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Abstract: Petri nets (PNs) are a well-known modelling tool for discrete event systems. 
Continuous PN were introduced in order to avoid the combinatory explosion of the number of 
states, when considering real life systems. The constant speed continuous Petri net (CCPN) can 
be used to model discrete events systems; in that case, they constitute an approximation, which is 
often satisfactory. They can also model positive continuous systems. Hybrid automata (HA) are a 
less compact and expressive model, but, they can be used to perform powerful analysis. In this 
paper, we first present deeply the continuous PN and its modelling advantages. Then we present 
the main contribution of this paper, that is a structural translation algorithm from a CCPN into a 
HA. The translation algorithm is structural in the sense that it does not depend on the initial 
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1 Introduction 
Modelling and control of physical systems are crucial 
issues. In this work, we are interested in a particular class of 
systems, such as transport systems, manufacturing systems, 
communication systems, biological systems…, etc. These 

systems have in common that they are positive dynamic 
systems, i.e., the state is always positive. This class of 
systems often uses for their description continuous time 
models, like differential equations. However, they can also 
be approximated as discrete event systems (DESs) models, 
as it will be shown in the sequel. Simulation and formal 
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methods can be used for the quantitative analysis of these 
systems. Although several authors (van Dijk, 1999) 
demonstrate the absence of opposition between the formal 
methods and simulation and that both approaches are 
complementary, it is, generally, harder to use formal tools 
than simulation in practice, since the support of formal tools 
is difficult to use. In the past, we could only find in the 
literature related to formal tools, a few case studies. 
However recently, formal methods have considerably 
evolved. Industry adopts techniques such as model checking 
(Cousot and Cousot, 2010), in addition to simulation. 
Currently, we can find in the literature more real life 
industrial systems (Wainer, 2016). 

The basic tools for modelling and analysing DESs are 
finite state automata or Petri nets (PNs). Some authors use 
similar models such as the discrete event systems 
specification (DEVS) (Norazura et al., 2015) or hybrid 
simulation (Lohmann et al., 2009). In this work, we are 
concerned with PNs since they provide a smart modelling 
showing in a graphical way the synchronisation, resource 
sharing and parallelism concepts. PNs are widely used to 
model DESs. In a PN, the marking of a place may 
correspond either to the Boolean state of a device (for 
example a resource is available or not), or to an integer (for 
example the number of parts in a buffer). A general analysis 
method is to compute the set of reachable states and deduce 
the different properties of the system. However, when a PN 
contains a large number of tokens, the number of reachable 
states explodes and this is a practical limitation of the use of 
PNs. Numerous authors have used the fluidification concept 
in order to solve the state explosion problems observed in 
DESs. In Ciardo et al. (1997), fluid stochastic PNs are 
introduced to perform a discrete event simulation for some 
continuous systems. Formal aspects on PN fluidification are 
developed in Recalde and Silva (2001), and the basic PN 
properties are analysed in comparison with the fluidified 
behaviour. 

Continuous PNs were introduced by Alla and David 
(1998). This model constitutes a solution for the state 
explosion problems observed in DESs models. It is also a 
good model for describing positive continuous systems. In a 
continuous PN, the marking takes real values and the 
transitions firing is a continuous process. Continuous PNs 
inherit all the advantages of PNs model (concurrency, 
resource sharing, and synchronisation). Unlike autonomous 
continuous PNs where time is not involved, timed 
continuous PNs are a class of models where time is 
considered in the form of firing speeds associated with 
transitions. The nature of transitions firing speeds 
distinguishes the different types of timed continuous PNs 
formalisms. We consider here constant speed continuous 
Petri nets (CCPN in continuation) where a maximal 
constant firing speed is associated with each transition. The 
dynamic behaviour of the model is piecewise linear and 
event driven. CCPN is the basic and the most studied model 
in the class of continuous PNs formalisms. It gives often a 
good approximation for the modelling of DESs such as  
 

production systems or transportation systems. In Balduzzi  
et al. (2000), a model derived from the CCPN was defined, 
it is a slightly different model used for the control of DESs. 
The main difference is that minimal and maximal speeds are 
associated with transitions, even if for real life systems, the 
minimal value is always equal to zero. In Demongodin and 
Koussoulas (1998, 2008), a continuous approximation of a 
timed discrete PN by discretising time associated with 
transitions is introduced. This new model constitutes a 
continuous approximation and can be used for simulation, 
however the event driven aspect is lost. In Brinkman and 
Blaauboer (1990), timings are associated with places in 
order to model pure delays in manufacturing systems. For 
example, the parts flow on a conveyor can be easily 
described by a delay corresponding to the time required to 
reach the extremity of the conveyor. In case of infinite 
server semantics and variable maximal speeds associated 
with transitions, a formal state representation is possible as 
in linear continuous system theory. Then analytical results 
have been established such as deadlock-freeness (Júlvez  
et al., 2006; Mahulea et al., 2009) and quantitative analysis 
(Kara et al., 2008). 

