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A firm concept of time is essential for establishing causality in a clinical

setting. Review of critical incidents and generation of study hypotheses require

a robust understanding of the sequence of events but conducting such

work can be problematic when timestamps are recorded by independent

and unsynchronized clocks. Most clinical models implicitly assume that

timestamps have been measured accurately and precisely, but this custom will

need to be re-evaluated if our algorithms and models are to make meaningful

use of higher frequency physiological data sources. In this narrative review we

explore factors that can result in timestamps being erroneously recorded in a

clinical setting, with particular focus on systems thatmay be present in a critical

care unit. We discuss how clocks, medical devices, data storage systems,

algorithmic e�ects, human factors, and other external systems may a�ect the

accuracy and precision of recorded timestamps. The concept of temporal

uncertainty is introduced, and a holistic approach to timing accuracy, precision,

and uncertainty is proposed. This quantitative approach to modeling temporal

uncertainty provides a basis to achieve enhanced model generalizability and

improved analytical outcomes.
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“A man with a watch knows what time it is. A man with two

watches is never sure.” – Segal’s Law

1. Introduction

Time is an essential concept in both clinical research and

the practice of medicine in general (1–6). This is especially

true in areas of practice such as critical care where large

amounts of data are being collected, and where accurate

and consistently recorded times are essential for the creation

of a defensible medical record (7–9). A clear sense of the

temporal relationship between an exposure or treatment and

the subsequent patient condition is the means by which

clinicians generate differential diagnoses and determine the

efficacy of treatments (10–13). The significance of time in

medical decision-making is underscored by the field’s reliance

on time series data as a means of determining patient

trajectories in longitudinal monitoring (14), for example

while following the progression of septic shock (15) or

monitoring glucose levels in diabetic patients (16). Recent

research focusing on clinical time series data has also

demonstrated that actionable information may be embodied

in the timestamps alone. i.e., the sequence and timing of the

data collection process contains information above and beyond

the physiological values that are being measured and recorded

(17, 18).

Although identification of causal relationships, review of

critical incidents, and generation of study hypotheses all

require a robust understanding of the sequence of events

(19), conducting such work in a clinical setting can be

problematic when timestamps are recorded by independent

and unsynchronized clocks (20–23). Additionally, the process

of transferring timestamps into clinical and research databases

may be adversely impacted by a multitude of random errors

(24). These errors affect the measurement of time, thereby

creating a situation where the timestamps stored in clinical

databases may not necessarily represent the true time that an

event occurred.

Measurement errors in general will typically occur early

in the modeling process. These errors introduce bias and

uncertainty that will propagate through downstream analysis

(25–27), confounding the process of research and discovery of

new phenomena (28–31). While quantification of uncertainty

and analysis of measurement errors are ubiquitous concepts in

fields such as physics and engineering (32–35) such techniques

remain relatively uncommon in the medical literature (36)

making it difficult for readers to judge the robustness of clinical

research (37–39).

The temporal component of physiological measurements

is important, and therefore should also be considered when

assessing the impact of measurement errors (40), yet this process

has been constrained by the fact thatmedicine has been relatively

slow to embrace a robust approach to the measurement of time

(41–43). To address this problem, we need to establish a formal

and principled discipline around identification of timing errors

and quantification of temporal uncertainty (44–46).

1.1. Motivation and overview

Our research group is embedded in critical care, a dynamic

environment in which the patient condition can change

rapidly, and where such changes are associated with significant

modification of risk. Since 2016 we have been continuously

recording high frequency physiological data streams in the

critical care unit at The Hospital for Sick Children in Toronto,

Ontario and have amassed a database of over one million

patient-hours of data, comprising more than four trillion unique

physiological measurements (47). Each observation in this

database has been assigned a millisecond precision timestamp

by at least two separate clocks, providing an ideal substrate for

exploring the behavior of timekeeping systems in the critical

care environment (48). As part of our efforts to develop robust

physiological models and clinical decision support systems we

have concluded it was prudent to explore potential biases and

uncertainties around all sources of information used in these

models, with an initial focus on the measurement of time

(49, 50).

In order to achieve this goal, we began by identifying all

timekeeping devices and by noting potential sources of timing

error in an attempt to establish a preliminary understanding of

their individual and collective impact (51). During this process

we considered erroneous timepieces (Section 2), delays due

to algorithmic effects (Section 3), human factors (Section 4),

and random errors introduced by software and other systems

(Section 5).

Building on this foundation we adopted a holistic approach

to the measurement of accuracy, precision and uncertainty that

could be consistently applied across a wide range of timepieces,

data sources, and time scales. We then explored mechanisms by

which the accuracy and precision of timestamps in our databases

could be improved, either through retrospective correction

of systematic errors, or prospectively via modification of our

data collection procedures and systems (Section 6). Finally,

after identifying and correcting systematic timing errors, we

quantified any residual temporal uncertainty and incorporated

this information as a core component of our physiological

modeling and machine learning projects (Section 7).

This narrative review provides a broad overview of the

issues we considered during this process, bringing together

concepts from metrology, statistics, biomedical engineering,

and numerical analysis to introduce the concept of temporal

uncertainty in a clinical setting.
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1.2. Temporal resolution, accuracy, and
precision

All measurements are subject to errors (35), including

measurements of time (40, 52). We consider the true time

and our erroneous measurement of time to be two different

variables (53), and we define accuracy to be the difference

between these two values (see Figure 1). For our purposes we

adopted Coordinated Universal Time (UTC) as the underlying,

yet unobserved, source of truth (54–56). Where possible we

used a relatively accurate and precise master clock as a close

approximation of UTC as described in Section 6.1.

