T 4 T 2 T 1 T

E
ffi

ci
en

cy
 (

%
)

Efficiency

τA = 0.4 τA = 0.8 τA = 1.2

Fig. 6: Efficiency values for the PCS benchmark.

ture, except for the case where the number of worker threads
is set to 16 or 32. By these data we can gain the real picture
of why the overhead by the multi-threaded architecture tends
to increase when increasing the number of employed worker
threads. Specifically, it is related to the (slightly) increased
delay in the delivery of messages that are temporarily buffered
into bottom-half queues. This produces an execution scenario
where the LPs advance in a less closely related manner in
simulation time, which in turn gives rise to an increase of
the likelihood of performing useless work to be eventually
rolled back due to out of timestamp order processing given
the additional delay for incorporating events into the event
queues. This phenomenon is clearly more evident for the
case of finer grain events (namely τA set to 1.2), since more
events are allowed to be over-optimistically processed while in
transit messages are still buffered within bottom-half queues.
We note anyway that this drawback could be addressed by
complementary schemes that could flush bottom-half tasks on
the basis of, e.g., ad-hoc temporal triggers, so to not induce
excessive delay in the final delivery of events/antievents. We
plan to investigate along this direction as a future work.

D. Results for the Traffic Benchmark

Concerning the results for the Traffic benchmark, which are
shown in Figure 7, we have compared the throughput by our
multi-threaded architecture with the one by a classical single-
threaded organization, with the one related to serial execution
of the same application-level software running on top of a
calendar-queue scheduler, and with results by a load balancing

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10 20 30 40 50 60 70
C

um
ul

at
ed

 C
om

m
itt

ed
 E

ve
nt

s

Wall-Clock Time (seconds)

Throughput traffic

Multithread (4k)
Multithread (8k)

Multithread (16k)
Multithread (32k)

Migrator
Single Thread

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 10 20 30 40 50 60 70

Serial Executor

Fig. 7: Simulation throughput for the Traffic benchmark.

architecture based on a migration approach, implemented into
the same ROOT-Sim platform, as presented in [30].

Again, the parallel approaches provide a super-scalar
speedup. The multi-threaded versions of the simulation kernels
all provide a speedup wrt the single-threaded one, which
ranges in between 40% (for the 4 kernels configuration) and
55% (for the 8 and 16 kernels configuration). In particular,
we note that the execution with 4 kernel instances shows a
reduced speedup due to several reasons: (i) the re-balancing
is more likely to map a worker thread on a core which is not
actually sharing any level of cache; (ii) a worker thread can
access remote memory with a higher probability (we recall
that the experiments have been run on a NUMA machine);
(iii) worker threads are more subject to false cache sharing
effects.

As for the execution with 32 multi-threaded kernels, the
speed down is in the order of 15%. This is related to the fact
that in this configuration no actual re-balancing is possible
(in fact, each simulation kernel must have at least one worker
thread in order to proceed in the simulation). Therefore, in
this configuration we are again measuring the architecture’s
overhead, which is indeed comparable to the one shown when
running the PCS (balanced) benchmark.

The last comparison shown by the plot is the one wrt
the load balancing configuration, referred to as migrator.
Although we note that this configuration provides a speedup
in the order of 40% wrt the single-threaded approach, it’s
throughput is comparable with the 4 kernels multi-threaded
configuration, while the 8 and 16 kernel configurations of

the multi-threaded architecture are still 30% faster than the
migrator configuration. This is related to the fact that the
migrator approach does not assign resources to the simulation
kernels, instead it migrates LPs from one instance to the other,
entailing complex marshalling and communication operations.
We emphasize that these two approaches are orthogonal and
do not exclude each other, considering that when relying on
clusters, a migration approach merged with a load-sharing
approach can result in a significant benefit for the simulation’s
throughput, as they face different issues.