Hybrid automata (HA in the sequel) were introduced in 
Alur et al. (1995) and Alur and Dill (1994). They are the 
most general formalism to model hybrid dynamic systems, 
in the sense that they can model the largest range of 
dynamics for this class of systems. The relative ease of 
computing the reachable state space of some sub-models of 
HA is the strengths of this tool. This analytical formulation 
allows to compute formally the performance evaluation of 
the modelled systems and to synthesise controllers. 

The aim of this work is first to show the modelling tool 
of the CCPN and then to prove formally the translation of a 
CCPN into a HA, thus allowing to deduce equivalent 
properties. In other words, we aim to characterise the HA 
which is bisimilar to CCPN. We will firstly present some 
basic notions of the CCPN model such as the macro 
marking and the invariant behaviour state. Then, a structural 
algorithm allowing translation of a CCPN into a HA will be 
given. We mean by structural the fact that the translation 
does not depend on the initial marking of the CCPN. The 
soundness of the translation algorithm is proved by 
demonstrating the bisimilarity between the CCPN and its 
equivalent HA. 

This paper is organised as follows: In Section 2, we will 
present the CCPN formalism with its main properties. We 
will characterise the class of systems that a CCPN can 
model. In Section 3, we will present an algorithm allowing 
the translation of a CCPN into a HA. We will give the 
semantics of the CCPN and the HA resulting from the 
translation algorithm. In Section 4, we will prove the 
soundness of the translation algorithm; and in Section 5, a 
water supply system will illustrate the results of the 
proposed approach. We present a discussion on the 
usefulness of our contribution in Section 6 and we place our 
work compared to existing results in the same field. Finally, 
in Section 7 we will conclude the paper. 
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2 Constant speed continuous Petri net 
Continuous PNs is a generic name of a class of formalisms. 
These formalisms are a result of an extension of classical 
(discrete) PNs. They are obtained from the discrete model 
by fluidifying the marking. Advantages of continuous PNs 
are mainly related to computability and decidability 
(Recalde et al., 2007). In the basic book containing the last 
results on continuous PNs (David and Alla, 2010), they are 
classified according to transitions firing speeds. The most 
basic model is CCPN. In this model, with each transition is 
associated a maximal firing speed, which confers to the 
model a piecewise linear behaviour and the dynamic 
remains event driven. 

In the sequel, we define CCPN and some notions related 
to its behaviour. We suppose that the basic knowledge on 
classical (discrete) PN is acquired. For a complete 
presentation, see David and Alla (2010). 

Definition 1 (CCPN): 

A CCPNPN is a 6-tuple PN = (P, T, Pre, Post, V, m0) such 
that: 

• P = {P1, P2, …, Pn} is a finite set of places 

• T = {T1, T2, …, Tm} is a finite set of transitions 

• Pre: P × T → ℘+ and Post: P × T → ℘+ are, 
respectively, the backward and forward incidence 
mappings 

• V: T → ℜ+ associates a maximal firing speed Vj with 
each transition Tj 

• m0: P → ℜ+ gives the real-valued initial marking. 
□ 

where ℘+ and ℜ+ are respectively the set of positive 
rational numbers and positive real numbers. 

We will adopt in the sequel the following notation: 

• °Pi is the set of input transitions of place Pi 

• Pi° is the set of output transitions of place Pi 

• °Tj is the set of input places of transition Tj 

• Tj° is the set of output places of transition Tj. 

Let us now give an example in order to illustrate the CCPN 
smart modelling. 

Example: Consider the manufacturing system schematised 
in Figure 1. This system contains three machines M1, M2 
and M3, preceded, respectively, by buffers B1, B2 and B3. 
Pallets support the parts to be manufactured (each pallet 
supports a single product) first on M1, then M2 and finally, 
on M3. After that, the pallets return to buffer B1. Machines 
M1, M2 and M3 can maximally manufacture, respectively, 
four and two and one parts per time unit. Let us suppose that 
the number of pallets in the system is 12 and that all the 
pallets are initially in B1. The buffers, capacities are 
supposed infinite. This manufacturing system is a DES 
since machines and parts are indivisible objects. We 
approximate the modelling of its behaviour by a CCPN. 

