
and Consequences for Policy Making,  
© Springer Science + Business Media B.V. 2009 

Cellular automata modeling of environmental 
systems 

Salvatore Straface, Giuseppe Mendicino 

Dipartimento di Difesa del Suolo, Università della Calabria, Ponte Pietro Bucci, Cubo 41 
b 87036, Arcavacata di Rende (CS), Italy. 

Abstract 

Flow and transport processes in unsaturated soil are analyzed through a simulation 
environment based on cellular automata (CA). The modeling proposed in this 
chapter represents an extension of the original computational paradigm of cellular 
automata, because it uses a macroscopic CA approach where local laws with a 
clear physical meaning govern interactions among automata. This CA structure, 
aimed at simulating a large-scale system, is based on functionalities capable of 
increasing its computational capacity, both in terms of working environment and 

taken from benchmarks in literature, showing a good agreement even in the cases 
where non-linearity is very marked. Furthermore, some analyses have been carried 
out considering quantization techniques aimed at transforming the CA model into 
an asynchronous structure. The use of these techniques in a three-dimensional 
benchmark allowed a considerable reduction in the number of local interactions 
among adjacent automata without changing the efficiency of the model, especially 
when simulations are characterized by scarce mass exchanges. 

Keywords: flow and transport model, macroscopic cellular automata, parallel simulation, 
discrete approach, quantization techniques, model validation, environment. 

1. Introduction 

The capability of understanding and modeling hydrological processes at different 
spatial scales together with the need for a more detailed knowledge of mechanisms 
regulating soil interaction between surface and subsurface, has led experts to 
investigate and develop different forms of modeling. 
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in terms of the optimal number of processors available for parallel computing. 
Specifically, the performance of a three-dimensional unsaturated flow model has
been verified comparing the results with reference multidimensional solutions 

P.C. Baveye et al. (eds.), Uncertainties in Environmental Modelling  
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In many cases, the models using fully-coupled system equations to describe the 
hydrological cycle of a basin completely have shown computational limitations, 
mainly due to both the reduced dimension of sampling-grids (or mesh), involving 
a narrow space domain, and smaller time steps which are essential to prevent 
eventual numerical instability. 

These problems become even more evident during the simulation of soil  
dynamics because of the fast responses of this zone to atmospheric forcing, which 
limit us to a modeling characterized by very reduced space-time steps (Orlandini, 
1999). 

It becomes increasingly necessary to find alternative numerical solutions that, 
always under the aegis of describing physical phenomena, allow us to increase the 
spatial and temporal domain of simulations with acceptable computational  
requirements. 

Modeling based on cellular automata (CA) represents a valid alternative to 
analytical-deductive methods based on the analysis of physical equations describ-
ing a particular phenomenon and their subsequent resolution carried out through 
numerical methods (Toffoli and Margolus, 1987; von Neumann, 1966; Wolfram, 
1986, 1994). In complex physical phenomena, this modeling allows us to capture 
the fundamental characteristics of systems whose global behavior is derived from 
the collective effect of numerous simple components interacting locally. Many 
CA applications in fluid-dynamics exist, most of these based on microscopic app-
roaches: lattice gas automata models were introduced to describe the motion and 
collision of particles interacting according to appropriate laws on a lattice space 
(Frisch et al., 1987).  These models can simulate the dynamic properties of fluids 
(Di Pietro et al., 1994; Pot et al., 1996) and their continuum limit leads to the 
Navier-Stokes equations (Rothman and Zaleski, 1997). Lattice gas models, due to 
the simplicity of both fluid particles and their interactions allow simulations of a 
large number of particles, but do not allow to express the velocity in explicit form, 
because an amount of fluid moves from one cell to another one in a CA step, 
which is defined as a constant time, involving a constant “velocity” in the CA con-
text of discrete space-time. However, velocities can be achieved through the 
analysis of the global behavior of the system: in the space by considering clusters 
of cells; and in time by taking into account the average velocity of the advancing 
flow front in a sequence of CA steps.  

Surface and subsurface flow modeling represent complex macroscopic fluid 
dynamical phenomena. Subsurface solute transport has been traditionally des-
cribed by a deterministic advection-dispersion equation based on analogy to Fick’s 
laws of diffusion. According to this analogy, the spread of a nonreactive contami-
nant in a hydrogeologic environment is controlled by a constant directional 
medium property called dispersivity which, when multiplied by absolute velocity, 
yields a directional dispersion coefficient. Flow and transport modeling seem dif-
ficult to model in these CA frames, because they occur on a large space scale and 
need, practically, a macroscopic level of description that involves the management 
of a large amount of data.  
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Lattice gas models are only capable of reproducing the birth of macroscopic 
flow patterns. The drawbacks of the lattice gas models have been overcome by the 
Lattice Boltzmann Method (LBM), where the state variables can take continuous 
values (instead of integer variables), as they are supposed to represent the density 
of fluid particles endowed with certain properties located in each cell (McNamara 
and Zanetti, 1988; Succi et al., 1991; Chopard and Luthi, 1999). In the LBM space 
and time are discrete and they represent a very powerful approach which combines 
numerical efficiency with the advantage of having a model whose microscopic 
components are intuitive. Also for the Boltzmann models the equivalence with the 
Navier-Stokes equations for incompressible fluids has been demonstrated (Higuera 
and Jimenez, 1989; Qian et al., 1992; Chen et al., 1992; He and Luo, 1997). 

LBM has been used to model flow in porous media, but the applications so far 
developed usually take a more microscopic approach and aim at describing phe-
nomena which take place at the pore level (Martis and Chen, 1996; Zhang et al., 
2000; Knutson et al., 2001; Zhang et al., 2005). Some extensions to porous media 
and scaling up have been also proposed (Soll et al., 1993; Soll and Birdsell, 1998; 
Sukop and Or, 2004; Chau et al., 2005), as well as LBM has been used for macro-
scopic plots modeling (Deng et al., 2001; Zhang et al., 2002a,b; Ginzburg, 2005), 
but quantities such as density, velocity and concentration are obtained by taking 
the moments of the distribution function (Deng et al., 2001). 

Empirical CA methods were developed on the macroscopic scale in order to 
directly deal with the macroscopic variables associated to the representative ele-
mentary volume of the physical system under consideration (Di Gregorio and 
Serra, 1999; Di Gregorio et al., 1999). In these methods an almost unlimited number 
of states are allowed and, each state is described by a Cartesian product of sub-
states, each one describing a specific feature of the space portion related to its own 
cell. Furthermore, the transition function is split in different parts, each correspond-
ing to an elementary process of the macroscopic phenomenon. When an amount of 
fluid is computed to pass from one cell to another, this particular characteristic of 
the transition function allows fluid to be added to the cell and, at the same step, to 
change all the sub-states involved, specifying the evolution of the main quantities 
of the macroscopic system such as velocity explicitly (Avolio et al., 2003). 

But, these empirical CA methods make use of some local laws where automata 
interactions are based on parameters whose physical meaning is not clear and, as a 
consequence, heavy calibration phases are necessary to estimate suitable values of 
the same parameters. The computational effort which results is partially justified 
by the possibility of making cellular automata directly compatible with parallel 
programming (Toffoli and Margolus, 1987; Crutchfield et al., 2002). 

In this chapter the same extended notion for macroscopic cellular automata has 
been considered to develop a three-dimensional model which simulates water flux 
in unsaturated soils, but the local laws governing the automata interactions are 
based on physically-based rules. 

The model, developed in a problem solving CA environment called CAMELOT 
(Dattilo and Spezzano, 2003) has been used for different multidimensional schemes 
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and provides results similar to those of other approaches described in Paniconi et al. 
(1991), Paniconi and Putti (1994) and Huyakorn et al. (1986).  

