
Towards a Formal Semantics of Event-Based
Multi-agent Simulations

Jean-Pierre Müller

CIRAD, UPR GREEN, Montpellier, F-34398 France
Associate researcher to LIRMM, Montpellier, France

Abstract. The aim of this paper is to define a non-ambiguous opera-
tional semantics for event-based multi-agent modeling and simulation,
applied to complex systems. A number of features common to most
multi-agent systems have been retained: 1) agent proactive as well as
reactive behavior, 2) concurrency : events can arrive simultaneously to
an agent, an environment or any simulated entity and the actual change
only depends on the target according to the influence/reaction paradigm
[1], 3) instantaneity : if reaction takes time, perception as well as infor-
mation diffusion is instantaneous and should be processed separately, 4)
structure dynamics: the interaction structure (who is talking to whom)
changes over time, and the agents as well as any simulated entity may
be created or destroyed in the course of the simulation.

For each of these features, a solution inspired by the work on DEVS
(Discrete EVent Systems, [2]) is proposed. Proactive/reactive behavior is
naturally taken into account by DEVS . Concurrency is dealt with using
//−DEVS (in [2]), a variant of the pure DEVS . Instantaneity is managed
by distinguishing the physical events producing state transitions and the
logical events realizing only perception and information diffusion. The
structure dynamics is achieved by using a variant of ρ-DEVS (cf. [3])
where the expressiveness allows to manage hierarchical structures. The
operational semantics is given as abstract algorithms and the expressive
power of this formalism is illustrated on a simple example.

1 Introduction

The complex systems are characterized by a set of local components or entities
in non-linear interaction whose global behavior is not reducible to any composi-
tion of the individual behaviors [4]. The question at the origin of the modeling
process largely defines both the system and the entities to consider and therefore
the point of view. The problem is even more complicated when it is necessary
to articulate a set of these disciplinary points of view, possibly at various levels
of organization [5,6], as it is often the case for eco-sociosystems. These disci-
plinary points of view produce a number of thematic models to be articulated.
Many formalisms have been proposed to model the thematic models either at
the aggregated level with differential equations, possibly partial for taking into
account the spatiality of the phenomena, the cellular automata or, at the local
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(non-aggregated) level, individual or multi-agent based systems. An overview
of the existing formalisms is given in [6]. Finally the models in these dedicated
formalisms are implemented using raw programming languages up to specific
simulation platforms like MatLab and Stella for dynamical systems, or Cormas
[7] and Repast [8] for multi-agent systems, to cite a few. The modeling process
going from the thematic model to its expression within a formalism down to the
implementation platform needs to be made easier as more and more complex
systems have to be modeled.

Our aim is to define an implementation platform such that any formalism
can be mapped in a systematic (and then automatizable) way onto it. Among
these formalisms, we shall concentrate on multi-agent systems. Theoretically,
multi-agent systems are mainly characterized by the openness (entities coming
in and out) and structure dynamics (the topology of interaction is dynamical).
More than the definition of agents as having purposeful behavior (cf. [9]), we shall
retain more generally the following features of the multi-agent based formalisms:

1. reactive and proactive behavior : an agents reacts to incoming events (if it
wants to), and behaves proactively, regardless of the complexity of its internal
architecture (from simple rules up to sophisticated reasoning),

2. concurrency: events can arrive simultaneously to an agent, an environment
or any simulated entity. We consider that the actual change only depends
on the target according to the influence/reaction paradigm [1], and that the
result must not depend on the order of arrival nor on the order in which the
entities are run as in many existing platforms,

3. instantaneity: if reaction takes (simulated) time, perception as well as infor-
mation diffusion is instantaneous and should be processed separately,

4. structure dynamics: the interaction structure (who is talking to whom) chan-
ges over time and the agents as well as any simulated entity may be created
or destroyed in the course of the simulation.

Moreover, we shall consider discrete event simulation in contrast with most exist-
ing multi-agent simulation (MAS) platform as Cormas [7], Repast [8] and many
others which only consider fixed step simulations. The problem we want to tackle
in this paper is to provide an implementation platform with a clear operational
semantics, providing the above mentioned features, in which to map multi-agent
systems, possibly combined with any other formalism.

