
A High Performance Simulation Engine for Large-Scale Cellular DEVS Models

Xiaolin Hu, B. P. Zeigler
Arizona Center for Integrative Modeling and Simulation

Electrical and Computer Engineering Department
University of Arizona

Tucson, AZ 85719
{huxl, zeigler}@ece.arizona.edu

Keywords: DEVS, Cellular Space Model, High Performance
Simulation, Simulation Protocol, Data Structure

Abstract
This paper presents a high performance simulation engine for
large-scale cellular DEVS models. Compared to the standard
coordinator, this simulation engine speeds up the simulation from
two sources. First, it only considers the active cells during
simulation. This is based on the observation that usually only a
small number of cells are active (performing state changing) at any
given time, even though the total number of cells may be very
large. Second, it implements a data structure that allows efficient
search of the active cells which can be arbitrarily faster in cellular
space models where the number of cells increases but the number
of active cells remains the same. Performance analysis and two
examples are provided to demonstrate the speedups of this new
simulation engine as compared to the coordinator.

1. INTRODUCTION

The Discrete Event System Specification (DEVS) formalism
[1] provides a means to specify a mathematical object called a
system. It has been applied to model and simulate both discrete
and continuous systems (e.g., see [2], [3], [4]). The use of discrete
events, rather than time steps, as a basis for simulation has been
shown to reduce computation time by orders of magnitude in many
applications. For example, the work presented in [5] suggests that
DEVS can offer significant performance advantages for simulation
of continuous phenomena characterized by spatiotemporal
heterogeneity. The cellular automata paradigm defines a grid of
cells using discrete variables for time, space and system states [6].
The cells are updated according with a local rule function that uses
a finite set of nearby cells (called the neighborhood of the cell).
Cellular DEVS models have been developed to model and
simulate various phenomena such as fire spreading [7, 8], traffic
control [9], flow injection [10], etc.

The cellular approach divides the underline space (one
dimension or multiple dimensions) into discrete cells. To
accomplish detailed modeling of spatial dynamics, a large number
of cells are typically employed. While the huge number of cells
provides the capability to model a system in adequate detail, it also
demands for high performance simulation techniques. To achieve
high performance simulation of DEVS models, various techniques
have been developed. Among them the most well known one is
parallel or distributed simulation [11, 12, 17] where models are
simulated by multiple processors. Besides that, there is also
considerable research work on the implementation of simulation

environments. One of such work is recently presented in [13],
where the authors enhance the implementation by applying
techniques such as precomputing message destinations, and using
a priority queue to sort models to achieve performance
improvement for the Joint MEASURE simulation environment
developed at Lockheed Martin.

Unlike the work that focuses on the structure or
implementation of the simulation environments, the work
presented in this paper describes a simulation engine for large-
scale cellular models. This simulation engine improves simulation
performance from two sources that are based on two qualities of
cellular space models. First, it considers only the active cells
during simulation. This is based on the observation that usually
only a small number of cells are active (performing state changing)
at any given time, even though the total number of cells may be
very large. This approach enhances simulation performance
compared with simulations that are based on cellular automata in
which all cells perform computations and message exchange at
every time step. The same approach has been taken by [2] and [7].
Second, this simulation engine implements a data structure that
allows efficient search of the active cells which can be arbitrarily
faster in cellular space models where the number of cells increases
but the number of active cells remains the same. The implemented
data structure takes advantage of the fact that the active cells in a
cell space are typically locally clustered. This is because cells are
coupled to their neighbors so the state change of one cell will first
directly affect its neighbors. Based on this observation, the new
data structure retains cells’ spatial information and thus utilizes the
localized activities of cellular space models to increase simulation
performance.

The following paper describes this new simulation engine and
the data structure it employs. To set the stage, we first review the
standard DEVS simulation protocol as implemented by the
coordinator in DEVSJAVA [14]. Then we propose an improved
simulation engine that is based on the standard coordinator. With
this background, we proceed to describe the new simulation
engine, oneDCoord as implemented in DEVSJAVA, and its
minSelTree data structure. Finally, we analyze the performance of
these simulation engines and present two examples to demonstrate
the performance improvement of the new simulation engine as
compared to the standard coordinator.