We define the resolution of a timepiece as its ability to

display or discern a precise moment, with lower resolution

timepieces being less capable of describing the exact time an

event occurred (57). Precision is related to resolution but is

usually used to describe uncertainty that results from a random

process. Modeling uncertainty due to precision and resolution

is discussed in detail in Section 7.1. The terms precision and

resolution will be used interchangeably throughout this review.

It is important to note that timing errors and uncertainties

not only relate to the accuracy and precision of discrete times,

but also to the accuracy and precision of the rate at which

measured times drift away from true time, i.e., we also need to

measure the quality of our timestamps as a function of time (see

Section 2.2).

1.3. Temporal uncertainty

As an illustration of the utility of temporal uncertainty,

consider as an example the situation where someone says “I’ll

meet you at the store in twenty minutes” and how that statement

feels different from someone saying “I’ll meet you at the store

in nineteen minutes”. The presence of a rounded number in the

former statement conveys a sense of indeterminacy about the

time period, whereas “nineteen minutes” may be understood by

a human listener as being somewhat more precise. Computer

algorithms however are unable to understand this kind of

implied precision and will assume that all recorded times are

equally precise unless more information is explicitly provided.

Our goal with this work is to quantify the uncertainty associated

with measurements of time, and to make this information

explicitly available to our models as an additional property of

each temporal measurement.

Uncertainties in general may be classified as either epistemic

or aleatoric, where epistemic uncertainties may be modeled and

reduced, and aleatoric uncertainties may be characterized but

not reduced (58, 59). It is useful to keep these distinctions

in mind since our goal in this work is to identify, model,

and correct epistemic temporal uncertainties, and to represent

any remaining aleatoric temporal uncertainty as a probability

density function. Techniques that can be used tomodel temporal

uncertainty are discussed in Section 7.

Aleatoric uncertainties may be further categorized into

homoscedastic uncertainty, where the variance of the errors

remains constant for all recorded times, and heteroscedastic

uncertainty, where some measurements of time in the same

dataset are noisier than others (60). Situations that result in

heteroscedastic temporal uncertainties are discussed in Section

7.2.

2. Erroneous timepieces in a clinical
environment

Complex clinical environments may contain multiple

devices that are all capable of recording timestamped data. If

these devices are not synchronized it can be difficult to know

which clock (if any) was the source of truth when retrospectively

analyzing data. In this section we summarize the work of

other groups who have observed inaccurate clocks in a clinical

setting, and we describe the mechanisms that result in erroneous

measurement of time.

2.1. Inaccurate clocks

Medical devices such as ventilators, cardiac monitors,

regional saturation monitors, and renal replacement therapy

devices may all individually use different approaches to how

they manage and report time (61). Some devices may use a

proprietary time synchronization system, while others may keep

time independently, requiring manual programming to ensure

that the displayed time is accurate (22, 62, 63). As a result of

this variability, a single event observed by different medical

devices may be recorded with different timestamps. Similarly,

the elapsed time between two related events may be erroneously

measured if different devices are used to record each event.

The accuracy of clocks in clinical settings has been

documented by many researchers, including one study by

Goldmanwho examined over 1700 clocks and over 1300medical

devices at four different hospitals (64). This investigation found

that inaccurate timekeeping was pervasive and concluded that

significant cost savings and improvements to patient safety could

be gained if more rigorous approaches to timekeeping were

adopted. Other groups have also published evidence of clinical

timekeeping issues (4, 62, 65–76), and the potential hazards

associated with unsynchronized clocks in medical devices was

considered to be so serious by the Pennsylvania Patient Safety

Authority that they issued an advisory warning about the

problem in 2012 (77).

Figure 2 gives a schematic overview of the accuracy and

resolution of various sources of time that may be found in

a typical intensive care environment. The data shown in this

Frontiers inDigital Health 03 frontiersin.org

https://doi.org/10.3389/fdgth.2022.932599
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org


Goodwin et al. 10.3389/fdgth.2022.932599

FIGURE 1

Times recorded in clinical databases may not represent the true time the event occurred. The precision and accuracy of a recorded time may be

a�ected by several di�erent factors.

figure are conceptual estimates only and have been generated

by collating information from the research cited in Sections 2–

5. Note that each axis has a logarithmic scale that spans eight

orders of magnitude. Elongated ellipses are used to indicate

that the precision or accuracy of a particular timepiece may be

more variable along one of the axes. The position of a device

shown in this figure indicates its approximate precision and

accuracy before any of the timekeeping improvements described

in Section 6 have been implemented.

2.2. Clock drift

Drift is defined as the gradual change in themagnitude of the

measurement error over time (78). In the case of timing errors,

drift results from a situation where a timepiece does not run at

exactly the same rate as an accurate reference clock. The units of

clock drift are seconds (of error) per second which is often stated

as parts per million (ppm).

The drift rate of clocks and other timekeeping systems can

be experimentally measured and systematically corrected. For

example, Singh et al. measured the drift rate between clocks

in a video camera and in the server housing the Electronic

Medical Record (EMR) as part of a study examining the

physical manipulation of neonates (79). In this situation, the

two timepieces were found to have a relative drift rate of around

140ppm (around 0.5 s per hour).

Even within a seemingly homogeneous system, crystal

oscillators and microelectromechanical oscillators may exhibit

some variance in frequency (80, 81). The oscillation frequencies

of these components may be affected by environmental factors

such as variations in temperature or the flexible power

management provided by modern microprocessors (82). Vilhar

andDepolli encountered this phenomenonwhen they attempted

to synthesize a 12-lead electrocardiogram (ECG) using multiple

identical wireless sensors, each of which were observed to

have a slightly different sample rate (83). Minor variations

in the ECG sample rates of each sensor made it difficult to

precisely synchronize the data streams during later analysis (84).

