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Abstract 
This paper presents a high performance simulation engine for 
large-scale cellular DEVS models. Compared to the standard 
coordinator, this simulation engine speeds up the simulation from 
two sources. First, it only considers the active cells during 
simulation. This is based on the observation that usually only a 
small number of cells are active (performing state changing) at any 
given time, even though the total number of cells may be very 
large. Second, it implements a data structure that allows efficient 
search of the active cells which can be arbitrarily faster in cellular 
space models where the number of cells increases but the number 
of active cells remains the same. Performance analysis and two 
examples are provided to demonstrate the speedups of this new 
simulation engine as compared to the coordinator. 
 
1. INTRODUCTION 

The Discrete Event System Specification (DEVS) formalism 
[1] provides a means to specify a mathematical object called a 
system. It has been applied to model and simulate both discrete 
and continuous systems (e.g., see [2], [3], [4]).  The use of discrete 
events, rather than time steps, as a basis for simulation has been 
shown to reduce computation time by orders of magnitude in many 
applications. For example, the work presented in [5] suggests that 
DEVS can offer significant performance advantages for simulation 
of continuous phenomena characterized by spatiotemporal 
heterogeneity. The cellular automata paradigm defines a grid of 
cells using discrete variables for time, space and system states [6]. 
The cells are updated according with a local rule function that uses 
a finite set of nearby cells (called the neighborhood of the cell). 
Cellular DEVS models have been developed to model and 
simulate various phenomena such as fire spreading [7, 8], traffic 
control [9], flow injection [10], etc.  

The cellular approach divides the underline space (one 
dimension or multiple dimensions) into discrete cells. To 
accomplish detailed modeling of spatial dynamics, a large number 
of cells are typically employed. While the huge number of cells 
provides the capability to model a system in adequate detail, it also 
demands for high performance simulation techniques. To achieve 
high performance simulation of DEVS models, various techniques 
have been developed. Among them the most well known one is 
parallel or distributed simulation [11, 12, 17] where models are 
simulated by multiple processors. Besides that, there is also 
considerable research work on the implementation of simulation 

environments. One of such work is recently presented in [13], 
where the authors enhance the implementation by applying 
techniques such as precomputing message destinations, and using 
a priority queue to sort models to achieve performance 
improvement for the Joint MEASURE simulation environment 
developed at Lockheed Martin.  

Unlike the work that focuses on the structure or 
implementation of the simulation environments, the work 
presented in this paper describes a simulation engine for large-
scale cellular models. This simulation engine improves simulation 
performance from two sources that are based on two qualities of 
cellular space models. First, it considers only the active cells 
during simulation. This is based on the observation that usually 
only a small number of cells are active (performing state changing) 
at any given time, even though the total number of cells may be 
very large. This approach enhances simulation performance 
compared with simulations that are based on cellular automata in 
which all cells perform computations and message exchange at 
every time step. The same approach has been taken by [2] and [7]. 
Second, this simulation engine implements a data structure that 
allows efficient search of the active cells which can be arbitrarily 
faster in cellular space models where the number of cells increases 
but the number of active cells remains the same. The implemented 
data structure takes advantage of the fact that the active cells in a 
cell space are typically locally clustered. This is because cells are 
coupled to their neighbors so the state change of one cell will first 
directly affect its neighbors. Based on this observation, the new 
data structure retains cells’ spatial information and thus utilizes the 
localized activities of cellular space models to increase simulation 
performance.  

The following paper describes this new simulation engine and 
the data structure it employs. To set the stage, we first review the 
standard DEVS simulation protocol as implemented by the 
coordinator in DEVSJAVA [14]. Then we propose an improved 
simulation engine that is based on the standard coordinator. With 
this background, we proceed to describe the new simulation 
engine, oneDCoord as implemented in DEVSJAVA, and its 
minSelTree data structure. Finally, we analyze the performance of 
these simulation engines and present two examples to demonstrate 
the performance improvement of the new simulation engine as 
compared to the standard coordinator.  
 