2. THE STANDARD DEVS SIMULATION
PROTOCOL

In a DEVS-based simulation environment such as
DEVSJAVA, a coordinator is assigned to a coupled model and

ISBN: 1-56555-278-4 3 High-Performance Computing Symposium

mailto:huxl@ece.arizona.edu, zeigler@ece.arizona.edu

simulators are assigned to the components of this coupled model.
Figure 1 shows the simulation of a coupled model with three
components.

coordinator

simulator
tN

After each transition
tN = t + ta(), tL = t

simulator

Component

tN

tN. tL

Coupled
Model

1 nextTN

2. outTN

3 computeOut

4 sendOut6 applyDelt

5. putOut
simulator

tN

Component
tN. tL

Component
tN. tL

coordinator

simulator
tN

After each transition
tN = t + ta(), tL = t

simulator

Component

tN

tN. tL

Coupled
Model

1 nextTN

2. outTN

3 computeOut

4 sendOut6 applyDelt6 applyDelt

5. putOut
simulator

tN

Component
tN. tL

Component
tN. tL

Figure 1: The Standard DEVS Simulation Protocol

The simulation of DEVS models moves forward cyclically

based on the time of next event, denoted by tN, which is updated
by component models’ state transition functions. For a coupled
model, the tN is the earliest next event time among all its sub-
components. Each simulator has the tN of its model. In the
standard DEVS simulation protocol, the coordinator is responsible
for stepping simulators through the cycle of activities as shown in
Figure 1. Specifically in DEVSJAVA simulation environment, the
coordinator executes the following code in each simulation cycle:

simulators.AskAll(“nextTN”)
tN = compareAndFindTN();
simulators.tellAll("computeOut“,tN)
simulators.tellAll("sendOut")
simulators.tellAll("ApplyDelt“,tN)

A detailed description of how the coordinator and simulators
step through a simulation cycle is given below:
1. Coordinator sends nextTN to request tN from each of the

simulators.
2. All the simulators reply with their tNs in the outTN message

to the coordinator. The coordinator compares these tNs and
finds the minimum.

3. Coordinator sends to each simulator a computeOut message
containing the global tN (the minimum of the tNs). Each
simulator checks if it is imminent (its tN = global tN) and if
so, computes the output message of its model. Otherwise an
empty message is generated.

4. Coordinator sends to each simulator a sendOut message.
5. Based on the coupling specification, each simulator responses

by putting its output message (if it is not empty) to the
destination simulators.

6. Coordinator sends to each simulator an applyDelt message
containing the global tN. Each simulator reacts to the
applyDelt message as below:
• If it is imminent and its input message is empty, then it

invokes its model’s internal transition function
• If it is imminent and its input message is not empty, it

invokes its model’s confluence transition function
• If is not imminent and its input message is not empty, it

invokes its model’s external transition function

• If is not imminent and its input message is empty then
nothing happens.

This standard simulation protocol follows closely with the

semantic of DEVS models. Thus it is easy to be understood and
implemented. However, this protocol tends to result in slow
simulation speed for models that have a large number of
components. This is because in every simulation cycle, all the
simulators, no matter they are imminent or not, have to go through
the simulation steps as described above. For the models that have
only a few imminents (active cells), there exists a lot of
unnecessary computation. To overcome this problem, an improved
simulation engine is proposed as below. This simulation engine
uses a Heap data structure to sort and find imminents and then
only those imminents are asked to go through the simulation cycle.

3. A PROPOSED IMPROVED SIMULATION
ENGINE

This proposed simulation engine implements a heap to keep
track of the smallest tNs of its component simulators. During
simulation, each active simulator removes and inserts its tN in the
heap. So the smallest tN and imminents can be found from the root
of the heap.