Moreover, in the second part of the chapter a particular aspect regarding the use 
of theory of quantized systems (Ziegler, 1998) applied to the proposed CA model 
has been investigated. This concerns the computational benefits derived from the 
application of some quantization techniques aimed at decreasing the number of 
local interactions by neglecting scarce mass exchanges occurring between neigh-
boring automata. Through these techniques CA act as an asynchronous system, 
where according to a common quantum size rule a given automaton evolves or is 
kept at rest depending on its state and on those of the adjacent cells. 

2. Discrete formulation of flow in unsaturated soil 

All existing numerical methods for the solution of field equations have a differen-
tial formulation as their starting point. A discrete formulation is then obtained by 
means of one of the many discretization methods, such as Finite Difference 
Method (FDM), Finite Element Method (FEM) or, in general, a weighted residual 
or weak solution method. Even Boundary Element Method (BEM) and Finite 
Volume Method (FVM), which use an integral formulation, have a differential 
formulation as their substratum (Tonti, 2001). The formation of densities and rates 
and then the passage to the limit to form the field functions, that is typical of field 
and continuum theories, deprive physical variables of their geometrical content 
(for this reason any discretization process restored from the differential formula-
tion is not based on geometrical but only on numerical considerations).  

So, it follows that to obtain a discrete formulation of the fundamental equation 
of a physical theory, it is not necessary to go down to the differential form and 
then go up again to the discrete form. It is enough to apply the elementary physical 
laws to small regions where the uniformity of the field is attained to a sufficient 
degree, this being linked to the degree of accuracy of data input and to the obser-
vation scale of the physical phenomenon. In this way, we obtain a direct discrete 
formulation of the field equation. 

If we consider a discrete cell system, in which the cells have smaller dimensions 
where the departure from uniformity is larger, we may use the same constitutive 
law used in the differential context, as an approximation. 

In this section our aim is to obtain a direct discrete formulation of the unsatu-
rated flow, the equation that we use in CA model. This equation, whose solution  
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Following this approach, starting from the technique suggested by Muzy et al. 
(2002), dynamic quantization which makes CA structure both asynchronous and 
non-uniform is developed. In particular, the quantum size rule conditioning the tran-
sition function is varied locally according to the sub-state describing the degree 
of saturation of the soil, and this produces a considerable reduction in the local 
transitions without adversely affecting the performance of the model. 
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provides the variables configuring the phenomenon, is the final result of the 
composition of the mass-balance equation and the constitutive equation (Darcy’s 
law). The discrete mass-balance equation is the following (Straface et al., 2006): 

 α
cΦ

α
∑ +

1
ρc

Δmc

Δt
= Sc  (1) 

 K ci =
Vc + Vi

Vc

Kcα
+

Vi

Kiα

 (3) 

where Vc and Vi [L3] are the volumes of the cells, while Kcα and Kiα are the ele-
ments on the diagonal of the hydraulic conductivity tensor corresponding to the 
direction α in the cells c and i, assuming that the xyz Cartesian system is colinear 
with the principal anisotropy directions. 

The remaining terms of equation (2) are the total heads hc and hα [L], the cell 
dimension lα [L], the hydraulic gradient gα [–] and the surface area Aα [L2] where 
the flux α

cΦ  passes through (Figure 1b). Equation (2) is a particular form of a 
more general direct discrete formulation of the unsaturated flow equation. For 
more details see Appendix A. 
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where c is the cell where the water mass balance is performed, α is the generic 
direction obtained linking the center of the mass of cell c with that adjacent (see 
Figure 1a, for a two-dimensional case), α

cΦ  is the mass flux [L3T–1], ρc  is the 
fluid density  [ML–3], cm is the mass inside the single cell c [M], Δt is the time step 

[T], Δmc
Δt

 [MT–1] is the mass-time variation in the cell, and Sc  is the mass source 

term [L3T–1].  Equation (1) is valid both for internal nodes of the discrete domain 
and for boundary nodes, avoiding the typical differential approach where differen-
tial equations and boundary conditions are separated. The mass flux is given by 
Darcy’s equation, which in discrete terms for a cubic regular mesh becomes: 

 α
cΦ = −K cα

hα − hc
lα

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Aα = −K cαgα Aα  (2) 

where αcK  is the hydraulic conductivity averaged between cell c and that adja-
cent along the direction α (e.g., cell i in Figure 1), obtained assuming the energy 
dissipated between two adjacent cells equivalent to the energy dissipated in a ficti-
tious cell containing them (Indelman and Dagan, 1993). Then, if we consider the 
hydraulic conductivity averaged between cell c and i (Figure 1b), we assume: 
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Fig. 1. (a) Scheme of a squared two-dimensional cells complex; (b) Representation of the flux 
through the face of two adjacent cells. 

The time variation of mass content changes according to the flow type consid-
ered. For unsaturated flow, assuming the fluid is incompressible and density-
independent, the mass time-variation becomes: 

 Δmc

Δt
= Vcρc

Δθ c

Δt
 (4) 

If the ratio between capillary pressure pc [ML–1T–2] and specific weight of 
liquid γw [ML–2T–2] represents the pressure head ψc [L] and the specific retention 
capacity Cc(ψ) [L–1] is considered (Bear, 1972), then applying the chain rule to 
equation (4) the following equation is achieved:  

 Δθ c

Δt
=

Δθ c

Δhc

Δhc

Δt
= Cc

Δhc

Δt
 (5) 

from which the complete form of the unsaturated soil flux equation is obtained: 

 Σ
α

− K
___

cα
hα − hc

lα

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Aα + VcCc

Δhc

Δt
= Sc  (6) 

For the solution of unsaturated flow it is necessary to specify the non-linear 
dependencies among the assumed independent variable, total head hc, and terms 
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The discrete unsaturated flow equation (6) is applied to each cell of the domain, 
with hc the only unknown term to be estimated. The gravitational effects are 
taken into account considering that is h = ψ  + z, and consequently =− chhα  ( )cc zz −+− αα ψψ . 
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characterizing the hydraulic properties of soil represented by water content θc, 
specific retention capacity Cc and hydraulic conductivity Kc = K(ψc). Such rela-
tionships can be expressed in tabular form or more usually through empirical 
equations fitting experimental data using theoretical models (Mualem, 1974, van 
Genuchten and Nielsen, 1985). 

In the discrete formulation that we present the hydraulic head is assumed to be 
continuous and need not to be differentiable. Each cell may have different consti-
tutive properties: this allows composite porous or fractured media to be dealt with. 
The boundary conditions are of two kinds: on some parts of the boundary the 
hydraulic head hc can be assigned, while on the remaining parts, the flow rate α

cΦ  
can be assigned. The sources can be continuous (drainage trench or superficial re-
charge) and also may be concentrated (wells or sinks), by means of the mass 
source term Sc of equation (1). Our purpose is to find the hydraulic head of all cell 
nodes (barycenters) where it is not assigned: these can be internal as well as 
boundary nodes.  Equation (6) is valid for interior or boundary cells: in this way, 
we can avoid the unnatural separation of the differential equations and the bound-
ary conditions, which is typical of a differential formulation.  

The discrete formulation of physical phenomena gives several computational 
advantages, such as discussed in Appendix A. This approach proves to be particu-
larly suitable to the use of a macroscopic cellular automata environment and to be 
developed in a parallel computing system. 

