
Int. J. Simulation and Process Modelling, Vol. 15, Nos. 1/2, 2020 155

XML-based DEVS modelling and simulation tracking

Youcef Dahmani*
Laboratory of Energy Engineering and Computer Engineering,
University Ibn Khaldoun Tiaret, Algeria
Email: dahmani_y@yahoo.fr
*Corresponding author

Hemza Nedjari Benhadj Ali and Abdelkader Boubekeur
Department of Computer Science,
University Ibn Khaldoun Tiaret, Algeria
Email: nedjari.ba.hemza@gmail.com
Email: boubekeur.kader@gmail.com

Abstract: Discrete event system specification (DEVS) is a modelling and simulation
formalism for discrete event dynamic systems. DEVS has known different variants and
software implementations to meet specific needs. Unfortunately, these implementations do not
necessarily share models and cannot capitalise on model reuse and data exchange. XML,
as a meta-language, seems to be an appropriate language for helping modellers with weak
programming knowledge. Indeed, XML is adopted as a standard for information exchange and
knows an increasingly important use on the web. This work aims at determining an XML-based
implementation of DEVS for devising an efficient modelling and simulation framework. After
defining and validating our XML schemas, an execution step of these models is defined based
on our XML abstract simulator which executes a set of XSLT transformations and generates an
XML simulation tree describing the different steps of the system during the simulation time.

Keywords: discrete event system specification; DEVS; XML schema definition; XSD;
extensible stylesheet language transformations; XSLT; simulation tree; modelling; simulation.

Reference to this paper should be made as follows: Dahmani, Y., Ali, H.N.B. and Boubekeur, A.
(2020) ‘XML-based DEVS modelling and simulation tracking’, Int. J. Simulation and Process
Modelling, Vol. 15, Nos. 1/2, pp.155–169.

Biographical notes: Youcef Dahmani is a Professor in the Department of Computer Science
at University Ibn Khaldoun Tiaret. He earned his Engineer degree in 1992 from U.S.T. Oran,
Algeria, and MSc degree in 1997 from University of Es Senia Oran and obtained PhD in 2006
from U.S.T. Oran. His research interests include network security, modelling and simulation,
artificial intelligence, information systems, fuzzy logic and reactive robotic systems.

Hemza Nedjari Benhadj Ali is a Software Engineer graduated from University Ibn Khaldoun
Tiaret, Algeria. His work focuses specifically on software comprehension and developing, the
idea behind this work is to provide tools helping to automatise the implementation and test of
large scale softwares. His best hobby is organising events of scientific popularisation.

Abdelkader Boubekeur holds a Master’s degree in Software Engineering from University Ibn
Khaldoun Tiaret, Algeria. He works as a System and Network Administrator and his best
research topic is modelling and simulation.

1 Introduction

Nowadays, DEVS is an appropriate means of using
modelling and simulation in design phases of any dynamic
system. Because of its generality in systems specification,
the DEVS formalism has been successfully applied to
several application in different programming environments
such as ADEVS, CD++, DEVS-Suite, PowerDEVS,

PythonDEVS and Ururau (Peixoto et al., 2017; Tendeloo
and Vangheluwe, 2017; Hollmann et al., 2015).

There are several implementations for expressing DEVS
models. Modellers have to learn the programming language
of each simulator apart. They have also another obstacle in
sharing models from these different implementations. That
is, in order to model a system of a particular domain with
DEVS, in addition to the domain specialist who describes

Copyright © 2020 Inderscience Enterprises Ltd.



156 Y. Dahmani et al.

the model, a computer scientist must be ubiquitous to
translate the model into object code.

Using a metalanguage may help in reducing this
drawback. Indeed, for a modeller who does not need a lot of
programming knowledge, XML seems to be an appropriate
solution for enabling automatic transformations from XML
representation into given simulation software. In fact, XML
offers several advantages and is increasingly being adopted
as a standard for information interchange.

In recent years, many researchers have focused their
research topics on XML applied to many domain and
subjects. The importance of using XML is still increasing
in different domains such as modelling and simulation
(Mittal and Risco-Mart́ın, 2017b; Mittal and Douglass,
2012; Wainer and Mosterman, 2010).

In the present work, an XML vocabulary of DEVS
formalism is formally defined by an XML schema against
which the vocabulary can be validated. To keep track
of different simulations, we have also designed an XML
abstract simulator. The simulation is done via XSLT
transformations generating an XML simulation tree at each
event occurrence, which would allow tracing the simulation
of DEVS model. The idea emerges from the fact that at
each event, the model is in a state that could be represented
by a tree, and this tree evolves over the simulation time.

The rest of this paper is described as follows. The next
section (Section 2) provides an overview of related works
to tackle the problem of DEVS models and simulators
interoperability by conceptual modelling language. Some
works on XML applied to DEVS are also presented.
Section 3 recalls some technical background, naturally we
focus on the DEVS modelling and simulation formalism.
In Section 4, we illustrate our proposed XML schema
of DEVS atomic and coupled model. Section 5 describes
the different XSLT transformation rules to generate our
simulation tree in compliance with the DEVS formalism.
A case study of this work is detailed in Section 6.
Section 7 focuses on some performance evaluation of our
proposed simulator and the size of files generated by the
DEVS models and their simulators through our automatic
XSLT transformations rules. In Section 8, a conclusion and
discussion on the present work are given and some future
works.

2 Related work

The DEVS formalism is one of the common formalism
used in the simulation of dynamic systems (Zeigler, 1976;
Zeigler et al., 2000; Wainer and Mosterman, 2010). There
is a large number of software implementations of this
formalism, involving the creation of many groups that are
not able to share models and cannot capitalise on model
reuse (Mart́ın et al., 2007; Meseth, 2011; Garredu, 2013;
Hollmann et al., 2015).

