
T.-h. Kim et al. (Eds.): CA/CES3 2011, CCIS 256, pp. 122–127, 2011.
© Springer-Verlag Berlin Heidelberg 2011

DVML: DEVS-Based Visual Modeling Language
for Hybrid Systems*

Hae Young Lee, Ingeol Chun, and Won-Tae Kim

CPS Research Team, ETRI
Daejeon 305-700 Republic of Korea

haelee@ieee.org

Abstract. This paper proposes a visual modeling language for a large-scale
hybrid system based on discrete event system specification formalism. Within
theproposed language, basic model diagrams define the hybrid behavior of
systems, whilethe structure can be represented through coupled model
diagrams. The language can visually define large-scale hybrid systems without
a sacrifice of formal semantics, and does not require the users to have
programming skills. A prototype of the modeling and simulation environment
based on an extended version of the language has been implemented.

Keywords: Visual modeling language, discrete event system specification
(DEVS), DEV&DESS,hybrid system modeling, cyber-physical systems.

1 Introduction

Discrete event system specification (DEVS) formalism [1], which is a theoretically
well-grounded means of expressing modular discrete event simulation models, has
gained increasing popularity in recent years [2]. Various DEVS-based modeling and
simulation (M&S) environments [3,4] have been developed to tackle complex
problems through a broad array of domains. However, in most of these environments,
the users must write models in certain programming languages, such as Java and C++,
with predefined libraries. This therefore results in their relatively limited adoption
within the industry [5].

Recently, several DEVS-based graphical modeling approaches [5-7] have been
proposed to make DEVS more accessible to a wider community. A DEVS graph [6],
which permits the users to write DEVS models using state machines, was proposed by
Christen et al., and was later adopted in graphical modeling editors of CD++Builder
[5]. Traoré proposed a DEVS-driven modeling language [7] that considers functional,
dynamical, and static aspects of systems in a graphical way. However, they have
addressed only the graphical modeling of discrete systems, while most large-scale
systems, such as cyber-physical systems (CPS) [8,9], involve hybrid processes
combining both continuous and discrete phenomena.

* This work was supported by the IT R&D Program of MKE/KEIT [10035708, "The

Development of CPS (Cyber-Physical Systems) Core Technologies for High Confidential
Autonomic Control Software"].

 DVML: DEVS-Based Visual Modeling Language for Hybrid Systems 123

This paper proposes a visual modeling language (DVML) that enables graphical
modeling of hybrid systems, based on discrete event and differential equation systems
(DEV&DESS) formalism developed by Praehofer [10]. In DVML, a hybrid system
can be defined using two different kinds of diagrams: a basic model diagram and
coupled model diagram. The hybrid behavior of systems can be graphically defined
using basic model diagrams, while coupled model diagrams can describe the structure
of the systems. For hybrid systems modeling, by using DVML, the users are no longer
required to have programming experience. A prototype of a DVML-based modeling
and simulation environment is introduced at the end of this paper.

2 DEVS-Based Visual Modeling Language (DVML)

This section presents the proposed modeling language, DVML, in detail.

2.1 Basic Model Diagram (BMD)

DVML specifies a basic DEV&DESS model using a basic model diagram (BMD). A
BMD is depicted as an empty rectangle with the name of the model at the top left. All
elements that belong to a BMD are shown within the rectangle.

Each basic model interacts with its external environment by passing continuous
values or discrete events through its I/O ports. Each port is represented by a small
rectangle drawn on the border of the BMD, with the textual notation for the ports. The
notation is defined by the following Backus-Naur Form (BNF) expression:

<port>::=‘[‘<port-type>’]’<port-name>‘:’<data-type>

<port-type>::=‘[C]’|‘[E]’

‘[C]’ is specified for continuous value ports. For a discrete event port, ‘[E]’ is specified
and its value can be either a predefined event (an element of <data-type>) or∅
(nonevent). An input port and an output port are drawn as a small empty rectangle and a
small filled rectangle, respectively.A discrete event port can be accessed only within
transitions, whilecontinuous value ports can be accessed at any time.

In DVML, the specification of the behavior of a basic model is organized around
the phase variable in an enumerated type of programming language. The phase
variable denotes some type of representative state that the model remains in. In each
phase, an enumerator in the variable is rendered as a rounded rectangle along with its
name. The initial phase is depicted as a small filled circle.