Using a heap to keep track of the tNs and imminents, the
simulation protocol of this proposed simulation engine in each
simulation cycle is shown below:

tN = Heap.getMin()
imminents = Heap.getImms()
imminents.tellAll("computeOut“,tN)
imminents.tellAll("sendOut")
imminents = imminents.addAll(influencees)
imminents.tellAll("ApplyDelt“,tN)
imminents.tellAll(“updateHeap”)

In every simulation cycle, the simulation engine fist gets the
smallest tN and the imminents from the heap. With the smallest tN
and imminents in hand, the simulation engine then sends out the
computeOut and sendOut messages to imminents. The sendOut
message will trigger imminents to put their output messages to
their destination simulators, which are called influences. The
influences, like the imminents, need to execute their state transition
functions. Thus before imminents.tellAll("ApplyDelt“,tN), the
coordinator adds those influences into imminents by executing
imminents = imminents.addAll(influencees). At the end of the
iteration, the coordinator asks all imminents to update their newest
tNs in the heap to prepare for the next simulation iteration.

Generally speaking, the update process where each active
simulator removes and inserts its tN in the heap has computation
complexity O(n*log2N) (n is the number of imminents in the
simulation cycle; N is the total number of cells). For large-scale
cellular models with small number of imminents (n<<N), this
proposed simulation engine has computation complexity at the
magnitude of log2N, thus resulting in considerable performance
improvement.

Based on this proposed simulation engine, a new simulation
engine, the oneDCoord in DEVSJAVA environment, is developed.
This new simulation engine not only keeps track of the imminents
and asks only the imminents to go through a simulation cycle, but
also implements a minSelTree data structure to allow efficient
search of the imminents.

ISBN: 1-56555-278-4 4 High-Performance Computing Symposium

4. THE NEW SIMULATION ENGINE AND
ITS DATA STRUCTURE
4.1 The Simulation Protocol

The simulation protocol of this new simulation engine is
similar to the proposed simulation engine with heap
implementation. The only difference is that a new data structure
minSelTree is developed to replaces the heap for keeping track of
tNs and imminents. Below is the simulation protocol of this
simulation engine.

tN = minSelTree.getMin()
imminents = minSelTree.getImms()
imminents.tellAll("computeOut“,tN)
imminents.tellAll("sendOut")
imminents = imminents.addAll(influencees)
imminents.tellAll("ApplyDelt“,tN)
imminents.tellAll(“sendTNUp”)

As can be seen, in every simulation cycle, the new simulation
engine first gets the smallest tN and imminents by executing
minSelTree.getMin() and minSelTree.getImms() respectively. Then
similar to the description above, only the imminents (and
influences) go through the simulation cycle. The last step in the
simulation cycle is to ask all imminents to send their newest tNs to
the minSelTree so the information kept there is updated timely.
This is to prepare for the next simulation iteration.

4.2 The minSelTree Data Structure

The minSelTree data structure is an essential part of this new
coordinator to keep track of tNs and imminents. It is a complete
tree, which means each leaf node of this tree data structure has the
same “distance” from the root. The minSelTree is constructed in
such a way that for each cell in the model, there is a leaf node of
minSelTree corresponding to it. To retain a cell’s spatial
information in minSelTree, the cell’s ID is used as a reference to
assign a leaf node to the cell. As adjacent cells have adjacent IDs,
their corresponding minSelTree nodes will sit adjacently in the
minSelTree too. The minSelTree is set up during initialization of
the simulation based on the total number of cells and the base of
the tree. Here the base of the tree means the number of children of
each internal node. It is provided by the user who runs the
simulation. Different bases may make the simulation have
different performance. The formula below shows the relationship
among the number of cells N, the base b and the height h (distance
from leaf to the root) of the minSelTree.

h = ceiling(logbN)

……

……

…… …

……

……

h

…… ……

oneDCoord

oneDSim1

…… Ci-1C1 Ci+1Ci Cn……

…

oneDSimn

model

simulator

minSelTree

coordinator

b

b

Np

Nroot

Figure 2. Model, simulator, and the minSelTree

Figure 2 shows the relationship among the models, simulators,
and the minSelTree data structure. Here we assume the model to be
simulated is a one-dimension cellular space model with n cells.
These cells have IDs from 1 to n based on their positions in the
cellular space. From the figure we can see that for each cell, there
is a simulator oneDSim assigned to it; for each oneDSim, there is a
leaf node of minSelTree assigned to it. Thus a cell, its simulator,
and the minSelTree leaf node form one to one relationships to each
other. Among them, the simulator has access to both the cell and
the leaf node. Figure 2 also shows that the coordinator oneDCoord
has access to the root node of minSelTree.

