
Towards Reusing Model Components
in Systems Biology

Adelinde M. Uhrmacher, Daniela Degenring, Jens Lemcke, and Mario Krahmer

Department of Computer Science,
University of Rostock, D-18051 Rostock, Germany

{lin, daniela.degenring, jens.lemcke, mario.krahmer}
@informatik.uni-rostock.de

Abstract. For reusing model components, it is crucial to understand
what information is needed and how it should be presented. The central-
ity of abstraction being inherent in the modelling process distinguishes
model components from software components and makes their reuse even
more difficult. Objectives and assumptions which are often difficult to ex-
plicitate become an important aspect in describing model components.
Following the argumentation line of the Web Service ontology OWL-S,
we propose a set of metadata which is structured into profile, process
model, and grounding to describe model components. On the basis of
the specific model component Tryptophan Synthase, its metadata is re-
fined in XML. The reuse of the described model component is illustrated
by integrating it into a model of the Tryptophan operon.

1 Introduction

Modelling in general requires a lot of effort, thus the question how models can be
reused is a major research effort in modelling and simulation, e.g. [, , , ,].
Particularly, the availability of software methods that support a modular design
of models and their widespread application has revitalised research on reusability
of models. Most of the work has concentrated on the technical interoperation
of simulation systems, e.g. [], or how to build simulation systems that support
a hierarchical, modular composition of models, e.g. [,]. However, progress on
developing model components that can be reused by third parties for different
objectives has been slow. One of the central reasons might be that capturing the
semantics of a model component in an unambiguous way has so far been elusive.

Much of the subsequent is based on the following assertion: A model is an
abstraction of a system to support some concrete objective. Thus, we follow the
definition of Minsky [] that“A Model (M) for a system (S) and an experiment
(E) is anything to which E can be applied in order to answer questions about S.”.
As Cellier [] points out, this defintion does not describe “models for systems”
per se. A model is always related to the tuple system and experiment. A model of
a system might therefore be valid for one experiment and invalid for another. In
consequence of this definition, it is very unlikely to derive a model being valid for

V. Danos and V. Schachter (Eds.): CMSB 2004, LNBI 3082, pp. 192– , 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20

5 2410 26 30

13
11 26

9

27

6

Towards Reusing Model Components in Systems Biology 193

all possible experiments, unless it is an identical copy of the system and thus no
longer a model. Modelling is a process of abstraction. It involves simplification
and omission of details. Which simplifications are permissible and what details
can be omitted, depends on simulation objectives. Therefore, all valid reuse must
take the objectives of developing this specific model component into account.

In the following, we will explore possibilities to capture the meaning of a
model component to support its reuse in Systems Biology. The paper will be
structured as follows. First we will explain the concept of model components and
take a look at related efforts in Computer Science. Afterwards, we will suggest
a set of metadata to describe the syntax and semantics of model components.
Within a modular, hierarchical model of the Tryptophan Synthase at cell level,
we will identify possible model components for reuse. An enzyme responsible for
the last reaction step of the Tryptophan synthesis will be singled out as a possible
candidate. We will fill in the metadata for the identified model component and
show the reuse of the model component in a different context. Afterwards, we
will conclude by discussing related work in modelling and simulation and in
Systems Biology.

2 Model Components

Model components and software components have much in common. Both are
units of independent deployment and third-party composition. They should come
with clear specifications of what they require and provide. A component should
be able to plug and play with other components []. Software components offer
a service to an unknown environment. Thus, approaches developed to facilitate
the identification and discovery of suitable Web Services could possibly be ex-
ploited for our purpose. For example, the OWL-based Web Service ontology
OWL-S (Ontology Web Language for Services) supplies Web Service providers
with a core set of markup language constructs to describe the properties and
capabilities of their Web Services in an unambiguous, computer-intepretable way
[]. Based on the Resource Description Framework (RDF) expressing simple se-
mantic relations, DAML+OIL (DARPA1 Agent Markup Language, Ontology
Interface Layer) provides mechanisms for describing complex class and property
hierarchies. The Web Services classification OWL-S (formerly DAML-S) utilises
this framework to unambiguously classify software components in an ontology
while including semantic information. The broad aim is to build up a so-called
Semantic Web linking specifications of multiple distributed services together to
be used in many applications. Central issue of this approach is to provide a
precise description expressed in a formal language to support

– Automatic discovery,
– Automatic invocation,
– Automatic composition and
– Automatic monitoring of Web Services.

