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Abstract This conceptual paper discusses the limitations of a single-perspective hi-
erarchical approach to modelling and proposes multi-perspective modelling as a way
to overcome them. As it turns out, multi-perspective modelling is primarily a new
methodology, using existing modelling techniques but extending the modelling hier-
archy with a new epistemological level which integrates the different perspectives.
The methodology will be presented in some detail, and its use will be demonstrated
by analyzing an example taken from a socio-political context.
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1 Introduction

As evidenced from the growing number of publications on social simulation and ris-
ing research interests, modelling and simulation is increasingly applied to the study
of social phenomena. The domain of ‘social systems’ deals with higher levels of
objective complexity (Bailly and Longo 2003) in comparison with the artificial and
physical systems which have traditionally benefited the most from modelling and
simulation as a method of inquiry. Hence, the ‘complexity’ paradigm emerged to deal
with the new class of systems. In this paper we will look at multi-perspective mod-
elling to address the problems that come with modelling complex systems.
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The remainder of this paper will first set the stage by providing a background on
modelling complex phenomena. Following that, it will introduce multi-perspective
modelling as a way to overcome some of the problems of traditional reductionist
modelling, and show where it fits into the modelling hierarchies as defined by Zeigler
(Zeigler et al. 2000) and Klir (1985). We will interpret perspectives as (theoretical)
positions from which we look at the world, providing both a deliniation of the system
and a way to decompose it, a definition general enough to encompass levels in the
sense of Lane (2006). The paper continues with a formalization of multi-perspective
models. Following that, an example taken from a socio-political context will be an-
alyzed within the extended framework; the example shows how different levels can
be integrated in a single model. The paper ends with a discussion of the results and
directions for further work.

2 Modelling complex phenomena

A common way to understand systems is to impose on them a hierarchical structure
by isolating parts and defining relations between them; parts are further aggregated
into higher level parts in a way that aims to minimize the relations between formed
composite parts (Wimsatt 2000). For example, from a structural perspective we may
decompose a technical system like the International Space Station (ISS) into a hier-
archy of parts and subparts. The same could be done from a functional perspective.
This approach has proved to be tremendously successful. In fact, it was so successful
that it has led people to claim that hierarchy is the ‘architecture of complexity’ (Simon
1962) and apply it to non-technical systems as well. Simon furthermore argues that
by decomposing systems in a hierarchical way, our depiction of reality does not suffer
too much, and hence he refers to systems that can be modeled this way as ‘nearly-
decomposable’. According to this vision, it is possible and even desirable to analyze
all systems like ‘Chinese boxes’, where an entity contains smaller entities, with the
latter smaller entities containing even smaller entities, and so forth. From Simon on-
wards, hierarchy theory developed as a sub-field of systems theory and has had a
broad influence in modelling (Pattee 1973). Hence, current modelling and simulation
approaches inherited a strong reductionist world view. For instance, the DEVS for-
malism (Zeigler et al. 2000) uses atomic and composite models to represent systems.

As non-technical systems usually have higher complexity than technical systems,
they are often studied at different levels, each level corresponding to a specific time
and space scale. This led Lane to point out that different types of hierarchy exist (Lane
2006), of which the level hierarchy accounts for this case. Sometimes, the levels cor-
respond to different scientific domains, like for example sociology and psychology,
where one level corresponds to aggregates composed of units that are (at least partly)
described by the lower level. Similarly, in a medical context the levels could be the
body, the organs, the tissues making up these organs, and the individual cells making
up the tissues. Again, each level consists of elements described at the lower level, but
not fully defined by that level.

Yet another type of system occurs when a given element can be part of different
hierarchies at the same time. For example, in a social system the unit of behavior
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could be the individual, who can at the same time be part of a family, a company, a
neighborhood, a religious group. Each of these different ecosystems can be described
by its own (level) hierarchy, but all these hierarchies share the same low-level ele-
ment, the individual in this case. This situation is referred to as a tangled hierarchy
(Lane 2006).

