
Improving the Reusability of Spatiotemporal
Simulation Models: Using MDE to Implement
Cellular Automata

Falko Theisselmann1,2 2

1 Graduiertenkolleg METRIK, Department of Computer Science,
Humboldt-Universität zu Berlin

2 GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg, Potsdam

Abstract

Numerous modeling and simulation tools, frameworks, and environments
support domain experts with the implementation of spatiotemporal simula-
tion models. The implemented models are usually bound to specific tools,
because specific modeling languages, simulation engines, or processing
platforms have to be used. To improve model reusability, we propose an
implementation approach that applies Model Driven Engineering (MDE).
In this approach, a simulation model is described on three different levels
of abstraction. Starting from an abstract description of a simulation model
by the modeler, this model is automatically transformed through all levels
into executable code. In contrast to common implementation technologies,
the intermediate steps of the transformation are clearly and formally de-
fined by metamodels. For model execution, existing general purpose simu-
lation and spatial data processing frameworks may be used. In this paper,
the three-level approach and its application to the modeling of cellular
automata are described. Partial metamodels and transformations are pre-
sented for two of the three levels. The MDE-approach provides means to
enhance model reusability and promotes transparency in simulation model-
ing. Moreover, a tight integration of simulation and spatial data processing

, Doris Dransch

178 F. Theisselmann and D. Dransch

can be realized by synthesizing executable software which is composed of
generic spatial data processing and simulation functionality.

Keywords: Spatiotemporal modeling; Model Driven Engineering; Cellular
automata

1 Introduction

Spatiotemporal simulation models are widely used to model the spatiotem-
poral behavior of environmental phenomena. An important characteristic
of spatiotemporal simulation modeling is that models are executed in order
to observe the spatiotemporal behavior of phenomena. Statements about
the original system are derived from these observations. Usually, model
execution is realized by the means of software, thus the simulation soft-
ware is a key artifact in the simulation modeling approach.

The reuse of simulation models could reduce implementation effort and
provide the means to share models. By this, the exchange of models be-
tween scientists and the transfer of scientific models to application do-
mains, like disaster management or urban planning, can be supported.

To improve the reusability of spatiotemporal simulation models, we
propose an implementation approach that applies Model Driven Engineer-
ing (MDE) methods and tools. Based on a high-level description of a
model, an executable model is automatically generated. This model in-
cludes simulation and spatial data processing functionality.

In this paper, our approach is detailed for spatiotemporal modeling with
cellular automata (CA). The next section provides an overview of common
simulation model implementation approaches with the focus on simulation
model reuse and software implementation. This is followed by the intro-
duction of the concept of our three-level approach. After this, two levels of
the three-level approach presented in more detail for modeling CA. For
modeling CA on one presented level, we developed a generic formalism:
the hybrid cellular automaton (HCA), which is completed by means to
model access to spatial data. The second presented level is represented by
a simulation framework (jDisco) and a library that provides spatial data
processing functionality (Geotools). Geotools and jDisco are used to pro-
duce executable models. These technologies exemplify how executable
models can be synthesized from a formal abstract description that is based
on generic functionality. Moreover, simulation and spatial data processing
can be integrated using this approach. The paper concludes with remarks
and outlook.

Improving the Reusability of Spatiotemporal Simulation Models 179

2 Implementation Technologies and Approaches to
Spatiotemporal Modeling

From an engineering point of view, the implementation of spatiotemporal
simulation models requires the realization of simulation and spatial data
processing functionality. Fig. 1 shows the tasks that we assume to be proc-
essed for a spatiotemporal simulation. Spatial data is used to provide the
parameters for the simulation model. For this, it may be necessary to pre-
process spatial data. Simulation processing is realized through the iterative
calculation of the state of the model. These calculations may require simu-
lation functionality (i.e. execution of transition, synchronization of sub-
models, data exchange) and spatial data processing. Depending on the
modeler’s needs, spatial data may need to be stored, processed and visual-
ized before, during, and after a simulation run.

Fig. 1. Spatial data processing and spatiotemporal simulation. Spatial data han-
dling (light grey) and simulation functionality (dark grey) has to be integrated

If spatial data processing functionality is needed before and after a
simulation run, simulation and spatial data processing is executed serially.
Functionalities are executed in parallel, if both functionalities are needed
during simulation. Either way, the required functionality may be provided
by an integrated modeling and simulation framework, or by distinct, frame-
works (e.g. separate GIS and simulation frameworks)1. Serial execution and

1 In the remainder of this paper the term framework will be used for any software

that provides the functionality to model and simulate dynamic models. This sub-
sumes software that is commonly named simulation library, tool, framework,
language, or environment.