1 Defense Advanced Research Projects Agency

1

20

194 A.M. Uhrmacher et al.

To accomplish these goals, OWL-S is structured into three parts:

1. The service profile for advertising and discovering services. It answers the
question: What does the service require of the user(s) or other agents and
what does it provide for them?

2. The process model, which gives a detailed description of a service’s operation
and answers the question: How does it work?

3. The grounding, which provides details on how to interoperate with a service
via messages and answers the question: How is it used?

Although having much in common, model components also differ from soft-
ware components, because they always represent an abstraction of reality. The
problem of reusing model components thus seems to be even more difficult than
the reuse of software components. Due to different objectives in the modelling
process, alternative models of the same physical system may equally use different
abstractions. Explorative modelling, multi-resolution and multifaceted modelling
emphasise the importance of developing families of models and recognising the
existence of multiplicities of objectives andmodels as a fact of life [,]. Selecting
a model for reuse requires an understanding of its meaning, part of which refers
to its objectives, constraints as well as underlying assumptions. Those are diffi-
cult to capture, because they often are only implicitly included, and modellers
might not even be aware of many of them.

Components as “a self-contained, interoperable, reusable and replaceable unit
that encapsulates its internal structure and provides useful services to its environ-
ment through precisely defined interfaces” facilitate the development of models
by composition as could be shown in empirical studies []. Thus, the number
of component-based approaches and component libraries offered by commercial
simulation systems is steadily increasing []. However, component libraries have
so far been restricted to well established, highly specialised and well understood
application areas of modelling and simulation offering mostly low-level, prefabri-
cated components whose underlying assumptions and constraints are commonly
known. Improving model reuse for areas like Systems Biology requires a signifi-
cant development in several areas []. This includes

– understanding what information is needed to support reuse and how it should
be presented,

– developing mechanisms to collect and record this information,
– understanding how to design for reuse,
– developing advanced search tools to locate model components and
– developing criteria to decide when model reuse is desirable.

In the following, we will focus on the questions: What information about
model components is needed to support reuse not only syntactically but also se-
mantically, and how can this information be represented? Finding answers seems
more tractable if the questions are restricted to a specific domain of interest, as
in our case the area of Systems Biology.

14 35

33

6

29

Towards Reusing Model Components in Systems Biology 195

3 Defining Metadata for Model Components

The information that we distinguished as crucial in describing a model compo-
nent will be stored in a set of metadata whose structure resembles OWL-S []
and the description structure proposed in [].

The model component profile contains the information for advertising
and searching a model component. It should contain the overall application
domain, the name of the model component, the name of the entity or process
that it models, the objective of the model, a short textual description and the
simulation environment or simulation formalisms it has been designed for. In
Systems Biology, a link to general taxonomies like the gene ontology and the
enzyme ontology can be established by the corresponding indices. In [], the
validation, assumptions and the non-domain-dependent classification is included
in the profile. In contrast, we moved the former two into the “grounding” and
assigned the latter to the “process model”.

The component’s process model describes how the model component
works. It thus contains the non-domain-dependent classification of the model’s
type and a kind of abstract description of the internal processing. If a service is
described, the process model is used to specify the coordination strategies based
on which the service interacts with other services. Generally, there is typically no
interest to reveal the “internals” of software components or services. However, as
discussions among modellers showed [], knowledge about its internals increases
the trust into a model component.

The model component’s grounding contains the interface of a model
component. In some areas like embedded systems, models contain interfaces to
externally running software. This is hardly the case in Systems Biology. Any-
way, answering the question how a model component is used implies to answer
the question how it interacts with other models, and whether and how it in-
teracts with the user. Furthermore, before reusing a component, it needs to be
parametrised. How to use a model component is also restricted by the underlying
assumptions and constraints. They therefore have to be described as well.

4 Tryptophan Synthase — Selection of a Model
Component

The Tryptophan Synthase model proposed by [] has been developed in James
[], which supports modular, hierarchical modelling. Thousands of enzyme mod-
els are responsible for converting the incoming metabolites IGP, G3P, Indole
and Serine to their products including Tryptophan. Their inputs and outputs
are served by a single bulk solution model managing the current amount of freely
floating metabolites.

Figure 1 shows part of the GUI of James, which is currently under develop-
ment []. In the upper left corner, the overall hierarchical structure of the model
is shown. In the lower left corner, the behavior of an α-subunit is specified as a

1
19

19

2

16
32

7

196 A.M. Uhrmacher et al.

Fig. 1. Screen shot showing the three different perspectives []

statechart. At the right hand side, we see the structure of an enzyme with its
subunits and their interaction via a static channel.