When studying such systems, one has to set boundaries; one has to select amongst
the different ecosystems or levels the parts that will be modeled. By doing so one
adopts, at least implicitly, a theoretical perspective. The concept of a partition-
ing frame (Winther 2006) posits the existence of a de facto theoretical unit guid-
ing the investigation and decomposition of a given system of interest. It is of-
ten neglected that when decomposing a system from a single perspective, the re-
sulting hierarchical decomposition on a system is a simplifying abstraction that
comes at a cost in terms of model expressiveness and richness (Agazzi 1991;
Levins 2006), and that, by not explicitly recognizing the chosen perspective, one
tends to overlook the limitations imposed by it. This may be of little consequence
when one is modelling engineered systems like the aforementioned ISS, because such
systems are a result of a design process that adopted the very same principles and
hence resulted in systems that are clearly hierarchical, with a well-defined whole/part
structure. In such cases perspectives have clear boundaries and their interactions are
few, so usually the constraints they pose will be acceptable.

In contrast, modelling social systems as simple hierarchies will fail to answer all
questions one might pose or lead to answers that are inaccurate. This is because the
system’s decomposition has necessarily lost relations between elements occurring
in the real world; relations outside the partitioning frame, which will not be brought
back to life when the behavior of the reconstructed system is studied: the latter system
can only be a straightforward composition of lower level behaviours.

3 Overcoming the problems of single-perspective reductionism

The problem of modelling complex systems as a compositional hierarchy has already
been posed in various ways. For instance, Lane showed the qualitative difference
between inclusion and level hierarchies (Lane 2006). As an example, in systems biol-
ogy, Uhrmacher discussed the difficulty of representing complex multi-level biolog-
ical systems (Uhrmacher et al. 2007) using hierarchical modeling. By adding an or-
ganizational level hierarchy to the classic compositional hierarchy of DEVS (through
ports and variables that apply throughout the composed model), her approach tackles
some of the problems of reductionism; it sticks, however, to the unique decompo-
sition paradigm. Dalle and colleagues (Dalle et al. 2008) proposed to enrich hier-
archical modeling by introducing shared components in DEVS hierarchical models.
However, Dalle’s approach is not meant to model complex systems (e.g., social sys-
tems) that exhibit the tangled hierarchies that are common to such systems (Lane
2006).

Prevalent modeling approaches in social simulation are also not immune from the
issue stated here. To tackle complexity, modularity is commonly seen as a desirable
feature, and complex models are built by coupling sub-models which are each re-
sponsible for part of the total system’s behavior. To understand such coupled models,
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the property of being ‘closed under coupling’ is a very important one. It states that
any composite model is equivalent to a corresponding atomic (‘flattened’) model ex-
pressed in the same formalism: no ‘magic’ results from composing lower level mod-
els (Zeigler et al. 2000). The standard methodology when creating a complex model
is thus to decompose it into smaller and smaller parts until reaching a given unit of
behavior generation. This decomposition effort is only possible through the adoption
of an implicit or explicit theoretical perspective. Thus, ultimately, such models cannot
be other than inclusion hierarchies, like ‘Chinese boxes’.

A core tenet of the complexity paradigm is the departure from the above type
of reductionism (Morin 1990). It emphasizes that, by analyzing a (natural) system
into (artificial) parts, significant properties of the system will be irremediably lost
(Mikulecky 2001). We understand complexity as a relational property between the
observed system and the observer who partitions the system in a de facto imperfect
way. The practical problem thus becomes not reductionism per se, but rather our
misguided assumption that the parts of a system form an objective reality, instead
of being the result of a certain abstraction or theoretical perspective imposed on the
system. A parallel can be drawn with the role of theories, as in the following quote
taken from (Popper 1959): “Theories are nets cast to catch what we call ‘the world’:
to rationalize, explain, and to master it. We endeavor to make the mesh finer and
finer.”

4 Multi-perspective modelling

Before introducing a way to make the “mesh finer and finer” without weaving a new
net, we will have a quick look at the modelling relation as defined by Rosen (2000),
Mikulecky (2001). This modelling relation represents a bridge between two worlds:
the natural world in which we live and which we try to understand, and the ‘in-
ner (mental) world’ which represents our perceptions of the former (see also Rosen
1991, 2000). In the modelling relation, our perceptions of the world are called the
formal system, because when performing the modelling task we somehow formalize
the outside world. It is important to note, however, that whenever we conceptual-
ize anything at all, we are defining such a formal system, no matter how imprecise
(Mikulecky 2001). In contrast one may refer to the natural world as the natural sys-
tem. The relationships between both worlds are depicted in Fig. 1, which contains
both Rosen’s and more specific terms that apply to modelling and simulation. In
this figure, the conceptualization step is represented as encoding; it results in a for-
mal system. The inverse step is shown as decoding; it interprets the formal system
and tries to explain or predict the natural world on the basis of our understanding
of the formal system. In simulation modelling, the encoding step corresponds to the
construction of a simulation model; the decoding step corresponds to analysis and
validation. Whereas the natural system evolves through causality, the formal system
evolves through implication by following the rules that were defined during the for-
malization step. In simulation terms, the phenomena occurring in the natural system
are modeled as events taking place in the model, causing the latter to evolve along a
path that reflects the natural system’s evolution.
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Fig. 1 Modelling simple phenomena