Figure 2 gives the CCPN model of the manufacturing 
system. To differentiate the representation of continuous 
and discrete PNs, we use double lines to draw continuous 
places and transitions, whereas single lines are used in the 
case of discrete places and transitions. Transitions T1, T2 
and T3 represent, respectively, the machines M1, M2 and M3. 
The maximal firing speeds associated with these three 
transitions are respectively 4, 2 and 1. The marking of 
places P1, P2 and P3 (i.e., M1, M2 and M3) represent, 
respectively, the number of pallets in the buffers B1, B2 and 
B3. 

□ 

Figure 1 A manufacturing system 

B 1 M 1 B 2 B 3 M 2 M 3 
 

Figure 2 CCPN model of the manufacturing system 
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In a CCPN, the marking is no longer an integer but a real 
number. This approximation makes it possible to 
considerably reduce the number of events considered by the 
model. This facilitates the simulation and analysis of the 
behaviour of the model. This approximation has been 
largely dealt with in the papers presenting the continuous 
PNs (Alla and David, 1998). The transitions are associated 
maximal firing speeds. A transition Tj may be either: 

1 strongly enabled, if all its input places are marked 

2 weakly enabled, if all its input places which are empty 
are fed by firing of other transitions 

3 not enabled, if some of its input places are neither 
marked nor fed by firing of other transitions. 

Let us call vj(t) the instantaneous transition firing speed of 
transition Tj. It is equal to the maximal firing speed Vj if the 
transition is strongly enabled. In case of weakly enabled 
transition, the instantaneous transition firing speed is less 
than its maximal value but remains constant. 

In the CCPN in Figure 2, if the initial marking transition 
T1 is strongly enabled then it is fired with its maximal speed 
v1(0) = V1 = 4. If transitions T2 is weakly enabled, it is fed by 
a speed greater than its maximal value, then v2(0) = 2. In 
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the same way, T3 is weakly enabled and fired with speed 
v3(0) = 1. Due to the continuous evolution, a transition with 
a zero marking input place is enabled and fired. This can 
constitute a surprising result for the PN community. The 
way the speeds are computed is formalised in Algorithm 1. 

Algorithm 1 Firing speeds calculation 

1 Inputs: A constant speed continuous Petri net and a time 
instant t; 

2 Output: v(t), the instantaneous firing speed vector at time 
t; 

3 Set up C1 the constraints corresponding to: 0 ≤ vj(t) ≤ Vj; 
4 Set up C2 the constraints based on the balance Bi(t) ≥ 0 if 

mi = 0; 

5 { }(1)
ne i iP P | m 0 ;= >  

6 { }(1) (1)
j j neSFT T | T P ;= ∈  

7 k ← 1; 

8 While (1) (k+1) (k)
SF SF SFT T and T do≠ ≠ T  

9  ( )(k+1) (k) (k)
ne ne SFP P T ;← ∪  

10  { }(k+1) (k+1)
j j neSFT T | T P ;← ∈  

11  k ← k + 1; 
12 End while 

13 (k)
SF SFT T ;←  

14 Set up the constraints C3: vj(t) = 0 for Tj ∉ TSF 
15 Solve the linear programming problem: 

j
1 j

T T
J v (t)

∈
=∑  

given C1, C2 and C3; 

The markings dynamics are calculated thanks to the 
marking balance formalised in Definition 2 (David and Alla, 
2010). It corresponds to a linear piecewise trajectory. The 
instantaneous transition firing speeds remain constant until 
the enabling conditions change, this occurs when the 
marking of a place becomes zero. 

Definition 2 (marking balance): The balance of the marking 
of a place Pi in a CCPN is the difference between the 
feeding Ii(t) and the draining Oi(t) speeds of Pi. It 
corresponds to the marking time derivative. 

( ) ( ) ( ) ( )= = +i ι i iB t m t I t O t  

With: 

( )
1

( ) , . ( )
=

=∑
m

i i j j
j

I t Post P T v t  

( )
1

( ) , . ( )
=

=∑
m

i i j j
j

O t Pre P T v t  

□ 

As has been explained, the marking value zero or not zero is 
a fundamental element in the CCPN dynamics. It 

determines the values of the firing speeds; it is why we have 
introduced the macro-marking notion. 