Most, if not all, existing MAS platforms produce simulation results which
do not depend only on the model but on the way the model is implemented
and the scheduling ordered. This ordering is at worst arbitrary and at best
randomized. We argue that it is an undesirable state of affairs and we propose
to use a DEVS -inspired formalism to tackle this issue. DEVS was proposed
by Zeigler [2] as a formalism to account for any kind of discrete event system.
Since then a lot of DEVS extensions have already been proposed to handle
concurrency [2] as well as structure dynamics. Among the later extensions, we
can cite DS-DEVS [10], DynDEVS [11] and, more recently ρ-DEVS [3]. Some of
these extensions have been proposed as tools for formalizing multi-agent systems
[12,13]. Howevere, as far as we know, no systematic account still exists. In this
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paper, we propose to address each of the desired features by proposing either
an existing or a new extension of the DEVS formalism, showing how it can be
used to take the feature into account. One of our main contribution to DEVS is
a clear distinction between the physical transitions simulating time-dependent
physical processes and the computation of the consequences which can be both
structural and informational.

Each of the following sections shall present one of the retained features, using a
simple example to illustrate the use of our proposed extensions. Finally, we shall
present an abstract algorithm for all the proposed extensions before concluding.

2 The Example

To illustrate our proposal, we shall take the example of the firemen fighting
against fire spreading in a landscape (inspired from [14]). We have to represent
the landscape made of empty spaces and forests with its dynamics of fire oc-
currence and spreading. We assume that the fire occurs spontaneously with a
given (low) probability. The firemen are wandering around in the landscape. If a
fire occurs, they are informed of the direction relative to their position and they
move towards the fire. When on a burning place, they water the surface.

The model is composed of three parts:

– S a space composed of cells C with either a Von Neuman (i.e. 4 neighbors)
or a Moore (i.e. 8 neighbors) topology. Each cell can be either empty, with
trees, watered, burning or burned. A cell with trees has a given probability
to spontaneously burn;

– T a team of firemen F positioned on the cells and whose objective is to stop
the fire;

– P be the position relation linking the cells of S to the firemen of T and
reciprocally.

More than one team could be defined by extending P for handling several teams.
Together, P , T and P define the global structure of the system we want to
stimulate.

3 Reactive-Proactive Behavior and DEVS

DEVS [2] is a formalism based on discrete event simulation able to model:

– atomic entities with a set of events incoming and outgoing through input
and output ports and a set S of internal states transiting in response to
incoming events (reactive behavior) or spontaneously, after having sent out-
going events (proactive behavior) (see figure 1(a)), A DEVS entity is a tuple
< X, Y, S, δext, δint, λext, τ > where:
• X is a set of input events;
• Y is a set of output events;
• S is a set of states;
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• δext : Q × X → S is the external transition function implementing the
reactive behavior, Q is S+ composed of s ∈ S and the duration since the
last transition;

• δint : S → S is the internal transition function implementing the proac-
tive behavior;

• λext : S → Y is the external output function only called before an internal
transition;

• τ : S → �+ is the time advance function giving the duration until the
next output and then internal transition occurrence.

Notice that the output depends on the state before the internal transition and
therefore is considered as a (delayed) answer to the previous state transition,
mimicking delays in physical systems.

– composed entities recursively composed of entities coupled through their
ports and with the composed entity input and output ports (see figure 1(b)).
This compositionality is defined as a closure under coupling property of the
DEVS formalism.

input ports output ports

S

(a) Atomic entity

s1

S2

S1

s1S3

internal coupling

external coupling

(b) Composed entity

Fig. 1. Atomic and composed entities

The operational semantics of an atomic entity is defined by an abstract algo-
rithm embedded in a simulator. The operational semantics of a composed entity
is defined by an abstract algorithm embedded in a coordinator which appears as
a DEVS atomic entity for a recursively embedding composed entity. DEVS and
any of its extensions must define the atomic entity structure, the composed en-
tity structure and the related simulator and coordinator, obeying to the closure
under coupling property. Although one can think of the simulation system as a
tree of coordinators with simulators as leaves, the actual implementation often
flattens the tree with a single coordinator in charge of a set of simulators. This
single coordinator is then called a DEVS -bus.

