
Int. J. Simulation and Process Modelling, Vol. 13, No. 6, 2018 557

Copyright © 2018 Inderscience Enterprises Ltd.

DEVSServer: ambient intelligence and DEVS
modelling-based simulation server for epidemic
modelling

Mostefa Mokaddem* and Baghdad Atmani
Laboratoire d’Informatique d’Oran (LIO),
University of Oran 1 Ahmed Ben Bella,
BP 1524 El M’Naouer 31000 Oran, Algeria
Email: mokaddem.mustapha@univ-oran.dz
Email: atmani.baghdad@univ-oran.dz
*Corresponding author

Abdelmalek Boularas
Computer Information System Department,
Ahmed Bin Mohamed Military College,
P.O. Box 22988, Doha, Qatar
Email: boularas@abmmc.edu.qa

Chihab Eddine Mokaddem
Département d’Informatique et de R. Opérationnelle,
Groupe de Recherche GEODES,
Université de Montréal,
C.P. 6128 Succursale Centre-ville Montréal (QC) H3C 3J7, Canada
Email: mokaddec@iro.umontreal.ca

Abstract: To improve disease surveillance systems (DSS) with faster and accurate outbreak
detection and epidemics propagation capabilities, the availability of fine-tuned models is required
along with the design of server-based solutions that simulate the effects of public health
authorities’ measures and integrate ambient intelligence (AmI) capabilities to semantise epidemic
models. Hosting discrete event system specifications (DEVS) models, these AmI servers and
their communication protocols are different, miscellaneous and require interoperability. The
triple-space computing (TSC) paradigm addresses interoperability by sharing information
represented in a semantic format through a common virtual space. In this paper, we present
DEVSServer, a fully distributed TSC simulation server solution (middleware) designed to meet the
needs of parallel and distributed discrete event simulation. DEVSServer defines a service oriented
architecture (SOA) interface for the TSC operations. This interface complies with DEVS
formalism and focuses on simplicity, conviviality and modularity, so that a single or many
simulations that support different models can still interact. To assess DEVSServer, we provide a
tuberculosis epidemic model simulation in time-varying temporal network with genetic
programming immunisation strategy approach.

Keywords: ambient intelligence; AmI; triple space-based computing; TSC; service oriented
simulation; parallel discrete-event simulation; PDES; disease surveillance system; epidemic
modelling; temporal network; genetic programming; immunisation strategy.

Reference to this paper should be made as follows: Mokaddem, M., Atmani, B., Boularas, A.
and Mokaddem, C.E. (2018) ‘DEVSServer: ambient intelligence and DEVS modelling-based
simulation server for epidemic modelling’, Int. J. Simulation and Process Modelling, Vol. 13,
No. 6, pp.557–581.

Biographical notes: Mostefa Mokaddem is an Assistant Professor at the Computer Science
Department and a member of the Lab. of Informatics of Oran, University of Oran 1 Ahmed Ben
Bella He received his Magister (2008) in Computer Sciences at the University of Oran, Algeria.
His main research interests are DEVS, SOA and SOA simulation, epidemic modelling, AmI, data
mining and decision support systems.

Baghdad Atmani is a Full Professor in Computing Science at the University of Oran 1 Ahmed
Benbella. His field of interests are data mining and machine learning tools. His research is based
on knowledge representation, knowledge-based systems and CBR, data and information
integration and modelling, data mining algorithms, expert systems and decision support systems.

558 M. Mokaddem et al.

Abdelmalek Boularas is a Professor in Computer Information System Department, Ahmed Bin
Mohamed Military College, Doha, Qatar. He received his PhD in Computer Science from the
Rensselaer Polytechnic Institute, Troy, New York, USA, 1984. His main research field is fuzzy
sets, fuzzy logic, computer architecture, transportation systems, simulation and intelligent
systems.

Chihab Eddine Mokaddem is a PhD student at the DIRO and member of the GEODES group,
Université de Montréal, Canada. He received his Master in Computer Science from the
University Ahmed Ibn Badis of Mostaganem (Algeria), in 2015. His research fields are pattern
detection and refactoring in model driven engineering, model transformation, search-based
software engineering, simulation and machine learning tools related to software engineering and
intelligent systems.

This paper is a revised and expanded version of a paper entitled ‘DevsServer: ambient intelligence
and DEVS modeling based simulation server’ presented at 2016 Spring Simulation
Multi-conference (SpringSim ‘16’), The Westin Pasadena, California, 3–6 April 2016;
MSCIAAS ‘16 Proceedings of the Modeling and Simulation of Complexity in Intelligent,
Adaptive and Autonomous Systems 2016 (MSCIAAS 2016), Pasadena, California, 3–6 April
2016; and Space Simulation for Planetary Space Exploration (SPACE 2016), Pasadena,
California, Society for Computer Simulation International San Diego, CA, USA, 3–6 April 2016.

