
Simulation Modeling of TSK Fuzzy
Systems for Model Continuity

Hae Young Lee, Jin Myoung Kim, Ingeol Chun,
Won-Tae Kim and Seung-Min Park

Abstract This paper presents an approach to formally model Takagi–Sugeno–
Kang (TSK) fuzzy systems without the use of any external components. In order to
keep the model continuity, the formal simulation model for a TSK fuzzy system is
comprised of three types of reusable sub-models involving primitive operations.
Thus, the model can be executed even on limited computational platforms, such as
embedded controllers.

Keywords Modeling and simulation � Model continuity � Fuzzy logic � Discrete
event system specification � Embedded systems

1 Introduction

Modeling and simulation (M&S) technologies have been widely used in industry
to assist in system development [1]. One particular use of these technologies is in
the development of embedded controllers since they usually have time constraints
[2, 3]. When modelers build simulation models for embedded fuzzy controllers,
they typically embed external fuzzy components in their models [4, 5]. These
models, however, may not be used throughout all of the design phases since M&S

This work was supported by the IT R&D Program of MKE/KEIT [10035708, ‘‘The
Development of CPS (Cyber-Physical Systems) Core Technologies for High Confidential
Autonomic Control Software’’].

H. Y. Lee (&) � J. M. Kim � I. Chun � W.-T. Kim � S.-M. Park
CPS Research Team, ETRI, Daejeon 305-700, Republic of Korea
e-mail: haelee@ieee.org

J. J. Park et al. (eds.), IT Convergence and Services,
Lecture Notes in Electrical Engineering 107, DOI: 10.1007/978-94-007-2598-0_8,
� Springer Science+Business Media B.V. 2012

77



environments do not support the use of some external components. Also, the use of
external components may make the transformation of simulation models difficult
or impossible [6]. Therefore, simulation models should not contain any external
components to keep their continuity.

Several research efforts [6–8] have been made to build ‘pure’ simulation
models for fuzzy controllers. In [7], Jamshidi et al. proposed an approach to model
the Mamdani fuzzy systems [9] based on pararell discrete event system specifi-
cation (P-DEVS) [10]. The modeling approach proposed by Lee and Kim [8] can
reduce the complexity of the Mamdani P-DEVS models. The Mamdani model has
a great advantage in terms of expression power, though it involves some complex
computation. The standard additive model (SAM) fuzzy systems [11] can be built
with P-DEVS models based on the approach proposed in [6]. The main advantage
of the SAM is computational efficiency since most parameters can be precom-
puted. However, simulation modeling of Takagi–Sugeno–Kang (TSK) fuzzy
systems [12, 13] has not been addressed yet. Compared to the Mamdani model, the
TSK model can reduce the number of rules, especially for complex and high-
dimensional problems.

This paper presents an approach to build simulation models for TSK fuzzy
systems based on P-DEVS. A P-DEVS model of a TSK fuzzy system is a coupled
model consisting of three types of sub-models: an input membership function
model, rule model, and defuzzification model. Since the models are all pure
simulation models involving only addition and multiplication, they could be
executed even on embedded platforms. Consequently, their continuity can be
maintained. Compared to the existing approaches for the modeling of fuzzy
systems, the proposed approach can model a TSK fuzzy system with a smaller
number of sub-models.

2 Background

In this section, we briefly describe the backgrounds of TSK fuzzy systems and P-
DEVS.

2.1 TSK Fuzzy Systems

In general, a rule in a TSK model has the following form:

IF x1 is Ai1 and x2 is Ai2 and; . . .; and xk is Aik

THEN y ¼ ai0 þ ai1 � x1 þ � � � þ aik � xk

78 H. Y. Lee et al.



where x1, x2,…, xk are input parameters, Ai1, Ai2,…, Aik are the membership
functions of ith rule, ai0, ai1,…, aik are real-valued parameters, and y is the output
parameter. The total output, y, of the model is given by Eq. (1), where ai is the
matching degree of the i-th rule.

y ¼
P j

i¼1 aiðai0 þ ai1x1 þ � � � þ aikxkÞ
P j

i¼1 ai

ð1Þ

The great advantage of the TSK model is its representative power. Moreover,
due to the explicit functional representation form, it is convenient to identify its
parameters using learning algorithms [14].

