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Abstract This paper presents an approach to formally model Takagi—Sugeno—
Kang (TSK) fuzzy systems without the use of any external components. In order to
keep the model continuity, the formal simulation model for a TSK fuzzy system is
comprised of three types of reusable sub-models involving primitive operations.
Thus, the model can be executed even on limited computational platforms, such as
embedded controllers.
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1 Introduction

Modeling and simulation (M&S) technologies have been widely used in industry
to assist in system development [1]. One particular use of these technologies is in
the development of embedded controllers since they usually have time constraints
[2, 3]. When modelers build simulation models for embedded fuzzy controllers,
they typically embed external fuzzy components in their models [4, 5]. These
models, however, may not be used throughout all of the design phases since M&S
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environments do not support the use of some external components. Also, the use of
external components may make the transformation of simulation models difficult
or impossible [6]. Therefore, simulation models should not contain any external
components to keep their continuity.

Several research efforts [6—8] have been made to build ‘pure’ simulation
models for fuzzy controllers. In [7], Jamshidi et al. proposed an approach to model
the Mamdani fuzzy systems [9] based on pararell discrete event system specifi-
cation (P-DEVS) [10]. The modeling approach proposed by Lee and Kim [8] can
reduce the complexity of the Mamdani P-DEVS models. The Mamdani model has
a great advantage in terms of expression power, though it involves some complex
computation. The standard additive model (SAM) fuzzy systems [11] can be built
with P-DEVS models based on the approach proposed in [6]. The main advantage
of the SAM is computational efficiency since most parameters can be precom-
puted. However, simulation modeling of Takagi—Sugeno—Kang (TSK) fuzzy
systems [12, 13] has not been addressed yet. Compared to the Mamdani model, the
TSK model can reduce the number of rules, especially for complex and high-
dimensional problems.

This paper presents an approach to build simulation models for TSK fuzzy
systems based on P-DEVS. A P-DEVS model of a TSK fuzzy system is a coupled
model consisting of three types of sub-models: an input membership function
model, rule model, and defuzzification model. Since the models are all pure
simulation models involving only addition and multiplication, they could be
executed even on embedded platforms. Consequently, their continuity can be
maintained. Compared to the existing approaches for the modeling of fuzzy
systems, the proposed approach can model a TSK fuzzy system with a smaller
number of sub-models.

2 Background

In this section, we briefly describe the backgrounds of TSK fuzzy systems and P-
DEVS.

2.1 TSK Fuzzy Systems

In general, a rule in a TSK model has the following form:
IFx; is Aj; and x5 is Ajp and, .. ., and xy is Ajk

THENyY = ajp + aj; X X1 + -+ + ajx X X
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where xi, x,..., X; are input parameters, A;;, A;,..., Ay are the membership
functions of ith rule, a,y, a;1,..., a; are real-valued parameters, and y is the output
parameter. The total output, y, of the model is given by Eq. (1), where o; is the
matching degree of the i-th rule.

> %ilaio + anxy + - - - + auxy)
J
D1 %
The great advantage of the TSK model is its representative power. Moreover,

due to the explicit functional representation form, it is convenient to identify its
parameters using learning algorithms [14].

(1)

y:

2.2 Parallel DEVS

The basic formalism of a P-DEVS model is:
M= <X7 Y,S, 5exl7 5int7 5cona )“7 ta>7
where

X is the set of input events,

Y is the set of output events,

S is the set of sequential states,

3ot O x X > S is the external transition function,

where Q = {(s, e) | s € S, 0 < e < ta (s)}, e is the elapsed time since the last
state transition, and X’ is a set of bags over the elements in X,

Oinis S — S is the internal transition function,

Seon: O x X? - Sis the confluent transition function, subject to Oy, (5, D) = ;s (8),
J: § — Y? is the output function,

ta is the time advanced function.

3 P-DEVS Modeling of TSK Fuzzy Systems

In the proposed approach, a TSK fuzzy system containing i input membership
functions and j rules, with k inputs and a single output is represented as a P-DEVS
coupled model with k input ports and a single output port. The coupled model
contains i 4+ j + 1 P-DEVS atomic models: i input membership function models
(IMs), j rule models (RMs) and a single defuzzification model (DM). Figure 1
shows the P-DEVS model of a fuzzy system containing four input membership
functions and four rules with two inputs and a single output (i.e., i = 4, j = 4,
k=2).
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TSK Fuzzy System
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Fig. 1 A model structure for a TSK fuzzy system

3.1 Input Membership Function Models (IMs)

Each input membership function of the fuzzy system is represented as an IM
M that is defined as:

M= <XM7 YM7 S7 56)(17 5in17 560”7 )"7 ta>7
where

InPorts = {“In”}, X1, = N,

OutPorts = {“Out”}, You = [0, 1],

Xy = {(p, v) | p € InPorts, v € X, },

Yy = {(p, v) | p € OutPorts, v € Y, },

S = {“passive”, “active”} x R,

Oow (“passive”, d, e, (“In”, x)) = (“active”, u (x)),

Oinr (“active”, d) = (“passive”, d),

50011 (s, ta (), x) = 5ext (5int (5), 0, x)

A (“active”, d) = (“Out”, d),

ta(phase,d) =0  if phase = “‘active’’;
oo otherwise.