2. THE STANDARD DEVS SIMULATION 
PROTOCOL 

In a DEVS-based simulation environment such as 
DEVSJAVA, a coordinator is assigned to a coupled model and 
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simulators are assigned to the components of this coupled model. 
Figure 1 shows the simulation of a coupled model with three 
components. 
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Figure 1: The Standard DEVS Simulation Protocol 

 
The simulation of DEVS models moves forward cyclically 

based on the time of next event, denoted by tN, which is updated 
by component models’ state transition functions. For a coupled 
model, the tN is the earliest next event time among all its sub-
components. Each simulator has the tN of its model. In the 
standard DEVS simulation protocol, the coordinator is responsible 
for stepping simulators through the cycle of activities as shown in 
Figure 1. Specifically in DEVSJAVA simulation environment, the 
coordinator executes the following code in each simulation cycle: 

simulators.AskAll(“nextTN”) 
tN = compareAndFindTN(); 
simulators.tellAll("computeOut“,tN) 
simulators.tellAll("sendOut") 
simulators.tellAll("ApplyDelt“,tN) 
 

A detailed description of how the coordinator and simulators 
step through a simulation cycle is given below: 
1. Coordinator sends nextTN to request tN from each of the 

simulators. 
2. All the simulators reply with their tNs in the outTN message 

to the coordinator. The coordinator compares these tNs and 
finds the minimum. 

3. Coordinator sends to each simulator a computeOut message 
containing the global tN (the minimum of the tNs). Each 
simulator checks if it is imminent (its tN = global tN) and if 
so, computes the output message of its model. Otherwise an 
empty message is generated. 

4. Coordinator sends to each simulator a sendOut message. 
5. Based on the coupling specification, each simulator responses 

by putting its output message (if it is not empty) to the 
destination simulators. 

6. Coordinator sends to each simulator an applyDelt message 
containing the global tN. Each simulator reacts to the 
applyDelt message as below:   
• If it is imminent and its input message is empty, then it 

invokes its model’s internal transition function 
• If it is imminent and its input message is not empty, it 

invokes its model’s confluence transition function 
• If is not imminent and its input message is not empty, it 

invokes its model’s external transition function 

• If is not imminent and its input message is empty then 
nothing happens. 

 
This standard simulation protocol follows closely with the 

semantic of DEVS models. Thus it is easy to be understood and 
implemented. However, this protocol tends to result in slow 
simulation speed for models that have a large number of 
components. This is because in every simulation cycle, all the 
simulators, no matter they are imminent or not, have to go through 
the simulation steps as described above. For the models that have 
only a few imminents (active cells), there exists a lot of 
unnecessary computation. To overcome this problem, an improved 
simulation engine is proposed as below. This simulation engine 
uses a Heap data structure to sort and find imminents and then 
only those imminents are asked to go through the simulation cycle.  

 
3. A PROPOSED IMPROVED SIMULATION 
ENGINE 

This proposed simulation engine implements a heap to keep 
track of the smallest tNs of its component simulators. During 
simulation, each active simulator removes and inserts its tN in the 
heap. So the smallest tN and imminents can be found from the root 
of the heap. 

Using a heap to keep track of the tNs and imminents, the 
simulation protocol of this proposed simulation engine in each 
simulation cycle is shown below: 

tN = Heap.getMin() 
imminents = Heap.getImms() 
imminents.tellAll("computeOut“,tN) 
imminents.tellAll("sendOut") 
imminents = imminents.addAll(influencees) 
imminents.tellAll("ApplyDelt“,tN) 
imminents.tellAll(“updateHeap”) 
 

In every simulation cycle, the simulation engine fist gets the 
smallest tN and the imminents from the heap. With the smallest tN 
and imminents in hand, the simulation engine  then sends out the 
computeOut and sendOut messages to imminents. The sendOut 
message will trigger imminents to put their output messages to 
their destination simulators, which are called influences. The 
influences, like the imminents, need to execute their state transition 
functions. Thus before imminents.tellAll("ApplyDelt“,tN), the 
coordinator adds those influences into imminents by executing 
imminents = imminents.addAll(influencees). At the end of the 
iteration, the coordinator asks all imminents to update their newest 
tNs in the heap to prepare for the next simulation iteration. 