Fig. 2 Modelling complex phenomena through multiple perspectives

Now if the phenomena we try to model are complex, a reductionist formal sys-
tem can only be partially successful in describing the natural system (Agazzi 1991;
Mikulecky 2001). By describing a natural system as a collection of perspectives,
though, where each perspective is associated with a unique formal system (having
a unique decomposition) as shown in Fig. 2, we can model a system in an inher-
ently ‘richer’ way by having multiple non-isomorphic decompositions that may in-
fluence each other. Such multi-perspective models can indeed capture the tangledness
of the systems that result when we observe the world from different perspectives. As
Morin puts it (Morin 1990), “we must found the idea of a complex system on a non-
hierarchical concept of the whole” (Morin 1990). In a similar way, Levins (2006) pro-
poses the robustness methodology, which, in a sort of triangulation, invites to analyze
and model systems with multiple conceptually independent tools, thus improving ac-
curacy of the models by relating the outcomes obtained from different perspectives.

The relation between complexity and multiple perspectives has been acknowl-
edged by various authors. Kaufmann has stated that the number of possible theo-
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retical perspectives and the resulting alternative decompositions of a system are an
indication of its complexity (Kauffman 1970). Wimsatt’s notions of descriptive and
interactional system complexity further strengthen this view (Wimsatt 1972). His no-
tion of descriptive complexity refers to the property of a system allowing various al-
ternative and non-isomorphic decompositions, while interactional complexity refers
to the amount of cross-cutting relations (with the action of defining them indicated
as bridging in Fig. 2) between those alternative system decompositions (Wimsatt
1972). Wimsatt provides some examples at both extremes of descriptive and interac-
tional complexity: a piece of granite decomposed into subregions of roughly constant
chemical composition and crystalline form, under the perspectives of electrical con-
ductivity, thermal conductivity, and density, is descriptively simple. If the system is
decomposed according to each of these perspectives, the resulting models will be iso-
morphic. At the other extreme, a differentiated multi-cellular organism decomposed
under anatomical, physiological, biochemical, etc., perspectives is descriptively and
interactionally complex; the resulting model structures are non-isomorphic. Descrip-
tive and interactional simplicity often characterize engineered systems, while descrip-
tive and interactional complexities characterize evolved systems.

5 Connecting aspects

Compared to single-perspective modelling, building multi-perspective models re-
quires additional effort: the management of alternative system perspectives as well
as the identification of the bridges between them. These tasks are key to realizing the
additional power of multi-perspective modelling. With aspect models covering dif-
ferent perspectives of the same natural system, the central question becomes how to
connect the resulting non-isomorphic aspect models.

Different perspectives may correspond to the levels of a level hierarchy (Lane
2006), but they might also come from different theoretical perspectives at the same
level. Either way, relations result from two components in the two decompositions
sharing a common referent, like a parameter in one perspective being an observable
variable in another perspective, or an atomic model in the first perspective having
an aggregation/disaggregation relation with a coupled model in the second perspec-
tive, such that the atomic model constrains the structure of the coupled model, and
the coupled model’s components’ outputs are used in the transition functions of the
atomic model.

As an example, consider a single natural system and two formal systems (A and B)
that each give a partial description (explanation) of the phenomena in the natural
system. Now assume that in A we have a notion p, that might be implicit or explicit.
Explicit means that we have defined p in our theory, but we are not able to predict its
value inside A. Since we cannot predict it inside A, we can only fix its value or make it
a parameter of the model.1 Implicit means that p is not even present in the model, but

1The existing theory doesn’t say anything about how the parameter may obtain its value; such knowledge
is simply not present within the perspective. It does say, however, what are the results of changes in p’s
value for the aspect being modeled.
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Fig. 3 Bridging involves
decoding and encoding steps

its effects are still accounted for when computing A’s outputs. Now if we have such
a p, we might be able to predict its value using outputs from model B representing
another perspective. Or, if there are no such outputs, we might know that there exist
variables inside B that could be used to derive a value for p in A. In that case we
could change B to add an observable variable β and create a bridge model that uses
β to compute a value for p. Doing so will improve the quality of A’s prediction of the
value α, which can be validated. The term bridge model was chosen to indicate that
they represent a theory about the relations between values in different aspect models.
Bridge models are not a theory about the system under consideration, as such theories
belong to the domain of the individual aspect models. Hence, bridge models cannot
have inputs other than those that connect to some aspect model’s output, nor outputs
other than those that connect to some aspect model’s input(s).