Definition 3 (macro-marking): The macro marking m  of a 
CCPN is a binary vector whose dimension is n (number of 
places), and whose value at time t is: 

if ( ) 0 or 0  
( )

if ( ) 0 and 0
> >⎧

= ⎨ = =⎩

1 t
0 t

i i

i i

m B
m Bim t  

if ∀i ∈ {1, 2, …, n}, ( ) 1,=im t  we speak about a full 
macro-marking. 

□ 

In the CCPN in Figure 2, if the three balance markings of 
places P1, P2 and P3 are respectively B1(0) = –3, B2(0) = 2 
and B3(0) = 1, then the initial macro-marking is a full 
macro-marking m  = (1, 1, 1). 

Property 1: With each macro-marking is associated a 
constant instantaneous firing speed vector. 

□ 

The proof of this property is obvious since the enabling 
conditions of a transition depend only on the marked or not 
marked input places of this transition. 

An algorithm permitting the calculation of the transition 
firing speeds using the macro-marking is given in David and 
Alla (2010). The idea of this algorithm is to compute the 
greatest speeds verifying constraints using linear 
programming. It can be used for any PN structure including 
conflicts; in that case solving strategies must be chosen. We 
summarise this algorithm here after. The following 
notations are used in the algorithm here after: 

Pne is the set of non-empty places (i.e., marked or fed 
places) 

TSF is the set of surely firable transitions. 

An invariant behaviour state (IB-state), defined below, is a 
time interval where the macro-marking is constant and 
therefore the firing speeds are constant. This concept allows 
building the CCPN dynamics with a finite graph, while the 
reachable state space is infinite. 

Definition 4 (IB-state): In a CCPN, an IB-state is the time 
interval where: 

• ,m  the macro marking is constant 

• v, the transitions firing speed vector is constant. 
□ 

The state of a CCPN at time t is given by its marking. The 
classical way to describe the behaviour of a CCPN is the 
evolution graph. It is a graph where each vertex corresponds 
to an IB-state, and where each arc corresponds to an event 
that changes the IB-state. Only one event may change the 
IB-state of a CCPN, i.e., the fact that a place marking 
becomes zero. It has been proved that the number of nodes 
of an evolution graph is finite if there is no conflict in the 
PN or if they are solved in a deterministic way (David and 
Alla, 2010). Figure 3 represents the evolution graph of the 
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CCPN of Figure 2. The behaviour of this CCPN comprises 
three IB-states. In the final IB-State, the three speeds are 
equal, the slowest machine imposes its speed to the other 
ones (i.e., v(0) = (1, 1, 1)). 

Figure 3 The evolution graph of the manufacturing system 

t = 0 
 

m = (12, 0, 0) 

v(t) = (4, 2, 1) 

v(t)  = (1, 2, 1) 

v(t)  = (1, 1, 1) 

 

m = (0, 8, 4) 

 

m = (0, 0, 12) 

t = 4 

t = 12 

 

Figure 4 The manufacturing system, (a) CCPN model (in red), 
(b) corresponding discrete PN (in blue), (c) simulation 
of the discrete PN (exact discrete behaviour in red) and 
of the CCPN (approximate continuous behaviour, in 
blue) (see online version for colours) 
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Figures 4(a) and 4(b) show the CCPN (in red) of  
Figure 2 and the corresponding discrete PN (in blue) with 
an integer initial marking. This latter is obtained by 
replacing each maximal firing speed Vj by a duration dj = 1 / 
Vj. Figure 4(c) is given the simulations of the discrete PN 
(exact behaviour) and of the CCPN (approximation). We 
can remark that the approximation given by the CCPN is 
satisfactory. The simulation duration is very fast; only two 
events dates have to be computed: occurrences of zero 
marking of places P1(t = 4) and P2(t = 12). This number of 
two remains the same whatever the number of pallets in the 
system, while for the discrete model, the simulation 
duration increases with the number of pallets. 

3 Translation algorithm 
An important contribution of this paper is the translation 
algorithm from a CCPN into a HA and its correctness proof. 
The idea of associating PNs and automata is not new. PNs 
are an easy-to-use modelling tool while automata have a 
great analysis power. This means that several researchers 
have associated them for coupling their advantages. One of 
the first works associates stochastic PN and Markov chains 
for the analysis of DESs (Frehse, 2005). For example, from 
the computation of the steady state of the Markov chain, it 
is possible to compute the performances of the PN model 
(mean markings and mean firings frequencies). 

