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Abstract. The paper starts from the human influenza’s spreading phe-
nomenon, as a complex of observable occurrences, and develops a stochas-
tic process, defined as a set of procedures that convert its initial state
into a sequence of different states during the phenomenon’s lifespan. The
Monte Carlo simulation method for a stochastic discrete event system
is used. This system is completely described in terms of: entities, se-
quential states, transition tables of states, sets of input/output events,
internal/external transition function, events/time advance function, in-
put/output parameters. The simulation can encompass several contagion
schema and health policy responses. Finally, some information about the
software in the field is given.
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1 Introduction

Human influenza’s spreading phenomenon concerns, on the one hand, the symp-
toms of a specific group of individuals caused by a set of viruses (RNA viruses
of the Orthomyxoviridae family: types A, B C, Isa, Thogoto, etc.) in precise
climate conditions, in a given time period, and on the other hand, the response
of medical organizations [5,6]. The symptoms include chills, fever, nasal secre-
tions, watering eyes, sore throat, muscle pain, severe headache, coughing, nausea,
vomiting, diarrhea, abdominal pain, weakness/fatigue and general discomfort,
sometimes leading to death. The group of individuals is defined by number, age,
sex, general state of health, vaccinations, topological placement in subgroups,
distance between the subgroups, interacting coefficient, and shedding. The cli-
mate conditions combine sunlight, air-temperature, humidity, wind, and aerosols.
This paper attempts to provide information that would aid with the second as-
pect of human influenza’s spreading phenomenon, the response of the medical
organizations.

There are several contagion schema, such as direct (from person to person) or
indirect (airborne or through contact with a contaminated surface), leading from
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limited spreading to epidemics or even to pandemics. Obviously, the health policy
response implies several direct and indirect costs. A study of the phenomenon
and its consequences using mathematics and information technology techniques
has merit and is the purpose of this paper. Modeling the human influenza’s
spreading phenomenon can be a valuable tool in analysis and prognosis.

The paper is organized as follows: the next section proposes a contagion
scheme for human influenza’s spreading phenomenon that may be utilized in
the numerical simulation. One presents afterwards a general methodology for
describing the stochastic discrete event system and its application for the pro-
posed contagion scheme. The corresponding algorithm to solve this problem
given in the next section. A general presentation of the software in the field is
made in the conclusions’ section. Some suitable references are also present.

2 Numerical Simulation of Contagion Schema

Contagion schemes can be modeled using the framework of chains with complete
connections [10] or stochastic discrete-event systems [4,9,1]. In this paper we use
the last approach.

First, a simple human influenza’s spreading problem is stated, then an algo-
rithm for numerical simulation of the contagion scheme is developed, and then
some improvements of this algorithm are presented.

The analysis and prognosis of the spreading phenomenon of the virus is per-
formed using computer simulation and based on a mathematical and logical
model describing the behavior of real systems.

Let O be a human population of cardinality No distributed on a region of
K communities and let V be a set of virus types of cardinality Nv. Suppose
that for every virus type v ∈ V there is an incubation period (v = 0 means no
virus), represented by an uniform random variable on [lv, uv]. For the sake of
simplicity, suppose that an individual contaminated with a virus type cannot
be contaminated with another virus type. Every community is characterized by
following attributes: the number of healthy individuals (Nhi), the number of
contaminated individuals for every virus type (Nv,i), its Cartesian coordinates
(xi, yi), the proportion of commuters (Fi = (pci), i = 1,K) and the radius of
its area (ri). Denote with S the set of states characterizing an individual o ∈ O,
i.e. S = {H – healthy; Hi – healthy and immune; Ck – contaminated, aware
of it; Ct – contaminated, under treatment; Cknt – contaminated, aware but
not under treatment; D – dead}, and with Oc the set of contagious individuals
(Oc = {Ck,Ct, Cknt}).