Uncertain and variable delays over the wireless network also

confounded the problem in this case.

2.3. Inaccurate and imprecise sample
rates

Precise timing and synchronization of signals requires

that the sample rates of sensors are precisely specified, yet

medical device manufacturers’ advertised sample rates may

be inaccurate and should not be relied upon (85–87). These

devices typically contain a crystal or microelectromechanical

oscillator that generates a very stable resonance frequency

which can be used to measure the passage of time. Although

the sample rates of these components are often known

by the manufacturer to five or more significant figures

(80) they may be colloquially reported in documentation

and marketing material using more rounded values

(88).

For example, Jarchi and Casson found that PPG and motion

data recorded using a Shimmer 3 GSR+ unit (Shimmer Sensing,

Dublin, Ireland) (89) had a true sample rate of 255.69 Hz

despite being marketed as having a sample rate of 256 Hz (90).

Similarly, Vollmer et al. measured the true sample frequency of

five different wearable biomedical sensors and found that their

sample rates differed from the manufacturers stated sample rate

by up to 290ppm (87).

Signals with imprecisely defined sample frequencies

can become problematic if they are subsequently used for
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FIGURE 2

Approximate accuracy and resolution of di�erent time sources in the ICU. Positions of the ellipses are determined by the summation of factors

discussed in the literature cited in Sections 1–4. The position of a device shown in this figure indicates its approximate precision and accuracy

before any of the timekeeping improvements described in Section 6 have been implemented.

timekeeping purposes (84, 91). This kind of error is especially

impactful in digital storage systems that use inferred time (see

Section 2.4).

2.4. Inferred time

Physiological waveforms and other high frequency signals

are often stored in a format that does not explicitly define

the time for each individual sample, but instead relies on the

sample rate to infer time. For example, the Waveform Database

(WFDB) file format used by Physionet (92) calculates the time as

a function of the sample frequency and the number of samples

that have elapsed since the start of the file (93). Similarly, the

Critical Care Data Exchange Format (94) supports inferred

time for the storage of waveform data among several other

options (95). Time series data that relies on inferred timestamps

may be susceptible to drift as a result of imprecisely defined

sample rates, and uncertainty associated with this imprecision

will be cumulative. This concept is discussed in more detail in

Section 7.1.

3. Algorithmic e�ects

A typical pre-processing pipeline for time series data may

involve multiple computational steps (96, 97), each of which

has the potential to impact timestamps in some way. These

algorithms may either be applied to the data within a medical

device, or may be the result of external data processing, or

both (98). In this section, we discuss various algorithms that

may be applied to physiological time series data and how these

algorithms can introduce delays into the timestamps.
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3.1. Moving averages and temporal
abstraction

Multimodal medical time series will often comprise one or

more irregularly sampled data streams (99–101). These datamay

be subsequently altered by parameterization or regularization

of time, generating a periodic sequence that is smoother, more

continuous, and therefore more amenable to analysis (102–104).

Care must be taken however when calculating a moving average

as several methods are available, each of which may affect the

timing of the resultant data in different ways (105).

The Philips X2 multi-module, for instance, calculates the

heart rate during normal rhythm by taking the average from

the last twelve R-R intervals (106). Similarly, pulse oximetry is

typically calculated as a moving average, introducing a delay

with a magnitude related to the size of the averaging window

(107–109).

3.2. Pre-processing of physiological
waveforms

High-frequency physiological waveforms may be subject to

a wide variety of smoothing, filtering, and buffering processes,

each of which can introduce delays of different magnitudes.

When two signals experience a different delay before being

timestamped then they may appear to be out of phase when

subsequently analyzed. Offsets of this kind are mentioned in

the documentation for the MIMIC-II database, which informs

users that the signals are not suitable for inter-waveform analysis

(110). Sukiennik et al. overcame this problem by quantifying and

correcting the delay between ECG and Arterial Blood Pressure

(ABP) waveforms before calculating a cross correlation of the

two signals (111). Variable delays were also documented in a

different context by Bracco and Backman who observed that the

display of the ABP waveform on a patient monitor was delayed

by 900 ms, whereas the display of the photoplethysmography

(PPG) waveform on the same monitor was delayed by 1,400 ms

(112).

Adding complexity to this issue is the fact that themagnitude

of the delay on an individual signal may not be constant with

respect to time (113). Several groups have recently explored this

phenomenon in PPG waveforms where the delay was observed

to follow a characteristic saw-tooth pattern over time (114, 115).

3.3. Variables derived from physiological
waveforms

Although physiological waveforms are potentially a rich

source of insight into patient condition, they are cumbersome

and typically not stored permanently in the EMR (11, 47).

Instead, lower frequency derivative values are generated that

describe the trend in behavior of the underlying signal (116).

Classic examples of this include the calculation of Heart Rate

(HR) from R-peaks in a patient’s ECG (117) and derivation of

diastolic and systolic blood pressures from the peaks and troughs

of the ABPwaveform (118). Algorithms that derive such features

from physiological waveforms often introduce a delay in the

availability of the derivative value, and the magnitude of the

delays between derived variables may differ (119–121).

4. Human factors

Clinical time series data can incorporate events that were

not automatically recorded by clinical monitors (122, 123). This

aspect of the data collection process may be impacted by the

biases, fallibility, and unpredictability of the person recording

the data. Examples of such information include the timing and

dosage of therapeutic drugs, times of blood sample extraction,

or any other form of data relying on handwritten notes. This

section describes how these human factors can introduce errors

into the measurement of time.

4.1. Access to multiple sources of time

Multiple timepieces may be within view at any given

moment, each of which may be displaying a different time (124).