Every IM produces a matching degree of the corresponding membership
function for each input value. It initially starts with its state = (“passive”, d),
where d is an arbitrary real value. When the IM for an input membership function
I receives a real value x as an input, it transitions its state to (“active”, y; (x)).
Immediately, the IM generates u; (x) as its output and transitions to the passive
state.
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Once an IM for a membership function type has been implemented, it can be
easily reused just by setting the parameters of the membership functions in the
same type. Even if any IM for a certain type does not exist, it can be implemented
just by redefining J,,, of the existing one. IMs are independent from fuzzy
inference models; TSK, SAM, and Mamdani use the same IMs in the approach.

3.2 Rule Models (RMs)

Each if-then rule of the fuzzy system corresponds to an RM. An RM is defined as:
M= <XM7 YMS, (Sexta (Sima (Sconv )"7 ta),
where

InPorts = {“Inl”,..., “Ink”, “Ind”}, Xin1 = -+ = Xtk = Xina = R,
OutPorts = {“Out”}, You = R,
Xy = 1{(,v) | penPorts, v € X, },
Yy = {(p, v) | p € OutPorts, v € Y,},
S = {“passive”, “active”} x 8‘%’”3]:

O (“passive”, ao,..., ar, b, ¢, e, (“Inl”, xy),..., (“Ink”, x;), (“Ind”, d,),...,
(“Ind”, dy))

= (“active”, ay,..., a, g + -+ + ayp-xp, min (dy,..., dy))
or

= (“active”, ap,..., g, Ay + - 4 A Xy d] X e X dk),

Oine (“active”, agp,..., ax, b, ¢) = (“passive”, a,..., a, b, ¢),

5con (s, ta (), x) = 5ext (5int (5), 0, x)

A (“active”, ay,..., ai, b, ¢) = (“Out”, (b x ¢, ¢)),

ta(phase,ag, . . .,ax, b,c) = 0 if phase = “‘active *’;

oo othewise.

Each RM produces a conclusion of the corresponding rule, based on input
values: all input values of the fuzzy system and the membership degrees from the
associated IMs. It has k input ports, “Inl”,..., “Ink”, used to receive the k input
values, xi,..., X, of the fuzzy system; an additional input port, “Ind”, used for
k membership degrees, di,..., d;, from the associated IMs; and a single output port,
“Out.” The RM corresponding to rule R starts with the initial state = (“passive”,
ao,..., ai, b, ), where ay,..., a; are the constant values defined in the consequent
part (then-part) of R, and b and c are arbitrary real values. When the RM receives
X1,...5 X, through the ports “Inl”,..., “Ink”, respectively, together with d,,..., d;
through the port “Ind”, it stores b = ag + --- + ai-x; and ¢ = min (dy,..., d;) or
(dy x --- x dy). Finally, the RM outputs (b X c, ¢) via the output port and tran-
sitions to the passive state.
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The RM can be reused repeatedly once it has been implemented. The reuse can
be done simply through the creation of RM instances and assigning k + 1
parameters a,..., ay, of each instance.

3.3 Defuzzification Model (DM)

A DM is an application-independent atomic-model that generates the outputs of a
fuzzy system. It is formally defined as:

M = <XM7 YM7 S7 5ext; 5int; 560}17 ;“7 ta>
where

InPorts = {“In”}, X1, = R2,

OutPorts = {“Out”}, You = R,

Xy =1{(p,v) | penPorts,v € X,},

Yy = {(p, v) | p € OutPorts, v € Y, },

S = {“passive”, “active”} x R,

Ocxt (phase, 'y, e, (b, c1),..., (b, c) = (“active”, (by + --- + b)/

(1 + - + &),

O (“active”, y) = (“passive”, y),

A (“active”, y) = (“Out”, y),

ta(phase,y) =0 if phase = “‘active’’;
oo otherwise.

The DM produces a final conclusion of the fuzzy system based on the collection
of conclusions of the rules. It starts with the passive state = (“passive”, y), where
y is an arbitrary real value. When the DM receives (by, cy),..., (b;, ¢;) from all
RMs, it transitions its state to (“active”, (b + --- + b)/(c; + --- + ¢;)). Then,
the DM outputs y and transitions its state back to the passive state.

Since any implementation of the DM is application-independent, it is reused
for every TSK fuzzy system. Also, it is identical to the DM of SAM described
in [6].