Generally speaking, the update process where each active 
simulator removes and inserts its tN in the heap has computation 
complexity O(n*log2N) (n is the number of imminents in the 
simulation cycle; N is the total number of cells). For large-scale 
cellular models with small number of imminents (n<<N), this 
proposed simulation engine has computation complexity at the 
magnitude of log2N, thus resulting in considerable performance 
improvement. 

Based on this proposed simulation engine, a new simulation 
engine, the oneDCoord in DEVSJAVA environment, is developed. 
This new simulation engine not only keeps track of the imminents 
and asks only the imminents to go through a simulation cycle, but 
also implements a minSelTree data structure to allow efficient 
search of the imminents. 
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4. THE NEW SIMULATION ENGINE AND 
ITS DATA STRUCTURE 
4.1 The Simulation Protocol 

The simulation protocol of this new simulation engine is 
similar to the proposed simulation engine with heap 
implementation. The only difference is that a new data structure 
minSelTree is developed to replaces the heap for keeping track of 
tNs and imminents. Below is the simulation protocol of this 
simulation engine. 

tN = minSelTree.getMin() 
imminents = minSelTree.getImms() 
imminents.tellAll("computeOut“,tN) 
imminents.tellAll("sendOut") 
imminents = imminents.addAll(influencees) 
imminents.tellAll("ApplyDelt“,tN) 
imminents.tellAll(“sendTNUp”) 
 

As can be seen, in every simulation cycle, the new simulation 
engine first gets the smallest tN and imminents by executing 
minSelTree.getMin() and minSelTree.getImms() respectively. Then 
similar to the description above, only the imminents (and 
influences) go through the simulation cycle. The last step in the 
simulation cycle is to ask all imminents to send their newest tNs to 
the minSelTree so the information kept there is updated timely. 
This is to prepare for the next simulation iteration. 

 
4.2 The minSelTree Data Structure 

The minSelTree data structure is an essential part of this new 
coordinator to keep track of tNs and imminents. It is a complete 
tree, which means each leaf node of this tree data structure has the 
same “distance” from the root. The minSelTree is constructed in 
such a way that for each cell in the model, there is a leaf node of 
minSelTree corresponding to it. To retain a cell’s spatial 
information in minSelTree, the cell’s ID is used as a reference to 
assign a leaf node to the cell. As adjacent cells have adjacent IDs, 
their corresponding minSelTree nodes will sit adjacently in the 
minSelTree too. The minSelTree is set up during initialization of 
the simulation based on the total number of cells and the base of 
the tree. Here the base of the tree means the number of children of 
each internal node. It is provided by the user who runs the 
simulation. Different bases may make the simulation have 
different performance. The formula below shows the relationship 
among the number of cells N, the base b and the height h (distance 
from leaf to the root) of the minSelTree.   

 
h = ceiling( logbN ) 
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Figure 2. Model, simulator, and the minSelTree 

Figure 2 shows the relationship among the models, simulators, 
and the minSelTree data structure. Here we assume the model to be 
simulated is a one-dimension cellular space model with n cells. 
These cells have IDs from 1 to n based on their positions in the 
cellular space. From the figure we can see that for each cell, there 
is a simulator oneDSim assigned to it; for each oneDSim, there is a 
leaf node of minSelTree assigned to it. Thus a cell, its simulator, 
and the minSelTree leaf node form one to one relationships to each 
other. Among them, the simulator has access to both the cell and 
the leaf node. Figure 2 also shows that the coordinator oneDCoord 
has access to the root node of minSelTree.  

