
Innovations Syst Softw Eng (2009) 5:117–127
DOI 10.1007/s11334-009-0085-4

ORIGINAL PAPER

A development methodology for embedded systems
based on RT-DEVS

Angelo Furfaro · Libero Nigro

Received: 15 March 2009 / Accepted: 20 April 2009 / Published online: 5 May 2009
© Springer-Verlag London Limited 2009

Abstract This work is concerned with modelling, analysis
and implementation of embedded control systems using RT-
DEVS, i.e. a specialization of classic discrete event system
specification (DEVS) for real-time. RT-DEVS favours model
continuity, i.e. the possibility of using the same model for
property analysis (by simulation or model checking) and for
real time execution. Special case tools are reported in the
literature for RT-DEVS model analysis and design. In this
work, temporal analysis of a model exploits a translation
in Uppaal timed automata for exhaustive verification. For
large models a simulator was realized in Java which directly
stems from RT-DEVS operational semantics. The same con-
cerns are at the basis of a real-time executive. The paper
describes the proposed RT-DEVS development methodol-
ogy and clarifies its implementation status. The approach is
demonstrated by applying it to an embedded system example
which is analyzed through model checking and implemented
in Java. Finally, research directions which deserve further
work are indicated.

Keywords DEVS · Real-time constraints · Embedded
control systems · Model continuity · Temporal analysis ·
Timed automata · Model checking · Java

1 Introduction

There is a general agreement today about the importance
of using formal tools for rigorous development of real-time

A. Furfaro · L. Nigro (B)
Laboratorio di Ingegneria del Software, DEIS,
Università della Calabria, 87036 Rende, CS, Italy
e-mail: l.nigro@unical.it

A. Furfaro
e-mail: a.furfaro@deis.unical.it

systems which in general have safety and time critical require-
ments to fulfil. However, a known hard problem for the devel-
oper is how to ensure that a given formal model of a system,
preliminarily analyzed from both functional and temporal
viewpoints, is correctly reproduced in an implementation.

This paper describes a design methodology for embedded
control systems, assisted by modelling, analysis and imple-
mentation tools, which makes it possible to experiment with
model continuity [13,16,17,24], i.e. seamless development
where the same model is used, with minimal change, for both
property analysis and real time execution.

The modelling language is RT-DEVS [15,25], i.e. a spe-
cialization of classic discrete event system specification
(DEVS) [27] with a weak synchronous communication
model and constructs for expressing timing constraints.
RT-DEVS owes to DEVS for both atomic and coupled com-
ponent formalization and model continuity.

Previous and on-going work on DEVS-based develop-
ment of real-time systems under model continuity is mainly
driven by simulation, e.g. real-time simulation over a
distributed context like real-time CORBA [5]. In real-time
simulation the controlled environment and other modules are
simulated during development and the simulation clock is
constrained to advance at the same rate of the physical time.
Simulation means are normally adopted due to high-level
modelling and general message communication model.

Special case tools are reported in the literature to sup-
port specifically the usage of RT-DEVS. An application of
RT-DEVS to safety analysis, called timed behavior analy-
sis (TBA), is proposed in [25], where clock matrices are
exploited for generating a timed reachability graph of a given
model. The achieved graph is then explored for checking
whether “unsafe” states can be reached. TBA is used to com-
plement supervisory control techniques [22] for the design
of a controller for a given discrete event system.

123

118 A. Furfaro, L. Nigro

Novel in the work described in this paper is:

– a mapping of the fundamental phases of modelling and
safety/temporal analysis of RT-DEVS systems in terms
of the popular and efficient Uppaal toolbox with timed
automata [4,8,12]. The translation purposely avoids the
use of proprietary tools [25] for conducting state-space
exploration analysis.

– the achievement of concrete tools in Java for RT-DEVS
simulation and final system implementation. The Java-
based approach improves applicability and portability of
RT-DEVS software.

Prototype implementation tools were built by adapting the
existing ActorDEVS agent infrastructure [6,9]. ActorDEVS
is an original lean framework which supports DEVS and
Parallel DEVS formalisms. A key feature of ActorDEVS is
its control-centric character. The developer can customize the
runtime executive. ActorDEVS was successfully exploited,
in a case, for supporting Parallel DEVS components where
conflicts among concurrent state transitions [7] are resolved
in the runtime, a feature which is beyond standard DEVS
[27]. Moreover, an implementation of Parallel DEVS over
the High Level Architecture [11] for modelling and simu-
lation of large and variable structure systems [18,20] was
recently achieved [9]. The control engine of this realiza-
tion is capable of ensuring logical precedence constraints
among simultaneous events through a tie-breaking mecha-
nism. In this paper, a specialization of the ActorDEVS control
engine is described which stems from the abstract operational
semantics of RT-DEVS.

The paper is structured as follows. First RT-DEVS and
its operational semantics are described, then a transforma-
tion process of RT-DEVS specifications into Uppaal is sug-
gested for exhaustive verification activities based on model
checking. The approach is demonstrated through a realistic
embedded control system. The paper goes on by discuss-
ing the implementation status of Java-based development
tools and the programming style. Finally, conclusions are
presented with an indication of directions which deserve fur-
ther work.

