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Abstract Virtual Reality-based simulation technology

has evolved as a useful design and analysis tool at an early

stage in the design for evaluating performance of human-

operated agricultural and construction machinery. Detect-

ing anomalies in the design prior to building physical

prototypes and expensive testing leads to significant cost

savings. The efficacy of such simulation technology

depends on how realistically the simulation mimics the real-

life operation of the machinery. It is therefore necessary to

achieve ‘real-time’ dynamic simulation of such machines

with operator-in-the-loop functionality. Such simulation

often leads to intensive computational burdens. A distri-

buted architecture was developed for off-road vehicle

dynamic models and 3D graphics visualization to distribute

the overall computational load of the system across multiple

computational platforms. Multi-rate model simulation was

also used to simulate various system dynamics with dif-

ferent integration time steps, so that the computational

power can be distributed more intelligently. This architec-

ture consisted of three major components: a dynamic model

simulator, a virtual reality simulator for 3D graphics, and an

interface to the controller and input hardware devices.

Several off-road vehicle dynamics models were developed

with varying degrees of fidelity, as well as automatic

guidance controller models and a controller area network

interface to embedded controllers and user input devices.

The simulation architecture reduced the computational

load to an individual machine and increased the real-time

simulation capability with complex off-road vehicle system

models and controllers. This architecture provides an

environment to test virtual prototypes of the vehicle systems

in real-time and the opportunity to test the functionality of

newly developed controller software and hardware.
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1 Introduction

Globalization has put tremendous pressure on US manu-

facturers to reduce the cost of design and manufacturing

products while maintaining quality and reliability. In par-

ticular, manufacturers of off-road machinery face a difficult

challenge as the cost of design, development, and proto-

typing is very high due to the size and complexity of their

products. A major portion of this cost involves the time

taken to design and physically prototype machines and

iterate through the design process based on the evaluation

of the prototype. A long product development cycle time

can cause significant delays in the introduction of a product

to the market and a loss of the first-to-market position. In

addition, modern off-highway machines are truly mecha-

tronic machines in the sense that they are based on several

engineering technologies including mechanisms, fluid

power (hydraulics), electronics and embedded control. The

design of such machine requires substantial amounts of

systems integration, and thus early virtual prototyping and

hardware-in-the-loop (HIL) testing is necessary for system

design.
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Advances in virtual reality (VR) technology offer

exciting possibilities in this regard. In manufacturing, VR

technology can be used to rapidly develop digital proto-

types of the planned or existing products. VR-based digital

prototyping, also called virtual prototyping, offers a real-

istic and flexible presentation of, and interaction with the

digital prototypes (Sastry and Boyd 1998; Howard and

Vance 2007). The main goal of virtual prototyping is to

provide an immersive and interactive virtual environment

for the design engineers and product users to examine the

accuracy of and usability of the design, which is achieved

through immersive displays, haptics, and other sensory

input devices (Sastry and Boyd 1998). Virtual prototyping

offers a faster and lower cost environment to test the new

product designs or modifications to ensure that minimal

problems occur at the production stage. The reduced

physical prototyping and design cycle will substantially

reduce the product development time and cost while

improving the product quality (Savall et al. 2002; Howard

and Vance 2007).

Models of product system dynamics and simulation are

essential components of the virtual prototyping (De Sa and

Zachmann 1999; Antonya and Talaba 2007; Howard and

Vance 2007). To fully utilize virtual prototypes, these

prototypes must be based on high-fidelity dynamic simu-

lation, which not only includes, at times, a complete non-

linear model of the entire machine but also has realistic

controller and operator interfaces. High-fidelity dynamic

model simulation and realistic visualization helps design

engineers understand the behavior of the new or existing

off-road vehicle systems so that modifications or iterations

through the product design and development cycles can be

accelerated. In addition to rapid virtual prototyping,

dynamics model simulation and VR visualization provide

the benefits of easier and low-cost modeling and testing

environment and convenience for studying user’s percep-

tion and interaction with the new design (Cremer et al.

1996; Schulz et al. 1998; Kang et al. 2004; Castillo-Effen

et al. 2005).

Various virtual prototyping applications using system

dynamics model simulation and VR have been proposed in

the literature to aid in the design, test and manufacture of

various vehicle system products (Cremer et al. 1996; Sastry

and Boyd 1998; Schulz et al. 1998; Fales et al. 2005;

Antonya and Talaba 2007; Howard and Vance 2007). The

National advanced driving simulator (NADS) facility at the

University of Iowa (Cremer et al. 1996) provided an

operator-in-the-loop simulation system which has been

used in transportation studies, virtual prototyping and

medical research. Schulz et al. (1998) developed an envi-

ronment for visualizing car-body virtual prototypes.

Cuadrado et al. (2004) developed a virtual prototype of a

car to evaluate the trajectory responses and optimize the

vehicle design. A multi-body system dynamics model was

used to simulate the physical behavior of the system.

Castillo-Effen et al. (2005) proposed a distributed archi-

tecture for modeling and visualization of multiple vehicles.

Eberhard and Li (2006) also developed several simulation

systems based on the VR and multi-body system dynamics.

Antonya and Talaba (2007) developed a VR-based product

evaluation and modification environment for mechanical

systems.

In the area of virtual assembly, Johnson and Vance

(2001) developed an assembly system using a physics

engine to simulate the motion of virtual objects. Kim and

Vance (2003) expanded this system with haptic capability,

and Howard and Vance (2007) modified the system to

develop a haptics-based desktop virtual assembly system.

Similar virtual assembly systems were developed by

Jayaram et al. (1999), Coutee and Bras (2002), Wan et al.