3. Discrete formulation of solute transport 

The discrete form of the mass solute equation may be written as follows (Straface, 
1998): 

 Φ s
c +

c∈I (h )
∑

1
ρs

c
Δms

c

Δt
= 0 (7) 

where Φ s
c  is the solute mass flux and Δms

c
 is the cell mass change. This equation 

indicates that, the amount produced in the volume during a time interval is equal 
to the sum of the outgoing solute flow of the same quantity across the boundary of 
the volume during the time interval, and of the quantity stored inside the volume 
in the same interval. The equation is valid either for the internal nodes or for the 
lateral nodes. The mass time-variation becomes: 

 Δms
c

Δt
= nc ⋅V c ⋅

ΔC c

Δt
  (8) 

where Cc is the solute mass concentration in cell c. 

33 



S. STRAFACE AND G. MENDICINO 

The mass transport phenomenon in an aquifer is subdivided into three separated 
mechanisms: (1) convection, (2) molecular diffusion and (3) cinematic dispersion. 

Convection is the phenomenon where dissolved substances are carried along by 
the movement of fluid displacement. In this case we assume: 

 Φ s
conv = Φ s

c ⋅C c ⋅
1

ρs
c  (9) 

Molecular diffusion is a physical phenomenon linked to the molecular agita-
tion. In a fluid at rest the Brownian motion projects particles in all directions of 
space. If the concentration of the solution is not uniform in space the point with 
the highest concentration sends out, on the average, more particles in all directions 
than the point with a lower concentration. The result of this molecular agitation is 
then that particles are transferred from zones of high concentration to those of low 
concentration (de Marsily, 1986).  

Fick has found that the mass flux of particles in a fluid at rest is proportionate 
to the concentration gradient: 

 Φs
diff = −Ac ⋅

1
ρs

c ⋅ nc ⋅ d0 ⋅ gc  (10) 

The coefficient d0, knows as the molecular diffusion coefficient, is isotropic 
and can be expressed by the following equation: 

 d0 =
RT
N

1
6πμr

 

where R is the constant of perfect gases, N the Avogrado’s number, T absolute 
temperature, μ  fluid viscosity and r the mean radius of diffusing molecular aggre-
gates. 

In fine, kinematic dispersion is a mixing phenomenon linked mainly to the het-
erogeneity of the microscopic velocities inside the porous medium on whatever 
scale they are observed: 

• Inside a pore the velocities in mobile fraction are not uniformly distributed. 
• The differences of aperture and travel distance from one pore to another create 

a difference in mean velocities. 
• A stratification or any features of large scale heterogeneity.  

The suggested mathematical formula adopts a transport law through dispersion 
similar to the Fick’s law which accounts for the phenomena of mixing applied to 
the whole section of the medium, like the Darcy velocity, but with a dispersion 
coefficient D: 
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 Φsh

disp = −Ac ⋅
1

ρs
c D ⋅ gc  (11) 

Here, in explicit form, the balance equation becomes: 

 
1

ρs
c Φs

c ⋅C c − nc ⋅ d0 + Dc( )⋅ Acgc[ ]=
c∈I (h)
∑ 1

ρs
c

Δms
c

Δt
 (12) 

The function gc is the concentration gradient, whose formulation depends on type 
of the used interpolation. Employing a linear interpolation it can be expressed by: 

 C (x, y,z) = a + gx x + gy y + gzz  

According to the analysis showed in Appendix A for the head gradient, we can 
write  

 gc =
1

3V c AcC c  

x'

y'

z'

f1f 3

f 2 x

y

z

e1

e3

e2 α
β

 
If we use a cubic cell, the reference system XYZ is co-linear with cubic faces 

and so the dispersion tensor Dcassumes the form: 

 Dc =
DL 0 0
0 DT 0
0 0 DT

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

Because of more general flow directions, we have to express dispersion tensor 
on a new reference system X′Y′Z′, where X′ is the flow direction, Y′ and Z′ his 
orthogonal. The change of the basis must be effected: 
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 D f
c = T −1Dc  

where f indicates the new reference basis, where  tensor will assume  the form: 

 D f
c =

Dx'x' Dx'y' Dx'z'

Dy'x' Dy'y' Dy'z'

Dz'x' Dz'y' Dz'z'

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

4. Macroscopic cellular automata model 

Cellular automata (CA) are a dynamic system where space, time and states are 
hypothesized as being discrete. They are based on a division of space in regular 
cells, each one having an identical computational device embedded in it: the finite 
automaton (fa). The physical quantities (or fa state) take only a finite set of values. 
The fa input is given by the states of the neighboring cells, including the cell 
which contains the fa. 

The fa states vary according to a local rule (transition function); i.e., in a given 
time step a fa state depends on its state and on those of neighboring cells at the 
previous time step. Finite automata have identical transition functions, which are 
simultaneously applied to each cell (synchronous CA). At the beginning all the fa 
are in arbitrary states representing the initial conditions of the system. Then the 
CA evolve by changing the state of all fa simultaneously at discrete time steps 
according to the fa transition function. Finally, the global evolution of the CA sys-
tem is derived from the evolution of all the cells. 

Since every cell has the same neighborhood structure, even the cell at the 
boundary of a physical domain has neighboring cells that are outside the domain. 
Conventionally, border cells are assumed to be connected to the cells on the oppo-
site boundary like neighbors forming a closed domain. For example, for a two-
dimensional rectangular domain, a site on the left border has the site in the same 
row on the right border as its left neighbor. With the same update rule applied to 
all the cells, this yields what is called a periodic boundary condition which is rep-
resentative of an infinite system. Certainly, the type of the boundary condition to 
be used in a simulation depends on the physical application under consideration. 
Other types of boundary conditions may be modeled using preset values of the cell 
for the boundary nodes or writing suitable update rules for the cells at the boundary. 

The previous definition is not sufficient for modeling spatially extended natural 
macroscopic phenomena such as soil infiltration. More detailed conditions need to 
permit a correspondence between the system with its evolution in the physical 
space-time and the model with the simulations in the cellular space-time. Thus, for 
many cases the complexity of macroscopic natural phenomena requires an exten-
sion of the original CA computational paradigm. 
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Firstly, the dimension of the cell and the time correspondence to a CA step 
must be fixed. These are defined as global parameters, as their values are equal 
for all the cellular space. They represent the set P together with other global para-
meters, which are frequently necessary for the simulation of complex phenomena 
involving time and/or space heterogeneity. 

The state of the cell must account for all the characteristics (referring to the 
amount of space represented by the same cell), which are assumed to be relevant 
to the evolution of the system. Each characteristic corresponds to a sub-state, 
where the permitted values for a sub-state have to form a finite set. The set Q of 
possible states of a cell is given by the Cartesian product of the sets of the values 
of sub-states: Q = Q1 × Q2 × … × Qn. When a characteristic representing a physi-
cal quantity is expressed in terms of a continuous variable referring to a space 
point, then the cell size chosen must be small enough so that the approximation of 
considering a single value for the whole cell extension may be adequate to the fea-
tures of the phenomenon. Actually, the continuity of the variable is not a problem 
because a finite, but adequate, number of significant digits are utilized, so that the 
set of values allowed is extremely large but finite. Furthermore, the cell size must 
be large enough to describe a macroscopic approach, even though it must be capable 
of catching the smallest variations in the sub-states, so that they can be hypothe-
sized as constant within each cell.  

As well as the state of the cell that can be partitioned in sub-states, the transi-
tion function σ may also be split into p elementary processes, defined by the func-
tions σ1, σ2, … σp. Elementary processes are applied sequentially according to a 
defined order compatible with the phenomenon under consideration. Different 
elementary processes may involve diverse neighborhoods, each one given by the 
union of all the neighborhoods associated to each process. If the neighborhood of 
an elementary process is limited to a single cell, such a process is defined as an 
internal transformation. 