2 Background

2.1 DEVS Basics

DEVS [27] is a widespread modelling formalism for
concurrent and timed systems, founded on systems theory
concepts. A DEVS system consists of a collection of one or
more components. Two types of components exist: atomic
(or behavioural), and coupled (or structural) components.
A DEVS atomic component is a tuple AM defined as AM =
〈X, S,Y, δint , δext , λ, ta〉 where:

– X is the set of input values
– S is a set of states
– Y is the set of output values
– δint : S → S is the internal transition function
– δext : Q × X → S is the external transition function,

where Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the set of
total states, e is the elapsed time since last transition

– λ : S → Y is the output function
– ta : S → R

+
0,∞ is the time advance function.

The sets X , S and Y are typically products of other sets. S,
in particular, is normally the product of a set of control states
(also said phases) and other sets built over the values of a
certain number of variables used to describe the component
at hand.

Informal semantics of above definitions are as follows. At
any time the component is in some state s ∈ S. The compo-
nent can remain in s for the time duration (dwell-time) ta(s).
A state s is said to be transitory in the case ta(s) = 0 and it
is said passive if ta(s) = ∞, i.e. when the component can
remain forever in s if no external event interrupts.

Provided no external event arrives, at the end of (supposed
finite) time value ta(s), the component moves to its next state
s′ = δint (s) determined by the internal transition function
δint . In addition, just before making the internal transition,
the component produces the output computed by the output
function λ(s) (see Fig. 1a). During its stay in s, the compo-
nent can receive an external event x which can cause s to
be exited earlier than ta(s). Let e ≤ ta(s) be the elapsed
time since the entering time in s. The component then exits
state s moving to next state s′′ = δext (s, e, x) determined by
the external transition function (see Fig. 1b). As a particular
case, the external event x can arrive when e = ta(s). In this
(collision) case two events occur simultaneously: the internal
transition event and the external transition event. A collision
resolution rule is responsible for ranking the two events and
determining the next state. After entering next state ns, the
new time advance value ta(ns) is computed and the same
story continues. It should be noted that there is no way to
directly generate an output from an external transition. To
achieve this effect a transitory phase, used as destination of
the external transition and whose lambda function generates
the desired output, can be introduced (see Fig. 6).

In practice, an atomic component receives its inputs from
typed input ports and similarly, generates outputs through

λ (s)

s' = δ
in t
(s)

ta(s)
s

Y X

(a)

s' = δ
int
(s)

ta(s)
s

Y X
s''= δ

ext
(s,e,x)

e

(b)

Fig. 1 State transitions. a ta exhaustion; b external event handling

123

A development methodology for embedded systems based on RT-DEVS 119

Component A Component B

external input
coupling

external output
coupling

internal coupling

Fig. 2 A coupled component

typed output ports. Actually X is a set of pairs < inp, v >
where inp is an input port and v the type of values which
can flow through inp. Y is a set of pairs < outp, v > where
outp is an output port. Ports are architectural elements which
enable modular system design. A component refers only to
its interface ports. It has no knowledge about the identity of
cooperating partners.

A coupled component (subnet) is an interconnection of
existing atomic or coupled (hierarchical) components (see
Fig. 2). Formally, it is a structure C M defined as C M =
(X,Y, D, {Md |d ∈ D}, E I C, E OC, I C), where:

– X and Y are input and output sets of the coupled compo-
nent

– D is a set of (sub) component identifiers (or names)
– M is a set of (sub) DEVS components whose intercon-

nection gives rise to the coupled model
– E I C is the external to internal coupling function (for

routing external events to internal components)
– E OC is the internal to external coupling function (for

routing internally generated events to the external envi-
ronment of the coupled component)

– I C is the internal to internal coupling function.

2.2 RT-DEVS concepts

RT-DEVS [25] refines basic DEVS with the following con-
cepts.

1. The dwell-time ta(s) in a state now mirrors the execution
time of an activity associated with the state. In particu-
lar, the execution time is specified by a (dense and static)
time interval [lb, ub], where lower and upper bounds
lb, ub ∈ R

+
0,∞, 0 ≤ lb ≤ ub, express uncertainty in

the activity duration. Default interval of passive states is
[∞,∞] and can be omitted. Transitory (or immediate)
states have interval [0, 0].

2. Non determinism is assumed as collision resolution rule.
3. The communication model is weak synchronous, i.e. non

blocking with (possible) message loss. At any communi-
cation, an output event is always immediately consumed.
If the receiver is not ready, the message is lost. If both
sender and receiver are ready to communicate, the output

event is converted into an input event which is instantly
received.