During simulation, a simulator oneDSim is responsible to drive 
the simulation of its cell model and to update the new tN to the 
corresponding leaf node of minSelTree. The leaf node then sends 
this tN up to its parent node, which compares this tN with the tNs 
of other children and selects the smallest ones to send up. This 
“send up” process continues until the root node is reached. Note 
that the information that is sent up includes not only the smallest 
tN, but also the references of those simulators which hold that tN. 
As each node selects the smallest tN and the imminent simulators 
to send up, after this recursive “send up” process ends, the root 
node has the global minimum of tNs and the references for all the 
imminent simulators. The coordinator oneDCoord can then access 
the root node of minSelTree and easily gets this information.  

To make this process feasible, each node of the minSelTree 
keeps track of its children’s tN and imminent simulators (A leaf 
node keeps track of its own tN and itself as the imminent 
simulator). Specifically, each node of minSelTree has a variable 
minEnvironment, which basically is a table storing information in 
the following format: (childName, Pair(imminents, tN ) ). The 
childName is the name of a child node. The tN is that child node’s 
tN and the imminents is a set containing the references for all the 
simulators holding that tN. The imminents and tN are encapsulated 
into a Pair. With this information stored in minEnvironment, a 
node can find its tN (the smallest tN among its children) and the 
references for the simulators holding that tN by executing the 
following whichMin() method: 

public Pair whichMin(){   // find the imminents and tN 
     double timeGranule = .000001; 

 ensembleSet imminents = new ensembleSet(); 
 double min = POSITIVE_INFINITY; 
 while(minEnvironment.hasNext()) { 

      Pair p = (Pair) minEnvironment.next(); //name, Pair 
      Pair pp = (Pair)p.getValue(); //imms, tN 
      double tN = pp.getValue();  // get tN 
      if (Math.abs(tN - min)< timeGranule)   
 imminents.addAll((ensembleSet)pp.getKey()); 
      else if (tN < min){ 
       imminents = new ensembleSet(); 
       min = tN; 
       imminents.addAll((ensembleSet)pp.getKey()); 
      } 
   } 

 return new Pair(imminents, min); 
   } 

 
This method compares all tNs stored in minEnvironment and 

selects the smallest one. In the meantime, it adds the simulators 
that hold the smallest tN into the imminents set. The method 
returns a new pair that contains the imminents and the smallest tN. 
Notice that a variable timeGranule is used when comparing and 
selecting the smallest tN. This is because the time base in DEVS is 
continuous rather than discrete. Thus the next event time tN can be 
any value with arbitrary precision. This timeGranule is used to 
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specify the smallest time unit in simulation. Events that happen 
inside the same timeGranule are considered happened at the same 
time. 

The information stored in minSelTree need to be updated 
continuously when simulation proceeds. This is accomplished by 
executing imminents.tellAll(“sendTNUp”) at the end of each 
simulation iteration. This step asks all imminent simulators to 
update their new tNs to their corresponding leaf nodes. As 
mentioned before, the update of a new tN triggers a recursive 
“send up” process until the root node is reached. During this 
process, each node finds the smallest tN among its children (by 
executing the whichMin() method) and sends that information up.  

As mentioned before, cells are coupled to their neighbors in 
cellular space models. Thus it’s typical that a cell and its neighbors 
change their states at the same time. For example, in Figure 2, cell 
ci-1, ci, and ci+1 may all change their states at the same time and 
have new tNs. If the leaf nodes for these cells send their tNs up 
independently, each of them will trigger a “send up” path to the 
root node Nroot. Apparently this is inefficient as these nodes 
actually share the same parent Np (because the cells are adjacent in 
the cellular space model). Thus the “send up” paths behind node 
Np can be bundled into one path. By bundling several “send up” 
paths into one path, the minSelTree nodes on that path only need to 
execute the whichMin() once instead of several times. Notice that 
this improvement actually shows how the new coordinator takes 
advantage of the fact that activities of cellular models usually 
happen locally. Because the spatial information of cells is retained 
in minSelTree, a cell and its neighbors’ nodes will share the same 
parent in minSelTree. Thus their “send-up” paths can be bundled 
together, which results in performance improvement. The code 
listed below shows how a minSelTree node implements the 
sendUp() method. 