Many works were proposed by describing a formal
modelling language which is able to model and simulate
DEVS models without requiring programming concepts. In
Hong and Kim (2006), the authors have defined DEVSpecL
which is an abstract description of DEVS models. In fact,
it is a specification language for modelling and simulation
of discrete event systems. However this language supports
only basic features of this formalism and needs some user’s
API to build complex types. The work of Seo (2009)
defines a DEVS namespace to implement an interoperable
DEVS simulation environment using the service-oriented
architecture (SOA). To ensure interoperability between
DEVS simulators, the author proposes a new design of
DEVS simulator service based on three layers, a protocol
layer which provides basic functionality to simulate DEVS
models, message layer provides type information to DEVS
simulator and report layer which provides the result of the
simulation. The procedure of creating the DEVS simulator
is based on Java resulting in DEVS simulator service.
To interoperate with other software implementations, a
specific DEVS simulator service is required. Wang and
Lu (2002) have proposed an XML-based DEVS modelling
tool to improve the interoperability of simulations. They
based their work on a higher abstraction modelling
framework called system entity structure (SES). It is
a structured knowledge representation scheme that is
applied to guide the synthesis of models from the base
of the model. However, this metamodel requires a higher
level of abstraction, which is not necessarily mastered by
all modellers. Another approach in Garredu (2013) has
been proposed to tackle the problem of DEVS models
and simulators interoperability. The author proposes a
metamodel named MetaDEVS based on Model Driven
Engineering process to realise his work. A focus is
done on models interoperability rather than simulators
interoperability. To make these models productive, the
framework of Eclipse EMF including its metamodel Ecore
was retained as the environment of metamodelling and code
generation. Transformation rules from a model into another
model are implemented using the Atlas transformation
language (ATL). The transformation from a model into a
text applied to DEVS in order to generate code compatible
with PythonDEVS using its templates is implemented with
Eclipse Acceleo plugin. Object constraint language (OCL)
is used to have a control over the relationships between
classes and specification of constraints independently
of simulation platforms. However, this work focuses
on creating a new metamodel instead of using existing
metamodels and improving them. On the other hand,
to create the simulation model, the author defines some
templates or code patterns to generate the code for specific
platforms. To use it effectively, the modeller must have
an idea of how they work. The challenge of this work
is the lack of a standardised representation of DEVS
models despite some works of Simulation Interoperability



XML-based DEVS modelling and simulation tracking 157

Standards Organisation and DEVS Standardization Group
(Garredu, 2013). In Bazoun et al. (2016), ATL and XSLT
are also used to obtain final DEVS models that can be
viewed and simulated by the DEVS simulator. In fact, ATL
transformation is applied to transform conceptual level of
service processes models into business process modelling
and notation (BPMN). Then these models are transformed
into DEVS models by XSLT to simulate the behaviour
of the entire process model in order to see its evolution
to validate and verify the desired dynamic behaviour of
these models in their future real environment. However, this
method is well adapted for business oriented people and no
description of software implementation for the DEVS editor
is described.

The work of Hollmann et al. (2015) proposes
CML-DEVS, a conceptual modelling language for DEVS
which expresses DEVS models in terms of logical and
mathematical expressions such as loop, type, and functions.
However, if one wishes to generate code for a new
Modelling and Simulation software library, he needs to add
a new code generator. This code is based on translation
rules specific to the programming language at issue. In
Casas (2015), the author uses the graphical specification
and description language (SDL) to transform a DEVS
model into this language. Algorithms are given to do these
transformations and the modeller has to know this language
to use it effectively. The work in Zeigler et al. (2017)
uses the DEVS natural language (DNL). The behavioural
model can be built from a graphic user interface which is
converted into a DNL file which in turn is transformed into
a Java file for simulation. Yet, this solution needs expertise
on Java and Finite probabilistic DEVS (FP-DEVS) which is
one of many extensions of DEVS formalism. The DNL file
is made of atomic model component, data component, and
Java component and the simulation software named MS4
Me runs in an Eclipse environment.

However, with the growing use of the internet,
these works cannot be automatically parsed, analysed
and translated into a specific programming language of
simulation modelling. It is noticeable in the literature
that a code based on extensible markup language (XML)
may be a well suited candidate (Meseth, 2011). With its
increasing use in different areas of sciences and research,
XML has become a standard format to store and exchange
information over the internet. It offers several advantages
like the validation of schema, restriction of data types,
transformation into a specific format, etc. (Bray et al.,
2006).

This relevance has advantages for using XML
technology to support DEVS systems. Indeed, storing
DEVS models in XML format offers more information
exchange and a convenient way to specify translations of
XML in web browser document (Wainer and Mosterman,
2010). Thus, the idea of writing DEVS formalism with
XML without any support from a specific programming
language and validating the DEVS XML schema is needed.

An early work was introduced by Fishwick (2002)
followed by Janoušek et al. (2006) proposing XML
representations for DEVS models, using JavaML; however
for the coupled model, a graphical tool was proposed.
Another work was proposed by Mart́ın et al. (2007)
to specify the DEVS formalism in W3C XML schema.
This work lacks processing instruction such as loops
and conditions; in fact, just the data aspect of the
models is presented. Mittal et al. (2007) and Mittal
(2007) propose DEVSML, in their work, they suggest
modifications from the DEVS formalism into a DEVS
service to meet the service-oriented architecture model.
However, the DEVSML description in XML is validated
by the standardised document type definition (DTD) which
provides a very weak specification language compared to
XML schema which is more powerful and flexible and
meets today’s programming needs. However, a revised
version was proposed in DEVSML 2.0 (Mittal and
Douglass, 2012) where they describe a grammar and a
domain specific language for this formalism. A recent
work was also developed to deploy formal discrete
event dynamic system simulation based on DEVSML and
SOA architecture in a cloud environment (Mittal and
Risco-Mart́ın, 2017a).