180 F. Theisselmann and D. Dransch

the coupling of respective frameworks, is mainly relevant for pre- and
postprocessing of spatial data. This may be associated with tasks like geo-
refencing, resampling, and filtering. In this case, data exchange between
the frameworks may simply be realized by manual export and import of
data. In the case of parallel execution of functionality, the integration of
frameworks at runtime is required, where data exchange may be realized
via shared memory or network based exchange mechanisms. Runtime in-
tegration can be used to read and write spatial data during simulation. This
permits to persist intermediate results or to read subsets of spatial data se-
lectively, depending on the state of a model at runtime. In this paper, the
integration of simulation and spatial data processing functionality at run-
time is relevant.

In the following, a brief overview of a selection of implementation ap-
proaches is given, focusing on implementation languages and model reuse.
It is common practice to implement CA models using general purpose pro-
gramming languages, but there are disadvantages, such as limited reusabil-
ity and high implementation costs of the resulting simulation software. In
the past, this led to the development of special purpose tools, frameworks,
languages, and environments.

One approach to provide means of modeling and simulation is the de-
velopment of high level domain specific modeling languages (DSL) and
respective execution frameworks. As such, SELES (Fall and Fall 2001)
and PCRaster (Karssenberg 2002) provide modeling languages to model
spatiotemporal processes, based on a cellular discretization of space. These
languages contain simulation functionality, including the calculation of
state transitions, data input, output, and visualization, predefined functions
(i.e. statistic, stochastic, algebraic) and additional simulation functionality,
such as batch simulation (SELES 1999, Karssenberg 2002). Within these
frameworks, modeling, simulation and spatial data processing functionality
is highly integrated. Model reuse is possible within the respective frame-
works, but the reuse of models in other frameworks is limited.

The idea of component based modeling is the core concept of numerous
simulation frameworks which focus on model reuse and integration (Ar-
gent 2004). In component based modeling, the system under study is de-
composed into connected interacting subsystems which are modeled as
components. Although component based frameworks share this key idea,
there are differences with respect to their architecture, the modeling con-
cepts, interfaces, and the underlying technologies. Due to this heterogene-
ity, the reuse of components and models with different frameworks is dif-
ficult (Argent 2004).

One way to reuse models across framework boundaries is to use a de-
clarative modeling language as an exchange format for models between

Improving the Reusability of Spatiotemporal Simulation Models 181

frameworks (Argent 2004). However, a generic formalism may be hard to
use for domain experts, so that single models may be modeled with the use
of a more adequate formalism and consequently be transformed to this ge-
neric formalism. With such approach named multi-paradigm modeling,
Vangheluwe et al (2002) show that by using a common generic and ex-
pressive modeling formalism, also the integration of a variety of models is
possible.

In an analysis of today’s modeling and simulation frameworks for envi-
ronmental modeling, Evert et al (2005) classify environmental modeling and
simulation frameworks as modeling-level or implementation-level frame-
works. Modeling-level frameworks provide domain specific abstractions to
domain experts for the definition of models. With implementation-level
frameworks, existing models are linked and executed. It is argued that the
differences between implementation-level frameworks are relatively unim-
portant, so that code generators of modeling level frameworks could target a
widely accepted implementation-level framework, based on a generic mod-
eling formalism, such as DEVS (Zeigler et al 2000).

Our MDE-approach to spatiotemporal simulation model implementation
is conceptually based on this suggestion of Evert et al (2005): Domain
specific models, as specified by the modeler, are automatically trans-
formed to executable code with well defined intermediate representations.
But, instead of targeting a specific simulation level modeling formalism,
we suggest to focus on generic simulation functionality that may be im-
plemented by several frameworks, possibly conforming to different model-
ing formalisms. This facilitates the storage of models in a more independ-
ent way, allowing for more framework independence. Moreover, we
integrate spatial data processing based on generic functionality that also
may be provided by different frameworks in different application scenar-
ios. Model Driven Engineering provides the tool support for the efficient
realization of this approach.