2.2 Parallel DEVS

The basic formalism of a P-DEVS model is:

M ¼ X; Y; S; dext; dint; dcon; k; tah i;

where

X is the set of input events,
Y is the set of output events,
S is the set of sequential states,
dext: Q 9 Xb ? S is the external transition function,

where Q = {(s, e) | s [ S, 0 \ e \ ta (s)}, e is the elapsed time since the last
state transition, and Xb is a set of bags over the elements in X,

dint: S ? S is the internal transition function,
dcon: Q 9 Xb ? S is the confluent transition function, subject to dcon (s, [) = dint (s),
k: S ? Yb is the output function,
ta is the time advanced function.

3 P-DEVS Modeling of TSK Fuzzy Systems

In the proposed approach, a TSK fuzzy system containing i input membership
functions and j rules, with k inputs and a single output is represented as a P-DEVS
coupled model with k input ports and a single output port. The coupled model
contains i ? j ? 1 P-DEVS atomic models: i input membership function models
(IMs), j rule models (RMs) and a single defuzzification model (DM). Figure 1
shows the P-DEVS model of a fuzzy system containing four input membership
functions and four rules with two inputs and a single output (i.e., i = 4, j = 4,
k = 2).

Simulation Modeling of TSK Fuzzy Systems 79



3.1 Input Membership Function Models (IMs)

Each input membership function of the fuzzy system is represented as an IM
M that is defined as:

M ¼ XM; YM ; S; dext; dint; dcon; k; tah i;

where

InPorts = {‘‘In’’}, XIn = <,
OutPorts = {‘‘Out’’}, YOut = [0, 1],
XM = {(p, v) | p [ InPorts, v [ Xp},
YM = {(p, v) | p [ OutPorts, v [ Yp},
S = {‘‘passive’’, ‘‘active’’} 9 <,
dext (‘‘passive’’, d, e, (‘‘In’’, x)) = (‘‘active’’, l (x)),
dint (‘‘active’’, d) = (‘‘passive’’, d),
dcon (s, ta (s), x) = dext (dint (s), 0, x)
k (‘‘active’’, d) = (‘‘Out’’, d),
ta phase; dð Þ ¼ 0 if phase ¼ ‘‘active’’;

1 otherwise:

Every IM produces a matching degree of the corresponding membership
function for each input value. It initially starts with its state = (‘‘passive’’, d),
where d is an arbitrary real value. When the IM for an input membership function
I receives a real value x as an input, it transitions its state to (‘‘active’’, lI (x)).
Immediately, the IM generates lI (x) as its output and transitions to the passive
state.

Fig. 1 A model structure for a TSK fuzzy system

80 H. Y. Lee et al.



Once an IM for a membership function type has been implemented, it can be
easily reused just by setting the parameters of the membership functions in the
same type. Even if any IM for a certain type does not exist, it can be implemented
just by redefining dext of the existing one. IMs are independent from fuzzy
inference models; TSK, SAM, and Mamdani use the same IMs in the approach.

3.2 Rule Models (RMs)

Each if-then rule of the fuzzy system corresponds to an RM. An RM is defined as:

M ¼ XM ; YMS; dext; dint; dcon; k; tah i;

where

InPorts = {‘‘In1’’,…, ‘‘Ink’’, ‘‘Ind’’}, XIn1 = _ = XInk = XInd = <,
OutPorts = {‘‘Out’’}, YOut = <2,
XM = {(p, v) | p [ InPorts, v [ Xp},
YM = {(p, v) | p [ OutPorts, v [ Yp},
S = {‘‘passive’’, ‘‘active’’} 9 <k+3,
dext (‘‘passive’’, a0,…, ak, b, c, e, ((‘‘In1’’, x1),…, (‘‘Ink’’, xk), (‘‘Ind’’, d1),…,