In order to identify common variables and relations we have to identify the terms
p in A that we know to have a relationship with observable variables β in B . If p

is implicit, it has to be made explicit first; if it is already explicit, it has to be made
an input of A. Similarly for β , which might have been implicit at first, but has to be
made into an output of B . The relation between the new input(s) and output(s) will
usually be defined empirically. Note that in determining the variables and relations
(which must have referents in the natural system whose behavior we can observe) we
have to go to a decode/encode cycle as defined by the modelling relation (see Fig. 3,
which represent the part of Fig. 2 that corresponds to a single bridge model). This
decode/encode cycle avoids a problem noted by Agazzi: “. . . , a single term, used
in two different disciplinary contexts, receives, within the two, different meanings
and refers to different types of objects” (Agazzi 1991). Still, finding references and
creating the bridge models involves transdisciplinary experts that are able to identify
which properties of objects in one aspect model control (or are controlled by) other
properties of other objects in another aspect model. Alternatively, statistical methods
and data mining may be employed to find predictive relationships between variables
belonging to different domains (Zwick 2004; Klir 1975, 1976). Whereas the former
method would result in explanatory bridge models, the latter results in just predictive
models.
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Fig. 4 Extended modelling
hierarchy that includes
aspect-models

6 Extending the modelling hierarchy

To clarify the position defended in this paper and to see how multi-perspective mod-
elling relates to traditional simulation modelling, we place our discussion in the con-
text of a very general yet powerful system concept that Klir and Zeigler independently
proposed in the late 70’s and the early 80’s as “epistemological system categories”
and “levels of system specification” respectively. These two concepts are essential
components of the integrative system frameworks introduced by these authors and
presented in detail in Klir (1985), Zeigler et al. (2000). The epistemological cate-
gories of a system framework are the classes of system it can represent. System cat-
egories are also called epistemological levels, because at each level, new knowledge
is gained on the system of interest, which was not known at the lower levels. An
overview of the various epistemological levels is given in Fig. 4. Note that this figure
already includes the level of multi-aspect systems that will be introduced later.

In the context of an inductive system framework (Klir 1985), epistemological cat-
egories emerge from examples observed in reality. New examples or areas of interest
that cannot be fully supported in the existing categories should lead to the defini-
tion of new categories. In this section, the category of ‘multi-aspect systems’ will be
added to Zeigler and Klir’s frameworks. Aspect systems were already mentioned in
Fig. 2, and are in fact also an explicit part of Zeigler’s System Entity Structures (SES).
However, when building models with DEVS, one aspect is chosen as the modeller’s
perspective; the other aspects are ‘pruned’. Hence, aspect models are no longer part
of the epistemological levels defined by Zeigler’s framework (Zeigler et al. 2000). To
understand how aspect systems relate to the other categories, we will first describe
the levels in some detail.

Basically, a system is “conceived as a set of variables together with a relation rec-
ognized among their state sets” (Klir 1985). System categories are implicitly defined
by the type of relations that can be defined between their variables. The most basic
system category defined by Klir is the ‘source system’; this level of system specifi-
cation is referred to in Zeigler’s framework as the observation frame. This category
determines a system’s boundary by defining its input and output variables, with their
state and support sets. Thus defined, the source system embodies both the object of
study as well as the pragmatic orientation and the theoretical perspective selected by
the investigator, and can be radically different depending on the choices made.
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Once the source system in known and defined, supplementing it with data brings
about the next system category: the data system. This level consists in a collection of
input/output pairs indexed by the support set, which, in modelling and simulation, is
always time. Building a data system is a routine activity in modelling and simulation,
as it is used to derive model parameters and because this is the only way of performing
quantitative validation of simulation experiments.