(2004), and Zhu et al. (2004). VR has also provided an

environment for simulating tele-operation and monitoring

of robots and autonomous vehicles (Lin and Kuo 1997;

Gracanin et al. 1999) and an interactive environment for

vehicle controller design and performance evaluation

(Eberhard and Li 2006). However, generality and flexibil-

ity of adding new devices or machines to the simulation

system were not emphasized in most of these works, which

may limit the wider applicability of the associated systems.

In addition, it is important that off-road vehicle simulation

and visualization systems include operator-and-controller-

hardware-in-the-loop capability, which is essential to test

the performance of new software and hardware controller

devices in various field conditions that may be very diffi-

cult or expensive to find in the real world.

For hardware- and operator-in-the-loop simulation and

VR visualization, real-time dynamics simulation is

required to allow users to intuitively interact with the

realistic virtual prototypes and to evaluate the performance

of physical hardware. However, achieving real-time simu-

lation goals becomes challenging when high-fidelity

dynamic model simulation is required along with the

realistic virtual reality visualization (Antonya and Talaba

2007; Howard and Vance 2007). In most of the systems

mentioned earlier, real-time simulation was not achieved or

was limited to moderately sized dynamic models. To meet

these requirements and facilitate virtual prototyping of off-

road vehicle systems, there is a need to develop a generic

and flexible modeling, simulation and visualization system.

The overall goal of this work was to develop a generic and

flexible real-time VR-based simulation system for off-road

dynamics models with operator and hardware in the loop

configuration. The specific objectives were to:

• Develop a general-purpose, real-time, dynamic simu-

lator for off-road vehicles in a VR environment with
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controller-hardware-and-operator-in-the-loop

capability,

• Provide plug and play type functionality for simulation

architecture requiring minimal effort to switch between

models and controllers, and

• Enhance the real-time capability of the simulation using

distributed and multi-rate simulation techniques.

2 Real-time simulation architecture

A system is said to be a real-time system if the correctness

of the system responses depends on both the accuracy and

timeliness of the computation (Stankovic 1988). For real-

time systems, even though a computation generates the

correct system responses, the responses could be regarded

as unsuccessful if they lag physical time (Glinsky and

Wainer 2002). A real-time VR-based simulation is required

to enable the user to visualize and perceive the effect of

their actions during the simulation in real-time (Antonya

and Talaba 2007). A primary goal of this work was to

provide a real-time simulation environment to the users,

which is also flexible, extendable and scalable. As men-

tioned before, this goal of real-time VR-based simulation

of off-road vehicles is challenging because of the heavy

computational load required. To achieve this goal, a dis-

tributed vehicle simulation and visualization architecture

(Fig. 1) was developed. The architecture consisted of three

components: a vehicle dynamics model and model simu-

lator, a VR geometric model and visualization system and

an interface to controller and input hardware devices. The

architecture provided the flexibility of distributing different

components of the system across multiple processors to

harness more computational capacity for the simulation.

All three components of the simulation architecture were

implemented in such a way that the modeling, simulation

and visualization systems were highly flexible to allow

modifications without major programming efforts (Castillo-

Effen et al. 2005). Existing technologies were surveyed to

identify the best candidates for the implementation to meet

the following three primary requirements.

1. Modifiable Easy to modify the visualization environ-

ment as well as swappability between available geo-

metric and dynamic models

2. Portable across multiple environments

3. Extendable Easy to extend the system to include more

dynamic models and additional hardware interfaces

2.1 Modeling and simulation environment

and dynamics modeling

Matlab Simulink (The Mathworks, Natick, MA) was

employed for dynamics system model development. Mat-

lab Simulink offered several desirable features such as:

• Block-diagram–based modeling, which allowed to

model a system with multiple hierarchical subsystems

essential for cleaner and generalized modeling (e.g.,

swappable subsystems),

• Facility to include C/C?? code allowing easier socket

programming and machine synchronization,

• Facility to automatically translate Simulink block

diagrams into low level code and to build into execu-

tables, consequently accelerating the simulation speed.

In addition, SimMechanics, a physical modeling envi-

ronment for mechanical systems, was used to develop some

the modules included in the model library. To enable

dynamic simulations to be seamlessly integrated into cur-

rent and future VR applications, a modular environment

was adopted for the vehicle dynamics modeling. This

modeling environment was based on a system of data buses

defining the interfaces between vehicle subsystems and the

encapsulation of the vehicle subsystems into swappable

model blocks. The I/O bus was designed to eliminate the

need for the user of the system to manually make con-

nections between dynamic model blocks. Through the data

buses, all signals were routed using Simulink tags, which

acted as wireless links between model blocks. Each model
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Fig. 1 Generic distributed

VR-based simulation

architecture for off-road vehicle

system dynamics models. The

block diagram shows the

communication paths and

messages among the software

and hardware components

incorporated in system
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block in this environment was a subsystem with a self-

contained set of inputs and outputs connected to buses.

Thus, this modeling environment fostered a modular

environment so that users without detailed modeling

expertise can still assemble vehicle dynamics models and

run simulations. This simulation environment not only

presented a cleaner appearance and simpler modeling

environment, but also enabled model component swappa-

bility for dynamic system models of vehicles and compo-

nents. Using the available set of subsystem model blocks

with varying complexity, a user can easily optimize the

model complexity to match available computational power

and meet the need of the real-time simulation. Users can

also develop their own models and add to the library with

minimal effort.

Off-road vehicle subsystem models were developed and

incorporated into a model block library (Fig. 2). The

library included a preliminary set of subsystem models for

a wheel loader, an agricultural tractor and towed imple-

ment, and a backhoe loader. The subsystem models

included were chassis models, drive train models, linkage

models, hydraulic models, navigation controller models,

steering controller models, a VR interface, a hardware

interface, and an internal data bus. The interfacing sub-

systems were developed using C-language code within the

Simulink S-function builder blocks. Transmission control

protocol/Internet protocol (TCP/IP) socket was used as the

communication channel.