A first algorithm linking hybrid PNs with a hybrid 
automaton has been established in Allam and Alla (1998). 
This translation was done in a manual way. It is a kind of 
simulation, where at each step, the algorithm seeks the new 
occurring discrete event. Moreover, there is no proof of 
correctness of the obtained hybrid automaton. Our 
contribution is completely different from that proposed in 
Recalde et al. (2007) for two reasons: 

• We propose a structural construction of the HA. It is 
independent from the initial marking, thanks to the 
concept of macro-marking. Given an initial marking, a 
unique HA is built and the actual model is obtained by 
marking the initial location. 

• We formally prove that the HPN is bisimilar to the HA. 
That means that all the properties that are true for HPN 
are also true for the HA, and vice-versa. 

We first present the HA in an intuitive way, a formal 
definition will be given later. A HA is composed by 
locations containing the continuous dynamics, and by arcs 
between these locations corresponding to the discrete 
transitions. The continuous variables are the places 
markings of the CCPN. In each location of the HA, the 
variables dynamics (the marking derivative) are the marking 
balance of each place. It is a constant real number. We 
associate with the initial location of the HA a full  
macro marking, i.e., the places are marked. Since the 
macro-marking vector is decreasing with time as shown in 
Figure 3, then it covers all the possible initial markings 
(David and Alla, 2010). Then, the translation algorithm is 
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structural, it is computed only once. Starting from a full 
macro-marking we can cover all the states that the CCPN 
can (structurally) reach. Since the only event that can 
change the dynamics is that a place becomes empty and 
then, this is only possible if its marking derivative is 
negative. We create then an output transition from the 
automaton location for each negative marking dynamics. 

Algorithm 2 Translation of CCPN into HA 

1 Input: A CCPN; 
2 Output: A linear hybrid automaton; 
3 X: a real valued vector of dimension n (le number of 

places of the CCPN); 
4 Create L0 the initial location; 
5 Consider 0m  a full macro marking and calculate the firing 

speed using Algorithm 1, and thereafter the balance 
;=B m  

6 { } { }0; L ; 0; 0;← ← ← ←0M m L l j  

7 ←X B  for location L0; 
8 Associate to L0 the invariant: 
 ( )

| 0

0
<

≥
i

i
i B

mÌ  

9 For all Lk in L do 
10  For all i | Bi < 0 in location Lk do 
11   l ← l + 1; 

12 
  1 for

0 for

− ≠⎧
← ⎨ =⎩

l
rl

r
m r i

m
r i

 

13   If M∉ml  then 

14    { }M M← ∪ ml  

15    j = j + 1 
16    Create a location Lj, and calculate the firing 

speed using Algorithm 1 and macro marking 
,lm  and thereafter the balance B; 

17    L ← L ∪ {Lj}; 
18    Associate to Lj the Invariant: 
 ( )

| 0

0
<

≥
s

s
s B

mÌ  

19    Create a transition Tkj from Lk to Lj, Set its 
guard (mi = 0); 

20   Else 
    Let Lr be the location associated to ml

21    Create a transition Tkr from Lk to Lr, Set its 
guard (mi = 0); 

22   End if 
23  End For; 
24 Define the initial state of the HA as the initial marking of 

the CCPN; 
25 End For; 

 

 

The HA obtained from the translation algorithm has the 
form of a tree since the number of IB-states is finite. The 
choice of the initial marking determines the reachable 
branch of the tree. 

The hybrid automaton schematised in Figure 5 is the HA 
resulting from applying Algorithm 2 to the CCPN in  
Figure 2. The translation algorithm gives an automaton that 
has particular properties since we have particular dynamics 
and transitions guards, this is detailed in the following 
definition. We will denote it as continuous hybrid automata 
(CHA). For a general definition of a linear hybrid 
automaton, the reader may refer to Alur et al. (1995). 

Definition 5 (Continuous hybrid automaton): 

A continuous hybrid automaton CHA = (L, X, δ, F, Inv) 
such that: 

1 L = {L0, L1, …} is a finite set of locations, 

2 X = is the continuous state space. It corresponds to the 
vector (x1, x2, …, xn)T is the vector of n real-valued 
variables modelling the places marking; A valuation is 
a function that assigns a real-valued u(xi) ∈ ℜn to each 
variable xi from X. 