Specifically, according to the empirical approach suggested by Di Gregorio and 
Serra (1999), an elementary process is given by σ : Qn

m  Qc, where Qn and Qc 
are Cartesian products of the elements of sub-sets of Q, m is the number of cells of 
the neighborhood, involved in the elementary process, Qn describes the sub-states 
in the neighborhood that effect the change in the sub-state value and Qc identifies 
the cell sub-states that change their value. 

5. Subsurface flow modeling through CA 

Using the same extended notion for macroscopic CA, the three-dimensional model 
simulating water flux in unsaturated soils consists of a three-dimensional domain, 
regularly subdivided into cubic cells described by the following functional struc-
ture (Mendicino et al., 2006): 
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 A = Ed ,  X,  Q,P,  σ( ) (13) 

where Ed =  x, y,z( ) | x, y,z ∈ N ,  0 ≤ x ≤ 1x ,  0 ≤ y ≤ 1y ,  0 ≤ z ≤ 1z{ } is the set of 
cells identified by points with integer co-ordinates in the finite region, where the 
phenomenon evolves; N is the set of natural numbers; lx, ly and lz represent the limits 
of the region;  

 X =  0,0,0( ),  −1,0,0( ),  0,1,0( ),  0,0,−1( ),  0,0,1( ),  0,−1,0( ),  1,0,0( ) { } 

identifies the von Neumann neighborhood, which influences the change in the 
state of the central cell; Q is the finite set of the fa states, given by the Cartesian 
product of the following sub-states: 

 Q = Qh × Qψ × Qθ × Qk × QΔ  

where Qh is the sub-state describing the total head of the cell, Qψ is the sub-state 
describing the pressure head, Qθ is the sub-state describing the water content 
(therefore, it may indicate the value of moisture content in volume θ or, according 
to the characteristic equation adopted, the water saturation Sw or the effective satu-
ration Se), QK describes the hydraulic conductivity sub-state (if the medium is ani-
sotropic, this sub-state is further subdivided according to the principal anisotropic 
directions) and, for transient condition analyses QΔ indicates the sub-state cor-
responding to a parameter value necessary to guarantee the convergence of the 
system;   

P is the finite set of CA global parameters which affects the transition function 
and is made up of some parameters associated with the characteristic equations, 
the saturated hydraulic conductivity, the automaton dimension and, the time step. 
Specifically, we have the residual water content θr, the saturation water content θs, 
the capillary air entry pressure ψa, the pore-dimension distribution index n, a con-
tinuity parameter for pressure head ψ0, the specific storage Ss, the saturated  
hydraulic conductivity Ks, the cell dimension lα and the time step Δt. 

σ: Qn
7 → Qc is the deterministic transition function. Once the initial conditions 

(total head, pressure head, conductivity and water content values) and the bound-
ary conditions are fixed, it is based on two elementary steps, σ1 and σ2: 

1. The elementary process σ1 consists in the update of the hydraulic characteris-
tics of the soil (i.e., the hydraulic conductivity Kc, the water content θc and the 
specific retention capacity Cc), depending on the pressure head through the 
characteristic equations. Many theoretical models for the constitutive equations 
θ = θ(ψ) and Kr = Kr(ψ) are available in literature. Those suggested by van 
Genuchten and Nielsen (1985) are commonly expressed as follows: 
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θ ψ( )= θ r + θ s −θ r( ) 1+ β[ ]−m ψ < 0
θ ψ( )= θ s ψ ≥ 0

 (14) 

 Kr ψ( )= 1+ β( )−5m / 2  1+ β( )m − β m[ ]2
ψ < 0

Kr ψ( )= 1 ψ ≥ 0
 (15) 

where β = (ψ/ψa) n, m is a parameter given by m = 1 – 1/n, and Kr(ψ)[–] is the 
relative hydraulic conductivity (so that K(ψ)=Ks Kr(ψ), with Ks [LT–1] saturated 
conductivity);  

2. The elementary process σ2 is the application of the unsaturated soil flux equa-
tion (6), to update the values of the total head hc and the pressure head ψc of the 
cell. 

Starting the simulation, the sub-states condition depend on the initial values 
assigned to the total head hc, while the boundary conditions can be assigned either 
in terms of mass flow coming in (infiltration) or out (exfiltration) from the system 
(Neumann conditions), or fixing the total or pressure head values on some cells of 
the system (Dirichlet conditions). 

6. Cellular automata quantization 

Different conditions affect the nature of the CA. Among these the one based on 
quantized systems theory (Ziegler, 1998) was applied to the proposed model in 
order to reduce the state update transmission process. Such a process, called quan-
tization, starting from the discretization of the states of a continuous process, fixes 
their evolution only through multiples of a specific value, called quantum size. 
Specifically, in a CA system the local interactions within the neighborhood, car-
ried out through the transition function, involve each fa in temporal changes of the 
state: if during a time step the application of the transition function does not allow 
the cell to evolve from state D at least to state D ±1 (where the difference bet-
ween two states is given by the quantum size), it maintains its current state, and 
does not exchange information with the neighborhood. The quantization makes 
cellular automata asynchronous, because for each iteration every fa decides, with 
respect to the value of its state and those of adjacent cells, whether to be updated 
or to remain frozen in its state during the previous time step. 

For the proposed model the quantization procedure has been applied in a dif-
ferent way to the original approach. In Ziegler (1998) the cell evolves through 
fixed values from state D to states D ±1, D ± 2 , D ± 3, etc. (like a step function). 
Instead we assume that the automaton state evolution, depending on a set of local 
interactions of the transition function, is only admitted if a fixed threshold is 
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exceeded. The local interactions of the transition function are conditioned by the 
difference between the values of a chosen sub-state of the cell (the driving sub-
state) before and after a single time step; if this difference is greater than a fixed 
threshold value then interactions are allowed and the automaton state can assume 
any numerical value in the field of real numbers. Obviously, when all local inter-
actions are not significant (all the differences are smaller than the fixed threshold) 
then the automaton is assumed to be at rest. 

In the unsaturated flow problems, the mass exchanges among the cells are due 
to the differences (in the space) among the total heads. Mass exchanges can be 
considered as not significant when they lead to a total head variation (in time) in 
the analyzed cell lower than a fixed threshold. Exceeding the threshold has to be 
checked for every neighbor with the aim of allowing the interaction along the 
generic α direction. Therefore rewriting equation (6) it should be verified that 
(Mendicino et al., 2006):  

 Δhαc =
Δt

VcCc
Sc + K cα

hα − hc

lα

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Aα

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ > quantumh (16)

where the term quantumh is the threshold, representing the minimum admissible 
total head variation in the time step Δt. This quantumh determines a constant 
threshold within the CA domain. 

On the CA domain a different threshold can also be hypothesized based on 
variations in time of water content, defined as quantumθ. This quantumθ, accord-
ing to equation (16) has different effects on each cell of the automata, depending 
on the water content value of the same cell at the beginning of the time step and 
on the characteristic equation ψ(θ) adopted. 

Specifically, given the water content θc for the cell analyzed at the beginning of 
the time step, it is: 

 
quantumh = ψ θ c( )−ψ θ c − quantumθ( ) exfiltration
quantumh = ψ θ c + quantumθ( )−ψ θ c( ) infiltration

 (17) 

In this way, the CA system becomes both asynchronous and non-uniform: the 
transition function changes in each fa, because in each automaton the threshold 
depends on a local factor represented by the degree of saturation at the beginning 
of the time step. 