public void sendUp (String nm,Pair p){ 
  minEnvironment.setPair(nm,p); 
  receivedImmi++; 
  if(receivedImmi== expectedImmi){ 
      receivedImmi=0; //reset the value for the next cycle 
      expectedImmi =0; //reset the value for the next cycle 
      whichMin = whichMin(); 
      if (!root) parent.sendUp(myName,whichMin); 
  } 
} 

 
As can be seen, this sendUp() process is a recursive process. It 

continues until the root node is reached. When receiving an update 
from a child node with its name and the (imminents, tN) pair, the 
method first updates its minEnvironment variable. Then it 
increases receivedImmi and check if receivedImmi equals 
expectedImmi. The two variables expectedImmi and receivedImmi 
are used to guarantee that only one “send up” path is invoked even 
a node receives multiple calls from its children. Only when 
receivedImmi equals expectedImmi, which means the node has got 
all expected updates from its children, does the method executes 
the whichMin() to find the smallest tN and then call sendUp()to 
send this information up. The variable expectedImmi, meaning 
how many update a node expects from its children, is set by the 
informChange() method as shown below.  

public void  informChange(){ 
  if(expectedImmi ==0&&!root)  
   parent.informChange();  // inform change only once 
  expectedImmi ++; 
} 

 

Whenever a cell changes its state and has a new tN, its 
simulator calls the corresponding leaf node’s informChange() 
method, which will increase the expectedImmi of that node. This 
method also makes sure that the parent’s informChange() method 
will only be called once. Using the system shown in Figure 2 as an 
example, if cell ci-1, ci, and ci+1 all change their states, the 
expectedImmi of node Np is 3; the expectedImmi of node Np’s 
parent node is 1 (assuming there are no other cells changing their 
states). 

 
4.3 Building minSelTree for Two-dimension 
Cellular Space Models 

The model given in Figure 2 is a one-dimension cellular space 
model. In a two-dimension cellular space model, cells have 
neighbors not only along the x dimension but also along the y 
dimension. This is shown in Figure 3. 
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Figure 3. A two-dimension cellular space model 

 
To construct minSelTree for a two-dimension cellular space 

model, one way is to assign consecutive IDs to all the cells row by 
row, thus treating the two-dimension cellular space model as a 
one-dimension model. However, this means cells are clustered 
(having nearby IDs) in only one dimension, which results in the 
situation that two neighbor cells may not be assigned nearby 
minSelTree nodes. To take good advantage of localized activities 
of cellular models, it is desirable that cells are clustered in two 
dimensions. This is why in our implementation, we assign cells’ 
IDs based on blocks as shown in Figure 3. All cells inside one 
block belong to one parent in the minSelTree. The resulting 
minSelTree is a little bit different from the one discussed before. In 
the tree for one-dimension cellular space models, each internal 
node of the tree has b children (b is the base of the tree). For the 
new minSelTree, it is the same situation except that the bottom 
nodes have BXs*BYs children (BXs and BYs denote the size of a 
block). Notice that the previous tree is actually a special case of 
this new one with BXs=base and BYs=1. 

 
5. PERFORMANCE ANALYSIS 

Compared to the original coordinator with the basic simulation 
protocol, there are two sources of speedup of the new simulation 
engine. One is the keeping track of imminents so only the 
imminent cells will be considered in every simulation cycle. The 
other is the efficient smallest tN search which can be arbitrarily 
faster in cellular space models where the number of cells is very 
large but the number of imminent cells is small in every simulation 
iteration. Below we analyze the performance of these simulation 
engines by considering two extreme cases: only one cell is 
imminent in a simulation iteration, and all cells are imminent in a 
simulation iteration. For simplicity, we only consider the 
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computation complexity of finding the smallest tN. Let’s assume 
there are N cells in the cellular space model.  

For the coordinator with the basic simulation protocol, all 
simulators are asked to send their tNs to the coordinator. Then the 
coordinator compares and selects the minimum among these N tNs. 
Thus the computation complexity is O(N), which is independent of 
the number of imminent cells.  