3 δ is a finite set of transitions, each transition is a 3-tuple 
T = (Lk, g, Ll) such that: 
• Lk ∈ L is the source location; 
• g is the transition guard, it is of the form: mi = 0. 
• Lk ∈ L the target location; 

4 F is a function that assigns to each location a 
continuous linear vector field on X. While in discrete 
location Lk the continuous variable xi evolve according 
to a differential equation of the form ,=ι ix B  where Bi 
is a the dynamic balance of the place Pi. 

5 Inv is a function that affects to each location Li, a linear 
predicate Inv(Lk) of the form 0≥i ixÏ  that must be 
satisfied by the continuous variables in order to stay in 
location Li. 

□ 

In the sequel, we will express formally the semantics of a 
CCPN and of a CHA in term of timed transition systems. 
The state of a CCPN at time t is given by its marking vector 
m. It contains the sufficient information such that its 
knowledge at a time t allows the computation of the state at 
time t + dt. The state change may occur in two different 
manners: 

1 in a discrete way, when a place marking becomes zero 

2 continuously by time elapsing. 
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Figure 5 The hybrid automaton resulting from the translation 
algorithm 
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Definition 6 (semantics of a CCPN): 

The semantics of a CCPN, PN = (P, T, Pre, Post, V, m0) is 
a timed transition system ST = (Q, q0, →)) so that: 

• Q = m, is the set of states 

• q0 = m0 is the initial state 

• → ∈ {mi = 0} ∪ ℜ+ is a discrete or a continuous 
transition, such that: 
1 The discrete transition corresponds to the emptying 

of a continuous place Pi. 
0 if:

is calculated using Algorithm 1

,
1
0

= ′⎯⎯⎯→
′⎧

⎪ ′ =⎪⎪ ′∀ ≠ =⎨
⎪ =⎪

′ =⎪⎩

m m

m m

im

k k

i

i

v

k i m m
m
m

 

2 The continuous transition corresponds to the 
elapsing of time duration d; 

( ) if:

.d

′⎯⎯⎯→
′ =⎧

⎪ ′ = +⎨
⎪ ′ =⎩

m m

m m B
m m

e d

v v  

□ 

B is the marking balance vector defined in Definition 3. 
We will present now the semantics of a CHA. 

Definition 7 (Semantics of CHA): The semantics of a 
continuous hybrid automaton is a timed transition system  
ST = (L, L0, →) so that: 

• Q = (L, X) is the set of states 

• q0 = (L0, x0) is the initial state 

• → ∈ δ ∪ ℜ+ is the set of transitions that can be discrete 
or continuous. 
1 The discrete transition corresponds to the firing of 

transition Tj whose guard is if the form xi = 0. This 
corresponds in the CCPN to the emptiness of a 
place marking; 

( ) ( )
( )

[ ]
( )

1

1

1

, , if :

, , so that :
( ) 0 ,

( )

+

+

+

′⎯⎯→

⎧∃ ∈
⎪

′= = =⎨
⎪ =⎩

δ

jT
i i

i i

i

i

L x L x

L g L

g x x x x
Inv L x true

 

2 Continuous transition corresponds to the elapsing 
of a time duration d; 

( ) ( )

( )( )

( )
1

1

, if :

.
0 ,

+

+

′⎯⎯⎯→

+⎧
⎪ ′ = +⎨
⎪ ′ ′∀ ≤ ≤ + =⎩

e d
i i

i i

i

L x L x
L L
x x B d

d d Inv L x d true

 

□ 

In order to prove the correctness of the translation algorithm 
we define hereafter the equivalence between the states of 
CCPN and CHA. 

Definition 8 (state equivalence ≈): Let m and (Li, x) be 
respectively a state of a CCPN and a state a CHA, then: 

( ), if .≈ =m x m xiL  
□ 

Any location of the CHA is determined by the value of the 
instantaneous firing speed vector (or by the macro-marking) 
of the CCPN. The continuous component of the automaton 
is given by the continuous marking of the CCPN. 

4 Correctness of the translation algorithm 
We prove in this section the correctness of the translation 
algorithm. We will show that the translation preserves the 
behaviour of the initial CCPN, in the sense that the 
semantics of the CCPN and the CHA are time-bisimilar. 
This proof is necessary since the analysis and the deduced 
properties are detremined from the CHA and remain true for 
the CCPN. 