A time interval [lb, ub] is made absolute at the instant in
time τ the corresponding state s is entered. An internal tran-
sition outgoing s can occur at any time greater than or equal
τ + lb but, to avoid a timing violation, before or at τ + ub.
An external transition fires upon synchronization on an input
event independently of the dwell-time of current phase. It is
assumed that a self-loop external transition does not restart
timing in current phase. Pre-emption and restarting of cur-
rent timing, when desired, can be simulated with the help of
an transitory phase. Graphically (see e.g. Fig. 4), an internal
transition is depicted by a thin oriented edge terminating with
a dashed arrow which specifies the execution of the lambda
(output) function, which can be void. An external transition
is instead drawn by a thick oriented edge. Sending event ev
through outport O P is denoted by the syntax O P!ev. Sim-
ilarly, readiness to accept event ev through input port I P is
expressed by I P?ev. The abstract executor of RT-DEVS ini-
tializes current time to 0 and iterates the following two basic
steps.

1. The next minimal time at which new internal transitions
can fire is determined and it becomes the current time.

2. All candidate internal transitions which can occur at cur-
rent time are determined. Let Ci be an atomic component
with one such a transition. Let the lambda function of cur-
rent state of Ci consist of O P!ev. Let C j be a component
coupled with Ci where input port I P matches output port
O P of Ci . Provided C j has an outgoing transition from
current state annotated with I P?ev, the two transitions
(internal in Ci and external in C j) are immediately exe-
cuted with the event sent by Ci synchronously transmit-
ted to C j . In the case C j is not ready to receive Ci event,
the output transition in Ci is still made but the event gets
lost. The above activity is repeated for each candidate
internal transition. When the candidate set empties, the
executor goes back to step 1.

It is worthy of note that while weak synchronization is a
useful feature in general real time systems (e.g., a message
with a sensor reading can be lost for a missing synchroniza-
tion, in which case a controller can use previous sensor data),
it increases the burden of the RT-DEVS modeller when the
system cannot tolerate synchronization losses. Model valida-
tion through simulation or verification can help in assessing
correct system behaviour.

3 A traffic light controller

The following describes the modelling of a traffic light con-
trol system (TLC) [21]. In the proposed scenario, the traffic

123

120 A. Furfaro, L. Nigro

StreetLight (SL)

Ambulance (A)Controller (C)

AvenueLight (AL)

L

L

A

SL

A
AL

Fig. 3 Traffic light coupled model

flow at an intersection between an avenue and a street is
regulated by two traffic lights. The lights are operated by a
control device (controller) that, in normal conditions, alter-
nates in a periodic way the traffic flow in the two direc-
tions. In addition, the controller is able to detect the arrival
of an ambulance and to handle this exceptional situation by
allowing the ambulance crossing as soon as possible and in
a safe way. For the sake of simplicity, it is assumed that at
most one ambulance can be in the closeness of the intersec-
tion at a given time. During normal operation conditions, the
sequence green-yellow-red is alternated on the two direc-
tions with the light held green for 45 time units (tu), yellow
for 5 tu and red on both directions for 1 tu. The intersection
is equipped with sensors able to detect the presence of an
ambulance at three different positions during its crossing. As
soon as the ambulance arrival is detected, a signal named
“approaching” is sent to the controller. When the ambulance
reaches the nearness of the intersection the signal “before” is
issued. After the ambulance completes the crossing the signal
“after” is generated. The controller reacts to the “approach-
ing” event by leading the intersection to a safe state, i.e.
bringing both lights on red.

When the signal “before” is received, the controller
switches to green the light on the ambulance’s arrival direc-
tion. After the ambulance leaves the intersection (“after”
event) the controller turns the green light to red and resumes
its normal sequence. Figure 3 illustrates an RT-DEVS cou-
pled model of the TLC system which is made of four
connected components: there are two instances of the Light
component, which respectively correspond to the light on the
avenue and that on the street, one Ambulance component,
which models the behaviour of the sensing equipments of
the intersection, and one Controller component which imple-
ments the above described control logic. Couplings in Fig. 3
are realized between matching input/output ports. X /Y sets
for the Controller are as follows:
X={<A,appr>,<A,before>,<A,after>}

Y={<SL,toR>,<SL,toY>,<SL,toG>,<AL,toR>,

<AL,toY>,<AL,toG>}

Fig. 4 Light behaviour

Fig. 5 Ambulance behaviour

Component behaviour is specified in Figs. 4, 5 and 6 where
an oval box represents a phase of the component. The com-
plete state set S obviously depends also on the component
local variables. For instance, the Controller has a dir var-
iable whose value indicates the avenue or the street, and
logical variable amb where information about an arriving
ambulance is maintained when current phase of the con-
troller cannot be pre-empted. Similarly, light components
keep the light status in the three logical variables r,y, and g.
A light component (Fig. 4) is normally in the Home phase
with default interval [∞,∞]. The arrival of a toR, toY or
toG event causes an external transition respectively to toRed,
toYellow or toGreen phase which is then exited after 1
time unit by an internal transition reaching again Home.
The lambda function associated with the internal transitions
specifies the required state changes in the light.