3.4 Models Couplings

The coupled model has i input ports and a single output port. Each of the input
ports is connected with the associated input ports (e.g., input port “Inl1” for input
x1, “In2” for x,,...) of all RMs. The port is also coupled with the input ports of the
associated IMs. Consider the following fuzzy if-then rules of a TSK fuzzy system
that receives quantity x; and softness x;:
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Table 1 Overhead in four modeling approaches

Complexity TSK (proposed) SAM [6] Mamdani [7] Mamdani [8]
Sub-models i+j+1 i+j+1+1 jxk+ i+j+1+2
2j+2

Communications i + 2j X k + i+jxk+ 2j X k + i+jxk+

j+1 j+k 2+ 2 j+i+2

+1
Inference Multiplication Multiplication  Finding a minimum
+ addition + clipping of or scaling a MF

Combining Addition Merging MFs
Defuzzification Multiplication Finding the mean of the maximum or

the centroid of an area

Rule 2 : TF x; is Large and x; is Soft
THENy=14+2-x1+2-x
Rule 3 : IF x; is Small and x, is Hard
THENy=1+x +2 x

In the above example, the port that receives x; (quantity value) would be
connected with the input ports of IMgyn.; and IMy ... Note that each IM has a
single input port “In”. The output port “Out” of each IM is coupled with input
port “Ind” of each associated RMs. In the example, “Out” of IMg,,; would be
connected with “Ind” of RMj3, which have a linguistic variable ‘Small’ in the if-
part. The output port of every RM is coupled with the input port of the DM. And
the output port of the DM is connected with that of the coupled model.

3.5 Overhead Analysis

Table 1 shows an overhead analysis for the approach and the three existing
approaches [6-8]. Each fuzzy system consists of i input membership functions,
j rules, and / output membership functions, with & inputs and a single output. In the
approach, a coupled model for a fuzzy system contains i 4+ j + 1 atomic models,
while a higher number of sub-models is required to build a coupled model for a
fuzzy system in other approaches. The complex couplings among the sub-models
in the approach make the communications overhead increase. However, the
overhead of the approach is still smaller than that of [7]. Moreover, TSK can
describe a highly nonlinear system using a small number of rules [14]. That is, j of
TSK could be much smaller than that of SAM or Mamdani. While Mamdani fuzzy
systems are widely used, they usually involve complex operations, such as the
clipping and merging of membership functions and finding their centroids. Such
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atomic

# sigma : timetype
# phase : phasetype

+ ext_tn_fn (e : timetype, x : message *)

+ int_tn_fn ()
+ output () : message *
IMTriangle TSKRM SAMDM
#m_dA, m_dB, n_dC : double #m_iK :int # m_dDefuzzifiedValue : double
# m_dMembershipDegree : double # m_pConstants : double *
N # m_dFirstValue : double
# GetMembershipDegree # m_dSecondValue : double 1
1.7 # SetConstants (dAO : double, ...)
1.*
digraph TSKFuzzyController FuzzyMessage
- Coupling : coup_rel nitiali # m_dFirstValue : double
+ Initialize () # m_dSecondValue : double

+ Add_Coupling (c1: model *,
p1: port, c2 : model, p2 : port) + GetFirstValue () : double

? + GetSecondValue () : double

Fig. 2 Simplified UML diagrams of TSK simulation models

complex operations might be too heavy on resource-constrained systems. Similar
to [6], the approach can model TSK fuzzy systems, which involve only primitive
operations. Thus, the approach will be suitable for the M&S-based engineering of
embedded software systems.

4 Implementation Status

The P-DEVS models for TSK systems described in Sect. 3 were implemented in
C++ for our simulation environment, the DEVS object C++ (DOC) environment.
The IM for the triangular membership function type was implemented as an
IMTraingle class. The RM and DM were implemented as TSKRM and SAMDM
classes, respectively. As shown in Fig. 2, these classes inherit the atomic class of
DOC class, which corresponds to the basic model of P-DEVS. The essential
member functions of atomic are ext_tn_fn (the implementation of d.,,), int_tn_fn
(0:n1), and output (1). By overriding these functions, the behavior of a subclass is
defined. The FuzzyMessage class is used for internal communications between the
atomic models of fuzzy systems. In order to facilitate the modeling process,
we have also developed a prototype of a visual modeling tool. The simulation
modeling of fuzzy systems can be done with ease using the tool. However, they
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can also be manually constructed without the use of the tool, thanks to the hier-
archical and modular model-composition provided by the P-DEVS environments.

5 Conclusions and Future Work

In this paper, we presented an approach for representing P-DEVS models of TSK
fuzzy systems without the use of any external components. Exclusion of external
components from simulation models would improve the continuity of the models
so that the user can efficiently manage software complexity and maintain con-
sistency throughout the design phase. A P-DEVS model of a fuzzy system is
comprised of easy-to-reuse atomic models: IMs, RMs, and a DM. Since each
atomic model involves primitive operations, such as addition or multiplication, the
model works on target platforms and can be smoothly transformed into other forms
of models or languages. A coupled model for a TSK fuzzy system requires a
smaller number of sub-models, compared to that of a Mamdani or SAM fuzzy
system. Thus, it will be more compatible with embedded platforms. We have
implemented P-DEVS models on DOC, for fuzzy systems including TSK, SAM,
and Mamdani. To facilitate the modeling of fuzzy systems, a GUI-based modeling
tool prototype was developed. We will implement the models for other DEVS
environments, such as eCD++ [2].
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