Alternative models developed for a particular subsystem

were categorized into the common groups in the model

block library. Different blocks from the same category can

be swapped in and out of a vehicle system model without

any changes to the system. Using the simulation architec-

ture and the model block library, the set-up of the dynamics

for an off-road vehicle simulation was a simple process

consisting of the following three steps.

1. Select one instance of each category of required blocks

and ‘Setting/Communication Bus’ block from the

library.

2. Place each of these blocks in a Simulink Workspace.

3. Compile with Real-time Workshop and produce an

executable.

2.2 VR visualization

The second component of the architecture was the VR

visualization system. For an off-road vehicle visualization

system to be widely adaptable, it should provide an envi-

ronment with the following features:

• Seamless handling of low level details like culling,

texture mapping, and rendering.

• Scalable from a desktop to a six-sided immersive VR

visualization system.

• Feel of realism and interactivity such as immersion, and

walking through the scene.

• Ease of manipulating the scene such as swapping

different scene and vehicle models, setting initial loca-

tion and orientation of the scene.

VR technology was used to visualize the off-road

vehicle systems (Fig. 3a) because it offered all of the

required features. The visualization system was based on a

hierarchy of several programming tools and libraries

(Fig. 3b). VR Juggler (Infiscape Corporation, Ames, IA)

was the backbone of this visualization system, which pro-

vided a generic virtual reality development platform.

OpenSceneGraph (OSG; AI2, Universidad Politecnica de

Fig. 2 Generic modeling and simulation environment for off-road vehicle systems; a library of generic model blocks, b available vehicle chassis

models, and c available chassis models for a tractor
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Valencia, Spain) was used as the computer graphics

engine. A generic application structure was developed for

the VR visualization based on an XML parameter file.

Visualization and communication-related parameters

were read from a user-defined parameter file, which

provided the flexibility and simplicity in selecting the

required vehicle geometries and setting the initial posi-

tion and orientation of vehicles in the virtual scene. The

capability to switch geometric models of vehicle parts,

implements, and attachments during run-time was also

implemented so that the design reviews can be performed

conveniently. A shared application data structure was

implemented to synchronize the communication between

dynamics simulator and the clustering nodes used in the

immersive VR.

Incorporation of real world terrain into the VR visuali-

zation system was essential for studying vehicle dynamic

behavior and safety scenarios in realistic terrains. Publicly

available digital elevation models (DEM) provided by the

United States Geological Survey (USGS) were incorpo-

rated into the virtual world. DEMs represent the elevation

data using regularly gridded points over the field. ArcGIS

(ESRI, Redlands, CA) was used to convert gridded eleva-

tions into polygonal representation in VRML format before

importing it to the OSG. The VR application implemented

terrain following by collision detection of each vehicle

wheel with the virtual world terrain.

2.3 Hardware interface

The third component of the simulation architecture was

the interface between the vehicle model simulator and

controller and operator input hardware. Visual C?? was

used to develop the hardware interface application on a

Windows platform. The interface was capable of commu-

nicating with controller area network (CAN)-based hard-

ware. CAN is an asynchronous serial network used in

vehicle systems, which was designed to allow controllers

and other electronic units to communicate among each

other without requiring a host computer (Bosch 1991).

Because the CAN bus is a common resource to all the nodes

connected to it, a priority-based arbitration and scheduling

scheme, also called carrier sense multiple access with

collision avoidance (CSMA/CA), is used to meet the

deadlines of each unit in spite of the competition for the

communication medium (Livani et al. 1999). The CAN

protocol for data transfer requires an arbitration or identifier

field to specify a source address and global priority among

the nodes. The specification allows 0–8 byte CAN message

transmitted in the data field (Fig. 4).

The CAN protocol allows only message-based com-

munication, meaning that messages are broadcasted to the

bus without specifying any destination address. A CAN

node scans through all messages on the bus to find useful

messages. The standard supports up to 1Mbits/s data

transfer rate (Pazul 2009). The interface program deve-

loped in this work simulated a virtual CAN node to read

and write required CAN messages. The interface also

incorporated a data acquisition (DAQ) system to sense

various physical hardware signals. Joystick devices were

also interfaced to provide additional user inputs. The

interface communicated to the system dynamics simulator

through a TCP/IP socket and to the hardware through the

USB ports. A CAN to USB adaptor (LAWICEL AB,

Sweden) was used to provide a hardware interface to the

CAN-based hardware.

(c) 

Operating System 

VR Application (C++) 

OpenSceneGraph

Open GL 

VR Juggler 

(a) (b)Fig. 3 Off-road vehicle VR

visualization system, a the

virtual farm scene with an

example machine, b operator in

the loop interface for real-time

simulation with a four-sided

CAVE VR visualization

(Virtual Reality Application

Center, Iowa State University),

and c the software hierarchy
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2.4 Communication scheme

The three components of the distributed simulation archi-

tecture communicated to each other using a client–server

TCP/IP sockets. The system dynamics model simulator

was designated as the server to establish socket commu-

nication as this component was required to communicate

with both the hardware interface and VR visualization

system. Two server sockets were implemented in the

vehicle system model blocks; one responsible to receive

data from the hardware interface and the other from the VR

visualization system. One client socket was created each in

the hardware interface and the VR visualization systems. A

generic packet structure was defined for each communi-

cation channel (model simulator to VR, VR to model

simulator, model simulator to hardware interface, and

hardware interface to model simulator) to provide a com-

mon communication protocol required to simulate various

off-road vehicle systems.