When identifying model components being eligible for reuse, we face three
potential candidates: the population of enzymes, the bulk solution and single
enzymes. The bulk solution serves as an experimental frame to the thousands of
enzymes. Thus, candidates for reuse are either the population of homogeneous
enzymes or one single enzyme. This leads us to the problem of selecting a suitable
granularity of components to be stored in a reuse library. If components are at
too low a level, the modelling process resembles coding from scratch. If model
components are high-level aggregates, then their reuse is limited. Independent of
the application domain, the simulation system already offers specialised, coupled
model components that can be parametrised to contain an arbitrary number of
model components of certain classes interacting in a homogeneous manner. In
addition, the properties of the population are entirely specified by its members,
the single enzymes, which comprise two subunits, the α- and the β-subunit
interacting with each other via the static channel. Thus, from their complexity,
they seem to form suitable building blocks for models.

5 Metadata for the Model Component Tryptophan
Synthase

Based on the example of the Tryptophan Synthase, the metadata of this model
component, whose overall structure has been discussed in Sect. 3, will be refined

7

Towards Reusing Model Components in Systems Biology 197

and filled in an XML format. XML is widely used for storing and exchanging
models. For a general discussion see []and for Systems Biology see Cell Markup
Language (CellML) [] and Systems Biology Markup Language (SBML) []. In
addition, an XML specification will allow to exploit multimedia databases for
an efficient storage and retrieval of model components [].

The current name in the profile (Fig. 2) reflects the fact that several models
of Tryptophan Synthase might exist, which might vary referring to the model for-
malims used or with respect to the model’s abstraction level. For example, AAA
refers to the pathway, i.e. aromatic amino acid biosynthesis, Trp is a shortform
for the Tryptophan Synthase, Ecoli is the organism — as the properties of en-
zymes differ between different organisms. To keep the figure simple, the name of the

<profile>
<name>Enzyme.AAA.Trp.Ecoli.DEVS.Model_1</name>
<application_domain>Enzymology;Systems Biology</application_domain>
<domain_dependent_classification>

GO:0004834 ; EC:4.2.1.20
</domain_dependent_classification>
<text_description>

Tryptophan Synthase is an enzyme classified by the E.C. number:
EC 4.2.1.20. The described enzyme stems from the organism E.coli.
It produces Tryptophan and Glycerole-3-phosphate and
consumes Serine, Indole-glycerole-3-phosphate.
The model component is developed using the DEVS formalism.

</text_description>
<objective>
Analysing the static channeling effect; Analysing the behavior of
single enzymes.

</objective>
<responsible_persons>

<person function="developer">
<name>Daniela Degenring</name>
<e-mail>daniela.degenring@informatik.uni-rostock.de</e-mail>

</person>
</responsible_persons>
<simulation_environment>

<simulation_system>
<name>James</name>
<version type="direct_match">CoSA 1.0</version>
<subclass_of>

<name>DEVS-Simulators</name>
<information type="URI">

http://www.sce.carleton.ca/faculty/wainer/standard/
</information>

</subclass_of>
</simulation_system>
<platform>

<name>Java</name>
<version type="same_or_above">1.4.1_03</version>

</platform>
</simulation_environment>
<executable type="uri">

http://www.informatik.uni-rostock.de/~dd012/models/trpsynth.jar
</executable>
<references type="uri">

http://www.informatik.uni-rostock.de/~dd012/models/trpsynth.bib
</references>

</profile>

Fig. 2. The profile of the model component

3
17

12

23

198 A.M. Uhrmacher et al.

<process>
<modelling_and_simulation_classification>

<separated_model_and_simulation>yes</separated_model_and_simulation>
<model>

<class>Discrete-Event</class>
<formalism>DEVS</formalism>
<topology>Coupled model</topology>
<scale_of_variables>Qualitative</scale_of_variables>
<scale_of_variables>Semi-quantitative</scale_of_variables>
<type_of_events>Situation-triggered</type_of_events>
<type_of_events>Time-triggered</type_of_events>
<stochastics>

<applied>yes</applied>
<distribution>Exponential</distribution>

</stochastics>
<world_view>Process-based</world_view>
<world_view>Statecharts</world_view>