A DEVS -bus computes the nearest date when an output and internal transi-
tion occurs using τ of each composing entity and then executes all the outputs,
the internal transitions planned at that date and the consequent external transi-
tions. The immediate limitation of the so-called pure DEVS is its arbitrary way
to handle simultaneous events. When events are arriving simultaneously to the
input ports of an entity, possibly simultaneous to an internal transition, the order
of execution is controlled by a tie-breaking function defined in the coordinator.
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3.1 Application to Multi-agent Systems

From an agent perspective, δint accounts for the proactive behavior whose oc-
currence is autonomously decided by the agent (τ), δext accounts for its reactive
behavior. In all cases, it is up to the agent to decide how to manage a poten-
tial conflict among the incoming events. No hypothesis is made on how these
functions are computed. In particular, they could be simple condition/action
rules up to sophisticated BDI reasoning, including probabilistic algorithms or
not. Moreover, an agent is not necessarily a single DEVS entity but could be a
composition of them where some are devoted to perception, others to action, etc.

4 Concurrency and //−DEVS

4.1 Introducing //−DEVS

//−DEVS [2] is an extension of DEVS where simultaneous events are transmit-
ted together to the entity and the co-occurrence with an internal transition is sig-
naled specifically. We shall briefly present //−DEVS before arguing its usefulness
for multi-agent systems. An //−DEVS entity is a tuple < X, Y, S, δext, δint, δcon,
λext, τ > where:

– X is a set of input events;
– Y is a set of output events;
– S is a set of states;
– δext : Q × Xb → S is the external transition function where Xb is the set of

bags over elements in X ;
– δint : S → S is the internal transition function;
– δcon : S×Xb → S is the confluent transition function, subject to δcon(s, φ) =

δint(s);
– λext : S → Y b is the external output function;
– τ : S → �+ is the time advance function.

As in DEVS , τ tells the simulator and thus the coordinator the duration before
an internal (proactive) transition shall occur. When the duration elapses, a bag
of output events (Y b) – throughout the paper, the upper b stands for a bag,
i.e. a set of elements with duplicates – is produced by λext – called simply λ
by the DEVS literates – and then the internal transition occurs (δint). A bag
of external events (Xb) can occur anytime before τ(s) elapsed, producing an
external transition (δext) which depends on the dynamical state in Q. Finally,
if the arrival of a bag of input events occurs exactly when τ(s) elapsed, the
confluent transition function( δcon) is called.

The coordinator is in charge to iteratively:

1. ask to each simulator the duration τ until the next internal transition,
2. let IMM be the set of simulators with the same minimum duration,
3. advance the global time by that duration,
4. call λext for each simulator in IMM ,
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5. decide for each simulator whether it should do an internal (in IMM with no
incoming events), an external (only incoming events) or a confluent transition
(both in IMM and with incoming events).

This algorithm guarantees that all the possible simultaneously incoming events
when a simulator is in a given state shall be known and transmitted as a bag.
However, if the duration to the next internal transition is 0 (i.e. τ(s) can be 0),
the simulators can make several state transitions at the same date. In the next
section we propose to manage when τ(s) = 0 and when τ(s) �= 0 separately to
distinguish between the simulation of physical transitions (which take time) and
what is mere information propagation.