3 A Three-level Model Driven Engineering Approach to
Spatiotemporal Modeling

MDE is a software engineering approach to software development. The
core idea of MDE is that software is mainly described by models, not by
code. Executable code is automatically synthesized from these models
(Schmidt 2006). Different models describe the same software on different
levels of abstraction, which may be distinct in the amount of implementa-
tion detail they encompass. By the provision of domain specific modeling

182 F. Theisselmann and D. Dransch

concepts on the most abstract level, this approach promises to hide imple-
mentation detail from the domain expert, thus it helps to unburden the
modeler from the need of detailed implementation (Muzy et al 2005).
Moreover, an MDE-based approach facilitates platform independence, thus
this approach enhances the possibility for the reuse of models on different
platforms (Schmidt 2006).

The realization of MDE is based on a clear, formal definition of the lev-
els of abstraction and the relationship between them. The different levels
of abstraction are formalized by respective modeling languages. Transfor-
mations formalize the relationship between these languages. MDE tech-
nologies provide the necessary tool support to define modeling languages,
model transformations, and code generators, which analyze and synthesize
models and code (Schmidt 2006).

Key artifacts within this approach are metamodels, since they are used
to define the modeling elements of the modeling languages and relation-
ships between the modeling elements. All models must conform to meta-
models, thus metamodels prescribe the set of possible models at each
modeling level. For example, a metamodel may prescribe that a model
may contain variables and that variables must have a name and a type. The
transformations between models are defined on the basis of their meta-
models.

The meaning of metamodels and the respective models is twofold. On
the one hand the meaning of a model, or a model element, is given by the
modeler, and the underlying understanding of the modeling elements and
their relations, i.e. a variable may describe a model parameter or a state.
On the other hand, as models are processed by the computer, meaning is
given by model transformations that finally result in model execution, i.e.
a variable is referenced memory that holds a value of a specific type.

We propose an application of MDE for spatiotemporal modeling, which
is detailed for spatiotemporal modeling with CA. In this approach, a CA
simulation software is explicitly modeled on three distinct levels of ab-
straction. At each level, the simulation model is represented by a level-
specific model. The concepts that are available for modeling on the differ-
ent levels are formally prescribed by level-specific metamodels.

Fig. 1 shows the concept of the three-level approach to implement of
spatiotemporal simulation models. On the highest level, a domain specific
model is defined by the domain expert using a domain specific modeling
language (DSL). This DSL should be particularly tailored to the needs of
the modeler and should provide modeling concepts with a clear relation to
the problem domain (i.e. hydrological modeling, fire spread modeling). A
domain specific model is automatically transformed to a formalism specific
model.

Improving the Reusability of Spatiotemporal Simulation Models 183

The formalism specific model is modeled using the concepts of a more
generic modeling formalism in comparison to the DSL. For modeling on this
level, we developed the HCA formalism as a generic modeling language for
CA models (see Sec. 4). This level has two main characteristics. On the one
hand, the formalism is generic, so that models of different domains may be
expressed by the means of this language. On the other hand the formalism
level is based on the functionality provided by the executing frameworks,
since modeling concepts on the formalism level that can not be realized by
frameworks do not make sense in simulation modeling.

A formalism specific model is automatically transformed to a frame-
work specific model from which executable code is automatically gener-
ated by a code generator. A feature of our approach is to use an existing
general purpose simulation framework to execute simulation models. Con-
sequently, the concepts of the modeling language at the framework level

Fig. 2. A three-level, MDE-based implementation approach to simulation
modeling

184 F. Theisselmann and D. Dransch

are provided by the respective simulation framework and are derived from
the API and documentation. Since the approach is based on widely used
simulation modeling concepts (see section 4.1), one may find a number of
simulation frameworks that realize the required functionality.

The inclusion of spatial data processing functionality is based on the
same principle. For this, it is assumed that there are widely accepted con-
cepts related to the modeling of spatial data and spatial data processing. A
common ground can be seen in widely used standards i.e. ISO and OGC
standards. Software that provides implementation of these standardized
concepts is to be combined with simulation frameworks.

In general, two application scenarios for this approach are possible. In
the first scenario, several DSLs may be defined for different domains, but
modeling uses the same modeling formalism on the formalism-level, i.e.
HCA. For each DSL, a transformation to the formalism level is defined in-
dividually; an existing transformation from the formalism level to the
framework level and code generation can be reused for all DSLs. In the
second application scenario, existing models on the formalism level are
executed by different frameworks, for example, if the model is reused in
another application context, with a different simulation and spatial data
processing infrastructure. For this, a new transformation from the formal-
ism level to the framework level and code generation must be defined. The
domain specific models, the formalism specific models, and the transfor-
mation from the domain level to the formalism level remain unchanged
and can be reused in this scenario.