Behaviour of the ambulance (Fig. 6) is cyclic. After a
non deterministic time in [40, 80], the ambulance announces
itself by choosing an arriving direction and sending the appr
event to the controller. From the BEFORE phase and after
a time in [8, 10] the ambulance sends a before event to the
controller. Finally, form the AFTER phase the ambulance
signals its passage through the intersection by sending an
after event with an elapsed time in [6, 8]. In Fig. 6, the
normal and exceptional behaviours of the controller can be
distinguished. The initial phase is BR1 (both lights reds).
Under normal behaviour, the controller steps through a
light cycle (e.g. from BR1, to AV to AY to BR2 for the

123

A development methodology for embedded systems based on RT-DEVS 121

Fig. 6 Controller behaviour

avenue, and from BR2 to SG, to SY to BR1 for the street).
It should be noted that a “both reds” condition (BR1 or BR2)
is always maintained for 1 time unit. Avenue and street cycles
strictly alternate. A normal cycle is started provided no ambu-
lance is sensed. During a light cycle the arrival of ambulance
pre-empts normal behaviour. In particular, a green phase (AG
or SG) is immediately abandoned by anticipating the next
yellow phase and then finishing the cycle. However, current
yellow phase is never pre-empted. All of this guarantees the
duration of the yellow phase (in the example in [21] it was
erroneously made possible, in worst case conditions, that a
yellow phase doubles its duration). It should be noted the
efforts taken in Fig. 6 for not losing the approaching sig-
nals. As soon as an ambulance is sensed, the logical variable
amb is set to true. At cycle end, the presence of an ambu-
lance requires an exceptional behaviour to be executed by
first reaching the BRA (both reds with ambulance) phase.
From BRA, and depending on the arriving direction of the
ambulance, the controller senses events from the ambulance
and commands accordingly the light by turning it first green,
then yellow after ambulance passage and finally red. Ambu-
lance events (e.g. before and after) are processed by external
transitions. Light control is instead realized through internal
transitions. Following an exceptional behaviour, the control-
ler restarts the normal cycle by giving the turn to the other
direction.

3.1 Property requirements for the TLC

The TLC has safety and (bounded) liveness (e.g. deadline)
properties, besides absence of deadlock or livelock condi-
tions.

1. Traffic must never be allowed in both directions simulta-
neously. For safety reasons it is required that the status
of the traffic lights be consistent at all times. To avoid
accidents among vehicles crossing the intersection, when
on a direction the light is green or yellow, thus allowing
traffic in the direction, the light on the opposite direction
must be red.

2. Lights should be both reds at a before event. No vehicle
should be allowed to cross the intersection at a before
event.

3. Deadline of 3 tu for turning green the light after a before
event. Assuming that it takes at least 4 tu for the ambu-
lance to reach the intersection from the time instant of
the before signal, it follows that there exists a deadline
of 3 tu for the controller to turn green the light on the
arriving direction, also considering that a light takes 1 tu
for changing its status.

4. Correct sequencing of the lights on each direction.
A correct behaviour requires that only transitions from
red to green, from green to yellow and from yellow to
red should be allowed. A transition out of this sequence
denotes a wrong sequence.

5. The ambulance must be live. In particular, after signalling
an approach, it must be guaranteed that the ambulance
model comes back to its Home phase.

4 Temporal analysis using UPPAAL

Weak synchronization and message losses increase the need
for functional, safety and temporal analysis of an RT-DEVS
model. In this work an RT-DEVS model is preliminary trans-
formed into Uppaal [4] for model checking. Uppaal was
chosen because it supports data variables and weak synchro-
nization through broadcast channels [26].

4.1 An overview to Uppaal

Uppaal allows to verify systems modelled as networks of
timed automata (TA) [3], i.e. timed finite state machines. TA
synchronize to one another (rendezvous) by CSP-like chan-
nels which do not carry data values.

States (locations) of an automaton are linked by a set of
edges (transitions). Time is handled by means of clock vari-
ables. Clocks have only a reset operation of the form x = v

where v is a non negative integer value. In addition a clock
x can be compared against a non negative integer constant.
Clocks of a system are automatically increased following
the rate of advancement of the (hidden and dense) system
time. Uppaal extends basic TA with integer (and boolean)
variables and arrays of integers, clocks and channels. TA
processes are parametrized template processes. Global data
variables can be used for process synchronization. State

123

122 A. Furfaro, L. Nigro

transitions admit three (optional) components: (i) a guard,
(ii) a synchronization operation (? for input and ! for out-
put) on a channel, and (iii) an action-part consisting of a
set of clock resets and variable assignments. The action part
of an output command is executed before that of the match-
ing input command. A guard (true if omitted) is a boolean
expression built over data variables and clock constraints. It
defines the transition enabling condition. For bounded delay
in a location s, a clock invariant can be attached to s as a
progress condition. Uppaal supports also committed loca-
tions which must be exited immediately (without passage of
time), and urgent channels whose synchronizations must be
fired as soon as possible.

A channel can also be declared as broadcast for allow-
ing a synchronous communication among multiple timed
automata where one automaton plays the sender role and a
(possibly empty) set of automata acts as receivers. Commu-
nications by broadcast channels are weak because the sender
executes its state transition even if there is no receiver ready
to synchronize.