Researchers or clinicians will sometimes randomly select which

of these timepieces to use when making an observation. This

effect was demonstrated by Ferguson et al. who found significant

variability in timepiece preferences among clinicians during

emergencies, with 50% of respondents relying on wall clocks,

and 46% electing to use personal timepieces (22). Observations

made using randomly selected timepieces will contain a mix

of errors stemming from the accuracy of the available clocks.

Even in a well-synchronized system the intrinsic resolution

of each available timepiece may differ, resulting in a mix of

aleatoric uncertainties of different magnitudes being associated

with the measurements. This concept is discussed in more detail

in Section 7.1 and is illustrated in Figure 3.

4.2. Human perception of elapsed time

Human perception of time is fallible (125), and accurate

recollection of elapsed time may be impacted by exposure

to stressful situations (126–130). The expectation that bedside

providers deliver both direct care and simultaneously record

the details of that care creates a need to chart interventions

retrospectively (131, 132), potentially requiring recall to

determine exactly what time they occurred (133, 134). This

problem is exacerbated by the fact that the number and

complexity of patient care related tasks increases with patient

acuity (104, 135).
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FIGURE 3

Conceptual illustration of heteroscedastic uncertainties associated with a time series of temperature measurements. This figure illustrates

concepts discussed in the literature cited in Sections 4.3, 7.1, and 7.2. Two di�erent thermometers were used to measure temperatures during a

hypothetical experiment, a mercury thermometer with a resolution of 1◦C and a digital thermometer with a resolution of 0.1◦C; times for each

temperature were recorded using two di�erent timepieces, a wall clock with a temporal resolution of 1 min and a wristwatch with temporal

resolution of 1 s. Four observations (labeled a, b, c, and d) are made using di�erent combinations of these clocks and thermometers. Panel (A)

shows a plot of the numerical values displayed on the instruments when making the observation, while Panel (B) uses shaded regions to

represent the range of possible true values that could have resulted in these values. The shape of the shaded regions in Panel (B) are determined

by the temporal and thermal resolution of the instruments used to make each individual observation. For simplicity, other sources of uncertainty

are not considered in this figure.

4.3. Rounding of times

Times may be arbitrarily or systematically rounded to a

nearby integer value during the recording or transcription

process (136). In one study, 7% of intubations after cardiac

arrest were found to have been erroneously recorded as having

occurred after 0 min had elapsed since the arrest (137). The

authors later explained that all time intervals had been rounded

down to the nearest minute, thereby reducing their duration by

up to 60 s (138).

Times may also be rounded to simplify a decision-making

process, either as part of a formal rule-based model (139),

or as a mental shortcut used to streamline the calculation of

probabilities when assessing risk (135, 140). The act of rounding

a timestamp decreases its precision, which in turn increases

its aleatoric uncertainty. Modeling uncertainty due to imposed

precision is discussed in more detail in Section 7.1.

4.4. Digit preferencing

Spoken and recorded times may be rounded to multiples

of 5, 10, 15, 30, or 60 min in a process that is often referred

to as digit preferencing (141). Rounding to larger multiples

of minutes may be done deliberately to convey an increasing

sense of imprecision to a human listener, but this connotation

is lost once the information is recorded into a database. The

prevalence of digit preferencing may increase when event times

are retrospectively estimated, or when the nominal time of an

event is recorded (142).

Locker et al. observed a wide variety of digit preference

patterns in admission and discharge times from 137 emergency

departments in England and Wales (143). Unsurprisingly the

study concluded that rounded times were more prevalent in

departments wheremanual systems of recording were used. This

phenomenon has also been explored by several other groups

in relation to emergency department admission and discharge

times (144, 145), anesthesia start and end times (146, 147), and

during the documentation of cardiac arrests (148).

Digit preferencing is similar to rounding in the sense

that quantization of the minute component of the timestamp

decreases its temporal resolution. When manually rounding to

the nearest 5 min then, at least conceptually, the effect is the

same as if the time had been accurately read from a clock

that has a resolution of 5 min. In cases involving a mixture of

different rounding options (i.e., a combination of rounding to

the nearest 5, 10, 15, 30 min etc.) the resulting mix of resolutions

is effectively dependent on a series of random decisions made
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during the data collection process (149). Datasets that contain a

mixture of different temporal resolutions are discussed in more

detail in Section 7.2.

4.5. Transcription errors

Timing errors can be introduced if text is misread or

mistyped while it is being transcribed from one location to

another (64, 150, 151). These errors, known as transcription

errors, are surprisingly common and can result in the

introduction of random errors or corruption of timestamps

(152). Transcription errors may occur more frequently during

periods when large numbers of events are recorded over a short

period of time, or when observations are made in the heat of the

moment (153, 154).

5. Impact of software, networks, and
systems

A complex clinical environment, such as an intensive care

unit, can contain a myriad of different devices and systems

(155). These systems may function in a way that delays, shifts, or

otherwise alters the timestamps associated with the data. In this

section, we describe how the operation (and inter-operation) of

these systems can impact the accuracy and precision of temporal

measurements. Note that these kinds of errors can be difficult to

model as they are often the result of random processes.

5.1. Device integration systems and
streaming data

Medical devices and other clinical systems will often re-

sample or buffer digital signals before releasing them to

downstream devices (156, 157). For example, Burmeister et al.

measured a buffer-related delay of 30 ms between capture

of video and subsequent timestamping inside a video camera

system while attempting to synchronize biosignals in their

experimental setup (158). Delays of up to 5 s in ECG and 8

s in PPG waveforms were reported by Potera, who also noted

that the magnitude of the delay varied with the amount of

wireless interference, network load, and server processing time

(159, 160).