At the start of a simulation, the vehicle model simulator

started a server socket and waited for the connection

request from the hardware. Similarly, another server socket

waited for the VR visualization system. Once the connec-

tions were made, handshaking was performed to identify

and initialize the data communication among the compo-

nents. Then the information produced by the vehicle model

simulator (e.g., position, attitude, yaw-rate) was sent to

both the hardware interface and the VR visualization sys-

tem. Using this information, the interface generated mes-

sages in the format that CAN-based hardware recognizes

and sent them over the CAN network to the hardware. The

interface was also responsible to acquire user inputs

through hardware data acquisition systems and forward the

signals to the vehicle model simulator.

The VR visualization system received the required

information from the model simulator and applied corre-

sponding transformations/mapping to the appropriate

objects in the virtual environment. The VR visualization

system was also responsible for estimating and sending

vehicle attitude information back to the vehicle model

simulator to simulate the vertical, roll and pitch chassis

dynamics. In this communication scheme, each component

in the architecture sent one data packet every 20 ms. This

speed was sufficient to communicate with user input

devices and other hardware whose practical frequency/

data-rate, often, was about 5 Hz. The speed was also

enough to visualize the system with reasonable refresh rate

(*50 frames per second). As the data rate required was not

very demanding, the Ethernet communication medium

used in this architecture provided the required bandwidth

without any problem.

2.5 Summary

The real-time simulation architecture is well suited for real-

time vehicle system simulation when the subsystems could

be represented as individual modules. Both physical

modeling and mathematical modeling approaches can be

incorporated together to achieve a system level simulation.

Furthermore, various hardware and software modules can

be connected to this environment as long as they satisfy the

communication protocols. This flexibility can be utilized to

integrate technologies such as reconfigurable computing to

speed up the dynamic model simulation.

The limitations associated with the modeling framework

follow from limitations inherent with the Matlab/Simulink

and other causal, block diagram-based modeling tools

currently used. Because these tools require causal rela-

tionships to be assigned through signal flow directions and

port directions on functional blocks, the topology of the

architecture was unnecessarily constrained (Fritzson and

Bunus 2002). To be able to add new subsystem models into

this framework, the input/output signaling convention must

strictly be followed. Newer acausal, physical modeling

tools will address these limitations and are being investi-

gated. Also, because the simulation architecture was based

on TCP/IP socket protocol, the available bandwidth may

limit the application of this architecture to higher speed

systems.

3 Case studies

The proposed distributed real-time simulation architecture

was used to develop various off-road vehicle simulation

and visualization applications. Two of the candidate

Fig. 4 CAN data frame

structure includes an arbitration

field, also known as identifier,

used to resolve the conflict

when two or more nodes in the

network send messages at the

same time
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applications are discussed in this section to demonstrate the

real-time simulation capability and flexibility of the sim-

ulation architecture. The first case study focuses on the

multi-rate simulation, whereas the second case study

focuses on the hardware and operator in the loop simula-

tion capability.

3.1 Multi-rate simulation

Real-time simulation is necessary for virtual prototyping in

off-road vehicle systems design and development. The

distributed simulation architecture harnessed the compu-

tational power of multiple processors to increase the real-

time simulation capability of off-road vehicle models.

However, as the model complexity is increased in the

pursuit of higher accuracy and fidelity, the dynamic model

simulation alone may limit the real-time simulation

capability.

Various strategies were investigated to reduce the

computational burden on the dynamics model simulation

so that real-time simulation can be achieved for increas-

ingly complex models. Simulation speed can be increased

by simplified rigid body dynamics, constraint maintenance,

and velocity slow down compensation, but the model

accuracy and/or fidelity will be compromised (Howard and

Vance 2007). Selecting a suitable simulation time step was

also found to be critical to achieve a good trade-off

between the simulation speed and the accuracy of the

simulation results.

When modeling and simulating the dynamics of mech-

atronic systems typical of off-road vehicles, models will

tend to consist of subsystem models which have slower and

faster dynamics and are often lightly coupled. One way to

improve the real-time performance of these stiff dynamical

systems is to simulate different subsystems at different

rates, so that unnecessary computational burden is reduced

(Fig. 5). The modular simulation architecture developed in

this work offered a highly favorable modeling and simu-

lation environment to implement multi-rate simulation.

Multi-rate simulation also provided an opportunity to

divided subsystem models into different machines to fur-

ther increase the computational efficiency and thus the real-

time capability.

Multi-rate simulation was implemented by creating two

different model blocks containing relatively faster and

slower dynamics in each model. Socket communication

provided the required communication between two models.

In this simulation approach, three different time steps must

be determined; the time step for slower dynamics (T), the

time step for faster dynamics (t), and rate at which the two

models communicate (c). Because faster dynamics require

a smaller time step, the relationship t \ T is always true. It

can also be assumed that the relation t \ c \ T will hold

for the communication time step c. There is a trade-off in

selecting these time steps. Larger time steps might lead to

instability or loss of accuracy, while smaller time steps

might lead to slower simulations. The choice of t and T also

depends on the solver or integrator used for each model. It

is preferable to use the best possible solver for the faster

dynamics model and a moderately accurate solver for the

slower dynamics model. However, the solvers can be

changed if they do not give rise to either the required

accuracy or stability or real-time speed.

To choose the three time steps, first, a maximum value

of a time step s was found with which the whole model ran

without instabilities. This value of s was used as the ref-

erence point for all the three time steps t, c and T. The

initial estimates for t was anywhere between s/10 and s/5,

and c and T were set equal to s. If the simulation was

numerically unstable with these time steps, the value of t

was decreased until the system became stable. If the sim-

ulation was stable, c and T were increased together until the

system became marginally stable. The time step c was

fixed at that point and T was further increased until real-

time simulation was reached without affecting the stability.