For both thresholds depending on total head and water content, increasing 
values produce two opposite effects: on the one hand the number of interactions 
decreases and on the other the model is less accurate. Then, a suitable compromise 
has to be reached, such as that shown in the next section. 
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7. CA high-performance environment 

The three-dimensional unsaturated flow model has been developed using a high-
performance environment called CAMELOT, specifically developed for macro-
scopic cellular automata simulations (Dattilo and Spezzano, 2003; Folino et al., 
2006). In CAMELOT each transition function uses the same local rule, even 
though it is possible to define some cells characterized by different transient func-
tions (heterogeneous CA). In contrast to the classical cellular approaches which 
make reference to the basic model, where the state of each fa is defined as a single 
bit or a set of bits, in this case the fa state is defined like a set of typed sub-states. 
This increases the range of applications which can be simulated through cellular 
algorithms. Furthermore, in CAMELOT a logical neighborhood representing a 
wide range of different neighborhoods within the same radius, which can also be 
time dependent, has been introduced. 

The CAMELOT components also include load balancing procedures based on 
a scatter-type decomposition technique which allows the computation to be equally 
distributed among processors of the parallel computing system. This is carried 
out using the standard Message Passing Interface (MPI) library, which allows 
CAMELOT to run on different hardware platforms for all communications. More 
specifically, the working environment is capable of determining the best number 
of nodes to be used in parallel grid computing for a given CA system, making the 
overheads due to the remote communications among the single processors very 
small. Such a process, which identifies the computational scalability of the CA 
system, becomes more efficient as the spatial dimension of the problem to be ana-
lyzed increases. Therefore, the up-scaling from micro to meso-scale occurs with-
out changing the local rule of the CA and, at the same time, the computational 
efficiency is improved by the working environment. 

8. Results 

The CA model was validated considering a wide range of benchmarks proposed in 
literature. Regarding the flow model, results were compared with numerical simu-
lations of one-dimensional cases (benchmarks 1D1 and 1D2), a two-dimensional 
case (benchmarks 2D) and a three-dimensional case (benchmark 3D), while for 
the transport model a contaminant transport problem has been solved, starting from 
field data based on a real site where experimental measurements were available. 

8.1.  One-dimensional benchmarks 

Two one-dimensional benchmarks were considered along two different soil col-
umns (Paniconi et al., 1991): the former refers to an infiltration problem and the 
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latter to an evaporation one. Both the cases are based on the unmodified Richards’ 
equation which does not allow general closed form exact solutions. Then, for the 
estimate of errors produced by the CA model some reference numerical solutions 
were considered, assuming a very dense grid and small time step (Mendicino et al., 
2006). 

The characteristic equations taken into account for these simulations are the 
(14) and (15), with a modified retention curve θ(ψ) in a form like this (Paniconi 
et al., 1991): 

 
θ ψ( )= θ r + θ s −θ r( ) 1+ β[ ]−m ψ < ψ0

θ ψ( )= θ r + θ s −θ r( ) 1+ β0[ ]−m + Ss ψ −ψ0( ) ψ ≥ ψ0
  (18) 

where β0 = β(ψ0) = ( ψ0/ψa)n, ψ0 being a continuity parameter and Ss the specific 
storage. The general storage term of the Richards’ equation in this case is given by 
η(ψ)=dθ/dψ. The variation in the original equations is necessary to avoid numeri-
cal problems, such as those indicated by Paniconi et al. (1991). The accuracy of 
the CA model was estimated by using both a first and a second order norm error: 

 ε1(t)=
ˆ ψ (zi , t) −ψref (zi , t)

ni=1

n
∑  (19) 

 ε2(t)=
ˆ ψ (zi , t) −ψref (zi , t)[ ]

2

ni=1

n
∑  (20) 

where ψ̂  and ψref are the simulated and reference pressure head at time t respec-
tively, for the i=1..n soil profile points at level zi. 

Benchmark 1D1 consists of an infiltration and redistribution simulation into a 
soil column initially at hydrostatic equilibrium. The boundary condition at the sur-
face is a time-varying specified Darcy flux q which increases linearly with time, 
while the boundary at the base is maintained at a fixed pressure head value of ψ = 
0, allowing drainage of moisture through the water table. The space grid and time 
step have been chosen to guarantee the convergence of the system, following a cri-
terion described in Appendix B (the same criterion has been applied for all simula-
tions considered). 

Figure 2 shows the comparison between CA simulations and reference numeri-
cal solutions: the differences are very small for all the times analyzed. 

Benchmark 1D2 simulates evaporation from an initially wet soil with a fixed 
water table boundary condition at the base of the column. The boundary condition 
at the surface is a specified and constant Darcy flux, until the pressure head at the 
surface reaches its air dry value ψmin, after which the surface becomes a fixed 
head boundary. The comparison between simulations and numerical reference 
solutions is shown in Figure 3. 
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Fig. 2. Comparison between CA simulation (solid lines) and reference numerical solutions 
(points) for the bench-mark 1D1. 
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Fig. 3. Comparison between CA simulations (solid lines) and reference numerical solutions 
(points) for bench-mark 1D2. 
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The CA model shows a good agreement with the reference solutions, although 
small differences in pressure head at the soil surface were observed. This is mainly 
due to the constitutive equations in the conversion of surface boundary condition, 
which is expressed in terms of water content θ in the reference solution and in 
terms of total head h in the CA model. 

8.2.  Two-dimensional benchmarks  

The 2D benchmark is partly based on textural, structural and hydraulic properties 
of Jornada Test Site soil at Las Cruces (New Mexico) which are described by 

in a very-arid heterogeneous soil. 
The test area consists of three soil layers with different characteristic proper-

ties. Within the bottom-layer, there is a very permeable small zone. The domain 
extends about 8.00 m horizontally and 6.50 m vertically. The experiment was car-
ried out again numerically by Magnuson et al. (1990), utilizing FLASH (FEM) 
and PORFLOW (FDM) calculus codes, therefore the results (supplied by such 
codes) were assumed as standard numerical solutions for the comparison with the 
proposed AC model. Regarding the initial conditions, the soil piezometric head is 
uniform and equal to –7.34 m, corresponding to a saturation degree variable from 
0.31 into the top-layer to 0.37 into the bottom-one. The boundary conditions are 
given by an infiltration zone of 0.02 m d–1 which extends on the area of 2.25 m 
starting from the left side of the domain. The remaining boundary is characterized 
by no flow conditions. Finally, soil properties are based on van Genuchten (1978) 
relationship according to the Mualem (1974) model. 

The AC model which simulates soil moisture evolution consists of square cells 
with a 0.05 m side. The simulation time-step goes from a maximum value of 100 s 
to a minimum ones of about 28 s, according to the limits established by the fol-
lowing criterion of convergence (Mendicino et al., 2006): 

 Δt ≤
l 2Cc

4Kc
 (21) 

As shown in Figure 4 the saturation degree distribution along the analyzed plot 
is obtained through AC model after 30 days from the starting of the simulation, 
and compared with the results obtained by means of FLASH and PORFLOW 
codes (Figure 5). Thirty days step is enough to reach the conditions comparable 
with the steady ones. The effect of the high-saturation zone is clearly visible, because 
the curve indicating the saturation degree is strongly influenced by it. In particular, 
the AC model results shown a good agreement with PORFLOW ones, while the 
output of the FLASH code shows some differences (a greater horizontal extension 
of the curve at 0.4 saturation degree, and a less face along the vertical). 
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Fig. 4. Saturation degree change respect to the initial condition after 30 days. The saturation 
degree shown is greater than 0.0001. 