4 A Three-level MDE Approach to Model Cellular
Automata

In this section, two levels of our approach, the formalism level and the
framework level, are detailed for modeling cellular automata, as an exam-
ple for the presented generic approach. The main modeling elements on
the two levels are presented by the means of (partial) metamodels. An il-
lustration of the relationship between the modeling levels concludes this
section. A detailed presentation of the domain level is beyond the scope of
this paper, but the two levels are sufficient to illustrate the main character-
istics of the approach.

Improving the Reusability of Spatiotemporal Simulation Models 185

4.1 Common Modeling Concepts on the Formalism and the
Framework Level

Basically, we adopt the notion of event-based modeling. A model has a
state that changes at times of events. This discrete behavior is extended
with the possibility to model continuously changing states. Moreover, a
model can be composed of several coupled submodels. The state of a
simulation model is modeled by state variables. For modeling state vari-
ables, standard data types (i.e. integer, float, string) and standard data
structures (i.e. enumeration, array) are used.

Discrete state changes are modeled by discrete transition functions with
the means of standard arithmetic expressions that calculate new values that
are assigned to state variables. Continuous state changes are modeled by
means of ordinary differential equations (ODEs). During a simulation run,
ODEs are evaluated by the simulation framework to approximate state
changes over time using an integration algorithm.

State changes depend on the value of state variables at certain points in
simulation time. This dependency is modeled by conditions. A condition is
an expression with which a model’s state is evaluated: if the model is in a
state that is specified by a condition, the respective condition is true; false
otherwise. Within a condition, the model’s state variables and input may
be evaluated. Conditions are specified by means of standard relational,
logical and arithmetic expressions.

Conditions are attached to discrete transition functions and ODEs in or-
der to specify in which state which particular transition is to be executed.
In addition, conditions are used to describe conditions on states, which
trigger an event (state event). Events interrupt the continuous behavior of a
model. Discrete transitions or communication with other models happen at
times of events. Events may occur at arbitrary times, thus the time base of
models is continuous.

Raster data provides the spatial parameters of a CA model and is used to
store the spatial output of a model. Fig. 3 shows how the access to raster
datasets residing in the file system can be metamodeled. In the example, a
raster dataset is a RasterDataFile that can be of type RasterDataASCIIFile,
RasterDataWorldImageFile, or RasterDataGeoTiffFile. To access the
raster dataset, it is sufficient to provide the type and the location of the
dataset (URL).

186 F. Theisselmann and D. Dransch

RasterDataWorldImageFile

RasterDataFile

-URL : String [1]

RasterDataGeoTiffFile RasterDataASCIIFile

GeoData

Fig. 3. A partial metamodel for modeling access to raster data (UML notation)

Variable

-name : String [1]
...

-initialize : Boolean [1] = true
-output : Boolean [1] = true
-offset : int [2]
-band : int [1]

VariableToDataLink

RasterDataFile

-URL : String [1]

-variable
1

-data

Fig. 4. A partial metamodel showing how the link between model variables and
datasets is modeled (UML notation)

For the use of raster data in the simulation model, raster data is linked to
a variable of a model. For this, a VariableToDataLink is specified, that
holds a reference to a variable and the corresponding dataset (Fig. 4).

The variable in a VariableToDataLink references the Variable elements
within the metamodels of the modeling formalism with which dynamic
behavior is modeled (see Figs 6 and 8 below). The excerpt of the meta-
model in Fig. 4 shows, that additional information can be given by means
of attributes, e.g. if the data should be used to initialize the variable or if

Improving the Reusability of Spatiotemporal Simulation Models 187

the dataset is used for storing output2. This scheme is likewise applied on
the formalism and the framework level, which is presented in the follow-
ing.

4.2 Modeling Cellular Automata on the Formalism Level: The
Hybrid Cellular Automaton Formalism (HCA)

For modeling on the formalism level, we extended the classical CA with
the means to model continuous behavior of cells in order to be able to ex-
press greater variety of CA and to exploit the possibilities of modern simu-
lation frameworks. This enhances expressiveness and may lead to a greater
precision of models (for examples see Yacoubi et al 2003, Wainer and
Giambiasi 2005).