4.2 Application to Multi-agent Systems

In [1], we argue that action in multi-agent systems requires a special attention.
The view of action as a state transition does not resist to the fact that the
environment or the other agents could actually not perform the expected state
transition, nor does it resist to concurrency, i.e. to the fact that the actual envi-
ronment state change results from a combination of the simultaneous actions by
the agents. In [1], we propose to consider agent actions as influences of which ef-
fect depends on the receiver (the environment or another agent), in the so-called
influence/reaction paradigm. The mapping of this idea into //−DEVS is imme-
diate. The entities do not change directly the other entities states (would they
represent an environment or another agent) but send events to them. From now
on, we shall call these events, influences to stress this semantics. In addition, all
the simultaneous influences are given at once to the receiving entity, delegating
the actual state change and possible conflict resolution to the target of these
influences. This property entirely complies with the influence/reaction philoso-
phy. Moreover, no arbitrary choice is made by the coordinator, leaving to the
modeler the entire responsibility of the model behavior. It contrasts with most
existing MAS platforms where the choice is made arbitrarily by the scheduler,
at best by randomizing the order in which the agents are run (e.g. the possibility
to randomize is part of the comparison among MAS platforms in [15]).

In our example, we shall consider the case of the cellular automaton simulat-
ing fire spreading. At any state transition which are triggered at fixed time step,
either by having ∀s, τ(s) = cst or by an external clock sending ticks to the cells,
we chose each cell C to communicate its state to its neighbors. It means that any
cell shall either perform an internal transition simultaneously to receiving up to
four influences from its neighbors (δcon) or perform an external transition with a
tick and the same up to four influences (δext). However if only an external tran-
sition is triggered, then no influences are output because the influences output
only occur before an internal transition. Therefore only the solution where the
state transition is internally triggered is possible, the influences from the fire-
men and the neighbors cells producing confluent transitions. According to the
influence/reaction paradigm, the next state depends on all these influences at
once: the advance of time for the probability of fire and the neighbors state and
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firemen actions for fire diffusion. Therefore, we argue that //−DEVS naturally
solves the influence/reaction problem.

5 Instantaneity and the Logical Influences

5.1 Introducing the Logical Influences

In the previous section, we stressed that all the simultaneous incoming influ-
ences shall be provided simultaneously to the target entity for any given state,
but that several state transitions can occur at the same date if τ(s) can be 0.
Clearly, a physical system never does repeated instantaneous transitions, so the
question rather is the meaning of these instantaneous transitions in the DEVS
implementation of the physical system simulation. We propose to illustrations
of this point, one in the context of formal integration and another in the context
of multi-agent systems.

In the context of formal integration, one could see a composed entity as a
set of coupled differential equations, on per entity. However the value of the
variable of each equation should be instantaneously known by all the differential
equations it is coupled to. There are several solutions to this problem: 1) the
equation solving process is driven by the transmission of the variable values; 2)
the transmission of the variable value is intertwined with the step-wise solving
process, i.e. one step for solving and one step for value transmission; 3) the use
of τ(s) = 0 for value transmission and τ(s) �= 0 for step-wise equation solving.

The same is true for observation in general and perception in particular. An
agent must perceive its environment. In the DEVS context, either the environ-
ment send influences to the agent just after each state change, or the agents send
an influence for requesting information from another agent or the environment
and could get an answer to his request – In a strict asynchronous communication
semantics, no answer is necessarily expected, keeping agent autonomy –. In both
cases, it could be made by passing time as in the solution 1 or 2 of the differen-
tial equations case, or by making τ(s) = 0 for information transmission. In the
first case, we consider perception as a physical process which takes time as any
real physical process (a measurement device never responds instantaneously). In
the second case, information diffusion, perception, or observation are considered
timeless.

Consequently, we argue that τ(s) = 0 is an implementation artifact to man-
age information diffusion, observation and diffusion and we propose to separately
handle that case. Technically, we propose: 1) to forbid τ(s) = 0 for the simulation
of the physical transitions; 2) to add another mechanism based on logical influ-
ences for information diffusion. By contrast the influences producing physical
state transitions shall be called the physical influences.

We define a M−DEVSV 1 entity as a tuple

< X, Y, S, δext, δint, δcon, λext, τ, δlog, λlog >

with the same definitions as //−DEVS plus:
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– δlog : Q → S the logical transition function;
– λlog : Q → Y b the logical output function.

and τ defined on �+ − {0} instead of �+.
The semantics is identical to the //−DEVS entity semantics but for the

two additional functions. λlog is called after each transition (including δlog)
to propagate the information about the new state, while λext is only called
before an internal transition. δlog is used to make computations in response
to the propagated information, changing the part of S which is just a conse-
quence of the actual physical transition and possibly producing further infor-
mation diffusion. Both functions depends on Q and they do not change the
duration since the last physical transition (of course). No hypothesis is made
on the order in which information is propagated unlike the physical influences.
However, we keep the property that all the logical influences which must arrive
simultaneously when an entity is in a given state are actually transmitted si-
multaneously, preserving state consistency. With this new semantics, a timeless
asynchronous computation process is added to the time-dependent simulation
process.