</model>
</modelling_and_simulation_classification>
<metamodel>

<type>Statechart</type>
<figure type="uri">

http://www.informatik.uni-rostock.de/~dd012/models/trpsynth/doc/chart
</figure>
<animation type="uri">

http://www.informatik.uni-rostock.de/~dd012/models/trpsynth/doc/chart.avi
</animation>

</metamodel>
<expected_effects_of_parameter_change>

<text>
Effects of changing tunnel-capacity see Degenring (2003)
For other effects see Anderson (1995)

</text>
</expected_effects_of_parameter_change>

</process>

Fig. 3. The process model of the model component

...
<xsd:element name="model">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="class" minOccurs="1" maxOccurs="unbounded">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="Continuous"/>
<xsd:enumeration value="Discrete-event"/>
<xsd:enumeration value="Discrete-stepwise"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
...

</xsd:sequence>
</xsd:complexType>

</xsd:element>
...

Fig. 4. Exemplary XML Schema fragment for defining the type of model

model component is represented by a plain string of characters. However, to enable
an automatic model retrieval, a more structured way of defining the name’s con-
stituents is needed, e.g. by a hierarchy of XML tags. In the same way, the domain
dependent classification has to be refined, e.g. by using XML namespaces.

The model’s classification is part of the process model (Fig. 3). It refers to
the type of model, e.g. whether it is a continuous, discrete-event or discrete-

Towards Reusing Model Components in Systems Biology 199

<grounding>
<model_component_to_model_component>

<input type="materialistic" unit="1">IGP</input>
...
<input type="materialistic" unit="1">Serine</input>
<output type="materialistic" unit="1">Tryptophan</output>
...
<output type="materialistic" unit="1">Indole</output>
<output type="informational">Enzyme.dead</output>

</model_component_to_model_component>
<model_component_to_model_user>

<output type="model_state">Internal phase</output>
<output type="statistical">Tunnel occupation</output>

</model_component_to_model_user>
<invariant type="m_c_to_m_c">

<sbml xmlns="http://www.sbml.org/sbml/level1" level="1" version="1">
<model name="Tryptophan Synthesis">

<reaction name="IGP + Ser -> G3P + Trp">
<listOfReactants>

<specieReference specie="IGP" stoichiometry="1"/>
<specieReference specie="Ser" stoichiometry="1"/>

</listOfReactants>
<listOfProducts>

<specieReference specie="Trp" stoichiometry="1"/>
<specieReference specie="G3P" stoichiometry="1"/>

</listOfProducts>
</reaction>

</model>
</sbml>

</invariant>
<integration_with_other_models>

<text>
as part of a population within a multi-level, or micro
model for analysing purposes,
single enzyme combinations for education purposes

</text>
<documented_use_of_model_component>

<text>
Degenring (2003); Degenring (2004)

</text>
</integration_with_other_models>
.
.
.

Fig. 5. The interface specification as part of the grounding the model component

stepwise model. Again, the model-tag contains just a plain string of characters
to define the classification. In order to give an unambiguous description, it would
be desirable for simulationists to agree upon some common and precise terms to
identify and specify these properties (Fig. 4).

In the process model (Fig. 3), the tag metamodel refers to a metamodel, which
forms a model of the executable model component. The metamodel shall provide a
more abstract, often visual representation to the user, thus facilitating the under-
standing of a components’ potential dynamics. In James, if the model component
is sufficiently simple, it can directly be specified as a statechart and no further ab-
straction via a separate metamodel is needed. However, often the statechart will
form an abstraction and thus can be interpreted as a metamodel of the underly-
ing atomic model in James. In this context, statecharts are only one possibility to

200 A.M. Uhrmacher et al.

.

.

.
<parametrisation>

<parameter minValue="gt0" maxValue="not_yet_explored"
default="0.02222" unit="sec">

E-Ser_to_E~AA
</parameter>
...
<parameter minValue="gt0" maxValue="not_yet_explored"

default="0.001" unit="sec">
Ind-G3P-E*_to_Channel

</parameter>
<parameter minValue="gt0" maxValue="not_yet_explored"

default="150" unit="1">
IGP-E_to_IGP-E*_Speed-up

</parameter>
</parametrisation>

<underlying_assumptions>
<text>

The model deals with molecule numbers instead of concentrations.
Due to the transformation from a differential equation to a
stochastic
discrete-event model according to Gillespie (1976), more than 100
model components of this type should possibly be included for
analysing purposes.