Uppaal consists of a graphical editor, a simulator and
a verifier. The simulator executes a specification and visu-
ally documents the reached execution state by traversing the
model state graph. When branches are encountered (multiple
transitions which can fire starting from current state) one
choice can be made interactively by the user or the simula-
tor can be instructed to proceed randomly. The simulator is
useful for model debugging and for examining a diagnostic
trace built by the verifier. For systematic property assess-
ment, though, the verifier must be used which tries to build
the reachability graph of the model, where execution states
are organized into equivalence classes (zones).

4.2 Query specifications

Safety (e.g., absence of deadlock) and bounded liveness (e.g.
an end-to-end time constraint) properties can be verified by
reachability analysis using a subset of TCTL formula [2,4]
for networks of timed automata. Admitted formulas refer to
local state properties, i.e. boolean expressions over predicates
on locations and integer variables and clock constraints.

E <> ϕ means possibly ϕ (i.e., a state can be reached in
which ϕ holds).

A[]ϕ means that ϕ holds invariantly,i.e. in all the reach-
able states.

E[]ϕ means that ϕ holds potentially always, i.e. there
exists at least one path where ϕ holds in all the reached
states.

A <> ϕ means that ϕ holds always eventually (which is
equivalent to not E[](not ϕ)).
ϕ ��� ψ means that ϕ always leads to ψ , i.e. each path

departing from a reachable state where ϕ holds leads to

Fig. 7 Translation schema from RT-DEVS to Uppaal

at least one state where ψ holds (which is equivalent to
A[](ϕ imply A <> ψ).

4.3 Mapping RT-DEVS onto Uppaal

The following describes the translation rules which are used
to map an RT-DEVS model into a network of Timed Auto-
mata. A translation summary is provided in Fig. 7.

– An RT-DEVS component is mapped onto an Uppaal
template, which has a local clock x .

– Phases of the source component correspond one-to-one
to locations of the template.

– Each pair of matching ports (e.g. the output port A of
Ambulance and the input port A of Controller) together
with a data/control symbol, is mapped on to a broad-
cast channel. For instance, broadcast channels A_appr,
A_before and A_after are shared between Ambulance
and Controller etc.

– Templates receive as parameters the broadcast channels
corresponding to used input/output ports.

– Shared communication data, e.g. the dir variable used by
Ambulance and Controller, become global declarations.

– A strict time interval [lb, ub] of a phase PH of an
RT-DEVS component implies the invariant x ≤ ub is
added to location PH (see Fig. 7). Default time interval
[∞,∞] is implicit. Time interval [0, 0] of a transitory
phase is mapped on the invariant x ≤ 0. Uppaal requires
bounds of a time interval to be expressed by naturals.

– An internal transition of the RT-DEVS model is associ-
ated with a timed edge having the guard x ≥ lb. The
update portion of the command on the edge contains the
effect of the output function. An external transition is
associated with an untimed edge which in turn relates to
an input synchronization with a broadcast channel.

The above rules were applied to obtain the models in
Figs. 8, 9 and 10 which depict the Uppaal version of
RT-DEVS TLC components. In Fig. 9, random choice of
the ambulance arriving direction is simply achieved by
non deterministic selection, on the edge between Home and

123

A development methodology for embedded systems based on RT-DEVS 123

Fig. 8 Light template

Fig. 9 Ambulance template

APPR locations, of the value of the local variable d
between ave and str values (type ave_str is an alias of
int[ave,str]).

As one can see, the Uppaal templates correspond as close
as possible to source RT-DEVS components. Therefore, the
translation can be easily automated. The resultant Uppaal
system model is the parallel composition of one instance of
the Controller template, two instances of the Light template
and one instance of the Ambulance.

4.4 Verification of the TLC

The timed automata model of the TLC was verified using the
Uppaal version 4.1.0. Table 1 illustrates some TCTL queries
issued to the Uppaal verifier used for property analysis.

The first query checks for the absence of deadlock in
the model. It was found to be satisfied thus confirming that
despite weak synchronization and (possibly) message losses
the system does not ever reach a deadlock situation.

The second and the third queries are used to check that the
unsafe state where the traffic is allowed in both directions is
never reached. The second query ask if invariantly whenever
the light along the avenue is green or yellow (i.e. the traffic
is allowed along this direction) this implies that the light on
the street is red. The third query is the dual of the second.

Fig. 10 Controller template

123

124 A. Furfaro, L. Nigro

Table 1 Uppaal queries for property analysis of TLC

Property Query Result

Absence of deadlocks A[] !deadlock Satisfied

Lights consistency A[] (AL.g==1||AL.y==1) Satisfied
imply SL.r==1

Lights consistency A[] (SL.g==1||SL.y==1) Satisfied
imply AL.r==1

Ambulance is live A.APPR–>A.Home Satisfied

Deadline checking A[] flag imply z<=3 Satisfied

Because both were found satisfied the model is safe from this
point of view.