Suppose that:

– all previous input data are known at time t0;
– at time t1, an commuter from Li can meet ηM individuals from Li. If the

commuter is infected with virus type v, ξc among the individuals met will
be contaminated. Here ηM is a realization of a Poisson random variable with
parameter αi (Po(αi)), and ξc is a realization of a binomial random variable
with parameters (ηM , qv) (Bi(ηM , qv));
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Fig. 1. Communities in the system built for the study on human influenza spreading

– the ξc contaminated individuals are distributed as follows: ξk ∈ Ck, where ξk
is a realization of a binomial random variable Bi(ξc, qk); ξt ∈ Ct, where ξt is
a realization of a binomial random variable Bi(ξc, qt); ξh ∈ Hi, where ξh is a
realization of a binomial random variable Bi(ξc, qh); ξknt ∈ Cknt, where ξknt
is a realization of a binomial random variable Bi(ξc, qknt); and ξD = ξc− ξt−
ξh − ξknt.

The purpose is to determine the average cardinality of the subsets of S and the
average treatment costs for each virus type v and for every community. The
corresponding algorithm needs to be executed multiple times in order to obtain
these output data. The parameters of the random variable distributions involved
are provided by a specialized company.

3 Stochastic Discrete-Event System

The formal framework for modeling and simulating discrete-event systems, DEVS,
and stochastic discrete-event system specifications, STDEVS, is presented in
[2,7,11,12,8].

A STDEVS model M representing the proposed contagion scheme has the
following components:

– X : set of events of type “an individual infected with a certain virus type has
contact with non-contaminated individuals”;

– Y : the set of averages of the random variables giving the cardinalities of the
sets of individual states and of the average costs at the end of the simulation;
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– ta: a random variable indicating the contamination time for a virus type;
– δext : Q×X → S: the function giving the number of individuals that switch

into state s ∈ S (note that δext is a random variable);
– δint : S → S: the function giving the number of individuals that switch

from one state to another (e.g., H → Ck, Ckt → Hi, Cknt → D, etc.),
characterized by the distribution table Hv,i;

– Q = {(s, ta)};
– λ : S → Y : the exit function, which calculates the averages of the cardinali-

ties of the sets of states and the average costs.

4 Simulation Algorithm

In order to analyze this contagion scheme with some type of distribution for the
involved input random variables, a simulation model needs to be constructed. An
algorithm produces artificial experiments via computer runs. These experiments
(in fact realizations of output variables) are processed and analyzed, yielding
solutions for the management of actual contagion scheme described by the sim-
ulation model. The instruments used to construct the simulation model (i.e.
algorithm) are the clock time and the agenda. The clock time has a dual pur-
pose: to record the time elapsed in the system and to track the correct order of
the events produced by the simulation model. The agenda is a concept related
to recording the events produced by the simulation. The clock time increases
by a finite number. After each increment of the clock, the simulation algorithm
processes the events occurred at that moment in time (these events define the
agenda of current events, ACE). When the ACE is empty, the clock is incre-
mented with some value and the process is repeated for the new events from
ACE. When an event is processed, it can produce another event (at a future
moment, in which case the set of these events is the agenda of future events,
AFE) or can cancel some events from ACE (this is the set of canceled events,
CE). Therefore the agenda A has a dynamic evolution in the form

A = ACE +AFE − CE

The clock time can be incremented in two ways: with variable increments (called
variable increment clock time) or with constant increments (called constant in-
crement clock time). Initially the clock is zero. In the case of variable increments,
the clock time is increased up to the time of occurrence of the first event in AFE.
In the case of constant increments, the clock is increased by a constant c. After
incrementing the clock, the main cycle of the simulation algorithm selects the
events from AFE with time of occurrence equal to the current clock time and
places them in ACE. Then, the events from ACE are processed; when ACE is
empty, the clock time is advanced again and the process is repeated until the
clock time takes the value TS, where TS is the input value for the end time
of the simulation. As an alternative, the simulation ends when the number of
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simulated events of a specific type takes a given value Nmax. Sometimes, this
equivalent rule (the next-event rule) is used instead of the variable clock time;
in this case, the end of the simulation is determined by Nmax.