 

 
Fig. 5. Comparison between CA simulations and reference numerical solutions (PORFLOW and 
FLASH) for benchmark 2D after 30 days from the simulation start. 
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8.3.  Three-dimensional benchmark 

The benchmark 3D is taken from Huyakorn et al. (1986) and analyses a transient 
flow in a rectangular soil column of dimensions 0.50 × 0.50 × 2.00 m subjected to 
infiltration and subsequent evaporation. The bottom and the top faces of this column 
correspond to the water table and the soil surface respectively. The initial pressure 

and then subjected to evaporation for another 10 days; for both phenomena the 
maximum flux rate was assumed as equal to 0.05 m d–1. The minimum allowable 
pressure head at the top of soil column is –0.90 m, saturated hydraulic conductivity 
Ks is equal to 0.1 m d–1, porosity φ is 0.45, residual water saturation Swr is 0.333 
and air entry value ψa is equal to 0.0 m. The constitutive equations are given by 
the equation: 

 ψ −ψα( ) −100 −ψα( )= 1− Sw( ) 1− Swr( ) (22) 

 Kr = Sw − Swr( ) 1− Swr( ) (23) 

Simulations did not show particular convergence or stability problems because 
of the linearity of equations (22) and (23). The time step used for simulations was 
fixed as equal to 60 s while the automaton dimension was assumed as equal to 
0.05 m. The results obtained with the CA model are compared with reference 
solutions in Figures 6a (infiltration) and 6b (evaporation). 

Fig. 6. Comparison between CA simulations (solid lines) and reference numerical solutions 
(points) for benchmark 3D, for infiltration (a) and evaporation (b). 
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– 0.97 m elsewhere. The soil column was first subjected to infiltration for 10 days 
head was assumed to be zero at the water table, –0.90 m at the soil surface, and
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8.4.  Transport benchmark 

In this section we report an example of a validation process using a two dimen-
sional contaminant transport problem (Troisi et al., 2000). The two PS sets have 
been defined starting from field data based on a real site where experimental 
measurements were available.  The study area (Figure 7) is located near the town 
of Montalto Uffugo in Calabria, Southern Italy. It is a valley at the confluence of 
the Settimo River on the south, the Mavigliano River on the north and the Crati 
River on the east. The geology is formed by three layers: sand (0–7 m), clay (7–11 
m), and silt (11 to about 40 m) (Troisi, 1995). A basal clay underlies the silty sand. 
A local perched water table is in the alluvium above the clay layer, and the silty 
sand layer constitutes a confined aquifer above the basal clay. Measurements of 
the hydraulic conductivity and its distribution have been made over the past few  

Fig. 7. Location of the study area used for the transport benchmark. The boundary of the numerical 
model is shown as a dotted line. 
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years using a kriging approach with external drift methodology applied to electrical-

application is defined as the area enclosed by the surface water system as shown in 
Figure 7. In the flow model a heterogeneous isotropic porous medium is assumed. 
Dirichlet boundary conditions are according to the water levels in the surface water 
system. Two permeability zones are assumed in the flow fields, and are indicated 
in Figure 7. Zone 1 is characterized by K11 = K22 = 10–5, Ss = 10–2m while in zone 
2, K11 = K22 = 10–6, Ss = 10–3m. One extracting well, located at coordinates X = 1640 
and Y = 2525 and pumping at a rate of qout = 0.003 m, is coupled with an injecting 
well, located at X = 114 and Y = 225, where the head is kept constant at 138 m. In 
the transport test case we simulate a contaminant injection from the Mavigliano 
River, just east of Highway A3, where a contaminant source of 100 m of length is 
kept at constant concentration. A second contaminant point source is located at X 
= 146 and Y = 241. The parameters used in the simulations are: n = 0.2, αL = 5, 
and αT = 1.  

The benchmark code for this test case has been run on a number of successively 
refined computational grids so that a reliable solution is obtained. The results for 
the test case at time t = 2.3 days are shown in Figure 8. The solutions obtained 
with the TRAN2D (Gambolati et al., 1993) and CA models are not significantly 
different so that the CA model can be considered verified for this benchmark. How-
ever, more meaningful and objective comparison procedures need to be devised, 
as the contour plots give only a qualitative picture. Appropriate simulation quanti-
ties useful for these purposes could be, for example, mass balance measures (both 
local and global), stability measures (e.g., negative concentrations in transport pro-
blems, existence of negative transmissivities in stiffness matrices), accuracy measures 
(e.g., outgoing fluxes from zero Neumann boundaries), and so on. 
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resistivity data (Troisi et al., 2000). The domain for the flow and transport model 

Fig. 8. Results of the transport problem at t = 2.3 days: benchmark solution (left), CA model
solution (right). 
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9. Cellular automata quantization effects 

The quantization effects considering both total head and water content thresholds 
were investigated using the benchmark 1D1 in a three-dimensional configuration. 
Figures 9a, 9b, 10a, 10b, 11a and 11b show the reduction in the number of auto-
mata interactions along a column of cells together with the corresponding norm error 
ε1 values (assuming as reference values ψref those obtained from the simulations 
without quantization), when the values of thresholds depending on total head 
(quantumh) and water content (quantumθ) are changed, respectively at times of 4, 
10 and 32 h. Obviously, messages exchanged for quantumh = quantumθ = 0 are the 
same. For the particular structure of the 3D problem, it is clear that considering the 
whole automata instead of only a column leads to a number of exchanges equal to 
the values shown in the figures multiplied by the number of automata columns, 
not varying the ε1 error values. 

Fig. 9. Reduction in exchanged messages in a column of cells and variation of error norm ε1 values 
at a time of 4 hours, varying (a) quantumh and (b) quantumθ threshold values. Points drawn with 
two concentric circles represent the number of exchanged messages with quantumh = quantumθ = 0. 

 
Fig. 10. Reduction in exchanged messages in a column of cells and variation of error norm ε1 
values at a time of 10 hours, varying (a) quantumh and (b) quantumθ threshold values. Points 
drawn with two concentric circles represent the number of exchanged messages with quantumh = 
quantumθ = 0. 
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Fig. 11. Reduction in exchanged messages in a column of cells and variation of error norm ε1 
values at a time of 32 hours, varying (a) quantumh and (b) quantumθ threshold values. Points 
drawn with two concentric circles represent the number of exchanged messages with quantumh = 
quantumθ = 0. 

For all the times analyzed, starting from a very small threshold value (quantumh 
equal to 10–7 m and quantumθ equal to 10–10), an appreciable reduction in the 
number of automata interactions is obtained. This however appears less significant 
for increasing simulation times.  

Once a certain threshold value is exceeded, for both kinds of thresholds the 
increase in the norm error is not tolerable, even if the reduction in exchanges still 
continues. Considering quantumh the critical threshold value seems to be between 
10–5 and 10–4 m.  

For quantumh equal to 10–5 m reductions in exchanged messages of 82.3% 
(with ε1 = 9.1 × 10–4 m), 42.7% (with ε1 = 2.3 × 10–4 m) and 13.3% (with ε1 = 1.0 × 
10–3 m) were obtained at times of 4, 10 and 32 hours respectively. Instead, for 
quantumh equal to 10–4 m reductions in exchanged messages of 87.3% (with ε1 = 
9.1 × 10–3 m), 51.8% (with ε1 = 5.2 × 10–4 m) and 16.1% (with ε1 = 1.0 × 10–3 m) 
were obtained at the same times respectively. For increasing simulation times it 
was observed that higher threshold values still provided acceptable results. 

No essential differences were observed using quantumθ threshold, even though 
for high values some numerical divergence problems occurred, especially for 
increasing simulation times. 