A HCA consist of a set of structurally equivalent cells. Fig. 5 illustrates
the possible behavior of single cells.

Fig. 5. The hybrid behavior of single cells of the HCA

Starting from state s0 at time t0, the cell’s state evolves continuously until
time t1. At time t1 a state event occurs as the state reaches the threshold s1.
The state changes instantaneously to state s2 and the cell transits into phase
2, where the state remains constant at s2. At time t2 the state changes to state
s3 and evolves continuously in phase 3. The continuous behavior of cells is
qualitatively different in the different phases, i.e. it is described by different
ODEs. Note that the state change at time t2 is triggered by an event outside
the cell, for example a neighboring cell.

The metamodel in Fig. 6 shows the basic modeling elements of HCA. A
cell’s state is modeled by variables (discreteStateVariable, continuousStat-
eVariable). All cells have an identical set of variables. For each phase, an

2 For simplicity, it is assumed that a dataset has one band.

188 F. Theisselmann and D. Dransch

ODE (rateOfChangeFunction) can be specified. The selection of the ap-
propriate ODE for a phase is modeled by a phase selection function (phas-
eSelectionFunction) which contains respective conditions (phaseCondi-
tion). Discrete state changes are specified with the
discreteTransitionFunction that holds conditions (condition) and single
expressions (expression) which define the state change. Discrete state
changes depend on the state of the cell and the neighboring cells. State
events (stateEvent) are modeled by means of conditions within eventState.

Variable

-name : String [1]
-type : ExpressionType

HCAmodel

ODE

DiscreteTransitionFunction

PhaseSelectionFunction

Neighbor

PhaseCondition

EventCondition

TransitionExpression

EventState

TransitionCondition

Offset

-Value : int [1]

-phaseSelectionFunction0..*

-rateOfChangeFunction

1..*
-ode1

-discreteStateVariable
0..*

-continuousStateVariable0..*

-discreteTransitionFunction 0..*

-stateEvent
0..*

-neighborhood0..*

-phaseCondition1

-expression1..*-condition 1

-eventState

-offset1..*

Fig. 6. A partial metamodel for the HCA (UML notation)

Fig. 6 informally illustrates the operation of an HCA model. Simulation
time passes only during phases of continuous state change (rateOfChange-
Function). This evolution of state is eventually interrupted by an event. An
event is followed by the application of the discrete transition function in
each cell and the application of the phaseSelectionFunction. After this, the
state of the cells evolves continuously until the next event or the end of the
simulation.

Improving the Reusability of Spatiotemporal Simulation Models 189

Fig. 7. The execution of HCA cell models

An event occurs when a cell’s state variables have values as specified by
a condition (stateEvent). The neighborhood of a cell is modeled by offsets
from the origin of a cell. By definition, dependencies between the
neighboring cells, as expressed in the discreteTransitionFunction, have to
be reflected in the state events of the respective neighboring cells.

4.3 Modeling on the Framework Level: jDisco and Geotools

HCA models are transformed to framework specific models and finally to
code (see Fig. 2). On the framework level a HCA is modeled by the means
of the simulation framework jDisco and Geotools. Geotools is a library
that provides spatial data processing functionality (Custer 2006).

JDisco is a framework that implements the process simulation world
view (Helsgaun 2001). In process based modeling, a system is modeled as
a collection of interacting processes that compete for common resources.
In jDisco, a process can be a continuous (ContinuousProcess) or a discrete
process (DiscreteProcess, see Fig. 8). Conceptually, a ContinuousProcess
can change the state continuously between events according to ODE (de-
rivatives).

Each process has a state which is defined by a set of state variables (con-
tinuousState, discreteState). Processes may hold references to other proc-
esses (partnerProccess) and other processes’ variables (referencedVariable).
Via references, values of variables can be read and set, which enables inter-
action and communication between processes. The behavior of a Discrete-
Process is modeled within a lifecycle function (actions) which is a sequence
of actions (ActionExpression). A common action is a discrete change of the
value of variables (StateChangeExpression).