Medical devices and data integration middleware may

also introduce undisclosed latencies (161) or frequent minor

adjustments of timestamps to reconcile the differences between

the sensor’s nominal and true sample rate (90). For example,

Charlton found that physiological waveform data acquired using

BedMaster software (Excel Medical Electronics, Jupiter, Florida)

was sometimes incorrectly timestamped, and suggested some

post processing techniques that might be applied to correct the

problem (162).

5.2. Time shifting and data anonymization

Clinical data will often need to be anonymized before they

can be used for research purposes (163). A common method of

anonymization involves introduction of random temporal shifts

on a per patient basis (164, 165). This technique has been applied

to timestamps in the MIMIC-III database for example, where

dates have been shifted into the future by a random offset for

each individual patient. Although the magnitude of the time

shifts applied to the MIMIC database were random, they were

performed in a manner that preserved the time of day, day of

the week, and approximate seasonality of the original data (166).

Despite the common use of such anonymization approaches,

a tension exists between maintaining temporal consistency and

preserving privacy (167, 168) as time shifting may remove

temporal relationships between signals or disconnect the data

from important contextual information (18, 168, 169). Shifting

each patient’s data by a different random amount may also

hinder the ability to perform some kinds of analysis, such as

examining the impact of bottlenecks of patients waiting for care

on a busy day (170).

5.3. Time zones and daylight saving

Time zone settings must be correctly configured in databases

to ensure that numerical timestamps are correctly converted into

human readable dates and times (171). Incorrectly configured

time zone information may also affect the functionality of some

clinical algorithms. For example, basal and bolus dosing on

insulin pumps have been shown to be impacted by issues relating

to daylight saving (172) and when these devices are carried

across time zones (173).

Clocks may need to be manually changed at daylight saving

changeovers, a process that can take some time to execute (64).

The exact time that each clock was changed may be unknown,

leading to uncertainty around times recorded during the hours

that follow the start or end of daylight saving. Additionally,

the schedule of daylight saving transitions may be altered, with

changes announced too late to allow software updates to be

developed and deployed (174–176).

5.4. Lack of standardized definitions

Variability in standards and definitions can lead to

inconsistencies in the documentation of clinical events. For

example, the definitions of patient length of stay (177, 178),

ventilator free days (179, 180) or time of onset of sepsis (181)
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may vary between different hospitals and jurisdictions. This

variability can lead to later confusion about which definition was

used for a particular event, making it difficult to compare results

across different studies (182).

5.5. Software bugs

A wide variety of bugs and formatting issues can arise in

relation to management of time in digital systems. For instance,

missing timesmay be represented with a zero, whichmay in turn

be interpreted as midnight by some algorithms (183). Software

bugs may introduce random errors that may be detected using

temporal conformance checks as discussed in Section 6.5.

6. Improving timing accuracy and
precision

In this section, we discuss some of the approaches that

can be used to reduce timing errors and minimize temporal

uncertainties in a clinical environment. A summary of the

solutions discussed in this review is presented in Table 1.

6.1. Choosing a common source of truth
for time

Ideally all clinical systems should refer to a master clock

as a common source of time (184). This master clock

should be both accurate and precise, and should also have

the ability to provide timestamps programmatically to other

systems on a network. If such a time source is unavailable

or impractical to use, such as while taking handwritten notes

during a resuscitation for example, then a single source of

time should be selected and agreed upon by all participants

(153).

All other clocks will need to be regularly synchronized

with the master clock, either manually or via automated

synchronization using the Network Time Protocol (NTP) (185–

187). NTP can, in principle, be used to synchronize clocks and

other medical devices on a network with microsecond precision

(188, 189). In practice however, many medical devices lack this

capability (62).

Computer clocks are generally well-synchronized and have

relatively low drift rates, rendering them suitable as a source

of truth in many situations (190, 191). However, care must be

taken when using clocks on virtual servers since their drift rates

may be higher than hardware based clocks (192–194). While

smartphones and wristwatches are ubiquitous and relatively

accurate sources of time (195) they can also act as a source of

infection, so their use for timing purposes may be discouraged

in some clinical situations (196–198).

The process of synchronization may cause a clock to “jump”

forward or backward in time, creating the appearance of

discontinuity in any signal that uses timestamps assigned by that

clock (199). Across such a jump a signal will be continuously

sampled, but when plotted against the time supplied by the

sensor it will appear to have a discontinuity (200). A conceptual

example of this phenomenon is illustrated in Figure 4, which

shows the reference time of a signal jumping by around 900 µs

each time the clock resynchronizes.

6.2. Signal synchronization

Precise signal synchronization is required when generating

high-fidelity inter-signal correlations (187, 201, 202). Although

this capability has been commonplace in other industries for

decades (86, 203), bespoke solutions may be required in a

clinical environment due to the presence of independent and

proprietary timekeeping systems (199).

Physiological signals from different devices may be

synchronized via simultaneous assignment of timestamps

using a highly accurate and independent clock, however this

multiplexing approach requires that both signals are routed

through a third-party system, a process which may be affected

by network jitter and other random effects (204). These variable

network delays, and other confounding factors, can be overcome

through the use of software such as Lab Streaming Layer (LSL)

(205), OpenSynch (206), or corrected retrospectively using

algorithmic approaches such as Deep Canonical Correlation

Alignment (202). For example, LSL was used by Wang et al. to

assess the quality of timing in medical and consumer grade EEG

systems (207), and by Siddharth et al. to time align multiple

bio-signals including PPG, EEG, eye-gaze headset data, body

motion capture, and galvanic skin response (208).