For the coordinator with heap implementation, each imminent 
simulator removes and inserts its tN in the heap. Then the smallest 
tN is found by getting the value of the top of the heap. If only one 
cell is imminent, only one simulator needs to updates its tN in the 
heap, which takes worse case O(log2N). If all cells are imminent, 
all simulators need to remove and insert their tNs in the heap, 
resulting in computation complexity O(N*log2N). 

For the new coordinator with minSelTree, the height of the tree 
h = ceil( logbN ) (assuming the base of this tree is b). If only one 
cell is imminent in a simulation iteration, only one simulator will 
update its new tN on the leaf node of minSelTree. Thus only one 
“send-up” path, which has h nodes in the path, will be generated. 
Along this path, each node executes whichMin() method to 
compare and select the minimum tN among b children. This results 
in computation complexity O(b*h) = O( b* logbN ). If all cells are 
imminent, all simulators will update their new tNs on their leaf 
nodes of minSelTree. As a result, all nodes in the minSelTree will 
be involved in the “send up” process. However, even a node’s 
sendUp() method will be called multiple times, the whichMin() 
method will only be executed one time. Assume the total number 
of nodes in minSelTree is T (exclude the leaves of the tree), then 
the computation complexity is O(T*b). We know that for a 
complete tree with N leaves, T=(N-1)/(b-1). This results in 
computation complexity O(T*b) = O( (N-1)*b/(b-1) ) = O(N). 

The above analysis shows that when all simulators are 
imminents, both the standard coordinator and the coordinator with 
minSelTree has computation complexity O(N), which is better than 
O(N*log2N`), the complexity of the proposed coordinator with 
heap implementation. However, when only one (or small number 
of) simulator is imminent, the coordinator with heap 
implementation has computation complexity O(log2N), which is 
close to the performance of the new coordinator O(logbN). To 
further compare the heap implementation and the minSelTree 
implementation, let’s consider another example. E.g., let N = b*b 
for a two-level minSelTree and let there be b imminent cells within 
one block (this means the leaf nodes of these cells share the same 
parent). Considering only the computation required by 
comparisons, the new coordinator takes 2b. And the heap 
implementation takes blog2N = blog2(b*b) = 2blog2b, while the 
old coordinator takes b*b. The utilize of localized activity is clear 
here: 2b vs 2blog2b. The extra log2b part is due to the full 
reordering that the heap implementation does for every 
replacement. 
 
6. EXAMPLES AND TEST DATA 

This section gives two examples to compare the simulation 
performance of the new coordinator and the standard one. The first 
example is a one-dimension cellular space model that models the 
phenomena of diffusion. The second example is a two-dimension 
cellular space model that models the phenomena of fire spreading. 
For each example, a brief description of the model is given and 
then the simulation data of the two simulators is provided to show 
the speedup the new simulator. More detailed description of these 
examples can be found in the related references. 

 

6.1 Simulation of a Diffusion Model 
Diffusion is a common problem that has been studied using 

simulation methods. In this example (the diffuse2ndOrdCellSpace 
example in the DEVSJAVA environment [14]), the heat diffusion 
phenomenon is modeled as a one-dimensional cell-space model 
with each cell coupled to its left and right neighbors (except the 
boundary cells). A cell holds its current temperature and will 
updates it to reach the desired temperature, which is defined as the 
average of the left and right cells’ temperature. The speed of 
temperature change is defined by the difference between a cell’s 
desired and current temperatures. For each cell, a quantum is 
provided so a cell will update itself and pass message to its 
neighbors only when the change of temperature reaches the 
quantum size. With this approach, each cell can calculate its time 
advance for the next update based on the quantum and the speed of 
temperature change. The initial condition of the simulation is that 
temperature is linearly distributed along this one dimensional cell 
space, with the first cell has the lowest temperature and the last 
cell has the highest temperature. 