190 F. Theisselmann and D. Dransch

Process

StateChangeExpression

ContinuousProcess

TransitionExpression

ActionExpressionPhaseDerivative

DiscreteProcess

TransitionCondition

Variable

ConditionPhaseCondition ODE

passivate wait

waitUntilactivate hold

-partnerProcess

-continuousState

-referencedVariable

-discreteState

-phaseCondition 1 -ode1

-condition
1

-expression1

-actions

-condition1

-derivatives

Fig. 8. A partial metamodel for jDisco (UML notation)

To enable interaction, processes must be synchronized. In jDisco, a Dis-
creteProcess can synchronize with a ContinuousProcess via the waitUntil
– action. When performing waitUntil, the synchronizing DiscreteProcess
suspends its lifecycle function until an event condition (condition) is true.
Within condition, state events are specified. After an event, the lifecycle
function (actions) continues performing actions.

Geotools is a Java language code library which provides the means to
implement standards conformant geospatial applications. The library con-
sists of various modules which can be combined according to the pro-
grammer’s needs (Custer 2006). Geotools provides classes to access and
process spatial data, which is needed during a simulation run. The code to
realize raster access to a local raster data can be compiled from the infor-
mation about the type and the location of the dataset (see the correspond-
ing metamodels in Figs 3 and 4).

Improving the Reusability of Spatiotemporal Simulation Models 191

4.4 Transformation to the framework level

In the following, the main aspects of how HCA models can be expressed
with the means of jDisco and Geotools are presented. Due to the common
modeling elements, variables, discrete transition functions, ODE, condi-
tions, and spatial data access can simply be mapped from HCA to the
submodels in the framework’s formalism (see Section 4.1). The conditions
encoded in HCA’s phaseSelectionFunction are simply mapped onto the re-
spective phaseCondition within the continuous transition functions of the
jDisco model. HCA-state-events are mapped onto conditions within the
condition of a waitUntil action in jDisco.

Fig. 9. Scheme of a jDisco model of a HCA

In a jDisco-model of HCA, one DiscreteProcess and one Continu-
ousProcess is created for each cell of the HCA. In addition, one Discrete-
Process is created that acts as a coordinator for all other cell processes.
The “coordinator process” holds references to all discrete cell processes
(Fig. 9). Each discrete cell process holds the continuous and discrete state
variables of the respective cell and references to all neighboring discrete
cell processes and their variables. Moreover, the transformation adds a
variable to each discrete cell process that holds the position of the cell

192 F. Theisselmann and D. Dransch

within the model. The neighborhood is derived from the neighborhood
definition of the HCA. Each continuous cell process holds the description
of the cell’s continuous behavior as ODE.

The discrete coordinator process “controls” the HCA. For this, a condi-
tion function holds the condition for the detection state events in all cell
processes. Also the execution of the discrete transitions is realized by the
coordinator process. This is possible because it holds references to all cells
and their variables. The lifecycle function of the coordinator process is
simple, as illustrated in Figure 10.

Fig. 10. Pseudo-code of the action-function of the coordinator process

In jDisco the coupling of cells is realized through direct access to state
variables. Each cell process holds references to the neighboring cell so that
state values can be read directly. Since access to neighbors happens only at
the execution of discreteTransitionFunction after synchronization (wai-
tUntil), it is ensured that values of state variables have correct values at the
time of access.

The transformation of the spatial data access description to the frame-
work level and code is straightforward. A cell of a raster dataset represents
the value of a cell process’ variable. The reference to the corresponding
raster dataset’s cell is realized by mapping a cells’ position to correspond-
ing pixel’s position, which is the same in the simplest case. Loading a
raster file and initializing the value of variables is realized by the instantia-
tion appropriate Geotools-classes, which are chosen by the code generator.
The pseudo code in Fig. 11 illustrates this: appropriate classes are initial-
ized at the beginning of the simulation holding a reference to the dataset
(file) and classes that are provided by Geotools to process the raster data-
set’s data. Finally, with DataBuffer, the data can be directly accessed. The
example shows how a variable representing a variable of an instance of a
DiscreteProcess (Cell5) is initialized with a value from the dataset, by
calling db.getElemFloat(…).

Improving the Reusability of Spatiotemporal Simulation Models 193

Fig. 11. Pseudo-code showing how access to a raster dataset can be read using
Geotools. By using global variables, cells’ variables can be initialized by direct
access

The right pixel value from the dataset is chosen by using an index that is
calculated from the position (coordinate) of the cell inside the model by a
function that is generated for that (toIndex()). The position of the cell is as-
signed during the model generation process. In a similar way it is possible
to integrate the creation and modification of raster datasets.