Correct sequencing of lights was verified by introducing
three additional variables in the Light template for storing the
previous status of the light, by changing the Light behaviour
so as to conserve previous status at any new assignment, and
by checking that it is always true that a green status is pre-
ceded by the red status etc. These details and queries are
omitted for simplicity.

Liveness of the ambulance is simply verified by checking
that a global state where Ambulance find itself in the APPR
location leads to a state where it find itself in the Home
location, thus confirming that whenever an ambulance is
going to reach the intersection it will eventually complete the
crossing.

Finally, a few additional words relate to deadline checking.
The Uppaal model was decorated by introducing the global
logical variable flag and the extra clock z. Variable flag is set
to true in the Ambulance template when the before event is
sent to controller, and reset in the Light template (therefore
in both instances of the template) when the green status is
installed (on the exiting edge from the toGreen location in
Fig. 8). Clock z is reset by the transition from BEF to AFT
in the Ambulance. It was found that not only the required
deadline is fulfilled but that in reality 1 tu is always sufficient
for the controller, following a before signal, to turn green the
light in the arriving direction of the ambulance.

5 Implementation status

RT-DEVS was prototyped in Java using an adaptation of
ActorDEVS minimal agent-based framework [6,9]. The und-
erlying agent computational model is a light-weight variant
of the Actor model [1]. An actor is a threadless object which
has a public message interface, a set of hidden data vari-
ables and a behaviour modelled as a finite state machine.
An actor is at rest until a message arrives. Actors commu-
nicate one with another by asynchronous message passing.
Message processing is atomic and is the responsibility of the
handler() method (Fig. 11) which implements the actor
dynamic behaviour (the become()method changes current
actor state). For distributed execution, actors can be parti-

RTDEVS

+ ti(ph:int):TimeInterval
+ activity(ph:int):void

Time
<<interface>>

+ add(t:RelativeTime):AbsoluteTime
+ sub(t:RelativeTime):AbsoluteTime
+ add(t:AbsoluteTime):AbsoluteTime
+ sub(t:AbsoluteTime):AbsoluteTime

AbsoluteTime
<<interface>>

+ add(t:RelativeTime):RelativeTime
+ sub(t:RelativeTime):RelativeTime

RelativeTime
<<interface>>

+ value():long

AbsoluteDiscreteTime

+ value():double

AbsoluteDenseTime

+ value():long

RealtiveDiscreteTime

+ value():double

RelativeDenseTime

DiscreteTimeInterval DenseTimeInterval

TimeInterval
<<interface>>

min max min max Clock
<<interface>>

SimulationDenseTimeClockSimulationDiscreteTimeClock

RealTimeClock

+ now():AbsoluteTime

ControlMachine

RTDEVS_Simulation

*

Message
*

clock msgQueue

Timer Output

Input

V

V

Actor

+ send(m:Message)
+ become(nextstate:int):void
+ handler(m:Message):void
...

AtomicDEVS

+ delta_int(ph:int):int
+ delta_ext(ph:int,e:RelativeTime,x:Message):int
+ lambda(ph:int):void
+ ta(ph:int):RelativeTime
+ now():AbsoluteTime

Fig. 11 Simplified UML class diagram of RT-DEVS framework

123

A development methodology for embedded systems based on RT-DEVS 125

Fig. 12 Programming interface of RTDEVS atomic components

tioned into execution theatres [10]. Within a theatre, actors
are transparently orchestrated by a control machine which
furnishes basic message-based time-sensitive scheduling and
dispatching services. These services can be customized.

ActorDEVS was built over actors by encapsulating DEVS
semantics within the handler() method of the Atomic-
DEVS abstract base class (see Fig. 11). A specific DEVS
component derives from AtomicDEVS and focuses only on
a redefinition of DEVS basic functions (delta_int(),
delta_ext() etc.). Typed input/output ports are suppor-
ted respectively by parametric classes Input<V> and
Output<V> which are extensions of the Message base
class. Typically, V is a user defined class which specifies
the data/control symbols which can flow through the port.
Input is a subclass of Output. Each component exports
its input port types. Output ports are instantiated by a con-
figuration method (e.g. the main() method) and passed to
relevant components e.g. at construction time. This method
is also in charge of linking matching ports for establishing a
coupled model.

RT-DEVS specializes the DEVS behaviour provided by
AtomicDEVS according to new time model and weak syn-
chronous communication model.

Both discrete and dense time models are supported. The
interfaces AbsoluteTime and RelativeTime, heir of
the base interface Time, respectively model absolute and
relative time notions. The framework furnishes concrete
implementation classes for the dense and discrete cases. In
particular, a concrete time object has a value() method
which returns a long for discrete time, and a double for
dense time. The interface TimeInterval abstracts the
notion of a time interval and suitable concrete implemen-
tations of it are given.

An RT-DEVS atomic component is programmed as a class
which derives directly or indirectly from the RTDEVS abs-
tract base class, which exposes the contract of operations (see
also the extract in Fig. 12).