Other state variables are denoted by text strings in the notation defined by the
following BNF expression:

<state-variable>::=‘[‘<variable-type>’]’<variable-name>‘:’<data-type>

<variable-type>::=‘[C]’|‘[D]’

‘[C]’ is specified for continuous state variables, while‘[D]’ is specified for discrete
state variables, which are updatedby discrete events.

124 H.Y. Lee, I. Chun, and W.-T. Kim

A transition from a source phaseto a target phase is renderedas an arc that connects
them, with a textual notation for transitions. The notation is defined by the following
expression:

<transition>::=[<transition-name>][‘[‘<transition-condition>’]’][‘/’<state-
definition>]]

<transition-condition> is a Boolean expression that specifies the firing condition of
the transition. A transition is performed if and only if the model is in the source phase
and if the firing condition is true. If the firing condition for a transition is not
specified, the transition is immediately performed whenever the model is in the source
phase. A <state-definition> is an expression that defines a new state and/or generates
outputs. The expression is executed when the transition fires. The firing condition for
the initial transition must not be specified so that the transition can be immediately
fired. The initial values for state variables and continuous output ports must be
specified within <state-definition> of the initial transition. Consequently, the model
actually starts in the target phase of the transition with the initial values.

A constraint is an algebraic or ordinary differential equation (ODE) that defines
continuous behavior or computes continuous states. If a constraint is within a phase
(i.e., a phase constraint), the constraint is enabled only when the model is in that
phase.

2.2 BMD Example

Figure 1 illustrates a sample BMD for a barrel filler described in [1]. The sample
model has two input ports: Inflow, a continuous value input port (‘[C]’) in double
(real) data type, and On, a discrete event input port (‘[E]’) in bool (Boolean) data
type. The value of the port On is read only within the conditions of two transitions,
StartFilling and StopFilling. Three output ports, Level, Room, and Barrel, belong to
the model. Port Barrel is written using Barrel = BarrelID in order to generate an
output event when transition GenerateBarrel fires. The model has three phases:
Ready, Filling, and the initial phase. A continuous state variable (‘[C]’), Capacity,
and a discrete (‘[D]’) state variable, BarrelIDbelong to the model. The former and
latter variables store the capacity of a barrel and the identifier of the current barrel,
respectively.

Continuous value output port Room is updated using the following algebraic
equation:

 (1)

While the model in Ready phase is updated by the following ODE:

 ∂ / ∂ 0 (2)

That is, the current barrel is not filled. If the model is in Ready phase and receives an
event true through On, transition StartFilling is fired. While the model is in Filling,
Level is updated as follows:

 ∂ / ∂ (3)

 DVML: DEVS-Based Visual Modeling Language for Hybrid Systems 125

Fig. 1. Basic model diagram (BMD)

Thus, the current barrel is filled by Inflow. GenerateBarrel is fired if the model is
in Filling phase and the value of Level is equal to or greater than the value of
Capacity (i.e., if the current barrel is fully filled with content). Through the transition,
the value of BarrelID increases in order to give the next barrel a new identifier, and
the value of Level is set to 0 (an empty barrel). If the model is in Filling phase and
receives a false through On, then StopFilling is fired.

2.3 Coupled Model Diagram (CMD)

A DEV&DESS coupled model is specified as a coupled model diagram (CMD) in
DVML. Ports are drawn by small rectangles on the border with the textual notations.
Each sub-model is depicted as a rectangle with its name. A coupling from a source
port to a target port is rendered as an arc connecting them. When two ports are
coupled, their types and data types must match.

2.4 CMD Example

Figure 2 shows a sample CMD for a barrel generator. The model consists of two sub-
models, BarrelFiller (illustrated in Fig. 1) and Controller. A single external input
coupling, three external output couplings, and two internal couplings are rendered as
arcs.