Artifacts or other information common to both signals can

be identified and retrospectively aligned in situations where

system constraints preclude real-time synchronization. This

process may rely upon artifacts that are introduced into the data

streams while they are being recorded (201, 209–211), or may

utilize features such as heart beats that are naturally present

and accessible in a wide range of high frequency physiological

signals (212–216). This method of synchronization requires

artifacts or features from multiple time points throughout the

signals to ensure that clock drift is properly accounted for (85).

Another interesting approach to signal synchronization involves

simultaneous introduction of white noise to both signals while

they are being recorded (217). White noise has rich frequency

characteristics that facilitate signal alignment yet is also random

enough that it doesn’t interfere with the information content of

the signals.

Retrospective approaches that rely on common information

will only be able align two signals relative to each other, i.e.,

neither signal will necessarily be mapped to UTC time. This may
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TABLE 1 Sources of timing errors and solutions.

Error type Sections Solution Sections

Drifting clocks 2.1 Clock synchronization, modeling clock drift 6.1

Delays due to digital filters 3.2 Audit algorithmic delays 6.1

Lag of variables derived from waveforms 3.3, 3.1 Reverse engineer averaging windows 6.2

Imprecisely defined sample frequencies 2.4 Accurately measure all sample frequencies 2.3, 2.4

Lack of standard definitions 5.4 Establish standard nomenclature 5.4

Changes in data collection systems 6.3 Establish “epochs” of data uncertainty 7.2

Transcription errors 4.5 Implement temporal logic checks 6.5

Limitations of digital data types 6.6 Select appropriate temporal data types 6.6

Uncertainty due to rounding of times 4.3 Monte Carlo Analysis 7.1, 7.3

Digit Preferencing 4.4 De-convolve mixed precision datasets 7.2

Access to multiple, inaccurate sources of time 4.1 Clock synchronization, use of a “master clock” 6.1

Fallible human perception of elapsed time 4.2 Estimate extent of possible errors 4.2

Software bugs 5.5 Audit timestamps 6.5

Quantization of recorded times 7.1 Audit resolution of all recorded times 7.1

Unsynchronized signals 6.2 Real-time or retrospective synchronization 6.2

Event time not recorded N/A Algorithmically determine event time 6.4

The solutions generally aim to identify, model, and correct epistemic temporal uncertainties, and to represent any remaining aleatoric temporal uncertainty as a probability density

function.

be acceptable in situations where high resolution inter-signal

correlation is required but accuracy of the timestamps associated

with the derived features is unimportant.

6.3. Digitization of data recording
systems

Computerized systems can improve timekeeping by

eliminating some sources of error such as transcription errors

and digit preferencing (146). Deployment of a computerized

system will mark the beginning of a new epoch of reduced

temporal uncertainty, as both accuracy and precision of

recorded times may change after its introduction (218).

Examples of digital timekeeping systems that can be

deployed in a clinical setting include computerized EMRs (143,

218), tablet-based applications (219), bar-code systems (220),

Radio Frequency Identification (RFID) technology (221), and

audio recordings (222).

6.4. Algorithmic determination of event
times

In some situations, it may be possible to algorithmically

determine the times of clinically relevant events via the analysis

of high frequency physiological data streams. For example, Cao

et al. utilized a wide range of signal types to retrospectively

determine ventilation times in the MIMIC-II database (223),

and Nagaraj et al. determined the times that blood samples were

drawn from patients’ arterial lines via automated detection of

associated artifacts in the ABP waveform (224). Information

obtained in this manner can be used to augment an incomplete

dataset or to improve the temporal accuracy of manually

recorded observations.

6.5. Temporal conformance checks and
auditing

The presence of transcription errors may be revealed

via implementation of temporal conformance checks (225,

226). These checks will apply logic to search for implausible

dates and times in a database. For instance, one study in

an Australian drug and alcohol service ran checks on their

database and found that 834 out of 9,379 admissions (8.9%) had

recorded a start time that was after the end time (227). Other

examples of temporal conformance checks include ensuring that

timestamps from a particular patient encounter fall between

the admission and discharge dates (227, 228) and checking

that patient age is equal to date of admission minus the

date of birth (229). Erroneous timestamps may be flagged

and optionally removed before analysis in order to improve

the overall temporal accuracy of a dataset, and uncertainties

associated with random errors may also be estimated via audits

designed to assess the integrity of timekeeping activities (230,

231).
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FIGURE 4

Conceptual illustration of epistemic and aleatoric uncertainties resulting from clock drift. This figure illustrates concepts discussed in the

literature cited in Sections 2.2 and 7.1. A series of measurements of time are made using a hypothetical clock that is synchronized with a more

accurate timepiece once every 300 seconds. Panel (A) shows timing errors caused by a drift rate measured to one significant figure (3 ppm),

while panel (B) shows timing errors caused by a drift rate measured to two significant figures (3.2 ppm). Shaded regions in Panels (C,D) show the

accuracy and precision of temporal measurements assuming these two drift rates 50 and 170 s after synchronization (labeled t1 and t2,

respectively). Note that imprecisely specified drift rates result in aleatoric uncertainties that increase as a function of time, and that the

magnitude of the uncertainty is inversely proportional to the number of significant figures used to specify the drift rate.

6.6. Use of appropriate temporal data
types

Although it is tempting to use floating point values to

represent “continuous” time, these data types can become

problematic (91, 232, 233). Not only are such values ultimately

quantized in some way (234) but the resolution of floating point

data types is dependent on the magnitude of the value being

represented (235). Additionally, both floating point and integer

data types are unable to exactly represent some frequencies

(91, 236). These properties of floating point data types can create

problems during numerical analysis, and may result in models

that are not reproducible (237). Rounding errors associated

with floating point representations of time will accumulate,

sometimes with devastating effects (238).