Definition 9 (Time bisimilarity): Let us consider two timed 
transition systems 1

1 1 10S ( , , )= →Q q  and 2
2 2 20S ( , , );= →Q q  

and consider R a binary relation on Q1 × Q2. The relation R 
is a strong bisimulation if: 

1 1 1 1 2 2 2 2 1 2and , then such that′ ′ ′ ′→ ∃ →R Rq q q q q q q q  

2 2 2 1 2 1 1 1 1 2and , then such that′ ′ ′ ′→ ∃ →R Rq q q q q q q q  
□ 

In a time bisimilarity, if two states are equivalent then the 
firing of any type of transition preserves this equivalence. 
Let us call, SPN the semantics of the CCPN and SCHA the 
semantics of its translation into a CHA. 

Theorem 1 (Timed bisimilarity): A CCPN is temporally 
bisimilar to a CHA: 
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For all state m ∈ SPN and (Li, x) ∈ SCHA such that (Li, x) ≈ 
m: 

Firing of a discrete transition mi = 0. 

( ) ( )
( )

0 0
1

1

iff , ,
and ,

= =
+

+

′ ′⎯⎯⎯→ ∃ ⎯⎯⎯→
′ ′≈

m m x x
x m

i im m
i i

i

L L
L

 (1) 

Firing of a continuous transition (time elapsing) 

( ) ( )
( )

( ) ( )
1

1

iff , ,
and ,

+

+

′ ′⎯⎯⎯→ ∃ ⎯⎯⎯→
′ ′≈

m m x x
x m

e d e d
i i

i

L L

L
 (2) 

□ 

Proof: 

Let us start by proof formula (1). Suppose that  
(Li, x) ≈ m, this mean, according to equivalence definition 
(Definition 8), that m = x, and that =m x  (this is true in 
CCPN since that the macro marking determines the marking 
dynamics). So if the ith component of vectors m and x just 
become equal to zero, this will lead the CCPN to m’ and the 
CHA to (Li+1, x’) where m’ = x’. 

For formula (2), suppose that (Li, x) ≈ m, the elapsing of 
a time duration d will lead the CCPN to the state m’ such 
that ( , )′∀ = +i im m di  and the CHA to the state (Li+1, x’) 
such that ( , ).′∀ = +i ix x di  Since m = x, then m’ = x’. 

5 A water supply system 
Consider a water supply system composed by three tanks 
used to feed consumers (Figure 6). Tank 1 is the main 
reservoir; it is fed either from natural sources with a water 
flow of 20 m3/h, or from ground water with a water flow of 
30 m3/h. It supplies the two other tanks via pipes with 
maximal flow capacity 40 m3/h. Tanks 2 and 3 are 
respectively linked with consumers 1, 2, 3 and 4, 5. The 
three tanks have limited respective capacities: 3,000 m3, 
1,200 m3 and 1,000 m3. When tank 1 is full the pumping 
rate is changed, while for tanks 2 and 3, the pipes input flow 
is reduced according to the output flow. The consumers’ 
water demand is respectively 11, 8, 5 m3/h for tank 2, and 7, 
9 m3/h for tank 3. Initially, the tanks are assumed empty. 
Our objective is to model this system by a CCPN, to 
translate it into a HA and to analyse its dynamic behaviour. 
Particularly, it will be seen if the demand is satisfied in 
time. 

The water supply system is modelled by the CCPN in 
Figure 7. It is an exact model, where three structural 
conflicts appear; then resolution strategies should be given. 
We suppose that the three conflicts T1-T2, T3-T7 and  
T4-T5-T6, are solved by priorities: 

1 T1 < T2, T1 has priority over T2, (the water coming from 
the natural sources are used in priority) 

2 T3 < T7 

3 T4 < T5 < T6. 

Figure 6 A water supply system 

Tank 1 

Tank 2 Tank 3 

1 2 3 4 5

Pump

Supply from 
the ground 

Water  

Figure 7 CCPN model of the water supply system 
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The conflict between T8, T9 is solved by sharing 
proportionally to their maximal speeds, [T8, T9]. Of course 
these conflicting policies can be changed. It is an intuitive 
model since the physical entities appear clearly, each tank is 
modelled by two places, which marking corresponds to the 
liquid volume in m3. 