</text>
</underlying_assumptions>
<validation>

<text>
Reproduction of original experimental and simulation results
Anderson (1995).
Additionally, the effect of the tunnel capacity was investigated
with plausible results Degenring (2003).
Ongoing work: implementation of the model into a Trp-operon model
according to Santillan (2001).

</text>
</validation>

</grounding>

Fig. 6. The parametrisation, assumptions, and validation as part of grounding the
model component

define a metamodel: e.g. live sequence charts, e.g.[], Petri Nets, e.g. [], graphs,
e.g. [],and even pseudocode are alternatives. Regarding the metamodel, it is im-
portant that it contains a declarative and easy to understand description of the
underlying model. However, what is easier to understand depends on the context
of the user. Alternative descriptions should therefore be included. Developing dif-
ferent metamodels of a single model component requires a lot of effort and has to
be balanced to the effort of directly inspecting its source code.

The main part of the grounding is concerned with the specification of the
interface (Fig. 5). Most inputs and outputs are of type materialistic which
means that they are not multiplied if they are sent to multiple addressees. In
contrast, information is a non-consumable ressource and thus can be multiplied.
Single molecules form the inputs and outputs of our model component. Between
those inputs and outputs of a model component, invariants are defined. In the
case of our enzyme, the mass conservation law holds between consumed and
produced species, which has been specified according to the SBML [] suggestion
for chemical reactions.

22
21 28

3

Towards Reusing Model Components in Systems Biology 201

Model components include a notion of time. In simulation, we typically distin-
guish between three types of time: the physical time, which refers to the time of the
modelled physical system; the simulation time, which refers to the representation
of the physical time within the simulation; and the wall-clock time, which refers
to the time that progresses during executing the simulation. In the above exam-
ple, one unit of simulation time corresponds to one second in physical time. The
model component gives a stochastic, discrete-event description of the behaviour
of an enzyme. Thus, methods to estimate parameters and to analyse the output
of stochastic, discrete-event simulation have to be considered. For a discussion of
implications of using stochastic simulations in Systems Biology see e.g. [].

6 Reuse of the Model Component

The major role of the Tryptophan Synthase lies in the enzyme cascade for the
production of Tryptophan. The Tryptophan Synthase is produced by transcrip-
tion and translation of the Tryptophan operon. The process of transcription
and translation is regulated by the amount of Tryptophan. So we could imag-
ine to combine our model component with other enzymes to capture the entire
aromatic amino-acid biosynthesis, or we could integrate it with a model of the
Tryptophan operon.

As Trp-enzyme catalyses the last reaction step in the Tryptophan synthesis,
the model component can be combined with other enzyme models, which prolif-
erate the substrates of the reaction, i.e. mainly the IGP Synthase or rather the
Serine Synthase, and corresponding enzymes. A coupling with enzymes, which
consume the built products, G3P and Tryptophan, like the G3P Dehydrogenase
catalysed reaction (EC 1.1.99.5) or the Trp-tRNA-synthesising enzyme, is also
possible and would direct the focus to their products. In addition, the products
of the Tryptophan model component can interact with other model components
as effectors. The inhibiting influence of Tryptophan onto the transcription of the
Trp-operon via the process of attenuation or gene repression is e.g. a known fact.
Since all metabolites participate at the same time in other reactions, no direct
coupling between various enzymes is proposed but an indirect interaction via a
model like our bulk solution might prove beneficial. The model of the bulk solu-
tion records the amount of available metabolites, enzymes, genes, and mRNA,
and calculates the frequency of collissions.

Whereas the above combinations act on more or less the same time scale ab-
straction, analysing the regeneration of the Trp Synthase requires to combine the
model component Trp Synthase with other models that describe the operon and
thus act at a different time scale. Here the model component Trp-operon pro-
duces the model component Trp Synthase during the process of transciption and
subsequent translation. This type of model requires that the simulation system
supports variable structure models, i.e. models that change their composition
and interaction during simulation as e.g. James does.

25

202 A.M. Uhrmacher et al.

We integrated several hundreds of the model component Tryptophan Syn-
thase into a model that describes the transcription dynamics of the Tryptophan
operon focussing on gene regulation and monitoring switch activities. First ex-
periments executed in James were able to reproduce the results documented
in [], which was no big surprise considering the description of the model com-
ponent Tryptophan Synthase. The model component Tryptophan Synthase had
been validated under similar assumptions, i.e. assuming comparatively high num-
bers of the Tryptophan model component, and the integration with the operon
has even been foreseen by the model component’s description. Dealing with dif-
ferent time scales is the virtue of discrete-event simulation, so no errors should
have been induced by the simulation engine. The only question was, whether a
simpler model of the enzyme would not have sufficed, as the role of the channel
was not the objective of the current simulation study. However, this question
has still to be explored. The integration of the current model component would
allow to test more sophisticated hypotheses about structural interdependencies
within the overall gene expression process. For example, if the objective had been
to test the hypothesis how a damaged gene affects the capacity of the channel,
the model component Tryptophan Synthase with its explicit subunits and the
channel would have appeared most suitable.