On the other hand, there are several XML solutions that
are mainly intended for the variants of DEVS. The goal is
to derive these different variants from the XML file without
specific programming knowledge. DEVSimPy (Santucci
and Capocchi, 2014) is an implementation that deals with
fuzzy DEVS, DEVS-XML is another implementation for
the variant FD-DEVS. (?), Works of Meseth (2011) focus
on an XML interpreter called XLSC, the author developed
an XML-based language in form of interface definition
language (IDL) interfaces of the Object Management Group
Inc (OMG). It is designed for the parallel-DEVS formalism,
it expresses DEVS models and their behaviours in an
XML-based manner. An XLSC interpreter for Java was
developed from the abstract IDL interfaces to simulate
XLSC models with the DEVS simulator DEVSJAVA
framework. The idea behind these works is to prove that
XML-based simulation language can be interpreted instead
of compiled or translated.

The solutions are multiple, expertise and an adaptation
for each software are needed. Therefore, a metalanguage
like XML is pertinent in this area for ensuring the life
cycle of a modelling and simulation process of a system.
Using XML in the modelling and simulation phases offers
an advantage where all results are in text format and
therefore understandable by any modeller. All information
on DEVS models will be provided, all details on models
and simulation results over the time would be formulated
exclusively in text document format. Consequently, an
alternative for these works is required to fully express a
DEVS model, its static and behavioural aspects, in textual
form.



158 Y. Dahmani et al.

3 Background

3.1 DEVS modelling

The DEVS formalism was developed by Zeigler (1976). It
is based on the mathematical theory of dynamic systems
and known as one of the common formalism used in
the simulation of systems which temporal and spatial
behaviours are complex to be treated analytically. It is
known for its ability for coupling heterogeneous models
and separating the modelling process from the simulation
process. DEVS formalism allows two levels of description.
At the lowest level, a basic part called DEVS atomic model
which describes the autonomous behaviour of a discrete
event system. At the highest level, a DEVS coupled model
describes a system as a modular and hierarchical structure
(Zeigler, 1976; Zeigler et al., 2000).

3.1.1 DEVS atomic model

A DEVS atomic model is based on continuous time, inputs,
outputs, states and four characteristic functions (output,
internal, external, time advance). It describes the functional
aspect of the system. Formally, a DEVS atomic model is
described by a seven-tuple:

MA = ⟨X,S, Y, δint, δext, λ, ta⟩ (1)

where

• X the set of input events, each input being
characterised by a pair (port number/value)

• S the set of states

• Y the set of output events, each output being
characterised by a pair (port number/value)

• δint : S → S internal transition function, represents
the states changes caused when the elapsed time
reaches the lifetime of the state

• δext : Q×X → S external transition function,
defines how an input event changes a state of the
system where Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)}
total states and e describes the elapsed time since the
last transition of the current state s

• λ : S → Y when the elapsed time reaches the lifetime
of the state, this function generates an output event

• ta : S → R+ time advance function, it is the lifetime
of a state.

3.1.2 DEVS coupled model

The DEVS coupled model enables a modular and
hierarchical framework. It allows the creation of complex
models starting from atomic and/or coupled models,
formalising the modelled system through a set of
inter-connected and reused components. A DEVS coupled
model is defined as an eight-tuple:

MC = ⟨X,Y,D, {Md | d ∈ D},
EIC,EOC, IC, Select⟩

(2)

• X set of inputs events

• Y set of outputs events

• D is the name set of sub-components

• Md | d ∈ D set of sub-components, which are either
DEVS atomic or coupled model

• EIC: set of external input coupling

• EOC: set of external output coupling

• IC: defines the internal coupling;

• Select: 2D → D: tie-break selector which defines
priority between concurrent events.

3.2 DEVS simulation

3.2.1 Abstract DEVS simulation

Zeigler et al. (2000) has developed the concept of abstract
simulator. Bypassing any programming language and any
simulation platform, the specification of a simulation is
obtained by matching each element of the model with
its corresponding component of the simulator (Figure 1).
The first interest of this hierarchical representation of
the simulation structure is based on the possibility
of transforming directly a hierarchical model into an
executable simulation code. Another advantage of this
representation is its support of the interoperability of
formalisms. To perform a simulation, a hierarchy of
processors, equivalent to the model hierarchy, is built. This
simulation structure exploits the hierarchical and modular
aspects resulting from the representation of DEVS models.
There are three types of processors:

• Simulator assigned to each atomic model, ensures
the simulation of atomic models using DEVS
characteristic functions (δint, δext, λ, ta).

• Coordinator assigned to each coupled model,
ensures routing of messages between coupled models
according to the definitions of coupling.

• Root-coordinator ensures the overall management of
the simulation. It orders the beginning and the end of
the simulation and manages the global time.

3.2.2 Abstract simulator operation

The operation of an abstract simulator involves handling
four types of messages: Xmessage: carries external
input information; Y message: carries external output
information; ∗message: indicates an internal event is due;
Imessage: initiates simulation, initial conditions of time and
state must first be set in all simulators of the hierarchy. In
the literature, there is another message which may be either
implicit or explicit; it is used for scheduling (synchronising)



XML-based DEVS modelling and simulation tracking 159

the abstract simulators. Indeed after each executed message,
an acknowledgement is sent back in form of donemessage
containing the next and the last time event.