The core of modelling and simulation occurs at the next category, that of ‘genera-
tive systems’. A simulation model can actually be defined as a data generation device.
Time invariant functions are specified using the predefined observational variables
and new internal variables which operationalize a theoretical language. Zeigler right-
fully calls this level the state transition level. All simulation modelling paradigms
and languages provide concepts and constructs to specify the state transition mecha-
nism governing the dynamics of the system. The specification of a generative system
depends on the source system that was previously defined for it. In cellular automata,
each cell is a generative system (a finite state automaton) characterizing the relation
between input variables (the state of neighboring cells) and one output variable (the
state of the cell itself) over time. In agent based modelling, the modeller chooses a
certain level of granularity, and defines (through behavioral rules) a mechanism that
amounts to a generative system.

The next system category is the structure system level. This level specifies how
systems defined in lower categories (generally generative systems) can be integrated
in a compositional fashion. Cellular automata, coupled DEVS models, multi-agent
models, and system dynamic models are all structure systems. They all specify rela-
tions between lower level model components.

Whereas most modelling stops at this level, Klir defines yet higher levels, which he
calls metasystems, meta-metasystems, etc. (Klir 1976). The latter system categories
are used to model evolving systems by specifying transitions between structure sys-
tems.

The proposal we make is to add a level that specifically addresses the limitations
of adopting a single perspective. The new level is intended to be used to integrate
different perspectives into the same model, and would allow us to model problems
that, due to their complexity, cannot be solved within a unique theoretical frame-
work (for example, a model that needs to integrate psychological and sociological
perspectives in the same model). It should be noted here that a organizational level
of the problem domain may be modeled by means of a perspective, but perspec-
tives are not limited to represent organizational levels; they can also used to represent
alternative decompositions corresponding to different theoretical or pragmatical per-
spectives at a comparable level of organization. In Yilmaz and Ören’s taxonomy of
multi-models (Yilmaz and Ören 2005), the proposed multi-perspective models fit in
the class of multi-aspect model. Simulating such systems would amount to simulat-
ing the different perspectives in parallel, and allowing them to influence each other.
While Vangheluwe (Vangheluwe and de Lara 2002) provides a platform for meta-
modelling, he doesn’t define an epistemological basis for the interaction between
the different models. Nevertheless, his platform might prove very useful for building
multi-perspective models using the methodology outlined in this paper.

The new category of multi-aspect system specifies how generative or structure
systems defined in different perspectives may be integrated into a multi-perspective



M.D. Seck, H.J. Honig

system specification. To this end, two types of models will be distinguished: aspect
models and bridge models. An aspect model is a model of a system according to a
given perspective; it is a regular generative or structure model, in the sense that it has
well defined observable input and output variables, and it is modeled according to a
theory relevant to the problem being investigated. A multi-aspect system contains a
finite number of such aspect models and defines the relations between them. To inte-
grate the aspect models, bridge models are introduced. A bridge model maps outputs
from one or more aspect models to some input in another aspect model. Bridge mod-
els play the same role as do the bridge principles of Nagel (1961) and Hempel (1965)
in theory reduction; as bridge models reason about the relations between different the-
oretical or pragmatic frameworks, they are indeed at the meta-level when compared
to the lower levels. This has important implications for the methodology of build-
ing such models: one could say that aspect models specify all of the pre-theorized
knowledge in the multi-perspective model, while bridge models represent the not-yet
theorized part of the models. As will be shown in the section about methodology,
bridge models can only be understood through decoding and encoding steps which
relate the models through their common referent (which is part of the natural system
being modeled). This extra decoding/encoding step is what distinguishes this layer
from the preceding one, the structure system.

7 Formalization of multi-perspective models

Our formalization of multi-perspective models will be derived from the standard for-
malization of coupled models in DEVS (Zeigler et al. 2000), which defines a coupled
model as a tuple containing a set of input events and a set of output events, two
sets containing subcomponents and their names, three sets containing external in-
put couplings, external output couplings, and internal couplings. In multi-perspective
models, the subcomponents will be separated in two distinct sets: aspect models and
bridge models.

The different aspect models to be connected in a multi-perspective model are reg-
ular DEVS models, where the interaction between the different sub-models is done
through bridge models. Hence, the dynamics of each aspect are modeled as before,
and connection points must be defined to allow the various models to influence each
other where necessary. Sometimes the different aspect models can be connected di-
rectly, the output of one aspect model providing an input for another aspect model,
but usually this will not be the case and some transformation has to take place. These
transformations (see also Fig. 2) are taken care of by the bridge models, which are
DEVS models as well. Bridge models are communication paths between aspect mod-
els; their inputs are connected to the outputs of aspect models, while their outputs
influence the aspect models though the latter’s inputs.