7 Related Work in Systems Biology

Major efforts in modelling and simulation are aimed at supporting the reuse of
models and entire simulations. The High Level Architechture (HLA)[] is a gen-
eral purpose architecture for simulation reuse and interoperability. Developed
under the leadership of the Defense Modelling and Simulation Office (DMSO),
it provides a standard means (IEEE 1516) for individual simulations or feder-
ates to interoperate in a federation since 1996. HLA is mostly concerned with
synchronising different simulations via the Run-Time Infrastructure (RTI) and
thus with the question of interoperation []. However, for HLA to work, the
interoperable federates share a common Federation Object Model (FOM) docu-
ment that describes the types of information they are exchanging. This metadata
not only includes information needed for synchronisation and coordination by
the RTI software such as classes, attributes, and interactions, but also includes
descriptive information such as the objective and sponsor of the federation or
federate. HLA focuses on the concrete synchronisation of different simulation
systems rather than on the retrieval of models.

Other major research efforts are directed towards improving the exchange
of models between simulation systems in Systems Biology. Representatives are
the Systems Biology Markup Language (SBML) and the Cell Markup Language
(CellML) []. Whereas SBML is meant to support basic biochemical network
models, CellML covers a more general field of application including electrophys-
iological and mechanical models as well as biochemical pathway models. Both
provide in addition to parameter definitions information about the equations of
the underlying biological processes such as reaction mechanisms. Those can be

31

13

8

12

Towards Reusing Model Components in Systems Biology 203

executed by simulation systems supporting an SBML or CellML interface. Thus,
a complete, unambiguous description of the model is required to enable these
different simulation systems to execute it.

Additionally, CellML also supports the assignment of metadata to facilitate
the reuse of model components by providing background information. Similarly
to our approach, e.g. information on the species is given by referring to estab-
lished ontologies and making use of the biological databases on the web. The
underlying assumptions are covered in the limitations and validation slots. The
type of model is characterised by referring to an ontology of mathematical prob-
lems as CellML and SBML focus on continuous system models.

In contrast, our approach is not restricted to the continuous realm. It there-
fore becomes important to explicitly represent what model formalism is used.
Whereas continuous models can typically be described by differential or math-
ematical equations, no such general exchange format does exist for models be-
longing to different modelling formalisms. To execute and thus eventually reuse
a model, a link to its specifation and simulation engine or its entire implementa-
tion is often unavoidable. Thus at this point, the reuse of general models reveals
a Web Service characteristic. Current efforts like multi-formalism modelling are
directed towards facilitating the reuse of models of different formalisms [,].
The idea is to provide a meta description of these formalisms. So in the future, it
might be possible to include the specifiation of the model and a meta description
of the formalism used.

8 Conclusion

The reuse of components promises to facilitate the design of models. We sug-
gested a set of metadata to describe model components and illustrated its use
with the model component Tryptophan Synthase. The overall structure of the
metadata was influenced by the ontology for Web Services OWL-S, whose fea-
tures profile, process model and grounding have been redefined in this context.
The metadata are structured to distinguish between information used for re-
trieving a component, i.e. profile, information about how the component works,
i.e. the process model, and the specification of its interface, i.e. grounding. As do
[], we believe that a key part of a model description must involve capturing the
objectives, assumptions and constraints under which the original models were
developed in a form that can be searched and analysed. Currently, our proposed
metadata contains still many text slots. For an advanced search that would be
able to identify model components of interest, for consistency checks to recognise
incompatibilities among model components, and to help determining the fidelity
of the entire model, the proposed metadata present only a first step.

Compared to approaches like SBML and CellML, our approach focuses on
the retrieval of components rather than on supporting the exchange of models
between simulation systems. Our long term goal is similar to that of OWL-
S: providing meta information about a model in a formal, rigorous manner to
support the automatic discovery and composition of model components. For

34 15

29

204 A.M. Uhrmacher et al.

the final execution of models, we will depend on efforts like SBML and CellML
or, as our approach is not restricted to a particular modelling and simulation
paradigm, on efforts like multi-formalism modelling and simulation.