5 Concluding Remarks and Outlook

Today’s simulation and spatial data processing technologies facilitate an
MDE-based approach to spatiotemporal simulation modeling, as presented
in this paper. A simulation model is initially defined on an abstract level
by the modeler and consequently refined by automatic model transforma-
tion to finally obtain an executable model. This approach promises to
overcome shortcomings of the architecture of today’s tools that are related
to the reusability of simulation models.

The implementation of models is not bound to a specific simulation
framework, but it is required, that generic functionality is implemented by
the executing framework. In particular, the framework must provide dis-
crete-event simulation and algorithms to solve ODE. States and discrete
state transitions are defined using the means of common general purpose

194 F. Theisselmann and D. Dransch

programming languages. The description of spatial data processing is
based on concepts, as defined by widely accepted standards in the field.

In the presented example, the simulation and the spatial data processing
framework use the same programming language, thus data exchange is
straightforward. To integrate more different technologies (i.e. a C++-based
simulation framework and a Java-based GIS library), it is necessary to
generate “bridges” between technologies, for example wrappers.

The formal description of modeling levels by means of metamodels, not
only provides the technical means for implementation, it also serves as the
means to understand and communicate models from the viewpoint of the
different users and developers of simulation software. Thus, the use of
metamodeling supports transparency in model implementation. However,
this requires a common understanding of the twofold meaning of meta-
models by the users and developers on the different levels of abstraction.

It is an inherent characteristic of the presented approach, that through
model transformation generic implementation patterns and recipes are ap-
plied to obtain executable software. On the one hand, this gives the possi-
bility to apply best practices. On the other hand it is an obstacle for the in-
clusion of specific optimizations that may be possible for models with
particular characteristics. However, prototypical implementations show
that generic optimization is a key challenge, as model execution is de-
manding and efficient simulation is crucial to make this approach feasible
for big cellular automata.

In further work the presented approach is to be elaborated, particularly
focusing on the expressivity of HCA, optimization, and the role of spatial
data processing.

Acknowledgements

The presented work is supported by Deutsche Forschungsgemeinschaft,
Graduiertenkolleg METRIK (GRK 1324/1).

References

Argent, R. (2004). “An overview of model integration for environmental applica-
tions--components, frameworks and semantics”, Environmental Modelling &
Software, Volume 19 (3), Pages 219-234.

Custer, A. (2006). “Geotools User’s Manual, v.0.1”, URL: http://www.
geotools.fr/manual/geotools.xhtml

Improving the Reusability of Spatiotemporal Simulation Models 195

Evert, F. van, Holzworth, D., Muetzelfeldt, R., Rizzoli, A., and Villa, F. (2005).
“Convergence in integrated modelling frameworks”, in Zerger, A. and Argent,
R.M. (eds) MODSIM 2005 International Congress on Modelling and Simula-
tion. Modelling and Simulation Society of Australia and New Zealand, 745-
750.

Fall, A. and Fall, J. (2001). “A domain-specific language for models of landscape
dynamics”, Ecological Modelling, 141(1-3):1–18.

Helsgaun, K. (2001). “jDisco - a java package for combined discrete event and
continous simulation”. Technical report, Department of Computer Science,
Roskilde University.

Karssenberg, D. (2002). “Building dynamic spatial environmental models”, PhD
thesis, Utrecht University.

Muzy, A. Innocenti, E. Aiello, A. Santucci, J-F. Santoni P-A. and David R. C.
Hill. (2005). “Modelling and simulation of ecological propagation processes:
application to fire spread”, Environmental Modelling & Software, 20 (7), 827-
842.

Schmidt D. (2006). “Model-driven Engineering”, Computer, 2/2006, 25-31.
SELES. (1999). “SELES v.1.0 Spatially Explicit Landscpe Event Simulator”.
Vangheluwe, H. de Lara, J and Mosterman, P. (2002). “An introduction to multi-

paradigm modeling and simulation”, in Barros, F. and Giambiasi, N. (editors),
AIS’2002 Conference, 9–20.

Wainer G. and Giambiasi N. (2005). “Cell-DEVS/GDEVS for Complex Continu-
ous Systems”, Simulation, 81, 137-151.

Yacoubi S. El, Jai A. El, Jacewicz P. and Pausas J. G. (2003). “LUCAS: an origi-
nal tool for landscape modeling”, Environmetal Modeling & Software, 18,
429-437.

Zeigler, B. Praehofer, H. and Kim T. (2000). Theory of Modeling and Simulation,
Academic Press, San Diego, 2nd edition, 2000.