As will be shown in their formalization, multi-perspective models do not introduce
any new syntax to the definition of DEVS. They merely add a semantic distinction
between two types of models (the aforementioned aspect models and bridge models).
Making this distinction allows us to specify methodological constraints to how the
models are used and how they can be interconnected. The resulting multi-perspective



Multi-perspective modelling of complex phenomena

models still have the important property of being closed under coupling, which means
that current simulation platforms can deal with them.

The constraints on how models can be connected are not intended to limit the
modeller in any way. Instead, they are meant to provide guidelines for modellers to
define proper interfaces between the models that implement the various theoretical
perspectives, and as such they are used to support the proposed methodology. This
aspect will be highlighted in the next section.

We can now define a multi-perspective model as follows:

MPM = 〈X,Y,A,B,EIC,EOC, IC〉
where:

X = the set of inputs of the multi-perspective model,
Y = the set of outputs of the multi-perspective model,
A = the set of aspect models, each one being a regular DEVS model,
B = the set of bridge models, each one being a regular DEVS model,
EIC = {(ei, i) | ei ∈ X, i ∈ ⋃

s.X|s∈A} (i.e., the set of external input couplings),
EOC = {(o, eo) |o ∈ ⋃

s.Y |s∈A, eo ∈ Y } (i.e., the set of external output couplings),
IC = {(o, i) | i ∈ ⋃

s.X|s∈A∪B, o ∈ ⋃
s.Y |s∈A∪B} (i.e., the set of internal couplings).

The couplings between models are subject to the following constraints:

– any aspect model’s input can only be connected to a single source:

∀(x, i), (y, i) ∈ EIC ∪ IC : x = y

– any bridge model’s input can only be connected to a single source:

∀(x, i), (y, i) ∈ IC : x = y

– any output of the multi-perspective model can only be connected to a single source:

∀(x, o), (y, o) ∈ EOC : x = y

– all aspect models’ inputs must be connected either an external input or to a bridge
model’s output:

∀a ∈ A, i ∈ a.X : ∃(_, i) ∈ EIC ∨ ∃(ob, i) ∈ IC |b ∈ B ∧ ob ∈ b.Y

– all bridge models’ inputs must be connected to an aspect model’s output:

∀b ∈ B, i ∈ b.X : ∃(oa, i) ∈ IC |a ∈ A ∧ oa ∈ a.Y

– all outputs of the multi-perspective model must be connected to an aspect model’s
output:

∀o ∈ Y : ∃(oa, o) ∈ EOC |a ∈ A ∧ oa ∈ a.Y

Most of the above constraints are the result of one not being able to obtain a value by
connecting two outputs. Some others are the result of the constraints posed in Sect. 5,
which states that bridge models are theories about relations between aspect models,
and should not have external inputs or outputs of their own.

While the formalization given above assumes regular DEVS models as its compo-
nent models, it should be realized that modelling system from different perspectives
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might well result in the need to share components between perspectives. This would
be possible by basing the formalization upon extended DEVS (Dalle et al. 2008),
instead of regular DEVS.

As the reader will note, nothing was said about the time base of the individual
aspect models. This is in line with DEVS, where time is implicit as and assumed
to be consistent between the sub-models in a hierarchical model. The same restric-
tion holds for the different aspect models as well. Since the literature on complex
systems clearly states that the various perspectives might be defined using different
time scales, further research will need to define some extension of the formalism that
allows for the mapping of different time bases.

8 Applying multi-perspective modelling to a socio-political problem

An example model is presented in this section to clarify the ideas discussed previ-
ously. Let us consider analyzing a conflict opposing two communities (ethnic, polit-
ical or religious) with a third actor, an armed policing force playing a peace keeping
role. The goal of the study could be, for example, to compare different policing tac-
tics in order to discover the one that is most effective in reducing the total count of
violent actions.