As in the case of modelling in general, we are confronted with the problem
to provide as little information as needed but not less. Many modellers might
find the inspection of the source code more informative. Of course, this would
not allow to manage model component repositories in an effective and efficient
manner. Still the question is, whether researchers are likely to use and maintain
these repositories, and whether we now understand what information is needed
to support reuse of model components. The answer can not be given by us but
can only found in discussions with third-party users. Therefore, an integration
into efforts like CellML or SBML is mandatory.

Acknowledgements

We would like to thank the anonymous and non-anonymous referees Jan
Himmelspach and Mathias Röhl for their comments on an earlier version
of this paper. Part of the research presented in this paper has been funded
by the DFG.

 ���������

�# !���455 #����#���5�������5� ���5�#�5#
6# !���455 #������!�#��5�7�7�5#
8# !���455 #�"��#���5���5#
7# 9#�# -�������� -#:# 9��� ;#,# <������� 3# ������� +#;# :���� ��� 3#(# ,����#
9����� !�������=����� �	 !����� �������� ������� �	 �������!�� ����!���# ���
������	 �
 ���	����	 ���������� 61�>��?46@@8AB6@@77� �@@�#

�# ;# -������ ��� .# C���# - ������"���� �����! �� ���������� ����������# D�
��������� �
 ��� ��
�� ��������� �� ��
����� �������	���� ����� 18B�6� �@@@#

A# �# C����� ��� E# ���&���!���� �������# ������	 ����� �� ��������������� ����
�		�� ��� ����	�����# ���������� � $���������� �	 �!� �
� ����������# �����
6��7#

1# �# C�������� -#,# �!���!��� ��� E# �!�����# ���������� ����������� ������
�� ������� "������ "� ������ ���!���# D� ���������� �
 �������� ��	�������	�����
���
������� ���� ��"������� 6��7#

�# -# C��� ���)# ;�����# - ��������� �	 !��� ��"�� ��� ���# D� ���������� �

��� !!" #����� ����	����� ���
������� ����� ��@B�6�� �@@�#

@# �# 3#
������# ���������� ������ ����	��# ��������� F� :���� �@@6#
��# �#
!�� ��� C# 9# �=�������# %"&����������� ��������4 ����������������� ����

������� ��!�������4 �� ��� ����������"����� ��� �����!�����"�����# D� ����������
�
 ��� $%% #����� ����	����� ���
������� ����� 7@�B���� 6���#

��# �#
!�� ��� C# 9# �=�������#
���4 - ����������������� ������� ����� �����
�����# D� ���������� �
 ��� $%%$ #����� ����	����� ���
������� ����� 11AB1�6�
6��6#

�6# -#-#
�������
#,#)����� .#�# F������� �#.# C��������� �#.# F�������� ��� .#;#
E�����# -� ������� �	 ����� �#�� � "�������� ����� ���������� ��������# ����
�	����� � ������������ �
 ��� ���� 1@>�6?417�B171� 6��8#

�8# ;# ��!����� �# ��&������ ��� �# (���!����# $!� ��� !��! ����� ��!�������4 -�
������# D� ���������� �
 ��� !!" #����� ����	����� ���
������� ����� 1@1B��7�
�@@�#

�7# .#9# ������ ;#E# C����� � ��� ;# ,3���# 3'��������� �������� ��� � ��� !������
�	 ����������������� ��������������� ��������# $�!���� ������ �.�@6�� �-F��
6���#

��# ;# ��)��� ��� E# G���!��� �# -$�,84 � ���� 	�� ������	�������� ��� �����
���������# D� �������� ����� ���
������ �� ������ &�� �������� �
 ��
�����
'��&��() ����������	 &��������� �� ��
����� ��������� '�&��(� ����� �17 B
���� 6��6#

�A# �# ���������� ,# �H�!�� ��� -# ,# �!���!��# ������� ����� ���������� 	�� �
"����� ������������� �	 ����"����� !��������� � ��������!������ ������!# D�
.�����
#� ������� *������ +���� �� �������� ��������� ������ 6A�6� ����� ��7B
�6A# �������� G����� E�����"���� 6��8#

�1# .#-# ���! ��# ����� '�� 	�� ���������� ��������# D� ���������� �
 ��� $%%$
#����� ����	����� ���
������� 6��6#

��# �# $# ���������# - ������� ���!�� 	�� ���������� ���������� �!� ���!���� ����
��������� �	 ������ !����� ��������# ������	 �
 ������������	 �������� 6647�8B
787� �@1A#