When looking again at our cellular automaton example, there is clearly two
different logics:

1. a physical logics based on the time steps and the influences from the firemen,
2. an informational logics of propagation of the consequences: perception of the

cell state for the firemen (possibly after a request), information about the
neighbor’s states for the cells.

We propose to use τ , λext and δext for the first one, and λlog and δlog for the
second. Although reducible to //−DEVS , M−DEVSV 1 introduces a clearer sep-
aration of concerns. It shall further show its expressive power when combined
with structure dynamics.

5.2 Application to MAS Simulations

Many MAS platforms are written in an object-oriented language like Java[8] or
Smalltalk[7] and the agent and environment behaviors are very often directly
written in the corresponding language as, for example, in Cormas, Repast or
Mason. Therefore, the method call mechanism is automatically provided for
propagating the consequences with two main limitations. The first limitation
is technical: the method call is synchronous. Although the caller could ignore
the result, it closes the door to parallel implementations. The second limitation
is semantical: these method calls are completely free, letting the programmer
change the state of any entity in the simulated system, regardless of the time
coherence. In contrast, our proposal provides a cleaner semantics preserving the
system coherence with respect to time management.
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6 Structure Dynamics

The most important features of multi-agent systems are:

1. the openness: the agents can appear and die dynamically during the simu-
lation;

2. the topological dynamics: the neighborhood changes over time as a conse-
quence of the mobility of the agents in their environment (being social or
physical), hence the topology of interactions.

These features make the huge difference between multi-agent systems and a set
of coupled differential equations, for example, where the coupling is fixed and
the equations cannot appear and disappear. We shall collectively refer to these
features as structure dynamics.

For dealing with these properties, a number of extensions to DEVS have been
proposed. Barros in [10,16] proposes to add to each coupled model, a specific
atomic entity called the executive model, whose state defines the set of composing
entities and their topology. Uhrmacher allows in [11] each entity to specify the
topology of the network in a formalism called DynDEVS, a proposal we shall
follow. Notice that at that stage the closure under coupling property is no longer
fulfilled and therefore, the formalism is no longer a DEVS extension but more a
DEVS -inspired formalism.

In the following, we shall introduce our proposal to manage the structural
changes. Thereafter, we shall introduce a last, purely cosmetic, definition before
providing the algorithm.

6.1 The M−DEVS Entity

We define a M−DEVS entity as a tuple

< X, Y, S, δext, δint, δconδlog, λext, λint, λlog, λstr >

with the same definitions as M−DEVSV 1 plus:

– λint : S → (�+ − {0}) × I which combines τ with the specification of what
to do as an internal influence (∈ I);

– λstr : S → Y b the structural output function producing structural influences.

The transformation of τ into λint is only cosmetic. The rational is to have a func-
tion to express not only when to do something τ but also what to do (something
which could be encoded into S). Consequently, the modified δint : S × I → S
depends on both the state and the internal influence.

This extension is entirely reducible to the previously defined models but fa-
cilitates the expression of the algorithms as well as making the formal notations
symmetrical regarding the influence kinds. In consequence:

– λint and δint are in charge of the internal transitions using internal influences
and therefore of the proactive behavior;
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– λext and δext are in charge of the external transitions using the physical
influences and therefore of the reactive behavior;

– δcon is managing the simultaneity of an internal and external transition;
– λlog and δlog are in charge of the logical transitions using the logical influences

and therefore the information diffusion;
– λstr is in charge of the structural changes performed externally by the coor-

dinator itself and using the structural influences.