During simulation, a simulator oneDSim is responsible to drive
the simulation of its cell model and to update the new tN to the
corresponding leaf node of minSelTree. The leaf node then sends
this tN up to its parent node, which compares this tN with the tNs
of other children and selects the smallest ones to send up. This
“send up” process continues until the root node is reached. Note
that the information that is sent up includes not only the smallest
tN, but also the references of those simulators which hold that tN.
As each node selects the smallest tN and the imminent simulators
to send up, after this recursive “send up” process ends, the root
node has the global minimum of tNs and the references for all the
imminent simulators. The coordinator oneDCoord can then access
the root node of minSelTree and easily gets this information.

To make this process feasible, each node of the minSelTree
keeps track of its children’s tN and imminent simulators (A leaf
node keeps track of its own tN and itself as the imminent
simulator). Specifically, each node of minSelTree has a variable
minEnvironment, which basically is a table storing information in
the following format: (childName, Pair(imminents, tN)). The
childName is the name of a child node. The tN is that child node’s
tN and the imminents is a set containing the references for all the
simulators holding that tN. The imminents and tN are encapsulated
into a Pair. With this information stored in minEnvironment, a
node can find its tN (the smallest tN among its children) and the
references for the simulators holding that tN by executing the
following whichMin() method:

public Pair whichMin(){ // find the imminents and tN
 double timeGranule = .000001;

 ensembleSet imminents = new ensembleSet();
 double min = POSITIVE_INFINITY;
 while(minEnvironment.hasNext()) {

 Pair p = (Pair) minEnvironment.next(); //name, Pair
 Pair pp = (Pair)p.getValue(); //imms, tN
 double tN = pp.getValue(); // get tN
 if (Math.abs(tN - min)< timeGranule)
 imminents.addAll((ensembleSet)pp.getKey());
 else if (tN < min){
 imminents = new ensembleSet();
 min = tN;
 imminents.addAll((ensembleSet)pp.getKey());
 }
 }

 return new Pair(imminents, min);
 }

This method compares all tNs stored in minEnvironment and

selects the smallest one. In the meantime, it adds the simulators
that hold the smallest tN into the imminents set. The method
returns a new pair that contains the imminents and the smallest tN.
Notice that a variable timeGranule is used when comparing and
selecting the smallest tN. This is because the time base in DEVS is
continuous rather than discrete. Thus the next event time tN can be
any value with arbitrary precision. This timeGranule is used to

ISBN: 1-56555-278-4 5 High-Performance Computing Symposium

specify the smallest time unit in simulation. Events that happen
inside the same timeGranule are considered happened at the same
time.

The information stored in minSelTree need to be updated
continuously when simulation proceeds. This is accomplished by
executing imminents.tellAll(“sendTNUp”) at the end of each
simulation iteration. This step asks all imminent simulators to
update their new tNs to their corresponding leaf nodes. As
mentioned before, the update of a new tN triggers a recursive
“send up” process until the root node is reached. During this
process, each node finds the smallest tN among its children (by
executing the whichMin() method) and sends that information up.

As mentioned before, cells are coupled to their neighbors in
cellular space models. Thus it’s typical that a cell and its neighbors
change their states at the same time. For example, in Figure 2, cell
ci-1, ci, and ci+1 may all change their states at the same time and
have new tNs. If the leaf nodes for these cells send their tNs up
independently, each of them will trigger a “send up” path to the
root node Nroot. Apparently this is inefficient as these nodes
actually share the same parent Np (because the cells are adjacent in
the cellular space model). Thus the “send up” paths behind node
Np can be bundled into one path. By bundling several “send up”
paths into one path, the minSelTree nodes on that path only need to
execute the whichMin() once instead of several times. Notice that
this improvement actually shows how the new coordinator takes
advantage of the fact that activities of cellular models usually
happen locally. Because the spatial information of cells is retained
in minSelTree, a cell and its neighbors’ nodes will share the same
parent in minSelTree. Thus their “send-up” paths can be bundled
together, which results in performance improvement. The code
listed below shows how a minSelTree node implements the
sendUp() method.