The first question faced when designing a model for this conflict would be to de-
cide the appropriate level of description. A modeller with social mechanist or method-
ological individualist tendencies would consider describing the system at the lowest
level where individuals interact. A sociological realist would be satisfied with mod-
elling laws occurring at the societal level. In between these two, there could be many
possible levels of description. Practical questions such as the granularity of data, the
availability of theories, or the availability of computational power can help decide this
issue. Literature search can reveal that collective action literature is clearly relevant
to this problem. For example, a theoretical framework based on diffusion theory was
proposed in Myers and Oliver (2008) to predict the size and severity of protest and
riot events. This theory offers an explanation at the aggregate level. At the individual
level, we could make the hypothesis that stress and emotions are the important drivers
of behavior in this context. Emotional appraisal theory (Lazarus 1991) is relevant to
model how agents interpret their environments and react to it.

From this short analysis, one can see that the conflict may be considered from two
distinct and non-isomorphic perspectives which in this case correspond to two dis-
tinct levels of description. The two levels use distinct underlying theories. One of the
theories can be more complete than the other to describe some aspects of the prob-
lem. For example, the low level model accounts for a peace keeping (police) force,
which is not present in the collective action model. The alternative decompositions
can be seen in the SES ontology depicted on Fig. 5.

From the aggregate collective action perspective, the conflict system consists of
two communities. Each community is further decomposed into two collective actions
which they can use as means of expression. These collective actions are ‘peaceful
protest’ and ‘violence’. Each of those collective actions is modeled with the Oppos-
ing Forces Diffusion model (OFD) as an underlying theory (Myers and Oliver 2008).
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Fig. 5 A multi-perspective conflict model

In each of the collective action models, a provocation and a repression rate of adop-
tion are defined as input variables, along with the initial proportion of adopters of
those modes of expression. The OFD model is a theoretical and explicative model.
Its theoretical grounding and straightforward parameter interpretation make it a good
candidate for simulation. But, being an explicative model, the OFD model parameters
are estimated a posteriori in face of available data; in comparison, a predictive model
is supposed to generate the data on the basis of these parameters. In addition, we want
the parameters to change dynamically as a result of interactions and interpretation by
agents, like the influence of the policing force (which, in this perspective, is part of
the environment). As we will see below, bridge models will dynamically provide the
required parameters on the basis of information obtained from the other perspective.

In Myers and Oliver (2008), provocation (P ) and repression (R) are formalized
as two similar logistic functions representing the proportions of adopters of the two
competing ideologies. The intensity of collective actions depends on the size of the
difference between P and R, when P > R as in the following equations:

P ∗(t) = 1

1 + 1−N∗
0

N∗
0

e−pt

R∗(t) = 1

1 + 1−N∗
0

N∗
0

e−rt
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Table 1 Observation frame for collective action OFD

Name Type Range Meaning

N∗
0 input 0..1 initial proportion of adopters

�p input 0..1 provocation rate of adoption

�r input 0..1 repression rate of adoption

dV (t)
dt

output 0..1 event probability at time t

Table 2 Observation frame for Civilian

Name Type Range Meaning

action susceptibility input 0..1 willingness to take action

actions (o1-04) output SC × SA × SP agent actions

where N∗
0 represents the initial proportion of adopters in the population and p and

r represent the provocation and repression ideologies’ infectiousness, respectively.
Event probability at any instant is obtained by:

dV (t)

dt
= P ∗(t) − R∗(t)

In the mechanistic perspective, the conflict system is decomposed into four sub-
components: the two communities, the policing force, and the terrain through which
they interact. Each community is composed of Civilian agents, and Activist agents.
The Civilian agent represents an individual of the general population in one com-
munity, who can be in states such as: ‘inactive’, ‘demonstrating’, and ‘rioting’. The
Activist agent represents a more active individual of the population who can be in
states such as: ‘inactive’, ‘provocation’, ‘violence’. The transitions between these
states are governed by the emotions elicited by an emotional appraisal module in each
agent. The policing force is composed of Reconnaissance patrol agents, Combat pa-
trol agents, and Crowd control agents, each with their own specified behavior, derived
from miliary rules of engagement. The terrain is modeled as a lattice where each cell
has parameters reflecting the symbolic value of each location for each community, the
visibility it allows for the policing force agents, the density of populations from the
communities, etc. It also contains state variables being updated depending on what
is currently occurring in each location. The behavior of the agents is determined by
local interactions and by a parameter related to the global state of the conflict (‘action
susceptibility’ in Table 2), which is again derived from the other perspective through
a set of bridge models.