Figure 1 Mapping a hierarchical model into a hierarchical
simulator

The DEVS formalism gives a specification of a system,
for which initial values of the states are defined. From
these data, it is necessary to specify how to generate the
following states and the output trajectories. To do this,
simulation algorithms are defined in an abstract simulator
which implements them.

When a Simulator receives ∗message, it calls the
model output function λ to generate an output event
Y message and sends it to its parent coordinator based
on the old state s. Then, it computes the new state by
means of the internal transition function. When an atomic
simulator receives an Xmessage, it executes the external
transition function of its associated atomic model. After
processing an Xmessage or ∗message, the Simulator
sends an acknowledgement message including the last and
next time event to its parent coordinator to prepare a new
schedule. In an atomic Simulator, the last time event tl as
well as the local state s are kept.

The Coordinator is responsible for synchronising
exchange of messages between the simulators. When an
Imessage isred received, the coordinator forwards it to all
its direct children, and gets the next event times and last
event times back, and saves them in an event list. When
a coordinator receives ∗message, it selects an imminent
component (atomic/coupled) by means of the tie-breaking
function Select specified in the coupled model and routes
the message to the chosen component. After the execution
of the subcomponent, the coordinator, updates the list of
events and informs its parent. When a coordinator receives
a Xmessage from its parent coordinator, it routes the
message into the affected component by checking which
components are connected to the port from which this event
comes. After that, it updates its last and next time event
and sends them to its parent. When a coordinator receives
Y message from the imminent submodel, it consults the
external coupling relationships defining the output ports
influenced by this model to know if it must transmit
the message to its parent. Then it looks at the internal

coupling relationships to determine the successor and ports
that may be influenced by this event. In this case, it
transforms the Y message into Xmessage for destination
to the influential successors, and then updates its event list
to send the last and next time event.

The root-coordinator is basically a time scheduler,
its algorithm contains the global simulation loop. At
the beginning of each simulation run, the root−
coordinator sends Imessage to its child (attached
simulator/coordinator). The messages that initiate a
simulation cycle are the ∗message. The root-coordinator
transmits these messages to its successors which respond
by sending back the date of the next time event tn. Then,
it repeatedly sends ∗message to its children and computes
the top next time event until the simulation ends. The
simulation cycle continues as long as there is ∗message
to be processed, or as long as a stopping condition is not
satisfied (events occurred, end of simulation, etc.).

4 XML-DEVS modelling

4.1 DEVS atomic model schema definition

Considering a large number of DEVS software
implementations, our specification of the DEVS formalism
by XML schema is mainly based on DEVSML (Meseth,
2011; Mittal and Douglass, 2012; Mittal and Risco-Mart́ın,
2017b; Hollmann et al., 2015) allowing the generation of
models using all DEVS concepts without depending on a
specific simulation platform. These schemas are based on
the classic DEVS paradigm.

In its basic form, the schema of the DEVS Atomic
model consists of seven elements and one attribute: the
top level element is Atomic (Figure 2). It states that an
atomic model, besides the attribute modelName which is
supposed unique for each one, the model has a sequence of
child elements, in which each of the seven parts may appear
exactly once.

Here is the description of child elements for each
particular part. In this work, we have kept the same
structure as defined in Mittal and Douglass (2012).

• inports element: set of input port elements.

• states element: consists of set of sequence of state
element. Each state element is assigned a string as a
value.

• outports element: set of output port elements.

• deltint element: a complex type which defines the
functions of the internal transition δint. Each
transition is characterised by StartState and
NextState element. An internal transition represents
the change from starting state to the next one;.

• deltext element: this element represents the set of
external transitions δext.



160 Y. Dahmani et al.

Figure 2 DEVS atomic model schema view (see online version for colours)



XML-based DEVS modelling and simulation tracking 161

Each external transition is defined by:

a IncomingMessage element: the message value
indicating the triggering of the transition

b inport element: the associated port to the
external transition

c transition: consists of StartState and
NextState element representing the transition
from a state to another.

• TimeAdvance element: set of ta elements which
assign for each state a lifetime (timeout).

• lambdas: the set of lambda elements, affects for
each state an output port outport to send an external
message.

4.2 DEVS coupled model schema definition

The coupled model is composed of atomic or/and coupled
models. In the present work, the schema of the coupled
model is composed of the classical elements as defined in
Mittal and Douglass (2012). The difference between their
works lies in the addition of element Children which
respects the class hierarchy of the DEVS scheme defined in
Luh (1994) and Zeigler et al. (2000).

Figure 3 DEVS coupled model schema view (see online
version for colours)

In XML schema of DEVS coupled model (Figure 3), the
top level element is Coupled and composed of one attribute
and four elements:

• modelName: the attribute model name.

• Couplings: this element represents the different
couplings IC,EIC,OIC. A coupling is defined by
the couple (model, port). The model may be either a

source or a destination (src, dest) element. The port
may be either input or output port (inport, outport)
element.

• Children: set of schemas of its children.

• Inports: represents all input ports of the model.

• Outports: set of output ports of the model.

In the present work, when simultaneous events happen,
the last message in the list is processed. Execution order
follows the order of the definition of schemas in the
hierarchy of the model.

All graphical representations of XML schema Definition
in this work are created with XMLSpy software of Altova.
This tool was useful to validate our model and for sake of
comprehension, visual schemas have been presented in this
paper.

5 XML-DEVS simulation tracking

5.1 XML-DEVS conceptual simulator

The aim of the DEVS simulation is to reproduce the
behaviour of the system under particular experimental
conditions and observe its evolution over time; the entity
capable of reproducing this behaviour is the simulator.
Considering the simulation structure, our abstract simulator
consists of three types of processors: root− coordinator,
coordinator and simulator as in Zeigler et al. (2000). All
these processors adhere to a message exchange protocol that
coordinates the simulation tracking. This exchange can be
designed and developed as a simulation tree based on XSLT
transformations. This tree (Figure 4) represents our system
at any time of the simulation which is inspired by the class
hierarchy of DEVS scheme, for which we add a new part
at the bottom of the structure describing the different states
occurred during the simulation time (trace of states, event
type, date of event occurrence, ...)