Once again, the operational semantics is similar to the M−DEVSV 1 entity
but the addition of the λstr function which is called after each transition in the
same way as λlog. In fact these two functions are closely linked to one another
because the consequences of a physical transition can be both informational
through the λlog function and structural through the λstr function. Conversely,
the structural changes may require to propagate information, in particular to
initialize the newly created structures.

There is no δstr function because the structural influences do not change the
internal state of the entities but only creates, destroys and changes the topology
among the entities. Let Σ = (M, Z) be the simulation structure where M is
the set of entities and Z encodes the topology of M as a function: < d, po >→
{< r, pi >} where d, resp. r, is the sender, resp. receiver, entity, po, resp. pi,
is the output, resp. input, port. We define a function change : Xb × Σ → Σ′

which, given a bag of structural influences xb and a simulation structure Σ =
(M, Z), computes a new simulation structure Σ′ = (M ′, Z ′). In order to be
consistent with the influence/reaction paradigm, Σ′ must be uniquely defined
and independent of the order in which the structural influences are considered.

We distinguish four types of structural influences:

1. creation: the influence creates a new M−DEVS entity and attaches it to a
port;

2. linkage: the influence connects the port of an entity to the entities designated
by the port of another entity;

3. removal: the influence disconnects the entities linked to a given port (without
destroying them);

4. deletion: the influence destroys the entity (and all the related port connec-
tions).

Whether these operations are only applicable to the issuing entity or not is open.
In our current implementation, the first and last are only allowed on the issuing
entity but the linkage and removal can be made anywhere as long as there is a
path of successive ports (called a port reference) from the issuing entity.

6.2 Application to MAS Simulation

In parallel with the comparison with other MAS platforms in section 5, most
existing platforms provide the primitives for creating new agents or objects as
well as changing the topology. However, most of the time, these primitives are
executed immediately, letting the programmer caring about the consistency with
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ongoing event propagation and the order in which the agents are run. In our case,
all the structural changes are deferred after the physical transitions have been
carried out and these changes are carefully ordered in our implementation. It
guarantees that the resulting simulation structure does not depend on the order
in which the modifications are issued.

The cellular automaton S as well as the team T are examples of the use of
the creation structural influences. The whole structure (i.e. a grid of cells and a
population of firemen interconnected together) as illustrated in figure 2 could be
created “by hand” but it would be fairly cumbersome, generated automatically
from a MAS specification (“compile time” generation), or generated dynamically
by having S and T creating the cells and firemen when starting the simulation
(“execution time” generation). In the latter case, it is enough to have λstr in S
and T generating one creation structural influence for each cell and each fireman,
attaching each cell and fireman to a port of S and T respectively. Of course any
number of teams can be put on the cellular automata by adding further T s using
the same P to manage collisions (if two firemen cannot be at the same place).
Furthermore, a team could be embedded in an arbitrary number of environments
with different topologies and semantics by adding further Ss and P s.

Let “fireman” be a port of each cell for communicating with the fireman sit-
uated on the the cell and conversely let “cel” be the port for communicating
with the cell the fireman is on (as illustrated in the figure 2 for the fireman F6),
any movement should change the connections of these ports to reflect the new

Fig. 2. The DEVS simulation structure of the example
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situation. We propose to have a position P (see section 2) entity having ports to
S and T respectively and performing the change using the structural influences
each time a fireman moves on the grid. Accordingly, each fireman sends an in-
fluence to the position P for moving and P changes the connections among the
fireman and its preceding and new cell.

Finally, when a fireman is surrounded by fire, it can also die by issuing a
structural influence to delete it from the simulation. It can be done by issuing
an influence to the position P to remove it from the current cell and another
influence to T to remove it from the population.

Although, we provide a solution to this specific example, the mechanism is
fully general and the structure could be automatically generated from higher
level constructs.

7 The Abstract Algorithms

Given the various proposed extensions, it remains to formally specify the opera-
tional semantics of these constructs. As described in section 3, the operational se-
mantics is defined by giving the abstract algorithm for the simulator (in charge of
a single entity) and the coordinator (in charge of the whole simulation structure).