Towards Reusing Model Components in Systems Biology 205

�@# ,# E������ ;#)���!�� -#,# �!���!��� ��� 3# G�������# - ���������� ��������
	�� ���������� ����� ���������# D� ���������� �
 ��� ������ ����	����� ����

������� ���� ��"������� 6��7#

6�# C# E��!� $# ;������� ��� I# 9�=�����# %� �!� ��*������ �	 ������ �� ��������
"���� ��	� ��� �����������# $�!���� ������� ���������� ���������� �	 D�	�����
���� ������ �������� � ����� 6���#

6�# F# 9��� �# E����� E# 9������ �# ,������� -# .������ 3#;# E�""���� ��� ,#;# �����#
������ ��������� �	 # ������� �����������4 - ������� "���� ������!# D� .�����

#� ������� *������ +���� �� �������� ��������� ������ 6A�6� ����� 7B6�# ��������
G����� E�����"���� 6��8#

66# E# 9�����# - ����!��� �������� 	�� "��!����� ��� ����# �����	���� �>�?4�A@B�1A�
6��8#

68# ,# 9������ ��� E# ,����# ,�* - .�������/�� � 0��1����) �������� ��� �������#
�.���� G������ 6��8#

67# �# ,������ ��� �#)� ����# 3/����� ���������� ����� �����J � ��� ����� 	��
��!� ��������# D� ���������� �
 ��� !!" #����� ����	����� ���
������� �����
@1@B@�7� �@@�#

6�# ,# ,��!�# $��������� 	��� ���!���� �� ������������ "�!������ �� ���������
�� �!� ��������� �	 �������# D� 2�� #��/���� �� ����������� �
 �����������	
�������� ��� 3������ +�����/�� ����� 7@B��#)���� G������ 6��8#

6A# :# ,������ ;# -# �� ��� ;# $��#
���������"���� ���������� ������������4 ;���
�� � ��� ����� ����� &��� "����# D� ���������� �
 ��� !!" #����� ����	�����
���
������� ����� 818B8��� �@@�#

61# ,# ,�����# ,������ ,����� ,�!����# D� ����4 ���� �������� ����� 7�B7@� �@A�#
6�# ,# F�������� -# ���� E# ,������� ��� �# ,�����# ������ �"&�� ���4 � ����	���

	�� �������� ��� ���������� "�����! ���# &��	��� �����
��������� 6��8#
6@#
,# %���������� �#3# F���� ��� %# C���# D����� �� ��!����� ����� �����# D�

����� ������������	 ���
������ �� 3���� ���		����
�� ����	�� ��� ����	������
6��6#

8�# 3# .��� ��� ;# %����# %"���������� �� �!� �����'��� �	 ������"�� ����������#
D� ���������� �
 ��� !!! #����� ����	����� ���
������� ����� ��8B�A�� �@@@#

8�# ,# �������K�� ��� ,#
# ,����# ������ ���������� �	 �!� �������!�� ������4 -
�������� ����� ��� ��������� ��! �'���������� ����# ��������� �
 ��� +������	
&������ �
 �������� �
 ��� 5�&� @�>7?4�8A7B�8A@� 6���#

86# -# ,# �!���!��� .# $��!���� ��� �# $��!���# ,������� ,�"��� -�����# ������
3��������� �������� ������� �14��1B���� 6���#

88# 3#
# G�������� -# G��"����� ��� E# �# ���# 3/�� �	 ���������� "������� "����
�� ���������� ����� �����������# D� ���������� �
 ��� ������������	 ���
������
�
 ������	��) ��	��� ��� ����6������ �����
�B�%, ����������� 6��8#

87# E# G���!��� � ��� ;# ��)���# ,���������� ��� ������ ���# D� ����4 �
 ��� #�����
����	����� ���
������� ����� �@1 B A��� 6��6#

8�# C#.# I������# ��	��
������� ����		�� ��� .������� �6��� ����	�����# -�����
.�����)������ �@�7#

20 A.M. Uhrmacher et al.6

	Introduction
	Model Components
	Defining Metadata for Model Components
	Tryptophan Synthase --- Selection of a Model Component
	Metadata for the Model Component Tryptophan Synthase
	Reuse of the Model Component
	Related Work in Systems Biology
	Conclusion
	References