VI. FUTURE WORK AND CONCLUSIONS

In this work we have presented a new multi-threaded based
architectural approach aimed at reassigning the computing
power to different optimistic simulation kernels hosted on
SMP/multi-core machines. Our proposal has been shown to
react well on simulations where the workload is dynamically
changing over time across the involved kernel instances, hence
pursuing load-sharing. In addition, it has been shown to add
a relatively limited overhead to the simulation environment.
Future work entails the coupling of the present work with
traditional load balancing approaches, so to allow an optimal
usage of resources on top of both shared and distributed
memory systems.

REFERENCES

[1] R. M. Fujimoto, “Parallel discrete event simulation,” Communications
of the ACM, vol. 33, no. 10, pp. 30–53, Oct. 1990.

[2] A. Park and R. M. Fujimoto, “Optimistic parallel simulation over public
resource-computing infrastructures and desktop grids,” in Proceedings
of the 12th IEEE International Symposium on Distributed Simulation
and Real Time Applications, 2008.

[3] D. E. Martin, T. J. McBrayer, and P. A. Wilsey, “WARPED: A time warp
simulation kernel for analysis and application development,” in HICSS
’96: Proceedings of the 29th Hawaii International Conference on System
Sciences (HICSS’96) Volume 1: Software Technology and Architecture.
IEEE Computer Society, 1996, p. 383.

[4] D. R. Jefferson, “Virtual Time,” ACM Transactions on Programming
Languages and System, vol. 7, no. 3, pp. 404–425, Jul. 1985.

[5] C. D. Carothers, D. W. Bauer, and S. Pearce, “ROSS: a high performance
modular Time Warp system,” in Proceedings of the 14th Workshop on
Parallel and Distributed Simulation. IEEE Computer Society, May
2000, pp. 53–60.

[6] F. Quaglia, A. Pellegrini, R. Vitali, S. Peluso, D. Didona, G. Castellari,
V. Gheri, D. Cucuzzo, S. D’Alessio, and T. Santoro, “ROOT-Sim:
The ROme OpTimistic Simulator,” Oct. 2011. [Online]. Available:
http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim/

[7] A. Boukerche and S. K. Das, “Dynamic load balancing strategies for
conservative parallel simulations,” in Proceedings of the 11th Workshop
on Parallel and Distributed Simulation, 1997, pp. 20–28.

[8] D. W. Glazer and C. Tropper, “On process migration and load balancing
in time warp,” IEEE Transactions Parallel Distrib. Syst., vol. 4, no. 3,
pp. 318–327, 1993.

[9] L. Mellon and D. West, “Architectural optimizations to advanced dis-
tributed simulation,” in Proceedings of the 27th conference on Winter
simulation, ser. WSC ’95. IEEE Computer Society, 1995, pp. 634–641.

[10] Q. Liu and G. Wainer, “Multicore acceleration of discrete event system
specification systems,” SIMULATION, vol. 88, pp. 801–831, july 2012.

[11] T. Hamada and K. Nitadori, “190 tflops astrophysical n-body simu-
lation on a cluster of gpus,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10. IEEE Computer Society, 2010, pp.
1–9.

[12] L.-l. Chen, Y.-s. Lu, Y.-p. Yao, S.-l. Peng, and L.-d. Wu, “A well-
balanced time warp system on multi-core environments,” in Proceedings
of the 2011 IEEE Workshop on Principles of Advanced and Distributed
Simulation, ser. PADS ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 1–9.

[13] R. J. Miller, “Optimistic parallel discrete event simulation on a beowulf
cluster of multi-core machines,” Master’s thesis, University of Cincin-
nati, 2010.

[14] R. Vitali, A. Pellegrini, and F. Quaglia, “Towards symmetric multi-
threaded optimistic simulation kernels,” in Proceedings of the 26th
International Workshop on Principles of Advanced and Distributed
Simulation. IEEE Computer Society, 6 2012, pp. 211–220.

[15] R. Rönngren and R. Ayani, “A comparative study of parallel and
sequential priority queue algorithms.” ACM Transactions on Modeling
and Computer Simulation, vol. 7, no. 2, pp. 157–209, 1997.

[16] C. D. Carothers, K. S. Perumalla, and R. Fujimoto, “Efficient optimistic
parallel simulations using reverse computation,” ACM Transactions on
Modeling and Computer Simulation, vol. 9, no. 3, pp. 224–253, july
1999.