For the same infiltration case 1D1, characterized by retention curves (18), the 
relationship between quantumh and quantumθ is given by the following equation 
(Mendicino et al., 2006): 

 

quantumh = ψ θ + quantumθ( )−ψ θ( )=

ψa
θ + quantumθ −θ r

θ s −θ r

⎛ 

⎝ 
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−1
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1 n
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Critical quantumθ  threshold values seem to vary between 10–7 and 10–6. For 
quantumθ equal to 10–7 reductions in exchanged messages of 82.0% (with ε1 = 4.8 × 
10–4 m), 39.8% (with ε1 = 7.0 × 10–6 m) and 12.4% (with ε1 = 1.0 × 10–6 m) were 
obtained at times of 4, 10 and 32 h respectively. Instead, for quantumθ equal to 
10–6 m reductions in exchanged messages of 87.0% (with ε1 = 5.6 × 10–3 m), 
47.9% (with ε1 = 1.5 × 10–3 m) and 15.2% (with ε1 = 1.2 × 10–3 m) were obtained 
at the same times respectively. 

The reduction in exchanges varying the thresholds as well as specific effects 
produced by static (quantumh) and dynamic (quantumθ) approaches should not be 
thought of as general results, but are associated with the problem analyzed. In fact, 
considering benchmark 1D1 we start from a top-perturbed initial condition and, 
consequently, the gradients between cells are initially very low and so even a small 
threshold significantly affects the behavior of the system. 

10. Conclusions 

Three-dimensional unsaturated flow and transport modeling has been developed 
by means of an extended notion for macroscopic cellular automata where local 
laws governing the automata interaction are based on physically-based rules. The 
modeling uses a CA structure based on functionalities capable of increasing its 
computational capacity, both in terms of working environment and in terms of the 
optimal number of processors available for parallel computing. 

In terms of performance, the model has been verified considering multidimen-
sional reference solutions taken from benchmarks in literature. The simulations 
carried out on one-, two- and three-dimensional benchmarks have shown results 
similar to the reference solutions, with first and second order norm error values 
never greater, respectively, than 0.028 m and 0.5 m2. The AC characteristic equations 
are subjected to parameters which amplify the non-linearity of the phenomenon. 
Even if not explicitly shown in this chapter, the effects of non-linearity can be 
reduced using smaller dimension automata, which evolve with lower mass flow 
values, which better approximate the non-linearity condition. 

Furthermore, in the three-dimensional configuration of the benchmark 1D1 the 
benefits of the use of quantization techniques to reduce the number of interactions 
occurring locally among adjacent automata have been observed. The CA structure 
working in an asynchronous and non-uniform manner, allowed a considerable 
reduction in the local transitions, which becomes very significant in the first steps 
of simulations characterized by scarce mass exchanges. In this case, in the first 
four hours of simulation a reduction greater than 80% in the messages exchanged 
among automata was achieved with negligible error values by considering both 
thresholds depending on total head and water content. 

Therefore, at the end of this analysis, the modeling proposed appears to be: (1) 
innovative with respect to other macroscopic CA models, because its physically-
based structure differs from the others commonly based on empirical methods 
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where local laws show some parameters whose physical meaning is not clear and, 
as a consequence, heavy calibration phases are necessary to estimate suitable values 
of the same parameters; (2) innovative with respect to other unsaturated flow 
models, because it solves the problem through a direct discrete approach; (3) reli-
able for all the simulations carried out with one-, two- and three-dimensional 
benchmarks; (4) faster than some other numerical approaches not based on quanti-
zation techniques aimed at reducing the local interactions among the elements of 
the discrete system. 

The proposed discrete approach, coupled to the CA environment implementa-
tion, allows us to deal with heterogeneous and anisotropic soils and composite 
porous or fractured media, and with different (continuous or concentrated) sources 
in a quite simple way, by just varying the parameters of specific regions of the CA 
and not changing the transition function. 

Finally, from a computational point of view the higher efficiency values shown 
by the model running on parallel machines increase the capability of the CA sys-
tem also with respect to the fully-coupled modeling of complex macroscopic 
phenomena such as those represented in this chapter. 

Appendix A. Direct discrete formulation of the Darcy equation 

The aim of this appendix is to show that the direct discrete formulation of the 
unsaturated flow equation on three-dimensional cubic cells is a particular form of 
a more general direct discrete formulation of the Darcy equation. 

Figure A1a shows the tetrahedral element c with a volume Vc whose vertices 
correspond to the barycenters of four tetrahedral cells belonging to a more com-
plex cell system. Referring to this figure, we hypothesize that the variable H (total 
head) is given by the following equation: 

Fig. A1: (a) The elementary tetrahedron of a generic cell system; (b) The elementary cube of a 
three-dimensional cubic cell system. 
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 H (x, y,z) = a + gx x + gy y + gzz  (A.1) 

where the coefficients gx, gy and gz are the hydraulic gradient vector components, 
and a is a constant. Given h, i, j and k the tetrahedron vertices, with Li, Lj and Lk 
the three sides starting from the vertex h, we can write: 

 
Hi − Hh = gx xi − xh( )+ gy yi − yh( )+ gz zi − zh( )

H j − Hh = gx x j − xh( )+ gy y j − yh( )+ gz z j − zh( )
Hk − Hh = gx xk − xh( )+ gy yk − yh( )+ gz zk − zh( )

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (A.2) 

or in matrix form: 

 
Lix Liy Liz

L jx L jy L jz

Lkx Lky Lkz

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

c

gx

gy

gz

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

c

=
H i − H h

H j − H h

H k − H h

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

⎫ 

⎬ 
⎪ 

⎭ ⎪ 
c

 (A.3) 

where the matrix of L terms contains the projections of the sides Li, Lj and Lk on 
the x, y, z axes. The solution of the system, obtained by Cramer’s rule, is the fol-
lowing: 

 
gx

gy

gz

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

c

=
1

3Vc

Ahx Aix A jx Akx

Ahy Aiy A jy Aky

Ahz Aiz A jz Akz

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

c

H h

H i

H j

H k

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

c

 (A.4)  

where the matrix of A terms contains the projections of the oriented areas Ah, Ai, 
Aj and Ak of the tetrahedron on the x, y, z axes. System (A.4) can also be written 
in the following way: 

 g{ }c =
1

3Vc
A[ ]c H{ }c  (A.5) 

The Darcy equation links the mass flux Φ to the hydraulic gradient g through 
the following system: 

 
Φx (x, y,z)
Φy (x, y,z)
Φ z (x, y,z)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

c

= −
kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

c

gx (x, y,z)
gy (x, y,z)
gz (x, y,z)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

c

 (A.6) 
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that is:  

 Φ{ }c = − k[ ]c g{ }c  (A.7) 

If a cubic cell is considered (Figure A1b), the off-diagonal terms of the system 
(A.2) are null. In matrix form results: 

 
Lhi 0 0
0 Lhj 0
0 0 Lhk

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

c

gx

gy

gz

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

c

=
Hi − Hh

H j − Hh

Hk − Hh

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

⎫ 

⎬ 
⎪ 

⎭ ⎪ 
c

 (A.8) 

and the solution of the system is given by: 

 
gx = Hi − Hh( ) Lhi

gy = H j − Hh( ) Lhj

gz = Hk − Hh( ) Lhk

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (A.9) 

then, assuming that the xyz Cartesian system is colinear with the principal aniso-
tropy directions, the Darcy equation becomes: 

 
Φ x = −kx H i − H h( ) Lhi

Φ y = −ky H j − H h( ) Lhj

Φ z = −kz H k − H h( ) Lhk

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (A.10) 

The equations of the system (A.10) are equivalent to equation (2), showing that 
the direct discrete formulation of the unsaturated flow equation on three-dimensional 
cubic cells is a particular form of a more general direct discrete formulation of the 
Darcy equation. 