Based on the decomposition given in Fig. 5, an observation frame can be built for
this system. Tables 1 and 2 show the observation frames for the collective action OFD
model and a civilian agent respectively. Data can be collected about the conflict to
set initial parameters for the model. The initial parameters of the OFD model could
be estimated with numerical regression techniques on historical data as shown in
Myers and Oliver (2008). Such data on conflicts are available in databases such as



Multi-perspective modelling of complex phenomena

the Upsala Dataset on Armed Conflicts (Data on Armed Conflict n.d.). After that, an
appropriate formalism is chosen to specify the models. For this example, all models
were specified in the DEVS formalism.

Bridge models define the relations between the aspect models. Adapting provo-
cation (p) and repression (r) rates as a result of micro-level outcomes requires hy-
potheses regarding how, for example, a violence act will have a future effect on the
adoption of the violent provocation ideology in both the source population and the
target population. The collective action literature has numerous references on the ef-
fect of prior actions on future collective behavior. One clear fact is that policing style
influences the evolution of conflicts. For example, G. Marx analyzed different po-
lice behaviours and their effect on crowds (Marx 1970). Newman and Lynch show
the role of vengeance as an ideology fueling violence in feuding societies (Newman
and Lynch 1987). Assumptions on the influences between peaceful and violent ide-
ologies within a community or between opposing communities can be diverse. The
specification of these assumptions can be done in the bridge models.

Outputs from the low level models with relevance to the collective action models
can be listed as follows:

(o1) Effective crowd control: a peaceful demonstration did not escalate to rioting,
(o2) Rioting: a peaceful demonstration escalated to rioting,
(o3) Failed violence act: the police force was able to stop violence act,
(o4) Successful violence act: activist successfully perpetrated a violence act.

The above values are the inputs to a set of bridge models A represented in Fig. 5; they
are mapped to a certain effect (null, positive, or negative) on the Peaceful Protest and
Violence collective actions through their provocation and repression rates p and r .
For example, we assumed that a successful (o4) violence act by an activist group
affiliated to Community 1 has the following effects:

– strengthens provocation ideology for peaceful demonstrations in Community 1,
– does not have any effect on the repression ideology for peaceful demonstration in

Community 1,
– strengthens provocation ideology for violent behavior in Community 1,
– does not have any effect on the repression ideology for violent behavior in Com-

munity 1,
– does not have any effect on the provocation ideology for peaceful demonstration

in Community 2,
– strengthens repression ideology for peaceful demonstrations in Community 2,
– strengthens provocation ideology for violent behavior in Community 2,
– does not have any effect on the repression ideology for violent behavior in Com-

munity 2.

Whenever the bridge model calculates new values for p and r , a new value of N∗
0 is

derived from these as follows:

N∗
0 = 1

1 + 1−N
N

e−pt− 1−N
N

e−rt

e−pt−e−rt

Once the bridge models are built, the overall model representing the conflict ac-
cording to two perspectives (also corresponding to levels of organizations) is ob-
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tained. In our case, the resulting model is a coupled DEVS model containing two
aspect models, each represented as a classical DEVS model, and two bridge models,
also DEVS models, responsible of encoding and decoding values from one perspec-
tive to another. An earlier account of this work focusing on the models themselves
can be found in (forthcoming).

9 Conclusions and further research

This paper has shown some of the limitations of single perspective hierarchical mod-
elling and has proposed multi-perspective modelling as a solution, with motivations
taken from system theory, philosophy of science, and modelling and simulation prac-
tice.

Multi-aspect systems have been shown to form a specific system category, in be-
tween structure systems and meta-systems. It is argued that the syntax of the current
generative modelling formalisms is expressive enough to create multi-perspective
models. Consequently, a formalization was provided based upon DEVS coupled
models, specifying Aspect and Bridge models with constraints managing their in-
teractions. These constraints are chiefly methodological. This is in line with our pro-
posal itself, which is de facto a methodological extension of an existing modelling
paradigm. The extension is to clarify the way in which multiple perspectives can
interact in a meaningful way in an integrated model.

A first definition of a corresponding methodology is given, inspired by Klir’s sys-
tems approach, Rosen’s modelling relation, and the logical empiricists’ bridge princi-
ple concept. The methodology explains why notions from one modelling perspective
must be decoded through the natural system and re-encoded into another perspec-
tive’s formal system. An example application of the methodology on conflict simula-
tion is given.

Future work includes further investigation on the nature of bridge models and their
relation with data mining and statistical techniques. Applicability of the approach to
modelling styles other than DEVS will also be studied.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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