public void sendUp (String nm,Pair p){
 minEnvironment.setPair(nm,p);
 receivedImmi++;
 if(receivedImmi== expectedImmi){
 receivedImmi=0; //reset the value for the next cycle
 expectedImmi =0; //reset the value for the next cycle
 whichMin = whichMin();
 if (!root) parent.sendUp(myName,whichMin);
 }
}

As can be seen, this sendUp() process is a recursive process. It

continues until the root node is reached. When receiving an update
from a child node with its name and the (imminents, tN) pair, the
method first updates its minEnvironment variable. Then it
increases receivedImmi and check if receivedImmi equals
expectedImmi. The two variables expectedImmi and receivedImmi
are used to guarantee that only one “send up” path is invoked even
a node receives multiple calls from its children. Only when
receivedImmi equals expectedImmi, which means the node has got
all expected updates from its children, does the method executes
the whichMin() to find the smallest tN and then call sendUp()to
send this information up. The variable expectedImmi, meaning
how many update a node expects from its children, is set by the
informChange() method as shown below.

public void informChange(){
 if(expectedImmi ==0&&!root)
 parent.informChange(); // inform change only once
 expectedImmi ++;
}

Whenever a cell changes its state and has a new tN, its
simulator calls the corresponding leaf node’s informChange()
method, which will increase the expectedImmi of that node. This
method also makes sure that the parent’s informChange() method
will only be called once. Using the system shown in Figure 2 as an
example, if cell ci-1, ci, and ci+1 all change their states, the
expectedImmi of node Np is 3; the expectedImmi of node Np’s
parent node is 1 (assuming there are no other cells changing their
states).

4.3 Building minSelTree for Two-dimension
Cellular Space Models

The model given in Figure 2 is a one-dimension cellular space
model. In a two-dimension cellular space model, cells have
neighbors not only along the x dimension but also along the y
dimension. This is shown in Figure 3.

B1 B2
……

…… ……

x

y

B1 B2
……

…… ……

x

y

Figure 3. A two-dimension cellular space model

To construct minSelTree for a two-dimension cellular space

model, one way is to assign consecutive IDs to all the cells row by
row, thus treating the two-dimension cellular space model as a
one-dimension model. However, this means cells are clustered
(having nearby IDs) in only one dimension, which results in the
situation that two neighbor cells may not be assigned nearby
minSelTree nodes. To take good advantage of localized activities
of cellular models, it is desirable that cells are clustered in two
dimensions. This is why in our implementation, we assign cells’
IDs based on blocks as shown in Figure 3. All cells inside one
block belong to one parent in the minSelTree. The resulting
minSelTree is a little bit different from the one discussed before. In
the tree for one-dimension cellular space models, each internal
node of the tree has b children (b is the base of the tree). For the
new minSelTree, it is the same situation except that the bottom
nodes have BXs*BYs children (BXs and BYs denote the size of a
block). Notice that the previous tree is actually a special case of
this new one with BXs=base and BYs=1.

5. PERFORMANCE ANALYSIS

Compared to the original coordinator with the basic simulation
protocol, there are two sources of speedup of the new simulation
engine. One is the keeping track of imminents so only the
imminent cells will be considered in every simulation cycle. The
other is the efficient smallest tN search which can be arbitrarily
faster in cellular space models where the number of cells is very
large but the number of imminent cells is small in every simulation
iteration. Below we analyze the performance of these simulation
engines by considering two extreme cases: only one cell is
imminent in a simulation iteration, and all cells are imminent in a
simulation iteration. For simplicity, we only consider the

ISBN: 1-56555-278-4 6 High-Performance Computing Symposium

computation complexity of finding the smallest tN. Let’s assume
there are N cells in the cellular space model.

For the coordinator with the basic simulation protocol, all
simulators are asked to send their tNs to the coordinator. Then the
coordinator compares and selects the minimum among these N tNs.
Thus the computation complexity is O(N), which is independent of
the number of imminent cells.