Figure 4 Mapping model onto simulation tree



162 Y. Dahmani et al.

5.1.1 XML-DEVS simulator

Basically, the dynamic behaviour of the DEVS model is
performed by the component Simulator associated with
the atomic model; when receiving events, it activates
the functions defined in the model. The schema of our
simulator (Figure 5) defines all aspects expressing the state
of this model over time. A simulator consists of:

Figure 5 The schema view of simulator

The top element Simulator is composed of:

• name: this attribute is the atomic model name;

• Parent: This element is the name of the parent
coordinator;

• NextState: represents the next state once internal
transition processed;

• Tn-sim: This element contains the date of the next
event to be processed;

• State-sim: this element is inserted in the tree during
the simulation.

The element State-sim is composed of two attributes and
two elements:

• time: this attribute indicates the time when the event
was inserted in the simulator tree.

• event: this attribute gives the type of event that
generated the insertion of this state in the tree. In
other words, the cause that led the simulator to add
this state. There are three possible types of events:

a Init: initialisation event, represents the receipt of
Imessage

b Internal: event triggered by an internal
transition, represents receipt of ∗message

c External: event triggered by an external
transition, represents receipt of Xmessage.

• V alue: state value.

• output: this element represents the result of the
execution of the function λ called through the internal

transition δint. Each output element is composed of a
message containing a string indicating the value of
the message and three attributes described as below:

a Outport: port by which the message will be sent

b inport: input port of the destination receiving the
message

c dest: destination Simulator component.

By the end of the simulation, each simulator will contain
the different states by which it has passed through.

5.1.2 XML-DEVS coordinator

The Coordinator component is responsible for the
synchronised exchange of messages between Simulator, it
represents coupled models. In this work, the schema of a
Coordinator (Figure 6) consists of two elements and one
attribute:

• name: this attribute is the name of the coupled
model;

• Parent: name of the parent coordinator;

• Children: definition of child coordinator/simulator.

Figure 6 Coordinator schema view

5.1.3 XML-DEVS root-coordinator

The Root-coordinator holds the global simulation time,
it manages simulation with ∗message. The subordinate
of Root-coordinator sends out these messages to
its successors. The schema of Root-coordinator is
represented by a diagram (Figure 7) consisting of three
elements:

• GlobalT ime: global time of simulation.

• NextTn: list of elements Tn-root. Each of these
elements contains a value representing the minimum
value of the next expected internal transition. This
value applies to one or more Simulator components
at a time. The Tn-root element includes the attribute
child corresponding to the name of Simulator that
contains this minimum value. Tn-root is the
minimum value of all Tn-sim in the tree.

• Children: definition of Coordinator/Simulator
which is the most top model in the tree.



XML-based DEVS modelling and simulation tracking 163

Figure 7 Root coordinator schema view

The processing of the various messages by the Simulator
components is done via XSLT transformations.

5.2 Transformations XSLT and simulation tracking

The different structures already presented are part of the
simulation tree, which represents the trace of the system
change over time. These changes are saved in the XML file
SimulationTree.xml.

Simulation tree undergoes a series of transformations
representing the behaviour of the models. To simulate the
behaviour of these models, we have defined transformation
files which will run in the following steps.

5.2.1 Data processing

The model of the system created by the user is the file
Model.xml, once created, it is loaded in order to generate
the simulation tree file. The first step is to browse the
model structure in order to establish the links between the
different submodels. The result of this mapping step is a
file Map.xml.

5.2.1.1 Mapping

Basically, coupled models represent the hierarchy of a
model; the behavioural aspect is assumed by the atomic
models. Therefore, we are interested in the Simulator
rather than the Coordinator which only ensures the
synchronisation between the submodels.

As the transitions functions are treated by the
Simulators, this part of mapping will extract all the atomic
models and the links between them while disregarding
the couplings. We obtain a flat representation of the links
(Figure 8). This phase will exclusively allow us to deal
with the Simulators and the map file will result in links
between all atomic models of the whole model.

Figure 8 Mapping models onto flat architecture

A flat mapping of our model will generate a map file
described by the schema of Figure 9. It depicts a link

between two atomic models, a source and a destination
model. On the other hand, we specify the output and the
input port respectively of the source model and destination
model.

Hence, each Simulator-map element consists of a
set of elements outport that represent the output ports
of the atomic model. Each output port is connected to
a destination dest element containing the name of the
destination atomic model and the attribute inport represents
the destination port.

Figure 9 The schema view of flat mapping (see online version
for colours)

In order to generate the map file, we have used an XSLT
transformation mapping.xsl which uses the following
algorithm (Figure 10)

Figure 10 Algorithm of mapping transformation

The description of the transformation rules of our algorithm
begins with the loading of the user’s generated model. A
treatment of output ports of each atomic model is done.
For each output port of this atomic model, a mapping of
all couplings associated with this port is made in order
to find all possible destinations. If the destination is an



164 Y. Dahmani et al.

atomic model, the latter is inserted in the file map.xml as
a destination, if the destination is a coupled model, a deep
browse is done in a recursive way until reaching an atomic
model.The usage of this approach reduces the number of
coupling searches in the model. This flat mapping allows
us to make a global browse when loading the model instead
of doing it at each event.