Table 1 shows the time (in seconds) of simulating this 
diffusion model with different number of cells using the standard 
coordinator and the new simulation engine respectively. For each 
simulation running, the quantum is defined as 0.1, and the number 
of simulation iterations is 10000. The simulations were run on a 
laptop with Intel Pentium 4 1.7GHZ processor, 256M memory, 
and Windows 2000 OS. 

 
Table 1: Comparison of the simulation time (sec) of the two 
simulation engines 
number of cells 50 100 500 1000 

coordinator 29.592 54.448 272.712 542.721 

oneDCoord (base = 6) 7.221 7.24 8.222 8.432 

speedup  
(coordinator time/oneDCoord time) 4.098047 7.520442 33.16857 64.36444 

  
The test data above shows how the change of the number of 

cells affects the execution time of coordinator and oneDCoord. It 
shows that as the number of cells increase, the execution time of 
coordinator linearly increases too. However, the execution time of 
oneDCoord only increases slightly. This is because in this 
example, the increase of cells doesn’t affect the number of 
imminents in every simulation cycle. In fact, in this example, the 
number of imminents remains 1 or 2. 

 
6.2 Simulation of a Fire Spreading Model 

This example describes a dynamic forest fire spread model, 
which is based on the work of [8, 18]. In this model, a forest is 
modeled as a two-dimensional cell-space composed of individual 
forest cells coupled together according to their relative physical 
geometric locations. Each cell is modeled in the same way as that 
of [15, 2]. Specifically, each cell has the following six states: 
unburned, burning, burned, unburned-wet, burning-wet, and 
burned-wet. Conditions and rules are defined to govern the state 
transition of a cell. In the two-dimensional cell space model, each 
cell has eight neighbor cells N, NE, E, SE, S, SW, W, and NW 
except the boundary cells. Accordingly, for each cell, fixed fire 
spreading directions N, NE, E, SE, S, SW, W, and NW are defined. 
Fire spread in each cell is modeled using Rothermel’s [16] 
stationary model, which is a one-dimension semi-empirical model. 
To obtain the second dimension, a propagation algorithm that uses 
maximum rate of spread and wind and slope factors is applied. 
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During simulation, the behavior of a burning cell can be influenced 
by external inputs from neighboring cells as well as changes in 
weather conditions. In addition, uncertainty is incorporated in the 
model by allowing certain critical parameters to be sampled from 
arbitrary probability distributions during the simulation run. A 
detailed description of this model and the initial condition of 
simulation can be found in [8]. 

Table 2 shows the time (in seconds) of simulating the fire 
spread model with different number of cells using the standard 
coordinator and the new simulation engine respectively. For each 
simulation running, the number of simulation iterations is 7200.  
The simulations were run on a laptop with Intel Pentium 4 1.7GHZ 
processor, 256M memory, and Windows 2000 OS. 

 
Table 2: Comparison of the simulation time (sec) of the two 
simulation engines 
Number of cells 30x30 (900) 34x34 (1156) 40x40 (1600)

coordinator 356.293 471.258 681.951 

oneDCoord (base = 6) 19.388 23.924 36.002 

speedup  
(coordinator time/oneDCoord time) 18.37699 19.69813 18.94203 

  
 

7. CONCLUSION 
The simulation data and performance analysis show that the 

speedup of the new simulation engine is significant as compared to 
the standard coordinator. This is achieved by keeping track of 
imminents during simulation and by implementing a data structure 
to allow efficient search of those imminents. As a note of caution, 
we mention that if a very large percentage of the models are 
imminent at any given instant, the timesavings would generally be 
much less, but this should hardly be the case in any realistic 
simulation. 

Although this new simulation engine was initially developed 
to simulate cellular space models, it can be applied to other large-
scale simulations such as the simulation of swarm intelligence that 
includes a huge number of bots, or the simulation of distributed 
networks that contain a large number of network nodes.  

Applying DEVS to partial differential equation (PDE) 
simulation also uses cellular DEVS models, and these cellular 
models share the same characteristic such as activities are locally 
clustered. So this new simulation engine will also improve 
simulation performance for PDE simulations. 
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