For the coordinator with heap implementation, each imminent
simulator removes and inserts its tN in the heap. Then the smallest
tN is found by getting the value of the top of the heap. If only one
cell is imminent, only one simulator needs to updates its tN in the
heap, which takes worse case O(log2N). If all cells are imminent,
all simulators need to remove and insert their tNs in the heap,
resulting in computation complexity O(N*log2N).

For the new coordinator with minSelTree, the height of the tree
h = ceil(logbN) (assuming the base of this tree is b). If only one
cell is imminent in a simulation iteration, only one simulator will
update its new tN on the leaf node of minSelTree. Thus only one
“send-up” path, which has h nodes in the path, will be generated.
Along this path, each node executes whichMin() method to
compare and select the minimum tN among b children. This results
in computation complexity O(b*h) = O(b* logbN). If all cells are
imminent, all simulators will update their new tNs on their leaf
nodes of minSelTree. As a result, all nodes in the minSelTree will
be involved in the “send up” process. However, even a node’s
sendUp() method will be called multiple times, the whichMin()
method will only be executed one time. Assume the total number
of nodes in minSelTree is T (exclude the leaves of the tree), then
the computation complexity is O(T*b). We know that for a
complete tree with N leaves, T=(N-1)/(b-1). This results in
computation complexity O(T*b) = O((N-1)*b/(b-1)) = O(N).

The above analysis shows that when all simulators are
imminents, both the standard coordinator and the coordinator with
minSelTree has computation complexity O(N), which is better than
O(N*log2N`), the complexity of the proposed coordinator with
heap implementation. However, when only one (or small number
of) simulator is imminent, the coordinator with heap
implementation has computation complexity O(log2N), which is
close to the performance of the new coordinator O(logbN). To
further compare the heap implementation and the minSelTree
implementation, let’s consider another example. E.g., let N = b*b
for a two-level minSelTree and let there be b imminent cells within
one block (this means the leaf nodes of these cells share the same
parent). Considering only the computation required by
comparisons, the new coordinator takes 2b. And the heap
implementation takes blog2N = blog2(b*b) = 2blog2b, while the
old coordinator takes b*b. The utilize of localized activity is clear
here: 2b vs 2blog2b. The extra log2b part is due to the full
reordering that the heap implementation does for every
replacement.

6. EXAMPLES AND TEST DATA

This section gives two examples to compare the simulation
performance of the new coordinator and the standard one. The first
example is a one-dimension cellular space model that models the
phenomena of diffusion. The second example is a two-dimension
cellular space model that models the phenomena of fire spreading.
For each example, a brief description of the model is given and
then the simulation data of the two simulators is provided to show
the speedup the new simulator. More detailed description of these
examples can be found in the related references.

6.1 Simulation of a Diffusion Model
Diffusion is a common problem that has been studied using

simulation methods. In this example (the diffuse2ndOrdCellSpace
example in the DEVSJAVA environment [14]), the heat diffusion
phenomenon is modeled as a one-dimensional cell-space model
with each cell coupled to its left and right neighbors (except the
boundary cells). A cell holds its current temperature and will
updates it to reach the desired temperature, which is defined as the
average of the left and right cells’ temperature. The speed of
temperature change is defined by the difference between a cell’s
desired and current temperatures. For each cell, a quantum is
provided so a cell will update itself and pass message to its
neighbors only when the change of temperature reaches the
quantum size. With this approach, each cell can calculate its time
advance for the next update based on the quantum and the speed of
temperature change. The initial condition of the simulation is that
temperature is linearly distributed along this one dimensional cell
space, with the first cell has the lowest temperature and the last
cell has the highest temperature.

Table 1 shows the time (in seconds) of simulating this
diffusion model with different number of cells using the standard
coordinator and the new simulation engine respectively. For each
simulation running, the quantum is defined as 0.1, and the number
of simulation iterations is 10000. The simulations were run on a
laptop with Intel Pentium 4 1.7GHZ processor, 256M memory,
and Windows 2000 OS.