If the real-time goal was not achieved, a larger time step t

and reduced order hydraulics solver were investigated.

In this case study, a backhoe loader model was devel-

oped using the library blocks developed in this work

(Fig. 7a). The model consisted of a rear linkage dynamics,

linkage hydraulics dynamics, interface to VR visualization,

interface to the operator inputs, and vehicle ID. The user

input interface program was developed to establish com-

munication with USB-based joysticks and received signals

from the joysticks and sent this information back to the

vehicle model via a TCP/IP socket. These joystick signals

were used to provide steering, drive, brake and lift inputs

required for the dynamic simulation. Vehicle ID block was

required to inform the VR visualization system of the type

Faster Dynamics 
(Smaller Time 

Step) 

Input 

Output 

Slower Dynamics 
(Larger Time 

Step) 

Fig. 5 Multi-rate simulation scheme. Faster and slower dynamics

were separated and simulated with different time steps
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of machine being simulated so that appropriate geometric

models can be loaded and simulated.

For the loader model, the linkage and the linkage

hydraulics were the two main components offering the

possibility of the multi-rate simulation. The backhoe

loader rear linkage multi-body dynamics model was

developed using SimMechanics toolbox. There were 16

bodies in the linkage model consisting of the swing,

boom, crowd, bucket, upper link, lower link, two swing

cylinders, two swing pistons, one each of the boom,

bucket and crowd cylinders, and one each of the boom,

bucket and crowd pistons. Assuming the generalized

coordinates to be the positions and orientations of the

center of mass (or some point) of each body, there were

96 generalized co-ordinates and so 96 degrees of freedom

before constraints.

The hydraulic system actuating the backhoe loader rear

linkage consisted of two inlet valves, two compensation

valves, two return valves, two cylinder volumes, and a

load-sensing pump (Fig. 6) for each cylinder load actua-

tion. The flow rates through the valve openings were cal-

culated using the following orifice equation,

Q ¼ AO xð ÞCd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jPin � Poutj
q

s

sgn Pin � Poutð Þ ð1Þ

where Q is volume flow-rate, A0(x) is orifice area which is a

function of joystick position x controlling the valve spool,

Cd is coefficient of discharge, Pin is inlet pressure, Pout is

outlet pressure, and q is fluid density. For the inlet valves,

A0 was determined using a metering curve translating the

user joystick inputs to the area of the valves.

The area of the compensator valve was modeled as,

dAc

dt
¼ K Pc � Plð Þ ð2Þ

where Ac is area of compensator valve, K is a constant, Pc

is compensator pressure and Pl is load sense pressure.

The pressure dynamics at the pump outlet were repre-

sented by,

dPp

dt
¼ 1

2p
�Qv � PpKLP þ

xpDp

2p

� �

ð3Þ

where Pp is the pump outlet pressure, Qv is the net flow-

rate, KLP is the leakage flow coefficient, xp is the pump

rotational velocity, and Dp is the pump displacement.

The pressure dynamics in the cylinder volume were

represented by,

dPc

dt
¼ b

V
Qv � dV=dt

� �

ð4Þ

where Pc is the cylinder pressure, b is the fluid bulk

modulus and V is the cylinder volume.

The cylinder force was then calculated as,

F ¼ PhAh � PrAr � bv ð5Þ

where Ph and Pr are the pressures in head and rod ends of

cylinder calculated using 4, Ah is piston area, Ar is effective

area in the rod end, b is the viscous damping coefficient,

and v is the piston velocity.

This single cylinder hydraulic system consisted of four

dynamics states, four orifice equations and two lookup

tables for the valve metering curves. Because there were

total of five cylinders consisting of two swing cylinders,

and one each of the boom, bucket and crowd cylinders,

there were 20 dynamic states, 20 orifice equations and

10 one-dimensional lookup tables in the backhoe loader

rear linkage hydraulic system. The hydraulic model

was challenging to achieve a real-time simulation goal

because it consisted of high frequency dynamics requiring

very small integration time step and also highly nonlinear

states.

Because the hydraulics dynamics required a smaller

time step to run when compared to the loader linkage

dynamics, a multi-rate simulation approach was imple-

mented to improve the real-time simulation capability for

this model (Fig. 7b). As mentioned before, there were two

solvers and three time steps to be chosen to perform this

multi-rate simulation. A fifth order solver/integrator

(Simulink ode5) was suitable for the hydraulics block,

while a third order solver (Simulink ode3) was suited for

the linkage block. The simulation time steps s, t, c and T

were 0.005 s, 0.001 s (ode5 solver), 0.002 s and 0.008 s

(ode3 solver), respectively.Fig. 6 Fluid flow schematic of the backhoe loader hydraulic system
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3.1.1 Discussion

Multi-rate simulation, in addition to the computational

efficiency provided by the distributed architecture, pro-

vided a method to reduce the burden on the dynamics

simulator due to unnecessarily small integration time step

could be reduced. The following metric was used to

compare the real-time performance of the single-rate and

multi-rate simulations.

p tað Þ ¼
1

T

Z

T

o

td � tað Þdta ð6Þ

where p = performance index, T = total desired time,

ta = actual time, and td = desired time. Actual time is the

computational time required by the microprocessor to

complete the simulation for a single integration cycle.

Desired time is the integration time step required by the

system dynamics. The simulation will run in real time if the

actual time is smaller than or equal to the desired simula-

tion time. Multi-rate simulation showed a potential to

increase the computational speed over the single-rate

simulation and thus the potential to achieve the real-time

simulation goal for complex vehicle system models. The

result indicated that the time deficit of the single-rate

simulation to meet the real-time goal was increasing

exponentially with simulation time, whereas that of the

multi-rate simulation remained constant at a very low value

over the entire simulation period (Fig. 8).