(‘‘Ind’’, dk))
= (‘‘active’’, a0,…, ak, a0 ? _ ? ak�xk, min (d1,…, dk))

or
= (‘‘active’’, a0,…, ak, a0 ? _ ? ak�xk, d1 9 _ 9 dk),
dint (‘‘active’’, a0,…, ak, b, c) = (‘‘passive’’, a0,…, ak, b, c),
dcon (s, ta (s), x) = dext (dint (s), 0, x)
k (‘‘active’’, a0,…, ak, b, c) = (‘‘Out’’, (b 9 c, c)),
ta phase; a0; . . .; ak; b; cð Þ ¼ 0 if phase ¼ ‘‘active ’’;

1 othewise:

Each RM produces a conclusion of the corresponding rule, based on input
values: all input values of the fuzzy system and the membership degrees from the
associated IMs. It has k input ports, ‘‘In1’’,…, ‘‘Ink’’, used to receive the k input
values, x1,…, xk, of the fuzzy system; an additional input port, ‘‘Ind’’, used for
k membership degrees, d1,…, dk, from the associated IMs; and a single output port,
‘‘Out.’’ The RM corresponding to rule R starts with the initial state = (‘‘passive’’,
a0,…, ak, b, c), where a0,…, ak are the constant values defined in the consequent
part (then-part) of R, and b and c are arbitrary real values. When the RM receives
x1,…, xk, through the ports ‘‘In1’’,…, ‘‘Ink’’, respectively, together with d1,…, dk

through the port ‘‘Ind’’, it stores b = a0 ? _ ? ak�xk and c = min (d1,…, dk) or
(d1 9 _ 9 dk). Finally, the RM outputs (b 9 c, c) via the output port and tran-
sitions to the passive state.

Simulation Modeling of TSK Fuzzy Systems 81



The RM can be reused repeatedly once it has been implemented. The reuse can
be done simply through the creation of RM instances and assigning k ? 1
parameters a0,…, ak, of each instance.

3.3 Defuzzification Model (DM)

A DM is an application-independent atomic-model that generates the outputs of a
fuzzy system. It is formally defined as:

M ¼ XM; YM ; S; dext; dint; dcon; k; tah i

where

InPorts = {‘‘In’’}, XIn = <2,
OutPorts = {‘‘Out’’}, YOut = <,
XM = {(p, v) | p [ InPorts, v [ Xp},
YM = {(p, v) | p [ OutPorts, v [ Yp},
S = {‘‘passive’’, ‘‘active’’} 9 <,
dext (phase, y, e, (b1, c1),…, (bj, cj)) = (‘‘active’’, (b1 ? _ ? bj)/

(c1 ? _ ? cj)),
dint (‘‘active’’, y) = (‘‘passive’’, y),
k (‘‘active’’, y) = (‘‘Out’’, y),
ta phase; yð Þ ¼ 0 if phase ¼ ‘‘active’’;

1 otherwise:

The DM produces a final conclusion of the fuzzy system based on the collection
of conclusions of the rules. It starts with the passive state = (‘‘passive’’, y), where
y is an arbitrary real value. When the DM receives (b1, c1),…, (bj, cj) from all
RMs, it transitions its state to (‘‘active’’, (b1 ? _ ? bj)/(c1 ? _ ? cj)). Then,
the DM outputs y and transitions its state back to the passive state.

Since any implementation of the DM is application-independent, it is reused
for every TSK fuzzy system. Also, it is identical to the DM of SAM described
in [6].

3.4 Models Couplings

The coupled model has i input ports and a single output port. Each of the input
ports is connected with the associated input ports (e.g., input port ‘‘In1’’ for input
x1, ‘‘In2’’ for x2,…) of all RMs. The port is also coupled with the input ports of the
associated IMs. Consider the following fuzzy if-then rules of a TSK fuzzy system
that receives quantity x1 and softness x2:

82 H. Y. Lee et al.



Rule 2 : IF x1 is Large and x2 is Soft

THEN y ¼ 1þ 2 � x1 þ 2 � x2

Rule 3 : IF x1 is Small and x2 is Hard

THEN y ¼ 1þ x1 þ 2 � x2

In the above example, the port that receives x1 (quantity value) would be
connected with the input ports of IMSmall and IMLarge. Note that each IM has a
single input port ‘‘In’’. The output port ‘‘Out’’ of each IM is coupled with input
port ‘‘Ind’’ of each associated RMs. In the example, ‘‘Out’’ of IMSmall would be
connected with ‘‘Ind’’ of RM3, which have a linguistic variable ‘Small’ in the if-
part. The output port of every RM is coupled with the input port of the DM. And
the output port of the DM is connected with that of the coupled model.