Table 1: Comparison of the simulation time (sec) of the two
simulation engines
number of cells 50 100 500 1000

coordinator 29.592 54.448 272.712 542.721

oneDCoord (base = 6) 7.221 7.24 8.222 8.432

speedup
(coordinator time/oneDCoord time) 4.098047 7.520442 33.16857 64.36444

The test data above shows how the change of the number of

cells affects the execution time of coordinator and oneDCoord. It
shows that as the number of cells increase, the execution time of
coordinator linearly increases too. However, the execution time of
oneDCoord only increases slightly. This is because in this
example, the increase of cells doesn’t affect the number of
imminents in every simulation cycle. In fact, in this example, the
number of imminents remains 1 or 2.

6.2 Simulation of a Fire Spreading Model

This example describes a dynamic forest fire spread model,
which is based on the work of [8, 18]. In this model, a forest is
modeled as a two-dimensional cell-space composed of individual
forest cells coupled together according to their relative physical
geometric locations. Each cell is modeled in the same way as that
of [15, 2]. Specifically, each cell has the following six states:
unburned, burning, burned, unburned-wet, burning-wet, and
burned-wet. Conditions and rules are defined to govern the state
transition of a cell. In the two-dimensional cell space model, each
cell has eight neighbor cells N, NE, E, SE, S, SW, W, and NW
except the boundary cells. Accordingly, for each cell, fixed fire
spreading directions N, NE, E, SE, S, SW, W, and NW are defined.
Fire spread in each cell is modeled using Rothermel’s [16]
stationary model, which is a one-dimension semi-empirical model.
To obtain the second dimension, a propagation algorithm that uses
maximum rate of spread and wind and slope factors is applied.

ISBN: 1-56555-278-4 7 High-Performance Computing Symposium

During simulation, the behavior of a burning cell can be influenced
by external inputs from neighboring cells as well as changes in
weather conditions. In addition, uncertainty is incorporated in the
model by allowing certain critical parameters to be sampled from
arbitrary probability distributions during the simulation run. A
detailed description of this model and the initial condition of
simulation can be found in [8].

Table 2 shows the time (in seconds) of simulating the fire
spread model with different number of cells using the standard
coordinator and the new simulation engine respectively. For each
simulation running, the number of simulation iterations is 7200.
The simulations were run on a laptop with Intel Pentium 4 1.7GHZ
processor, 256M memory, and Windows 2000 OS.

Table 2: Comparison of the simulation time (sec) of the two
simulation engines
Number of cells 30x30 (900) 34x34 (1156) 40x40 (1600)

coordinator 356.293 471.258 681.951

oneDCoord (base = 6) 19.388 23.924 36.002

speedup
(coordinator time/oneDCoord time) 18.37699 19.69813 18.94203

7. CONCLUSION
The simulation data and performance analysis show that the

speedup of the new simulation engine is significant as compared to
the standard coordinator. This is achieved by keeping track of
imminents during simulation and by implementing a data structure
to allow efficient search of those imminents. As a note of caution,
we mention that if a very large percentage of the models are
imminent at any given instant, the timesavings would generally be
much less, but this should hardly be the case in any realistic
simulation.

Although this new simulation engine was initially developed
to simulate cellular space models, it can be applied to other large-
scale simulations such as the simulation of swarm intelligence that
includes a huge number of bots, or the simulation of distributed
networks that contain a large number of network nodes.

Applying DEVS to partial differential equation (PDE)
simulation also uses cellular DEVS models, and these cellular
models share the same characteristic such as activities are locally
clustered. So this new simulation engine will also improve
simulation performance for PDE simulations.

REFERENCES
[1]. Zeigler, B.P., T.G. Kim, et al.. Theory of Modeling and

Simulation. New York, NY, Academic Press, 2000.
[2]. J. Ameghino, A. Tróccoli, G. Wainer. “Models of Complex

Physical Systems using Cell-DEVS”, Proceedings of the
Annual Simulation Symposium, Seattle, Washington, 2001.

[3]. Kofman, E.. “A Second Order Approximation for DEVS
Simulation of Continuous Systems”, Simulation: Trans. of
SCS, Vol 64, 2, pp. 76-89, 2002.