5.2.1.2 Generation of the simulation tree

The simulation tree generation SimulationTree.xml
consists in creating Simulators and Coordinators
according to the hierarchy defined by the couplings of the
model. Initially, an initialisation phase is launched via the
file init.xml. The latter plays the role of Imessage. It
allows, via its schema (Figure 11), to initialise all models.
Two types of initialisation are possible:

• Model: this element is composed of the attribute
name which represents the atomic model name and
the element state its initial state.

• Default: this element occurs if the model is not
explicitly initialised with a tag Model. It expresses
the default state of the model.

Figure 11 XSD model initialisation (see online version
for colours)

Figure 12 Algorithm of the generation of the simulation tree

After reading the initialisation file, an XSLT transformation
is performed TreeGenerator.xsl in order to generate the
simulation tree SimulationTree.xml. This tree is created
according to the algorithm (Figure 12) which creates an
element representing a Root− coordinator and associates
a Simulator with each atomic model and a Coordinator
with each coupled model. An initialisation message is
executed for each Simulator with the insertion of its initial
state defined in init.xml.

5.2.1.3 Synchronisation of root next time event

Synchronisation between Simulators is done by an XSLT
transformation Scheduler.xsl described by the algorithm of
Figure 13.

Figure 13 Algorithm of synchroniser transformation

The first step of the transformation gives us the minimum
value of all elements Tn-sim of our Simulators. Then
a search is done to extract the list of all Simulators
concerned by this minimum value. This list of Simulators
is inserted into the element nextTN of Root-coordinator.
It is a form of sending doneMessage. The result of this
transformation updates the simulation tree after each event
processing.

Figure 14 UML Sequence diagram of simulation



XML-based DEVS modelling and simulation tracking 165

5.2.2 Simulation run

The simulation is done through a series of transformations
that the simulation tree will undergo. These transformations
are performed by means of three XSLT transformation files
in a simulation loop (Figure 14).

5.2.2.1 External Transition transformation

For each element Simulator in the simulation tree, this
transformation (Figure 15) checks whether this element
is a message destination in the element output of other
Simulators. A browse of this tree gives a list of concerned
Simulators. In this work, only the last element is
processed. The message is processed by checking in the
model whether this message causes an external transition.
If true, it does the following operations:

• elment
State-sim = Atomic/deltext/ :: /NextState

• element Tn-sim = Atomic/ ::
/timeout+RootCoordinator/GlobalT ime

• Simulator/NextState = Atomic/deltint/ ::
/NextState.

Figure 15 Algorithm of external transition

Load SimulationTree.xml

All Simulators visited ?

Select a Simulator

Simulator has incoming messages ?

Select last incoming message

Message is significant ?

Execute external transition on current simulator

Rewrite SimulationTree.xml

false

true

true

true

false

false

5.2.2.2 Iterate

This XSLT transformation aims to ensure the global
time advance of simulation. For each new Tn-root, an
internal transition is executed by the Simulator concerned
(Figure 16).

This transition will result in the following operations:

• element
Simulator/State-sim = Simulator/NextState

• element Tn-sim = Atomic/ ::
/timeout+RootCoordinator/GlobalT ime

• Simulator/NextState = Atomic/deltint/ ::
/NextState.

If an internal transition produces an output message, the
element output is inserted, this element represents the
sending of the Y message which will be processed by the
external transition transformation.

Figure 16 Algorithm of iterate

Load SimulationTree.xml

Update GlobalTime

Select a Simulator

(NextTn! = NULL)&
(NextTn/@tn == GlobalT ime)

Select simulator where
NextTn/tn/@name =
simulator/@name

All simulators treated ?

Select a simulator

Execute Internal Transition

Generate SimulationTree.xml

true

false

true

false

6 Case study

In order to explain the functioning of our simulator, we
have chosen a model as an example in order to execute it
and visualise the simulation results. This model represents
a traffic light positioned at crossroads. On each street,
there are two opposite traffic light devices. Each of these
signalling devices is supplied with a push button on which
a pedestrian can click to allow crossing. In this example,
we consider the following assumptions:



166 Y. Dahmani et al.

• When traffic light button is clicked, it switches
immediately to green colour allowing pedestrian
crossing.

• On the same street, both traffic lights are coupled
together.

• Pushing the traffic light button by the pedestrian is a
random behaviour. We suppose that a pedestrian
pushes the button at t = 19 and t = 39

• The actuated button is a transient state, once clicked
it triggers state change regardless of the duration of a
pedestrian click.

• In order to initialise our model, we assume that the
Street1 lights are red and Street2 are green.

We have four traffic light atomic models
TrafficLightNorth, TrafficLightSouth,
TrafficLightEast and TrafficLightWest. All these
models have this DEVS formal specification:

TrafficLightAM = ⟨X,S, Y, δint, δextλ, ta⟩
X = {(in, x)/in ∈ InPorts, x ∈ XInPorts}
InPorts = {inport1, inport2, inport3},
XInPorts = {Clicked,Red,Green}
Y = {(out, y)/out ∈ OutPorts, y ∈ YOutPorts}
OutPorts = {outport1}, YOutPorts = {Red,Green}
S = {Green,Red, Y ellow}
δint(Red) = Green

δint(Green) = Y ellow

δint(Y ellow) = Red

ta(Green) = 10

ta(Y ellow) = 5

ta(Red) = 15

δext((Red, e), (inport1?Red)) = Green

δext((Y ellow, e), (inport1?Red)) = Green

δext((Green, e), (inport1?Green)) = Red

δext((Y ellow, e), (inport1?Green)) = Red

δext((Red, e), (inport2?Clicked)) = Green

δext((Y ellow, e), (inport2?Clicked)) = Green

δext((Green, e), (inport3?Clicked)) = Red

δext((Y ellow, e), (inport3?Clicked)) = Red

λ(Red) = (outport1!Red),

λ(Green) = (outport1!Green)