An ideal digital representation of time would be time zone

agnostic, contain sufficiently fine resolution to accommodate

any analytical technique for which it may be used, and have

a range that is large enough to accommodate the timescale

being recorded or modeled (239). The smallest unit of time

that can be represented in a digital data type will determine

its temporal resolution. This smallest unit, referred to as a

chronon (240), should have a resolution that remains constant

throughout the full range of possible values. Longer intervals of

time (milliseconds, seconds, hours, etc.) can then be represented

by aggregating chronons (241).

7. Modeling temporal uncertainty

Quantification of uncertainty plays a pivotal role in the

application and optimization of machine learning techniques

(242). The reproducibility of analytical approaches can be

improved by explicitly considering sources of uncertainty in

the input data (243), and numerical methods can be applied

that provide more faithful representations of uncertainty than

those provided by classical error bounds (244). Despite the

existence of such techniques, many clinical models fail to adopt a

strict approach toward handling and propagation of uncertainty,

perhaps due to a general misconception that the use of very large

training datasets will lead to exact results (38, 245, 246).

In Sections 2–5, we described numerous mechanisms that

can lead to times being measured erroneously, yet timestamps

are typically incorporated into clinical models without any

consideration for measurement errors or temporal uncertainty.

In this section we outline some methods that can be used to

quantify temporal uncertainty, and we give a brief overview of

techniques that can be employed these results to be incorporated

into downstream analyses (247).
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7.1. Resolution of times and frequencies

The resolution of a recorded time is determined by the

timepiece used to make the observation. For example, a clock

that displays only minutes (i.e., a clock with resolution of 1

min) is unable to provide information about what second an

event occurred (248). Measurements made using such a clock

can be represented as a uniform probability density function

which spans the 60 s after the recorded minute, providing a

probabilistic representation of the fact that the displayed time

is equally likely to represent any moment during the following

60 s. This approach is illustrated in Figure 3B which shows the

uncertainties associated with measurements made using two

timepieces, each having a different native resolution.

A similar approach can be used when quantifying

uncertainty associated with the resolution of a sample

frequency. “Resolution” in this case relates to how precisely

the sample rate has been defined, i.e., how many significant

figures have been used to describe the sample frequency (40).

If a medical device manufacturer reports that a signal’s sample

frequency is 500 Hz then the associated analysis must account

for the fact that the fourth significant digit is unknown, and that

the true sample frequency could be anywhere between 499.5 Hz

and 500.5 Hz (36). This range of possible sample frequencies

(given the specified sample frequency and number of known

significant figures) can also be represented using a uniform

probability distribution.

An illustrative example of the relationship between sample

frequency resolution and its impact on uncertainty is shown

in Figure 4. Note that the aleatoric uncertainty grows with

time after the moment of synchronization, and that the range

of the uncertainty is inversely proportional to the number of

significant figures to which the sample rate is known. This

uncertainty will hinder one’s ability to model and correct any

clock drift that might occur when timestamps are inferred by

a signal’s sample rate.

7.2. Heteroscedastic temporal
uncertainty

Clinical information can be collected using a wide variety of

different systems and devices. This mix of different systems can

result in divergent representation of clinical information across

different sites (249). One hospital may use an automated system

to record admission times for example, while another may use

a paper-based system that is potentially subject to rounding

and transcription errors (143). Combining these two databases

for use in a multi-site research project would generate a single

dataset containing timestamps with amix of temporal accuracies

and precisions (i.e., the dataset would contain heteroscedastic

temporal uncertainties). Data collected from a single site

may also contain heteroscedastic temporal uncertainties, due

to a change in temporal accuracy and resolution after the

introduction of a new software system for example (167, 219,

250).

A visual representation of heteroscedastic temporal

uncertainties is illustrated in Figure 3. This figure shows a

hypothetical time series of temperature readings collected

using a variety of clocks and thermometers, each with different

temporal and thermal resolutions. Shaded regions in Panel

B represent the range of true temperatures and times that

could have resulted in the quantized information that was

recorded in the database. The shape of these shaded regions

is different for each measurement, ie, the dataset contains

heteroscedastic uncertainties. For simplicity only uncertainties

caused by instrument precision are shown in this figure. It is

important to note that while heteroscedastic uncertainty is often

modeled as being a function of the magnitude of the measurand,

this is unlikely to be the cause when considering temporal

measurements.

A dataset that has been subject to digit preferencing will

also contain timestamps with a mix of different uncertainties.

This concept was introduced in Section 4.4 where we

demonstrated that times rounded to larger values will have lower

resolution, and therefore larger aleatoric uncertainty. Although

it is impossible to retrospectively determine which individual

observations had been subject to rounding it is still possible to

draw some inferences (251). For example, if the timestamps have

potentially been rounded to a mix of 1, 5, 10, and 15 min, then

a time ending in :17 cannot have been rounded to a multiple of

5, 10, or 15. Similarly, a time ending in 5 could not have been

rounded to a multiple of 10. Rietveld developed an approach

that could de-convolve the characteristic heaped distribution of

minutes that results from digit preferencing and calculate the

uncertainty associated with each individual recorded time (as a

function of the minute component of the recorded time) (149).

7.3. Monte Carlo simulations

Probability density functions representing temporal

uncertainty can be used as input into stochastic methods

like Monte Carlo models (252–255). These techniques allow

uncertainty to be numerically propagated through models

and algorithms. Pretty et al. used this approach in their

glucose insulin model to propagate uncertainty resulting from

timestamps that had been recorded by hand and rounded to the

nearest hour (256), and Ward used a Monte Carlo simulation

to model the impact of transcription errors on emergency

department performance metrics (257).