StartFilling [On == true] /

StopFilling
[On == false] /

GenerateBarrel [Capacity <= Level] /
BarrelID ++,

Barrel = BarrelID,
Level = 0

BarrelFiller

[E] On :
bool

[C] Inflow :
double

[E] Barrel :
int

[C] Level :
double

[C] Capacity : double
[D] BarrelID : int

Room = Capacity – Level

Ready Filling

d (Level) =
Inflow

d (Level) = 0

[C] Room :
double

Discrete Event
Input Port

Model Constraint

Continuous
State Variable

Phase

Continuous Value
Output Port

Transition

Phase Constraint

Discrete
State Variable

Name

/
Level = 0.0,
Capacity = 10.0,
BarrelID = 0

Initial Phase

126 H.Y. Lee, I. Chun, an

Fi

Fig. 3

3 DVML-Based M

We have implemented a pro
3 shows a screenshot of t
modeler, which is an Eclip
drag-and-dropping DVML
using a CPS domain mod
experience in the modeling
in a model base, called a C

[E] On

[C] Inflow :
double

[C] Inflow

[E] O

Coupling

BarrelG

nd W.-T. Kim

ig. 2. Coupled model diagram (CMD)

3. A screenshot of a CPS domain modeler

Modeling Environment

ototype of a DVML-based CPS M&S environment. Fig
the modeling environment prototype, called CPS dom
pse plug-in. Hybrid systems can be modeled with ease,

elements (e.g., transitions, phases, and so on). That is,
deler, the users are not required to have programm
 of hybrid systems. Models described in DVML are sto

CPS domain model library, together with 3-D objects. T

: bool

BarrelFiller

Controller

[E] Barrel : int

[E] BarrelID : int

w : double [C] Level : double

[C] Room : double

[C] BarrelLevel :
double

[C] BarrelRoom :
double

On : bool

[E] BarrelPackage :
int

[E] Package : intSub-model

Generator

gure
main
, by
, by

ming
ored
The

 DVML: DEVS-Based Visual Modeling Language for Hybrid Systems 127

modeler also provides a 3-D modeling environment. Within the modeler, a large-scale
CPS can be easily composed by drag-and-dropping of 3-D objects embedding a
hybrid behavior. CPS models can be executed on our DEV&DESS-based hybrid
simulation environment, and their execution results can be reviewed by using a 3-D
visualizer.

4 Conclusions and Future Work

In this paper, we proposed the formalism-based language for large-scale hybrid
systems that can provide full graphical modeling capabilities without a sacrifice in
formal semantics. A prototype based on DVML has been implemented for CPS.
DVML is still being developed for a complex CPS. In the next version, some
extensions for autonomic computing support will be included. We will also study the
formal verification of DVML models.

References

1. Zeigler, B.P., Paraehofer, H., Kim, T.G.: Theory of Modeling and Simulation, 2nd edn.
Academic Press (2000)

2. Feng, B., Wainer, G.: A NET Remoting-Based Distributed Simulation Approach for
DEVS and Cell-DEVS Models. In: Proc. DS-RT 2008, pp. 292–299 (2008)

3. Adevs, http://www.ornl.gov/~1qn/adevs/
4. DEVSim++, http://smslab.kaist.ac.kr/
5. Bonaventura, M., Wainer, G., Castro, R.: Advanced IDE for Modeling and Simulation of

Discrete Event Systems. In: Proc. SpringSim 2010 (2010)
6. Christen, G., Dobniewski, A., Wainer, G.: Modeling State-Based DEVS Models in CD++.

In: Proc. ASTC 2004 (2004)
7. Traoré, M.K.: A Graphical Notation for DEVS. In: Proc. SpringSim 2009 (2009)
8. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: Proc. ISORC 2008, pp. 363–369

(2008)
9. Park, J., Yoo, J.: Hardware-Aware Rate Monotonic Scheduling Algorithm for Embedded

Multimedia Systems. ETRI Journal 32(5), 657–664 (2010)
10. Praehofer, H.: System Theoretic Formalism for Combined Discrete-Continuous System

Simulation. International Journal of General System 19(3), 226–240 (1991)

	DVML: DEVS-Based Visual Modeling Language for Hybrid Systems
	Introduction
	DEVS-Based Visual Modeling Language (DVML)
	Basic Model Diagram (BMD)
	BMD Example
	Coupled Model Diagram (CMD)
	CMD Example

	DVML-Based Modeling Environment
	Conclusions and Future Work
	References