Note that the function lambda is an empty set for
TrafficLightNorth and TrafficLightEast. Then, we
have for these two models:

λ(Red) = ∅
λ(Green) = ∅

The pedestrian DEVS atomic model is formally specified
as follows:

PedestrianAM = ⟨X,S, Y, δint, δextλ, ta⟩
X = ∅
InPorts = ∅
Y = {(out, y)/out ∈ OutPorts, y ∈ YOutPorts}
OutPorts = {outport1, outport2},
YOutPorts = {Clicked}
S = {Clicked, Unclicked}
δint(Unclicked) = Clicked

δint(Clicked) = Unclicked

ta(Unclicked) = σi

where σi is random times.

ta(Clicked) = 0

λ(Clicked) = (outport1!Clicked)

λ(UnClicked) = (outport2!Clicked)

Each street is considered as a coupled model, composed
of two traffic light atomic models. The pedestrian atomic
model is coupled to the street coupled model (Figure 17).

Figure 17 Traffic light DEVS coupled model

The result of the simulation of our example automatically
generates an XML file SimulationTree.xml, in which
you will find the complete structure of our model and the
trace of all state changes over the simulation period. For
clarity reasons, a snapshot at a fixed time in the simulation
of the system is given (Figure 18).

However, it should be noted that the simulation file
evolves with simulation and according to the information
supplied by this file, we have done an evaluation of
performance to see the viability of this solution.



XML-based DEVS modelling and simulation tracking 167

Figure 18 Snapshot of simulation tree at t = 39 (see online version for colours)



168 Y. Dahmani et al.

Figure 19 Performance of XML-DEVS modelling and simulation, (a) initialisation time (b) file size evolution

(a) (b)

7 Performance evaluation

In order to evaluate the performance of our simulator, we
have used the model presented above (Traffic Light System)
in several combinations to simulate the behaviour of several
traffic lights at the same time. The simulated time was set
at 200 units of time. Here are some results (Figure 19).

The initialisation time of all models is represented by
Figure 19(a). It shows that the average time to initialise
a model is 0.0038 seconds. The initialisation time of all
models increases with the number of simulated models.

The analysis of Figure 19(b) shows that the
representation of a model (solid line) has an average size
of 5.5 Ko representing the different states by which a
model is passed. The trace generated by the simulator
(dashed line)occupies an average size of 2.2 Ko per model.
Here also, we see that the size of our simulation tree file
increases according to the number of the models.

XML is adapted as part of our work because on the
one hand, the transformation part is portable, i.e., XSLT
transformation rules can run with a single call regardless
of the programming language used, and on the other
hand, XML has a data validation mechanism. The flaw in
this work is the growth of the size of the ‘model’ and
‘simulation’ files generated by this implementation.

8 Conclusions and future work

Based on systems theory, the DEVS formalism provides
a solid basis for modelling and simulation of discrete
event systems. The formalism is sufficiently general
and successfully applied to several application domains.
Different teams of researchers have, depending on their
needs, created several DEVS environments in order to
code their models in specific programming languages.
Indeed, whether these models are coded or not in the same
language, each of the DEVS-oriented environments defines
its own technical constraints, rules and programming
conventions to translate and implement the DEVS
formalism. To associate simulation algorithms and try to
reuse either model or its partial part from a specific

programming language into another is a hard task and
requires a great effort. This lack of interoperability and
reuse of DEVS models has obliged researchers to propose
several approaches. This work tackles the problem of
model reuse of classic DEVS formalism by proposing
an XML-based modelling approach, which is independent
of a particular programming language. To simulate our
DEVS models, an abstract DEVS simulator is presented
based on XSLT transformations. Our DEVS models are
validated by XML Schema Definition, where the simulation
is presented as an XML tree keeping the simulation trace
over time. Thus modelling and simulation DEVS models
are described in a purely textual manner. The goal of this
work is twofold. The first goal is to make our schema
capable of operating easily with existing or even future
simulation software implementation. Then, the modeller can
define a model without knowing a particular programming
language of a specific modelling and simulation tool. The
second goal consists of defining an alternative of simulating
DEVS models in XML by generating a simulation tree. In
this work we have presented the different XML schemas
that represent the structure of the models as well as
the various transformation components that guarantee the
execution of the simulation. We have started by defining
the structure of the XML file that represents the DEVS
models expressed with XML schemas (XSD). Both atomic
and coupled models are specified. Once the modelling
part of the formalism has been realised, we proceed to
the simulation of the models. This simulation is based on
applying XSLT stylesheets to the models XML files. The
proposed solution does not conflict with other research
in the area of XML-based DEVS modelling. Instead, it
can be seen as an alternative to the transformation of a
model to a programming language representation, which is
the predominant approach found in XML-based simulation
modelling. An advantage of this solution is to provide
the resulting simulation of DEVS models in a textual
document which can be used for other purposes by other
softwares. The most important drawback of our XML-based
simulation tracking is a decreased performance because
the transformation processor accepts only physical files as
input instead of variables because these transformations



XML-based DEVS modelling and simulation tracking 169

are stateless. In fact, the simulation tree of XSLT models
transformations is significantly slower than simulating the
same model written in a programming language. Since
classic DEVS modelling and simulation are presented,
an automatic writing of the models in XML file is not
supported, the modeller must write the XML file, once he
finishes, he proceeds to load these files for the simulation.
We aim to develop a graphical editor to assist the user in
generating the model XML file. Another work aims to add
conditions on ports and state variables and present them as
a tree in order to inject them into our XML simulation tree.
Generalise the solution to cover the other variants of DEVS
formalism by developing a framework based on XSLT. The
idea is to automatically translate the DEVS XML models
into several DEVS platforms allowing the interoperability
between different simulation software. However, a standard
formalisation of DEVS will facilitate us this task.