At a smaller time scale, algorithms that calculate Heart Rate

Variability (HRV) are sensitive to the time of the fiducial point

of the R-peak. However, uncertainties associated with these

times are rarely considered (258). To overcome this problem,
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the finite resolution of an R-peak can be represented as a

uniform probability density function as discussed in Section

7.1. Monte Carlo simulations can then be used to model

the impact of R-R intervals with uncertain durations (259,

260). Temporal uncertainty can be propagated through the

calculations, generating a distribution of HRV values that may

have been possible given the resolution of the times of the

R-peaks. The same approach can be used with other features

derived from ECG such as example Q-T intervals (261). These

techniques may allowmore direct comparison of HRV and other

features derived from ECG signals that have been acquired using

different clinical devices (262).

7.4. Biases resulting from measurement
errors

Measurement errors in one or more variables can introduce

a bias into both linear and non-linear regression techniques

(263, 264). Counterintuitively, the bias introduced by the

measurement errors does not reduce to zero as the number of

observations approaches infinity. The problem can be resolved

by using maximum likelihood estimation, but this requires

knowledge of the (relative) variance of the errors on X and

Y (265).

Errors in Variables (EIV) models have been used in clinical

research to account for measurement errors in general (266–

268) and in some situations to account for uncertainty in

timestamps in particular. For example, several researchers have

used EIV models to account for uncertainty in self-reported

meal times while modeling blood glucose trajectories (269,

270) and to account for the difference between the scheduled

and actual time of drug administration when modeling

pharmokinetics (142).

8. Discussion

In this review we have examined sources of errors and

uncertainty in relation to recorded times in clinical databases.

We have described how multiple sources of error may be

associated with a single measurement, with contributions from

human, system, and device related factors. These sources of

timing error are not mutually exclusive, and their collective

impacts are additive. We have also described sources of

heteroscedastic temporal uncertainty, where the amount of

uncertainty associated with different timestamps within a single

time series may be variable. It is evident that timekeeping errors

are distressingly common in clinical databases, and it is our

opinion that clinical modeling outcomes will be improved if

temporal uncertainty is considered when analyzing time series

data (133).

Although, in principle, most timing errors can be reduced

or eliminated through system improvements, solutions to

some clinical timekeeping errors remain elusive. Medical

device manufacturers continue to use proprietary time

synchronization systems or publish imprecisely defined

sample rates in documentation and marketing material. These

practices make it difficult to reduce epistemic uncertainties,

hindering one’s ability to synchronize signals from disparate

devices.

When taking physiological measurements, one must accept

that poor repeatability is a result of the high variance that is

inherent in biological systems (36). Clocks and time in general

however are not part of the biological system, and therefore

should not be given a free pass when it comes to acceptance

of variability in measurement between systems. Indeed, a

more metrologic approach to all aspects of physiological

measurement may be key to generating reproducible analytical

results (271–274).

The healthcare industry is undergoing a transformation

from closed system medical devices to a fully interconnected

digital ecosystem (275). Throughout this process, the

demand for “off-label” use of high frequency physiological

data streams may result in information from clinical

monitors being used in ways that were not envisaged

by the manufacturer (276). Seemingly inconsequential

differences in hardware and software used to capture data

can result in datasets with divergent temporal characteristics.

Failure to explicitly account for this variability may hamper

development and adoption of generalizable of machine learning

models (277–279).

We suggest that the following actions be considered when

planning improvements to timekeeping systems in a clinical

environment:

• Establish a highly accurate and precise master clock as a

reference time source

• Synchronize clocks to themaster clock usingNTPwherever

possible

• Introduce data quality initiatives focusing on human

factors, such as raising awareness of the impact of rounding

practices

• Adopt computer-based documentation approaches during

critical events such as resuscitations

• Note the temporal resolution of all timepieces

• Develop an understanding of the strengths and limitations

of data types used for storage of dates and times

• Accurately measure the sample rate of all signals, especially

where other systems rely on this sample rate to infer time

• Quantify delays due to software and systems

• Model and correct systemic timing errors

• Critically assess timing systems in new medical devices

• Audit databases to reveal the presence of transcription

errors

Frontiers inDigital Health 13 frontiersin.org

https://doi.org/10.3389/fdgth.2022.932599
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org


Goodwin et al. 10.3389/fdgth.2022.932599

• Identify and characterize sources of heteroscedastic

temporal uncertainty

• Note the beginning and end of different “epochs” of

temporal uncertainty

• Adopt a data quality framework that facilitate the

quantification and storage of temporal uncertainty

• Employ techniques that incorporate temporal uncertainty

into analysis.

The issues discussed in this narrative review highlight

an increasing need to understand temporal aspects of

signal collection and pre-processing in medical devices

(280, 281). Our goal in describing these findings has been

to spur discussion and to advocate for consensus means

by which the medical research community may approach

vulnerabilities around time management. We believe that

a more standardized approach to time management would

provide substantial benefits to the research community,

allowing high precision correlation of signals from disparate

devices. Standardization of algorithms used in medical

devices is essential (282), and, in the end, it may be

the users of medical technologies that demand improved

interoperability (283).

9. Conclusion

Errors in recorded times may have multiple causes

and are disturbingly common in clinical environments.

These errors can create uncertainty around the temporal

sequence of events, confounding analysis and hindering

development of generalizable machine learning models.

Datasets collected at different hospitals can exhibit

divergent temporal characteristics due to the wide range

of medical devices, pre-processing methods, and storage

systems that may be in use between sites. To mitigate

these issues one should identify, quantify, and correct

biases in recorded times, and characterize any residual

temporal uncertainty so that it can be incorporated into

downstream analysis.
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