7.1 The M−DEVS Simulator

The abstract algorithm of the simulator of such a model defines the answer to
five messages (instead of three for DEVS , see [2]). For all the messages, the
variable parent is assumed to designate the coordinator to which the simulator
is attached:

– i-message(t) to initialize the model (algorithm 1): the results are ylb1 and
ysb the bag of logical and structural influences to possibly build the related
structure and propagate information through it. These variables of the co-
ordinator are set as a side effect of this algorithm.

Algorithm 1. initialization of an entity
s = s0 {initial state}
tl = t {initial time}
parent.ylb = λlog(s), parent.ysb = λstr(s)

– *-message(t) to compute its output (algorithm 2): the result is the bag of
the physical influences to send: yeb;

Algorithm 2. the output of the model
Require: t = tn

parent.yeb = λext(s)

1 We are using upper b as the bag notation as in the section 4.
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– x-message(xb,t) to compute its state transition (algorithm 3): the results
are the set of logical and structural influences ylb and ysb as a consequence
of the state change;

Algorithm 3. computation of the physical state transition
Require: tl ≤ t ≤ tn

if t = tn ∧ xb = ∅ then
s = δint(s)

else if t = tn ∧ xb �= ∅ then
s = δcon(s, xb)

else if t < tn ∧ xb �= ∅ then
s = δext((s, t − tl), x

b)
end if
parent.ylb = λlog(s), parent.ysb = λstr(s)

– l-message(xb,t) to compute its logical transition (algorithm 4): the results
are again further logical and structural influences ylb and ysb.

Algorithm 4. computation of the logical state transition
Require: tl ≤ t ≤ tn

s = δlog((s, t − tl), x
b)

parent.ylb = λlog(s), parent.ysb = λstr(s)

– finally n-message(t) to set the current date tl, to compute the next date tn
and internal influence yi (algorithm 5).

Algorithm 5. computation of the next internal transition
d, parent.yi = λint(s)
tl = t, tn = tl + d

The output influences are assumed to be of the form: < d, po, y > where d id the
entity itself, po is the output port and y is the influence itself. For the structural
influences only < d, y > is necessary.

7.2 The M−DEVS Coordinator

Normally in the DEVS philosophy, the coordinator should manage a set of cou-
pled M−DEVS simulators and produce compositionally the same interface as a
DEVS entity. In this paper, we limit ourselves to a central coordinator (a DEVS -
bus) taking in charge the complete structure Σ = {M, Z} and shall describe this
algorithm in several steps:

1. given M the set of simulators in Σ, the first step consists in getting the
external influences of the entities about to simultaneously perform the next
internal transitions (algorithm 6). Note that yeb is set as a side effect of
calling *-message(t).
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Algorithm 6. Output before the internal transitions
t = minM (tn,d)
IMM = {d|d ∈ M ∧ tn,d = t}, mail = ∅
for d ∈ IMM do

send *-message(t) to Md

mail = mail + yeb

end for

2. the second step consists in performing the actual physical transitions, collect-
ing the logical and structural influences (algorithm 7). IMM shall contain
both the candidates for internal transition and the receivers of external influ-
ences. Note that ylb and ysb are set as a side effect of calling x-message(t).

Algorithm 7. Execution of the physical transitions
receivers = {r| < d, po, y >∈ mail∧ < r, po >∈ Z(d, p)}
IMM = IMM + receivers , logical = ∅, structural = ∅
for r ∈ IMM do

xb
r = {x| < d, po, y >∈ mail∧ < r, po >∈ Z(d, p)}

send x-message(xb
r,t) to r

logical = logical + ylb

structural = structural + ysb

end for

3. the third step consists in executing the structural changes, changing both M
and Z (algorithm 8 in which change encodes the semantics of the structural
influences as described in 6.1). The newly created simulators are initialized.
In 8, ylbr and ysb

r designate the bag of logical influences, respectively of
structural influences, computed by the corresponding simulator r by calling
their i-message . IMM shall contain the candidates for internal transition,
the receivers of external influences and the newly created entities.