A specific component must implement the abstract
methods of RTDEVS in order to specify its behaviour. For
simulation purposes the activity()method can be left to
its default (no-operation) body. Phases are coded as integers.
Internal and external transitions return the int value which
identifies the next phase. It should be noted that component
methods have direct access to the whole state by accessing the

Fig. 13 Class of light events

Fig. 14 Class light of the TLC

component local data variables. The ti() method returns
the (dense or discrete) time interval associated with the given
state. Method now() returns the AbsoluteTime value of
current time.

The resulting programming style is exemplified by show-
ing details of the Light atomic component. Light events were
modelled as instances of the LightEvent class (Fig. 13).
The Light component, shaped for prototyping and simulation
purposes, is illustrated in Fig. 14.

For components with non punctual time intervals (e.g.
Ambulance and Controller) the ta()method returns a num-
ber uniformly distributed in the time interval of current phase.

Java TLC model was executed using dense time and the
RTDEVS_Simulation control engine which mimics the

123

126 A. Furfaro, L. Nigro

RT-DEVS operational semantics. RTDEVS_Simulation
receives the (AbsoluteDenseTime) simulation time limit
(e.g. 107) and a simulation clock (here a Simulation-
DenseTimeClock). RTDEVS maintains a priority queue
of timers ranked by ascending fire times (absolutized ta
values). A Timer object is a timed message. Before timer
expiration, both the remaining time or the elapsed time since
its setting can be checked.

The engine fires most imminent internal transitions one
at a time and updates the simulation clock to the fire time
accordingly. The output function then sends synchronously
its message to the coupled component (actually, the RTDEVS
handler() is directly invoked with the message as an argu-
ment, without involving the control machine). In the case the
partner component is not ready for synchronization, the sent
message is simply lost.

During the TLC simulation, a Monitor object (trans-
ducer) gets informed of event occurrences and checks system
properties (e.g. it counts the number of times an hazardous
state, e.g. green-green of the two lights, is reached, and mea-
sures the maximal time distance between the occurrence time
of the green light in the arrival direction of the ambulance,
and that of the immediately preceding before event, etc.).
Also under simulation, the TLC was found to be temporally
correct.

For real-time execution, RT-DEVS naturally requires a
multi-processor implementation (each component runs on
its own processor, as was assumed by temporal analysis).
The ta() function is no longer useful. The activity()
method should be programmed with the (sub)algorithms to
be carried out in each phase of the component. All other
methods remain unchanged. Of course, a real-time executive
has to possibly compensate for violations of activity dura-
tions. An activity can terminate earlier than its lower bound
duration or after its upper bound. In the first case the engine
can delay the firing of the internal transition until the real
time clock reaches the lower bound. In the latter case activity
interruption and concepts of adaptive scheduling and impre-
cise computation [14] could help. As a particular scenario, an
RT-DEVS model could be analyzed and executed on a sin-
gle processor, by ensuring atomicity and mutual exclusion of
activities.

6 Conclusions

In this paper, a development methodology is proposed which
enables specification, analysis and Java implementation of
RT-DEVS based embedded control systems operated under
model continuity, i.e. where the same model is reused with
minimal change during different design stages—from model
design to functional/non functional property evaluation down
to final system execution. The approach makes it possible

to replace the runtime control engine used for executing a
model, which can be sensitive to simulation or real-time.

A properly abstracted model, mainly focussing on timing
aspects, can be thoroughly studied by exhaustive verifica-
tion techniques. In particular, model checking activities rest
on a translation of an RT-DEVS model onto the timed auto-
mata of Uppaal. All of this avoids the use of proprietary
analysis tools as described in [25], and opens to the exploita-
tion of efficient algorithms and data structures of the popular
Uppaal toolbox [26]. Of course, in the case of large models
which can be difficult to analyze with model checking, the
approach depends on simulation.

Current implementation tools are based on an adaptation
of a lean and customizable agent framework [6,9] in Java.

On-going and future work is directed at:

– experimenting with real-time executives using the Real-
time Specification for Java platform [23]

– extending the approach to the distributed context using
standard middleware like HLA/RTI or real-time CORBA
[19]

– building development tools for visual modelling, proto-
typing/simulation, and automatic generation of Java code
and Uppaal XML code.

Another interesting and challenging direction of research
will be concerned with a possible exploitation in RT-DEVS
systems of the parallelism offered by modern multi-core
architectures.