References
Bazoun, H., Ribault, J., Zacharewicz, G., Ducq, Y. and Boyé,

H. (2016) ‘SLMTOOLBOX: enterprise service process
modeling and simulation by coupling DEVS and services
workflow’, International Journal of Simulation and Process
Modelling, Vol. 11, No. 6, pp.453–467.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau,
F. and Cowan, J. (2006) Extensible Markup Language
(XML) 1.1, 2nd ed., W3C Recommendation 16 August 2006,
Technical report, Copyright 2006 W3C (MIT, INRIA, Keio)
[online] http://www.w3.org/TR/2006/REC-xml11-20060816/
(accessed 30 September 2019).

Casas, P.F. (2015) ‘Transforming classic discrete event system
specification models to specification and description
language’, Simulation, Vol. 91, No. 3, pp.249–264.

Fishwick, P.A. (2002) ‘XML-based modeling and simulation:
using XML for simulation modeling’, Proceedings of the
34th Conference on Winter Simulation: Exploring New
Frontiers, Winter Simulation Conference, pp.616–622.

Garredu, S. (2013) Meta-Modeling Approach and Model
Transformations in the Context of Modeling and Simulation
with Discrete Events: Application to the DEVS Formalism,
PhD thesis, University Corse-Pascal Paoli, France.

Hollmann, D.A., Cristia, M. and Frydman, C. (2015)
‘CML-DEVS: a specification language for DEVS conceptual
models’, Simulation Modelling Practice and Theory, Vol. 57,
pp.100–117.

Hong, K. and Kim, T. (2006) ‘DEVSpecL: DEVS specification
language for modeling, simulation and analysis of discrete
event systems’, Information and Software Technology,
Vol. 48, pp.221–234.

Janoušek, V., Polášek, P. and Slav́ıček, P. (2006) ‘Towards DEVS
meta language’, ISC 2006 Proceedings, pp.69–73.

Luh, C-J. (1994) ‘Modelling and simulation in an object-oriented
environment’, Information and Software Technolog, Vol. 36,
No. 6, pp.343–352.

Mart́ın, J., Mittal, S., López-Peña, M. and de la Cruz, J.M. (2007)
‘A W3C XML schema for DEVS scenarios’, Proceedings
of the 2007 Spring Simulation Multiconference – Volume 2,
pp.279–286, Society for Computer Simulation International.

Meseth, N. (2011) XML-based DEVS Modeling and
Interpretation, PhD thesis, University of Osnabrueck.

Mittal, S. (2007) DEVS Unified Process for Integrated
Development and Testing of Service Oreinted Architectures,
PhD thesis, The Graduate College, Univerity of Arizona.

Mittal, S. and Douglass, S.A. (2012) ‘DEVSML 2.0: the language
and the stack’, Proceedings of the 2012 Symposium
on Theory of Modeling and Simulation-DEVS Integrative
M&S Symposium, p.17, Society for Computer Simulation
International.

Mittal, S. and Risco-Mart́ın, J.L. (2017a) ‘DEVSML 3.0
stack: rapid deployment of DEVS farm in distributed
cloud environment using microservices and containers’,
Proceedings of the Symposium on Theory of Modeling
& Simulation, p.19, Society for Computer Simulation
International.

Mittal, S. and Risco-Mart́ın, J.L. (2017b) Netcentric System of
Systems Engineering with DEVS Unified Process, Taylor and
Francis Group, CRC Press, USA.

Mittal, S., Risco-Mart́ın, J.L. and Zeigler, B.P. (2007) ‘DEVSML:
automating DEVS execution over soa towards transparent
simulators’, Proceedings of the 2007 Spring Simulation
Multiconference – Volume 2, pp.287–295, Society for
Computer Simulation International.

Peixoto, T.A., de Assis Rangel, J.J., de Oliveira Matias, I.,
da Silva, F.F. and Tavares, E.R. (2017) ‘Ururau: a free and
open-source discrete event simulation software’, Journal of
Simulation, Vol. 11, No. 4, pp.303–321.

Santucci, J.F. and Capocchi, L. (2014) ‘Fuzzy discrete-event
systems modeling and simulation with fuzzy control
language and DEVS formalism’, Sixth International
Conference on Advances in System Simulation (SIMUL2014),
pp.250–255, Citeseer.

Seo, C. (2009) Interoperability between DEVS Simulators Using
Service Oriented Architecture and DEVS Namespace, PhD
thesis, University of Arizona, USA.

Tendeloo, Y.V. and Vangheluwe, H. (2017) An Evaluation
of DEVS Simulation Tools, Simulation, Vol. 93, No. 2,
pp.103–121.

Wainer, G.A. and Mosterman, P.J. (2010) Discrete-Event
Modeling and Simulation: Theory and Applications, Taylor
and Francis Group, CRC Press, USA.

Wang, Y-H. and Lu, Y-C. (2002) ‘An XML-based DEVS
modeling tool to enhance simulation interoperability’,
Proceeding 14th European Simulation Symposium.

Zeigler, B.P. (1976) Theory of Modeling and Simulation, Wiley
& Sons, USA.

Zeigler, B.P., Nutaro, J.J. and Seo, C. (2017) ‘Combining DEVS
and model-checking: concepts and tools for integrating
simulation and analysis’, International Journal of Simulation
and Process Modelling, Vol. 12, No. 1, pp.2–15.

Zeigler, B.P., Praehofer, H. and Kim, T.G. (2000) Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems, 2nd ed., Academic
Press, USA.