Algorithm 8. Structural changes
M ′, Z′ = change(structural , M, Z)
structural = ∅
for d ∈ M ′ − M do

send i-message(t) to d
logical = logical + ylb

structural = structural + ysb

end for
IMM = IMM ∪ (M ′ − M), M = M ′, Z = Z′

4. the logical influences are propagated (algorithm 9). ylb and ysb are defined
as in 8 and computed when calling l-message. This step and the previous
one are repeated iteratively until there is no structural or logical influences
remaining.
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Algorithm 9. Propagation of the logical influences
list = logical , logical = ∅
receivers = {r| < d, po, y >∈ list∧ < r, po, x >∈ Z(d, p, y)}
for r ∈ receivers do

xb
r = {x| < d, po, y >∈ list∧ < r, po, x >∈ Z(d, p, y)}

send l-message(xb
r,t) to r

logical = logical + ylbr
structural = structural + ysb

r

end for

Algorithm 10. Computes next internal transitions
for d ∈ IMM do

send n-message(t) to d
end for

5. IMM contains now all the simulators which incurred a physical transition
or was newly created. These simulators are then asked to compute the date
of their next internal transition for the next round (algorithm 10).

The use of a global structural change function hinders the possibility to dis-
tribute the model simulation. However, it is possible to overcome this limitation
by composing recursively coupled DEVS entities into DEVS entities as illus-
trated in the figure 1(b). It is performed in three steps: 1) the introduction of
the structure of a coupled DEVS entity as a set of DEVS entities and a number
of input and output ports, 2) the extension of Z for coupling the input and
output ports of the inner DEVS entities to the input and output ports of the
coupled system, 3) the restriction of the structural influences in order to only
modify the structure inside of the coupled system. One obtain a variant of DEVS
in-between DS-DEVS[10] where a single DEVS entity is devoted to structural
changes and ρ-DEVS [3] where all the entities can modify the structure including
themselves.

8 Conclusion

This paper has presented M−DEVS as a DEVS -inspired formalism for speci-
fying the most important features of multi-agent systems, namely reactive and
proactive behavior, concurrency, instantaneity and, most importantly, structure
dynamics. A simple example has been used for illustrating the concepts. An
operational semantics has been defined by providing an abstract algorithm to
run models designed using M−DEVS . A clear distinction has been introduced
between the physical transitions (using the internal and physical influences) and
the computation of the consequences which can be both structural (using the
structural influences) and informational (using the logical influences). These con-
sequences are propagated until the overall structure stabilizes, before computing
the date of the next physical transition.
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Most, if not all, existing MAS platforms produce simulation results which
do not depend only on the model but on the way the model is implemented
and the scheduling ordered, this ordering being at worst arbitrary and at best
randomized. We argue that it is an undesirable state of affairs and we propose
a DEVS -inspired formalism with its algorithms which either delegates the po-
tential ordering conflicts to the model, managing simultaneity, or orders the
physical, logical and structural transitions such that the results do not depend
on the issuing order, properly managing instantaneity and structure dynamics.

From the example, the resulting structure and dynamics reveal themselves
as fairly complex and detailed. Actually, M−DEVS should be thought as a
kind of virtual machine specification for complex system simulation in which
higher level specifications have to mapped. [2] has shown the possibility to map
quantized dynamical systems into DEVS , others have mapped into DEVS or
some of its extensions coupled differential equations and cellular automata [17].
We have illustrated the possibility to equally map multi-agent systems. In our
case, an agent is mapped to a single DEVS entity. It could be further extended for
complex agent architectures. For example, dealing with a variety of environments
could require to separately specify various aspects of an agent to be coordinated,
resulting in a composed architecture.

This proposal has been implemented and tested in the MIMOSA platform
[18,19]. A number of applications are currently under development. From a the-
oretical point of view, a number of other extensions are under development like
local time management, hierarchical coupling structures for holonic multi-agent
systems and management of multiple points of view similar to the AGR ap-
proach [20]. The aim is to provide a formalism and its operational semantics for
multi-level multi-agent systems.

I would like to thank Raphaël Duboz and my anonymous reviewers for helping
me to clarify the issues, and to hopefully present it in a better way.
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