[4]. Alexandre Muzy, Eric Innocenti, Antoine Aiello, Jean-
Franc,ois Santucci, and Gabriel Wainer. “Cell-DEVS
Quantization Techniques in a Fire Spreading Application”,
Winter Simulation Conference, San Diego, California, 2002

[5]. J. Nutaro, B. P. Zeigler, R. Jammalamadaka, S. Akerkar,
“Discrete Event Solution of Gas Dynamics within the DEVS
Framework: Exploiting Spatiotemporal Heterogeneity”, Proc.
ICCS, Melbourne Australia, July 2003

[6]. S. Wolfram, Theory and Applications of Cellular Automata,
World Scientific, Singapore, 1986

[7]. Muzy, A., G. Wainer, E. Innocenti, A. and Aiello, J.F.
Santucci. “Comparing simulation methods for fire spreading
across a fuel bed”, In Proceedings of AIS'2002, Lisbon,
Portugal.

[8]. Lewis Ntaimo, Bithika Khargharia “A Cellular Devs
Dynamic Fire Spread Simulation Model With An Optimized
Cell Space”, Project Report, Electrical and Computer
Engineering Department, University of Arizona, May, 2003

[9]. A. Davidson, G. Wainer. "Specifying truck movement in
traffic models using Cell-DEVS". In Proceedings of the 33rd
Anual Symposium on Computer Simulation. Washington,
D.C. U.S.A. 2000

[10] A. Troccoli, J. Ameghino, F. Iñón, G. Wainer. "A flow
injection model using Cell-DEVS". In Proceedings of the
35th IEEE/SCS Annual Simulation Symposium. San Diego,
CA. U.S.A

[11] Wang, Y. H., and B. P. Zeigler. Extending the DEVS
Formalism for Massively Parallel Simulation. Discrete Event
Dynamic Systems: Theory and Applications, 3:193-218,
1992.

[12] G. A. Wainer. "Improved cellular models with parallel Cell-
DEVS". In Transactions of the SCS. June 2000

[13] Steven B. Hall, Shankar M. Venkatesan, Donald B. Wood, “A
Faster Implementation of DEVS in the Joint MEASURE
Simulation Environment”, in Proc. of Summer Computer
Simulation Conference, Montreal, July 2003

[14] DEVS-Java Reference Guide, www.acims.arizona.edu
[15] Vasconcelos, J. M, Modeling Spatial Dynamic Ecological

Processes with DEVS-Scheme and Geographical Information
Systems, Ph.D. Dissertation, Dept. of Renewable and Natural
Resources, University of Arizona, Tucson, U.S.A., 1993

[16] Rothermel, R., “A mathematical model for predicting fire
spread in wildland fuels”. Research Paper INT-115. Ogden,
UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station, 1972

 [17] Sunwoo Park, “Hierarchical Model Partitioning for
Distributed Simulation of Hierarchical and Modular DEVS
Models”, Ph.D. Dissertation, Univ. of Arizona, May 2003

[18] B. Khargharia, S. Hariri and M. Parashar, “vGrid: A
Framework for Building Autonomic Applications,”
Proceedings of the Proceedings of the 1st International
Workshop on Heterogeneous and Adaptive Computing,
(CLADE 2003), Seattle, WA, USA, Computer Society Press,
pp 19-26, June 2003

ISBN: 1-56555-278-4 8 High-Performance Computing Symposium

	TITLE PAGE
	PROCEEDINGS LIST
	HPCS Table of Contents
	ACROBAT HELP
	A High Performance Simulation Engine for Large-Scale Cellular DEVS Models
	Keywords:
	Abstract
	1. INTRODUCTION
	2. THE STANDARD DEVS SIMULATION PROTOCOL
	3. A PROPOSED IMPROVED SIMULATION ENGINE
	4. THE NEW SIMULATION ENGINE AND ITS DATA STRUCTURE
	4.1 The Simulation Protocol
	4.2 The minSelTree Data Structure
	4.3 Building minSelTree for Two-dimension Cellular Space Models

	5. PERFORMANCE ANALYSIS
	6. EXAMPLES AND TEST DATA
	6.1 Simulation of a Diffusion Model
	6.2 Simulation of a Fire Spreading Model

	7. CONCLUSION
	REFERENCES