3.5 Overhead Analysis

Table 1 shows an overhead analysis for the approach and the three existing
approaches [6–8]. Each fuzzy system consists of i input membership functions,
j rules, and l output membership functions, with k inputs and a single output. In the
approach, a coupled model for a fuzzy system contains i ? j ? 1 atomic models,
while a higher number of sub-models is required to build a coupled model for a
fuzzy system in other approaches. The complex couplings among the sub-models
in the approach make the communications overhead increase. However, the
overhead of the approach is still smaller than that of [7]. Moreover, TSK can
describe a highly nonlinear system using a small number of rules [14]. That is, j of
TSK could be much smaller than that of SAM or Mamdani. While Mamdani fuzzy
systems are widely used, they usually involve complex operations, such as the
clipping and merging of membership functions and finding their centroids. Such

Table 1 Overhead in four modeling approaches

Complexity TSK (proposed) SAM [6] Mamdani [7] Mamdani [8]

Sub-models i ? j ? 1 i ? j ? l ? 1 j 9 k ?

2j ? 2
i ? j ? l ? 2

Communications i ? 2j 9 k ?

j ? 1
i ? j 9 k ?

j ? k
? 1

2j 9 k ?

2j ? 2
i ? j 9 k ?

j ? l ? 2

Inference Multiplication
? addition

Multiplication Finding a minimum
? clipping of or scaling a MF

Combining Addition Merging MFs
Defuzzification Multiplication Finding the mean of the maximum or

the centroid of an area

Simulation Modeling of TSK Fuzzy Systems 83



complex operations might be too heavy on resource-constrained systems. Similar
to [6], the approach can model TSK fuzzy systems, which involve only primitive
operations. Thus, the approach will be suitable for the M&S-based engineering of
embedded software systems.

4 Implementation Status

The P-DEVS models for TSK systems described in Sect. 3 were implemented in
C++ for our simulation environment, the DEVS object C++ (DOC) environment.
The IM for the triangular membership function type was implemented as an
IMTraingle class. The RM and DM were implemented as TSKRM and SAMDM
classes, respectively. As shown in Fig. 2, these classes inherit the atomic class of
DOC class, which corresponds to the basic model of P-DEVS. The essential
member functions of atomic are ext_tn_fn (the implementation of dext), int_tn_fn
(dint), and output (k). By overriding these functions, the behavior of a subclass is
defined. The FuzzyMessage class is used for internal communications between the
atomic models of fuzzy systems. In order to facilitate the modeling process,
we have also developed a prototype of a visual modeling tool. The simulation
modeling of fuzzy systems can be done with ease using the tool. However, they

atomic

# sigma : timetype
# phase : phasetype

+ ext_tn_fn (e : timetype, x : message *) 
+  int_tn_fn ()
+ output () : message *

IMTriangle

# m_dA, m_dB, n_dC : double
# m_dMembershipDegree : double

# GetMembershipDegree

SAMDM

# m_dDefuzzifiedValue : double

TSKRM

# m_iK : int
# m_pConstants : double *
# m_dFirstValue : double
# m_dSecondValue : double

# SetConstants (dA0 : double, …)

TSKFuzzyController

+ Initialize ()

1..*

1..*

1

FuzzyMessage

# m_dFirstValue : double
# m_dSecondValue : double

+ GetFirstValue () : double
+ GetSecondValue () : double

digraph

- Coupling : coup_rel

+ Add_Coupling (c1 : model *,
p1 : port, c2 : model, p2 : port)

Fig. 2 Simplified UML diagrams of TSK simulation models

84 H. Y. Lee et al.



can also be manually constructed without the use of the tool, thanks to the hier-
archical and modular model-composition provided by the P-DEVS environments.