Algorithm 1. Main algorithm

Input: K, Nv, Nv,i, lv, uv, pcv,i, xi, yi, di, αi, qv,i, qki, qti, qhi, qknti, i = 1, k,
v = 1, Nv, Dist ∈ MK,K(R), Nmax, Ts
Initialize: N = 0; {count of current iteration} n = 1; {index in agenda} Clock = 0;
repeat

Generate i ∼ U(1, K); {a community}
Step 1: Generate u ∼ U(0, 1); {determine if the current individual is commuter}
if u < pci then

begin
Generate d ∼ U(0, dmax) {dmax = max1≤i≤K di}
if d < ri then

I = i {the individual remains in his community}
else

begin
Determine L =

{
Lk|Disti,k ≤ di, k = 1, K

}
, |L| = L

Generate I ∼ U(1, L) {determine the destination community}
Generate v ∼ Fi {a virus type}
if v = 0 then

go to Step 1 {v = 0 means no virus}
Generate ηM ∼ Po(αI) {a value of the random variable representing the

number of individuals met by an individual contaminated with virus type v}
Generate ξc ∼ Bi(ηM , qv,I) {a value of

the random variable representing the number of individuals from ηM contaminated
after the contact with the individual contaminated with virus type v}

for i = 1 to ξc do
begin
Generate Tv,i ∼ U ([lv , uv]) {a

value of the random variable representing the contamination period of individual o,
contaminated with virus type v}

n = n+ 1
Tn = Clock + Tv,i

end
Nv,I = Nv,I + ξc
|Cv,I | = |Cv,I |+ ξc
Clock = To {time of the last processed event/individual}
{determine the state of the current individual at time T according to the

probability distribution H}
if on ∈ Ck then

Compute |Ckv,I | = |Ckv,I |+ 1
if on ∈ Ct then

Compute |Ctv,I | = |Ctv,I |+ 1 and the Cost;
if on ∈ Cknt then

Compute |Ckkntv,I | = |Ckntv,I |+ 1;
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Algorithm 1. (Continued)

if on ∈ Hi then
Compute |Hiv,I | = |Hiv,I |+ 1;

if on ∈ D then
Compute |Dv,I | = |Dv,I |+ 1;

N = N + 1 {next event; the first event/individual having Tn > Clock}
end

end
until N = Nmax or Clock > Ts

{Outputs of simulation}
for i = 1 to K do

for v = 1 to Nv do
begin

Calculate E
[|Hiv,i|

]
=

|Hiv,i|
N

, E
[|Civ,i|

]
=

|Civ,i|
N

, E
[|Ckv,i|

]
=

|Ckv,i |
N

,

E
[|Ctv,i|

]
=

|Ctv,i|
N

, E
[|Ckntv,i|

]
=

|Ckntv,i|
N

, E
[|Dv,i|

]
=

|Dv,i|
N

, Costv,i
end

Classical algorithms can be used to generate samples of the different types of
random variables involved in this algorithm, such as the Poisson, Binomial and
discrete distributions [3].

It is assumed that the transition of a contaminated individual from one state
to another, for each community, is according to the distribution table H:

τi :

(
Hi Ckt Cknt D
p1,i p2,i p3,i pD,i

)

and that the virus types have the distribution table

ζi :

(
1 2 · · · Nv
p′1,i p

′
2,i · · · p′Nv,i

)

The proposed contagion scheme would be closer to reality if contaminated indi-
viduals with virus type v do not become immune to that virus type after healing,
but rather can be contaminated with any virus type. Also, individuals contami-
nated with one virus type could be contaminated with another virus type during
their contamination period. In this case, the exact cause of death is not known
if the individual dies. In the situation when there are sufficient data to deter-
mine suitable distribution functions for the random variables involved in this
model, the corresponding algorithms can be used to generate samples for these
variables.

5 Conclusions

The human influenza phenomenon is still studied by scientists in various dis-
ciplines. The medical field regularly faces new variants of the virus, such as
bird influenza or H4N1, and has to find new treatments. The mathematics or
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computer science fields try to improve the systems that mimic the behavior of
viruses in its spreading phenomenon. This paper is an example of an attempt
to simulate the spreading of a virus as close to reality as possible. The chosen
framework-model is STDEVS, which is very complex and can represent the en-
tire phenomenon. The technique chosen for simulations is Monte Carlo, which
produces good results for a sufficiently large number of iterations.

The experience of the authors in this area shows that the carefully made simu-
lations with the HIS software (Human Influenza Spreading software) yield useful
results for analysis and forecast. There are several programs used to model and
solve stochastic discrete event systems, such as SimEvents, DevSim++, adevs,
PowerDES etc, but it seems more appropriate to consider software especially
built for this particular problem. The proposed algorithm would provide such
a specialized software. The software designers could allow the users to change
certain parameters, such as the target region or the distribution function of
commuters and of infected individuals for every community in the system.
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