This case study demonstrated that the multi-rate

dynamics modeling can be used successfully to reduce the

computational burden of the real-time VR-based simula-

tion of off-road vehicle systems.

3.2 Operator and controller hardware in the loop

simulation

The ability to test the performance of various software and

hardware controllers in the virtual environment can reduce

the development time and cost for the new controllers.

Using the real-time VR-based simulation architecture, a

controller-hardware-in-the-loop (CHIL) simulation was

implemented to incorporate CAN-based navigation system

and automatic steering controller hardware. In contrast to

the classical concept of hardware-in-loop (HIL) system,

which involves simulating a controller and putting a real

machine in the loop, the CHIL system simulates the

machine and puts the hardware controller in the loop. This

scheme enabled the simulation study of the performance of

newly developed controller hardware and software. The

scheme also enabled the study of the vehicle dynamics

models with the current controller hardware. The generic

simulation architecture (see Sect. 2) was used to perform

this case study with the navigation and universal steering

controller hardware units in the loop (Fig. 9).

Various component models were selected from the

model block library (see Sect. 3.2) to construct a tractor

and towed implement system model with CHIL configu-

ration. The vehicle system model included a chassis model,

a drive train model, an interface to the navigation controller

hardware (including GPS simulator), an interface to the

steering controller hardware, an interface to the VR visu-

alization, an Input/Output bus and a Vehicle ID (Fig. 10).

An implement model was also added to the system. The

Vehicle ID block was required to inform the VR

(b) 
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Fig. 7 A Backhoe loader model developed using the model block

library; a top level view and b multi-rate simulation with socket

communication
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visualization of the type of machine being simulated so that

appropriate geometric models can be loaded and simulated.

The model was very simple at the top level (Fig. 10a)

showing just the subsystem blocks consisting of the vehicle

system model. The actual mathematics and the required

interactions between subsystems were hidden inside the

subsystem blocks and the data bus block that could be

exposed as the individual blocks are explored (Fig. 10b, c).

Three different tractor chassis models of varying fidelity

namely a kinematic model, a dynamic model and a four-

wheel dynamic model were developed and included in the

model block library. The kinematic model considered only

the geometric variables and thus consisted of only the

positional states. The dynamic model consisted of tire side

slip states and velocity states in addition to the positional

states as represented by the 7–12 below. The lateral

velocity state equation is:

_v ¼ �Ca;f af

m
� Ca;f ar

m
� uc ð7Þ

where m is the lateral velocity of vehicle CG, m is the

vehicle mass, Ca,f and Ca,r are the front and rear tire

cornering stiffnesses, af and ar are the front and rear tire

side slip angles, u is the forward velocity, and c is the yaw

-rate. The yaw-rate state equation is:

_v ¼ �aCa;f af

I
þ bCa;rar

I
ð8Þ

where a is the distance between the front axle and the

vehicle CG, b is the distance between the rear axle and

the vehicle CG, and I is the yaw moment of inertia at the

vehicle CG.

The front and rear tire side slip angle state equations

were given by (Karkee and Steward 2008)

_af ¼
v

rf

þ ac
rf

� u

rf

d� u

rf

af ð9Þ

and

_ar ¼
v

rr

� bc
rr

� u

rr
ar ð10Þ

where rf and rr are the front and rear tire relaxation

lengths, and d is the front steering angle.

The vehicle trajectory was calculated using the two

equations:

_x ¼ ucosu� vsinu ð11Þ
_y ¼ usinuþ vcosu ð12Þ

where (x,y) is the vehicle CG position in the world coor-

dinate system.

The four-wheel dynamic model was developed using

SimMechanics instead of deriving differential equations to

represent the system. Using the model block library and the

simulation environment, the three chassis models were

swapped in and out alternatively to observe the simulation

speed with each chassis model.

A global positioning system (GPS) simulator was

included in the vehicle model block, which converted the

vehicle position into latitude and longitude format. The

vehicle position, attitude and yaw-rate data produced by

the model simulator were next sent to the interface soft-

ware through a TCP/IP socket. An interface to CAN called

TCP/IP socket-to-CAN or the IP2CAN gateway was

developed to communicate with the CAN-based hardware.

The IP2CAN gateway managed the communication

between the dynamic model and the hardware. The gate-

way received the vehicle position, attitude and yaw

velocity information from the dynamic model simulator,

converted it to the format that navigation hardware

understands, and sent it out to the controller hardware over

a CAN bus. The gateway was also responsible to receive

the off-tracking and heading errors from the navigation

controller hardware, convert the messages into the form the

Fig. 9 An implementation of

controller-hardware-in-the-loop

architecture using automatic

guidance navigation and

steering controller hardware
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vehicle dynamics simulator understands and sent them out

to the dynamic simulator over the TCP/IP socket. The

gateway program implemented a state logic structure to

produce the required CAN messages to enable automatic

steering function on the navigation controller hardware. A

number of additional messages were necessary to establish

a connection and interact with the navigation controller

hardware through a simulated GPS receiver. If all the

required messages were present in the CAN network, the

navigation controller enabled the automatic steering func-

tionality and started generating navigation error messages

(off-tracking error and heading error). These errors were

calculated and broadcasted over the CAN bus once for each

set of position and attitude messages received by the

navigation controller. The steering controller unit read in

and parsed these errors and applied them to generate the

proper steering angle based on the controller implemented

in the hardware.