References

1. Agha G (1986) Actors: a model for concurrent computation in dis-
tributed systems. The MIT Press, Cambridge

2. Alur R, Courcoubetis C, Dill DL (1993) Model checking in dense
real-time. Inf. Comput. 104(1):2–34

3. Alur R, Dill DL (1994) A theory of timed automata. Theor. Com-
put. Sci. 126(2):183–235

4. Behrmann G, David A, Larsen KG (2004) A tutorial on Uppaal.
In: Bernardo M, Corradini F (eds) Formal methods for the design
of real-time systems, LNCS, vol 3185. Springer, Heidelberg,
pp 200–236

5. Cho Y, Hu X, Zeigler B (2003) The RTDEVS/CORBA environ-
ment for simulation-based design of distributed real-time systems.
Simulation 79(4):197–210

6. Cicirelli F, Furfaro A, Nigro L (2006) A DEVS M&S framework
based on Java and actors. In: Proceedings of second European mod-
eling and simulation symposium (EMSS’06). Barcelona, Spain

7. Cicirelli F, Furfaro A, Nigro L (2007) Conflict management in
PDEVS: An experience in modelling and simulation of time Petri
nets. In: Proceedings of summer computer simulation conference
(SCSC’07), pp 349–356

8. Cicirelli F, Furfaro A, Nigro L (2007) Using TPN/Designer and
Uppaal for modular modelling and analysis of time-critical sys-
tems. Int. J. Simul. Syst. Sci. Technol. 8(4):8–20

9. Cicirelli F, Furfaro A, Nigro L (2008) Actor-based simulation of
PDEVS systems over HLA. In: Proceedings of 41st annual simu-
lation symposium (ANSS’08), pp 229–236

123

A development methodology for embedded systems based on RT-DEVS 127

10. Cicirelli F, Furfaro A, Nigro L (2008) An agent infrastructure over
HLA for distributed simulation of reconfigurable systems and its
application to UAV coordination. Simulation: transactions of the
society for modeling and simulation international. doi:10.1177/
0037549708100187

11. Defense Modeling and Simulation Office: HLA-RTI. http://www.
dmso.mil/public/transition/hla

12. Furfaro A, Nigro L (2007) Modelling and schedulability analysis
of real-time sequence patterns using time Petri nets and Uppaal.
In: Proceedings of international workshop on real time software
(RTS’07), pp 821–835

13. Furfaro A, Nigro L, Pupo F (2006) Modular design of real-time
systems using Hierarchical Communicating Real-time State
Machines. Real Time Syst 32(1/2):105–123

14. Halang WA (1992) Load adaptive dynamic scheduling of tasks
with hard deadlines useful for industrial applications. Computing
47:199–213

15. Hong J, Song H, Kim T, Park K (1997) A real-time discrete-event
system specification formalism for seamless real-time software
development. Discrete Event Syst Theory Appl 7:355–375

16. Hu X, Zeigler B (2004) Model continuity to support software
development for distributed robotic systems: A team formation
example. J Intell Robot Syst 39(1):71–87

17. Hu X, Zeigler B (2005) Model continuity in the design of dynamic
distributed real-time systems. IEEE Trans Syst Man Cybern A Syst
Hum 35(6):867–878

18. Hu X, Zeigler B, Mittal S (2005) Variable structure in devs
component-based modelling and simulation. Simulation 81(2):
91–102

19. Object Management Group: RealTime-CORBA Specification.
http://www.omg.org/docs/formal/03-11-01.pdf

20. Posse E, Vangheluwe H (2007) Kiltera: a simulation language for
timed, dynamic structure systems. In: Proceedings of 40th annual
simulation symposium (ANSS’07), pp 293–300

21. Raju SCV, Shaw AC (1994) A prototyping environment for spec-
ifying and checking Communicating Real-time State Machines.
Softw Pract Exp 24(2):175–195

22. Ramadge RJ, Wonham WM (1987) Supervisory control of a class
of discrete event processes. SIAM J Control Optim 25(1):206–230

23. RTSJ. http://jcp.org/aboutJava/communityprocess/first/jsr001/rtj.
pdf

24. Shang H, Wainer G (2008) Dynamic structure devs: improving the
real-time embedded systems simulation and design. In: Proceed-
ings of 41st annual simulation symposium (ANSS’08), pp 271–278

25. Song H, Kim T (2005) Application of real-time DEVS to analy-
sis of safety-critical embedded control systems: railroad-crossing
example. Simulation 81(2):119–136

26. Uppaal. http://www.uppaal.com
27. Zeigler BP, Praehofer H, Kim T (2000) Theory of modeling and

simulation, 2nd edn. Academic Press, New York

123

http://dx.doi.org/10.1177/0037549708100187
http://dx.doi.org/10.1177/0037549708100187
http://www.dmso.mil/public/transition/hla
http://www.dmso.mil/public/transition/hla
http://www.omg.org/docs/formal/03-11-01.pdf
http://jcp.org/aboutJava/communityprocess/first/jsr001/rtj.pdf
http://jcp.org/aboutJava/communityprocess/first/jsr001/rtj.pdf
http://www.uppaal.com

	A development methodology for embedded systemsbased on RT-DEVS
	Abstract
	1 Introduction
	2 Background
	2.1 DEVS Basics
	2.2 RT-DEVS concepts

	3 A traffic light controller
	3.1 Property requirements for the TLC

	4 Temporal analysis using Uppaal
	4.1 An overview to Uppaal
	4.2 Query specifications
	4.3 Mapping RT-DEVS onto Uppaal
	4.4 Verification of the TLC

	5 Implementation status
	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