The three-dimensional cubic cell system is a particular case of a Delaunay 
tessellation. With this kind of tessellation the discrete governing equation system 
is similar to the one achieved using Finite Difference or Finite Volume Method 
schemes (Mattiussi, 1997, Manzini and Ferraris, 2004).  If we do not use a Delaunay 
tessellation (as in the case of an irregular mesh), we obtain a discrete governing 
equation system by means of an interpolation of the hydraulic head on the cells. It 
has been shown that, for linear interpolation the discrete governing equation sys-
tem coincides with the one of the Finite Element Method (Tonti, 2001). However, 
for quadratic interpolation the discrete equation system, which is asymmetric, dif-
fers from the FEM scheme, achieving a convergence of the fourth order, greater 
than the one obtained with FEM using the same interpolation (Tonti, 2001). 
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When we use a method with a differential or integral formulation, the choice of 
the cell or the tessellation type depends on the method selected (FEM, FDM, 
FVM…). In contrast, if we use a direct discrete formulation, the cell or the tessel-
lation type and the time interval can be chosen considering the physical laws gov-
erning the problem, the spatial and temporal scale of the phenomenon and, if the 
cells are considered as finite automata of a CA, the macroscopic CA environment 
can be chosen, with the opportunity, for example, of using different shapes (e.g., 
squares and hexagons) for the single elements. 

Appendix B. Convergence of discrete unsaturated flow equation 

The problem of convergence, in a finite difference method, consists of finding the 
conditions under which the difference U(i,j,k,t) − u(i,j,k,t) between the theoretical 
solutions of the differential (U) and difference (u) equations at a fixed point 
(i,j,k,t) tends to zero uniformly, as the net is refined in such a way that 
Δx,Δy,Δz,Δt → 0, and m1,m2,m3,n → ∞, with m1Δx ( = i), m2Δy ( = j), m3Δz ( = k) 
and nΔt ( = t) remains fixed, and m1,m2,m3,n being integers, with m1 = m2 = 
m3 = n = 0 the origin. 

The fixed point (i,j,k,t) is anywhere within the region under consideration, and 
it is sometimes necessary in the convergence analysis to assume that Δx,Δy,Δz,Δt 
do not tend to zero independently but according to some relationship (Mitchell and 
Griffiths, 1980). 

If we consider a discrete cell system directly, of course we can assume that a 
difference exists between the ‘exact’ infinitesimal (differential) solution and the 
discrete solution. Since the independent variable in the unsaturated soil flux equa-
tion (6) is the total head h, we can introduce the error e: 

 i, j,k
te = i, j ,k

tH − i, j,k
th  (B.1) 

that is the difference between the exact solution H and the discrete solution h at 
the grid point i,j,k,t. 

Rearranging equation (6) considering Δx = Δy = Δz = l, we obtain: 

 Δhc

Δt
=

1
Ccl 3 Sc +

1
Ccl 2 Kcα

_____
hα − hc( )

α
∑   (B.2) 

Expanding the terms and considering the introduced error term, we have with 
respect to the grid point i,j,k,t (i.e., the cell c becomes the grid point i,j,k,t): 
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Hi, j,k
t +Δt − ei, j,k

t +Δt − Hi, j,k
t + ei, j,k

t

Δt
=

1
Ci, j,k

t l 3 Sc +
1

Ci, j,k
t l 2 [Ki−1, j,k

t H i−1, j,k
t − ei−1, j,k

t( )+ Ki+1, j,k
t H i+1, j,k

t − ei+1, j,k
t( )+

+Ki, j−1,k
t H i, j−1,k

t − ei, j−1,k
t( )+ Ki, j +1,k

t H i, j +1,k
t − ei, j +1,k

t( )+

+Ki, j,k−1
t H i, j,k−1

t − ei−1, j,k
t( )+ Ki, j,k +1

t H i, j,k +1
t − ei, j,k +1

t( )− Ki±1, j ±1,k ±1
t H i, j,k

t − ei, j,k
t( )]

 

  (B.3) 

where Ki±1, j ±1,k±1
t = Ki−1, j,k

t + Ki+1, j,k
t + Ki, j−1,k

t + Ki, j +1,k
t + Ki, j,k−1

t + Ki, j,k+1
t  is the 

sum of the hydraulic conductivities averaged between the grid point i,j,k,t and the 
adjacent points i ± 1,j ± 1,k ± 1,t, obtained considering in equation (3) the ele-
ments on the diagonal of the hydraulic conductivity tensor corresponding to the 
linking directions.  

Isolating the error term in the time step t + Δt, we get 

 

ei, j,k
t +Δt = 1− Ki±1, j ±1,k±1

t Δt
l 2Ci, j,k

t

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
ei, j,k

t +

+
Δt

l 2Ci, j,k
t (Ki−1, j,k

t ei−1, j,k
t + Ki+1, j,k

t ei+1, j,k
t + Ki, j−1,k

t ei, j−1,k
t + Ki, j +1,k

t ei, j +1,k
t +

+Ki, j,k−1
t ei, j,k−1

t + Ki, j,k+1
t ei, j,k+1

t ) −
Δt

Ci, j,k
t l 3 Sc + f (H ,K)

 (B.4) 

where f (H,K) is a function of permeability K and of the exact solution H: 

 

f (H ,K) =

H i, j,k
t +Δt − 1− Ki±1, j ±1,k ±1

t Δt
l 2Ci, j,k

t

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
H i, j,k

t +

−
Δt

l 2Ci, j,k
t (Ki−1, j,k

t H i−1, j,k
t + Ki+1, j,k

t H i+1, j,k
t + Ki, j−1,k

t H i, j−1,k
t

+Ki, j +1,k
t H i, j +1,k

t + Ki, j,k−1
t H i, j,k−1

t + Ki, j,k +1
t H i, j,k +1

t )

 (B.5) 

From now on, for the sake of simplicity, we will not consider the source term Sc. 
Let , ,

t
i j kE denote the maximum value of ei, j,k

t  at time t and M the maximum 

modulus of f (H,K) for all i,j,k,t. When the term in the square brackets in equation 
(B.4) is equal or greater than zero, all the coefficients of e in the equation are posi-
tive or zero. The term in the square brackets is equal to or greater than zero when: 

56 



 CELLULAR AUTOMATA MODELING OF ENVIRONMENTAL SYSTEMS 

 Δt ≤
l 2Ci, j,k

t

Ki±1, j ±1,k ±1
t

 (B.6) 

and, working on equation (B.4), we have: 

 ei, j,k
t +Δt ≤ Ei, j,k

t + M  

As this is true for all values of i,j,k it is true for max
i, j,k

ei, j,k
t +Δt ≤ Ei, j,k

t +Δt + M . Hence: 

 Ei, j,k
t +Δt ≤ Ei, j,k

t + M ≤ Ei, j,k
t−Δt + M( )+ M = Ei, j,k

t−Δt + 2M  

etc., from which it follows that: 

dθ
dH

∂H
∂t

−
∂Kx ψ( )

∂x
∂H
∂x

− Kx ψ( )∂2H
∂x 2 −

∂Ky ψ( )
∂y

∂H
∂y

− Ky ψ( )∂2H
∂y 2 −

∂Kz ψ( )
∂z

∂H
∂z

− Kz ψ( )∂2H
∂z 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

i, j,k

t

 

As H i, j,k
t − hi, j,k

t ≤ Ei, j,k
t , this proves that h converges to the exact solution H 

and that H is the solution of the Richards’ equation, as Δx,Δy,Δz → 0, when the 
condition expressed in equation (B.6) is respected and t is finite. 
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