(a) 

(b) 

(c) 
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Fig. 10 Controller-hardware-in-the-loop simulation of an agricultural tractor, a Top level view of a Simulink model with interfaces to the

controller hardware and steering unit, b chassis subsystem input and output signals and c interconnectivity represented by input/output bus
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The IP2CAN gateway was also responsible for reading

in the steering angle from the hardware steering controller

and sending that over to the model, which was used as an

input steering angle to the vehicle dynamics. A hardware

data acquisition system was developed to acquire the

steering angle signal. The vehicle model simulator, on the

other end, received the steering angle and other input sig-

nals and applied them to the vehicle system model, thus

completing the simulation loop.

3.2.1 Discussion

The CHIL simulation was successfully implemented using

the distributed architecture and modular dynamics model-

ing and simulation environment. The simulation demon-

strated that the architecture can be used to perform various

controller and operator hardware in the loop real-time

VR-based simulations (Fig. 10c), which will be valuable to

interactively test the performance of newly developed

controllers for various off-road vehicle subsystems in

various field conditions that may be very difficult or

expensive to find in the real world. The VR visualization

included field boundaries and the predefined path that an

autonomous off-road vehicle is going to follow. The actual

path followed by the vehicle can also be inserted. These

path lines enabled a user to visually evaluate the perfor-

mance of an autonomous vehicle guidance algorithm.

As mentioned before, the CHIL simulation was per-

formed with tractor chassis models of varying fidelity and

complexity. The models used were a kinematic model, a

two-wheel dynamic model and a four-wheel dynamic

model. The kinematic model and the four-wheel dynamic

model were, respectively the simplest and the most

complex models among the three models. As the model

complexity increased, the computational time for each

simulation cycle was increased substantially (Fig. 11). A

desktop computer (XPS 400, Dell, Round Rock, TX) with

Pentium D, 3.2 GHz, microprocessor running with 2 GB

system memory and running Windows XP took approxi-

mately 100 times longer to finish a single simulation cycle

of the four-wheel dynamic chassis model when compared

to that of the kinematic model.

The comparison helped to identify an appropriate

chassis model to achieve a real-time simulation with the

available computational resources. The Dell XPS 400

desktop computer achieved real-time simulation goal for

all three chassis models when the other subsystems used in

the vehicle system model were computationally light

(Table 1). In this case, the four-wheel dynamic chassis

model was used in the simulation. However, when realistic

steering valve dynamics were added to the system, the

real-time simulation goal was not achieved with the four-

wheel dynamic chassis model. Because the steering valve

dynamics desired a very small simulation time step, the

computational power available in the desktop system did

not meet the real-time simulation goal. A bicycle dynamic

model was the choice in this case to achieve the real-time

simulation.

4 Conclusions

Real-time simulation has become an essential element of

VR-based simulation architecture with operator and hard-

ware in the loop simulation. A flexible, scalable, and

extendable off-road vehicle modeling, simulation and

visualization architecture was developed for operator-and-

hardware-in-the-loop off-road vehicle system dynamics

models. The distributed architecture and multi-rate mode-

ling technique were used to enhance the computational

speed of the dynamic simulation with visualization in an

immersive VR environment. The simulation architecture
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Fig. 11 Computational time for each simulation cycle of different

tractor chassis model. The simulation time of the four-wheel dynamic

model was substantially higher than that of the kinematic and

dynamic models

Table 1 Assessment of the real-time potential of different chassis

models with and without a steering valve dynamics model

Chassis model Integration

time step

Real

time

td (ls) ta (ls)

Kinematic model 1,000 0.9 Yes

Dynamic model 1,000 1.5 Yes

Four-wheel dynamic model 1,000 86.9 Yes

Dynamic model with steering

valve dynamics

10 6.1 Yes

Four-wheel dynamic model

with steering valve dynamics

10 92.2 No
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was designed to handle diverse interfacing hardware and

software platforms. The architecture also provided a generic

and cleaner modeling, simulation and visualization envi-

ronment. A plug and play modeling environment saved

considerable set-up time between different simulation runs.

Model block libraries were also developed for various off-

road vehicle systems, which allowed users to select models

with appropriate complexity to achieve real-time simulation

with the available computations resources. Moreover, the

case studies presented in this paper demonstrated the

practicality, flexibility and versatility of the real-time

VR-based hardware-and-operator-in-the-loop simulation

architecture, which will be helpful in interactive product

design evaluation and modification using virtual prototypes.

Models of different vehicle subsystems such as chassis,

power train and guidance controller were developed and

added to a model block library. The architecture allowed

users to develop their own models and add to the library

without much difficulty. Various blocks from the library

can easily be selected to build a new vehicle system model.

The blocks can be swapped in and out to a vehicle system

model so that altering a vehicle system model becomes

highly flexible. Some of the complex models were deve-

loped with multi-rate simulation capability. This distrib-

uted real-time VR-based simulation system can effectively

be used in virtual prototyping of off-road vehicles and

controllers, which can facilitate:

• Reducing number of product development and test

cycles,

• Virtual testing of various controller hardware and

software,

• Reducing risk associated with extended field tests/

experiments particularly in difficult terrains,

• Reducing post processing and communication effort on

modeling and simulation, and

• Developing methodologies for understanding customer

behavior and perceptions.

Acknowledgments This research of the Iowa Agriculture and Home

Economics Experiment Station, Ames, Iowa, Project No. 3612, was

supported by Hatch Act and State of Iowa funds. The authors would

like to thank Deere & Co. for their technical and financial support.