5 Conclusions and Future Work

In this paper, we presented an approach for representing P-DEVS models of TSK
fuzzy systems without the use of any external components. Exclusion of external
components from simulation models would improve the continuity of the models
so that the user can efficiently manage software complexity and maintain con-
sistency throughout the design phase. A P-DEVS model of a fuzzy system is
comprised of easy-to-reuse atomic models: IMs, RMs, and a DM. Since each
atomic model involves primitive operations, such as addition or multiplication, the
model works on target platforms and can be smoothly transformed into other forms
of models or languages. A coupled model for a TSK fuzzy system requires a
smaller number of sub-models, compared to that of a Mamdani or SAM fuzzy
system. Thus, it will be more compatible with embedded platforms. We have
implemented P-DEVS models on DOC, for fuzzy systems including TSK, SAM,
and Mamdani. To facilitate the modeling of fuzzy systems, a GUI-based modeling
tool prototype was developed. We will implement the models for other DEVS
environments, such as eCD++ [2].

References

1. Hu X (2004) A simulation-based software development methodology for distributed real-
time systems. Doctoral dissertation, The University of Arizona

2. Moallemi M, Gutierrez-Alcaraz JM, Wainer G (2008) ECD++ A DEVS based real-time
simulator for embedded systems. In: Proceedings of the spring simulation multiconference,
article no. 12

3. Park J, Yoo J (2010) Hardware-aware rate monotonic scheduling algorithm for embedded
multimedia systems. ETRI J 32:657–664

4. Garcia AM, Baumgartner B, Schreiber U, Krane M, Knoll A, Bauernschmitt R (2009)
Automedic: fuzzy control development platform for a mobile heart-lung machine. IFMBE
Proc 25:685–688

5. Muruganandam M, Madheswaran M (2009) Modeling and simulation of modified fuzzy logic
controller for various types of DC motor drives. In: Proceedings of international conference
on control, automation, communication and energy conservation, pp 1–6

6. Lee HY, Park SM, Cho TH (2010) Simulation modeling of SAM fuzzy logic controllers.
IEICE Trans Inf Syst E93-D:1984–1986

7. Jamshidi M, Sheikh-Bahaei S, Kitzinger J, Sridhar P, Beatty S, Xia S, Wang Y, Song T, Dole
U, Lie J (2003) V-LAB–A distributed intelligent discrete-event environment for autonomous
agents simulation. Intell Autom Soft Comput 9:181–214

8. Lee HY, Kim HJ (2009) Reducing the complexity of DEVS-based mamdani models for
enhancing privacy. Proceedings of international symposium on advanced intelligent systems,
pp 281–283

Simulation Modeling of TSK Fuzzy Systems 85



9. Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant.
IEEE Proc 121:1585–1588

10. Zeigler BP, Kim TG, Praehofer H (2000) Theory of modeling and simulation, 2nd edn.
Academic Press, New York

11. Kosko B (1997) Fuzzy engineering. Prentice Hall, Upper Saddle River
12. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling

and control. IEEE Trans Syst Man Cybern 15:116–132
13. Sugeno M, Kang KT (1988) Structure identification of fuzzy model. Fuzzy Sets Syst 28:

15–33
14. Yen J, Langari R (1999) Fuzzy logic: intelligence control and information. Prentice Hall,

Englewood Cliffs

86 H. Y. Lee et al.


	8 Simulation Modeling of TSK Fuzzy Systems for Model Continuity
	Abstract
	1…Introduction
	2…Background
	2.1 TSK Fuzzy Systems
	2.2 Parallel DEVS

	3…P-DEVS Modeling of TSK Fuzzy Systems
	3.1 Input Membership Function Models (IMs)
	3.2 Rule Models (RMs)
	3.3 Defuzzification Model (DM)
	3.4 Models Couplings
	3.5 Overhead Analysis

	4…Implementation Status
	5…Conclusions and Future Work
	References