[17] B. R. Preiss, W. M. Loucks, and D. MacIntyre, “Effects of the checkpoint
interval on time and space in Time Warp,” ACM Transactions on
Modeling and Computer Simulation, vol. 4, no. 3, pp. 223–253, Jul.
1994.

[18] F. Quaglia, “A cost model for selecting checkpoint positions in Time
Warp parallel simulation,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 12, no. 4, pp. 346–362, Feb. 2001.

[19] F. Quaglia and A. Santoro, “Non-blocking checkpointing for optimistic
parallel simulation: Description and an implementation,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 14, no. 6, pp. 593–610,
june 2003.

[20] R. Ronngren and R. Ayani, “Adaptive checkpointing in Time Warp,” in
Proceedings of the 8th Workshop on Parallel and Distributed Simulation.
Society for Computer Simulation, Jul. 1994, pp. 110–117.

[21] R. Ronngren, M. Liljenstam, R. Ayani, and J. Montagnat, “Transparent
incremental state saving in Time Warp parallel discrete event simula-
tion,” in Proceedings of the 10th Workshop on Parallel and Distributed
Simulation. IEEE Computer Society, May 1996, pp. 70–77.

[22] R. Toccaceli and F. Quaglia, “DyMeLoR: Dynamic Memory Logger and
Restorer library for optimistic simulation objects with generic memory
layout,” in Proceedings of the 22nd Workshop on Principles of Advanced
and Distributed Simulation. IEEE Computer Society, 2008, pp. 163–
172.

[23] D. Bauer, G. Yaun, C. D. Carothers, M. Yuksel, and S. Kalyanaraman,
“Seven-o’clock: A new distributed gvt algorithm using network atomic
operations,” in Proceedings of the 19th Workshop on Parallel and
Distributed Simulation. IEEE Computer Society, 2005, pp. 39–48.

[24] R. M. Fujimoto and M. Hybinette, “Computing global virtual time in
shared-memory multiprocessors,” ACM Transactions on Modeling and
Computer Simulation, vol. 7, no. 4, pp. 425–446, Oct. 1997.

[25] Y. B. Lin and E. Lazowska, “Processor scheduling for Time Warp
parallel simulation,” in Advances in Parallel and Distributed Simulation,
unknown 1991, pp. 11–14.

[26] T. Santoro and F. Quaglia, “A low-overhead constant-time LTF scheduler
for optimistic simulation systems,” in Proceedings of the IEEE Sympo-
sium on Computers and Communications, 2010, pp. 948–953.

[27] G. B. Dantzig, “Discrete-variable extremum problems,” Operational
Research, no. 5, 1957.

[28] A. Pellegrini, R. Vitali, and F. Quaglia, “Di-DyMeLoR: Logging only
dirty chunks for efficient management of dynamic memory based opti-
mistic simulation objects,” in Proceedings of the 2009 ACM/IEEE/SCS
23rd Workshop on Principles of Advanced and Distributed Simulation.
IEEE Computer Society, 2009, pp. 45–53.

[29] R. Vitali, A. Pellegrini, and F. Quaglia, “Autonomic log/restore for ad-
vanced optimistic simulation systems,” in Proceedings of the Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems. IEEE Computer Society, 2010, pp. 319–327.

[30] S. Peluso, D. Didona, and F. Quaglia, “Application transparent migration
of simulation objects with generic memory layout,” in Proceedings of the
25th Workshop on Principles of Advanced and Distributed Simulation.
IEEE Computer Society, june 2011, pp. 169–177.

[31] S. Kandukuri and S. Boyd, “Optimal power control in interference-
limited fading wireless channels with outage-probability specifications,”
IEEE Transactions on Wireless Communications, vol. 1, no. 1, pp. 46–
55, 2002.

[32] “Atlante stradale italia,” http://www.automap.it/.
[33] http://www.autostrade.it/studi/studi traffico.html.
[34] R. Brown, “Calendar queues: a fast 0(1) priority queue implementation

for the simulation event set problem,” Communications of the ACM,
vol. 31, pp. 1220–1227, October 1988.