References

Antonya C, Talaba D (2007) Design evaluation and modification

of mechanical systems in virtual environments. Virtual Real

11:275–285

Bosch R (1991) CAN specification version 2.0. Rober Bousch GmbH,

Postfach 300240, D-7000 Stuttgart 30

Castillo-Effen MW, Castillo C, Moreno WA, Valavanis KP (2005)

Modeling and visualization of multiple autonomous heteroge-

neous vehicles. In: Proceedings of the IEEE international

conference on systems, man and cybernetics. The Hague, the

Netherlands, 10–12 Oct 2005

Coutee AS, Bras B (2002) Collision detection for virtual objects in a

haptic assembly and disassembly simulation environment. In:

Proceedings of ASME design engineering technical conferences

and computer and information in engineering conference,

Montreal, QC, Canada

Cremer J, Kearney J, Papelis Y (1996) Driving simulation: challenges

for VR technology. IEEE Comput Graph Appl 16(5):16–20

Cuadrado J, Gonzalez M, Gutierrez R, Naya MA (2004) Real time

MBS formulations: towards virtual engineering. In: Product

engineering, eco-design technologies and green energies.

Springer, Heidelberg, pp 253–272

de Sa AG, Zachmann G (1999) Virtual reality as a tool for verification

of assembly and maintenance processes. Comput Graph (Perg-

amon) 23:389–403

Eberhard P, Li Z (2006) Virtual reality simulation of multibody

systems. In: Proceedings of EUROMECH colloquium 476,

Ferrol

Fales R, Spencer E, Chipperfield K, Wagner F, Kelkar A (2005)

Modeling and control of a wheel loader with a human-in-the-

loop assessment using virtual reality. J Dyn Syst Meas Control

127:415–423

Fritzson P, Bunus P (2002) Modelica, a general object-oriented

language for continuous and discrete-event system modeling and

simulation. In: Proceedings of the 35th annual simulation

symposium, San Diego, CA, April 2002

Glinsky E, Wainer G (2002) Definition of real-time simulation in the

CD?? toolkit. In: Proceedings of the summer computer

simulation conference, 14–18 July, San Diego, CA

Gracanin D, Matijasevic M, Tsourveloudis NC, Valavanis KP (1999)

Virtual reality testbed for mobile robots. In: Proceedings of the

IEEE international symposium on industrial electronics. Bled,

Slovenia, 12–16 July 1999

Howard BM, Vance M (2007) Desktop haptic virtual assembly using

physically based modelling. Virtual Real 11:207–215

Jayaram S, Jayaram U, Wang Y, Tirumali H, Lyons K, Hart P (1999)

VADE: a virtual assembly design environment. IEEE Comput

Graph Appl 19:44–50

Johnson TC, Vance JM (2001) The use of the voxmap pointshell

method of collision detection in virtual assembly methods

planning. In: Proceedings of the ASME design engineering

technical conference, Pittsburgh, PA

Kang HS, Abdul Jalil MK, Mailah M (2004) A PC-based driving

simulator using virtual reality technology. In: Proceedings of

ACM SIGGRAPH international conference on virtual reality

continuum and its applications in industry, Singapore, 16–18

June 2004

Karkee M, Steward BL (2008) Open and closed loop system

characteristics of a tractor and an implement dynamic model.

ASABE Paper No. 084761. St. Joseph, ASABE, MI

Kim CE, Vance JM (2003) Using VPS (Voxmap PointShell) as the

basis for interaction in a virtual assembly environment. In: SME

design engineering technical conferences and computers and

information in engineering conference, Chicago, IL, United

States

Lin Q, Kuo C (1997) Virtual tele-operation of underwater robots. In:

Proceedings of the IEEE international conference on robotics

and automation, Albuquerque, New Mexico, 21–27 April 1997

Livani MA, Kaiser J, Jia W (1999) Scheduling hard and soft real-time

communication in a controller area network. Control Eng Pract

7:1515–1523

Pazul K (2009) Controller area network (CAN) basics. Microchip

technology, Inc. AN713. Available at: http://www.cl.cam.ac.

uk/research/srg/HAN/Lambda/webdocs/an713.pdf. Accessed: 16

June 2009

Virtual Reality

123

http://www.cl.cam.ac.uk/research/srg/HAN/Lambda/webdocs/an713.pdf
http://www.cl.cam.ac.uk/research/srg/HAN/Lambda/webdocs/an713.pdf


Sastry L, Boyd DRS (1998) Virtual environments for engineering

applications. Virtual Real 3:235–244

Savall J, Borro D, Gil JJ, Matey L (2002) Description of a haptic

system for virtual maintainability in aeronautics. In: Proceedings

of 2002 IEEE/RSJ international conference on intelligent robots

and systems, Lausanne, Switzerland

Schulz M, Reuding T, Ertl T (1998) Analyzing engineering simula-

tions in a virtual environment. IEEE Comput Graph Appl

18(6):46–52

Stankovic J (1988) Misconceptions about real time computing: a

serious problem for next generation systems. IEEE Computer

21(10):10–19

Wan H, Gao S, Peng Q, Dai G, Zhang F (2004) MIVAS: a multi-modal

immersive virtual assembly system. In: Proceedings of the ASME

design engineering technical conference, Salt Lake City, UT

Zhu Z, Gao S, Wan H, Luo Y, Yang W (2004) Grasp identification

and multi-finger haptic feedback for virtual assembly. In:

Proceedings of the ASME design engineering technical confer-

ence, Salt Lake City, UT

Virtual Reality

123


	Modeling and real-time simulation architectures �for virtual prototyping of off-road vehicles
	Abstract
	Introduction
	Real-time simulation architecture
	Modeling and simulation environment �and dynamics modeling
	VR visualization
	Hardware interface
	Communication scheme
	Summary

	Case studies
	Multi-rate simulation
	Discussion

	Operator and controller hardware in the loop simulation
	Discussion


	Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