The continuous hybrid automaton of the water supply 
system is obtained thanks to the translation algorithm. It is 
obvious that this model is less readable than the CCPN. 
Figure 8(a) gives the continuous hybrid automaton 
(Algorithm 2) and Figure 8(b) gives the instantaneous firing 
speed for each location (Algorithm 1). We can remark that 
in the last location the pumping rate (speed v2(t)) decreases 
to 20 m3/h since all the tanks are full. Figure 9 gives the 
physical state of the water supply system corresponding to 
each location; it allows illustrating the close link existing 
between the model and the physical process. 
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Figure 8 (a) The continuous hybrid automaton of the water supply system (b) The instantaneous firing speeds in each location 
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 L0 L1 L2 L3 

v1(t) 20 20 20 20 

v2(t) 30 30 30 20 

v3(t) 40 24 24 24 

v4(t) 11 11 11 11 

v5(t) 8 8 8 8 

v6(t) 5 5 5 5 

v7(t) 10 26 16 16 

v8(t) 4.375 7 7 7 
 

(b) 

Figure 9 The water supply system situation in each location, (a) in L0 (b) in L1 (c) in L2 (d) in L3 
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Figure 10 The reachable state space of the hybrid automaton of 
Figure 8(a) 

 

 

It is now possible to draw properties of the CCPN model 
from the CHA. PHaVer (Ajmone-Marsan et al., 1989) is a 
software that allows the formal calculation of the reachable 
state space when the hybrid automaton is linear or 
rectangular in view of analysing its behaviour. From the 
CCPN, a linear HA has been obtained since the time 
derivatives are constant, and the reachable state space of the 
CHA of Figure 8(a) is given in Figure 10. From this 
analytical characterisation, it is possible to evaluate the 
performances of the water supply system such as the 
duration in each location or the maximal, minimal and 
average values of the contents of each tank. These 
performances can be obtained from the linear inequalities 
using optimisation solvers. For example, we can compute 
the duration of each phase corresponding to the sojourn time 
in each location. We then obtain 7.5 h, 90 h, 300 h for the 
first three locations; the last one has an infinite duration. 
From Figure 8(b), we can conclude that the demand is 
always satisfied except in location L0 where the 
instantaneous firing speeds of transitions T8, and T9 are less 
than their maximal speeds. 

We can remark that in the final location the water flows 
and the tanks levels are constant, till a modification for 
example of the demand or the flow rate of the natural 
sources. In order to have variable demands and flows, it is 
necessary to associate discrete behaviour with the 
continuous one; it is why hybrid PNs have been defined  
 
 
 

(David and Alla, 2010). However, the CCPN model 
constitutes the core of the hybrid model, and all the basic 
ideas presented in this paper will be directly introduced in 
the hybrid model. 

6 Discussion 
The fluidification of DESs is a concept that has been 
introduced in PNs (David and Alla, 2010). It opened the 
way for a multitude of works based on this idea. 
Particularly, important research exists in the field of 
biological systems such as the works in Doi et al. (2004) 
and Troncale et al. (2009). For these systems, continuous 
PNs have brought readable graphical models showing 
clearly the continuous dynamics in terms of continuous 
flows. Another interesting case study is constituted by a gas 
storage system controlled by valves, where the objective is 
to determine the gas throughput (Champagnat et al., 1998). 
The difficulty in that case is the nonlinear dynamics of the 
compressible gas. For both systems given above, the system 
is intrinsically continuous. Another important application 
domain is found in systems where large numbers of discrete 
entities are moving in short delays. A continuous flow can 
then approximate this behaviour. This occurs mainly for 
manufacturing systems (Demongodin and Giua, 2014) and 
transport systems (Dotoli et al., 2009). Our contribution can 
help for the modelling and analysis of all the types of cited 
systems, taking benefits of the graphical modelling of 
continuous PNs combined with the analytical analysis 
power of HA. 

7 Conclusions 
In this paper, we have studied the continuous PNs, where 
the maximal firing speeds are constant. We have presented 
the main features of its modelling and we have proposed for 
this class of PNs an algorithm that permits the translation 
into a hybrid automaton. This algorithm allows associating 
the powerful modelling of PNs with the powerful analysis 
of HA. We also proved the temporal bisimulation between 
the CCPN and the resulting hybrid automaton, thus 
guaranteeing the soundness of the translation. It is 
independent of the initial marking. The results were 
illustrated thanks to a water supply system. 

An important objective of this algorithm is to use CCPN 
and the translated CHA for the analysis of hybrid dynamic 
systems and particularly for the synthesis of controller for 
positive systems. The results of this paper must be 
generalised to hybrid PN providing a structural translation 
with a formal proof of the correctness. Formal analysis of 
the obtained HA will allow a formal characterisation of the 
reachable state spaces, and then a formal computation of a 
controller or a diagnoser. This corresponds to our current 
research. 
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