1 Introduction

In recent years, contamination and its interaction with huge
flow of quantitative social, demographic and behavioural
data are used to improve disease surveillance systems (DSS)
with faster and more accurate outbreak detection and
epidemics propagation capabilities which depend on the
availability of fine-tuned models.

Demographic characteristics can explain differential
health and disease transmission patterns within societies.
Indicators of socioeconomic development (economic
diversity, income disparity, social class fluidity), health care
systems (refined measures of medical care), and public
health characteristics are incorporated as health
determinants rates. These characteristics, based in the social
and economic organisation of societies, are postulated to
have significant influences in shaping patterns of health and
disease transmission. Community level characteristics are,
as well, incorporated into the analysis of demographic and
health behaviours. Communities provide a localised context
for the social, economic, and political structures important
to the interaction between these health and disease
transmission determinants. But it is unclear which
constellation of community variables has consistent effects.
The absence of well-specified models has limited both
theory building and the formulation of public health
programs.

The service of epidemiology and preventive medicine
(SEMEP, i.e., French acronym for Service d’Epidémiologie
et de MEdecine Préventive) addresses ways that the
environments in which we live shape health. The SEMEP
always try to improve health care models and helps finding
practical solutions to population health challenges by
assessing assets and barriers, identifying evidence-based
practices and innovations, and developing practical tools
that guide action in promoting health and preventing
chronic disease and disease transmission (Brahami et al.,
2010; Amamra et al., 2012).

The distribution of health-damaging experiences is not
in any sense a ‘natural’ phenomenon but is the result of a
toxic combination of poor social policies, unfair economic
arrangements, and bad politics.

With the evolution of technology and data (big data) and
exchange standards, the SEMEP now has the opportunity to
strengthen and modernise the infrastructure supporting its
DSS.

As part of the surveillance strategy, this modernisation
is underway to enhance the system’s ability to provide more
comprehensive, timely, and higher quality data than ever
before for public health decision making. Through this
initiative, the SEMEP seeks to increase the robustness of its
DSS technological infrastructure so that it is based on
interoperable, standardised data and exchange mechanisms
that support internet of things (IoT) and ambient
intelligence (AmI) technologies. AmI aims to enhance the
way people interact with their environment to promote
safety and to enrich their lives. The achievement of AmI
largely depends on the technology deployed (sensors and
devices interconnected through networks) as well as on the
intelligence of the software used for decision-making
(Augusto and McCullagh, 2007). AmI is an emerging
discipline that brings intelligence to our everyday
environments and makes those environments sensitive to us.
AmI research builds upon advances in sensors and sensor
networks, pervasive computing, and artificial intelligence
(Bravo et al., 2016).

An interesting area concerns the integration with real
data from large scale health sensors (AmI constrained
devices and smartphones). Actually, only a sample of users
will be carrying sensors, the accuracy of the estimation of
epidemic propagation-based solely on such a sample needs
to be assessed on a real deployment. Due to these previous
significant changes, the SEMEP is involved in applying new
simulation solutions to deal with these AmI-based
Surveillance Strategies. These solutions embed progress in
information, computing, and communication systems.

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 559

Applying abstraction concept further to the computational
thinking model for system design and implementation,
which include an architecture-driven approach,
model-driven development, and workflow-based design
process (Chen, 2018) (Figure 1) is related to this special
issue of the International Journal of Simulation and Process
Modelling (IJSPM).

Figure 1 Disease simulation in a virtual city (see online version
for colours)

Figure 1 concerns a DSS strategy showing a simulation-
based epidemiology with infection process model
depending on social structure and filter type protection
policy model with immunisation policy. The infection
process model is divided into three basic models. The first
one is a stage transition model of disease under the physical
condition and medical treatment. The second (triangle
arrowheads) is a city structure model and human activity
model on the virtual city (smart city) that contains several
types of social activities of agents. The third (circle
arrowheads) is a contamination and infection models that
contain protection policies against contamination and
infection. Each individual carries/wears sensors during his
moves. Human activity model deals with his temporal
moves between home, traffic station, office area, school and
hospital until tomb to detect if there are any face-to-face
contacts patterns. The control of the virtual density is
necessary. Many infected persons may be present. The
disease stage model illuminates different stages of the
process linking life events to disease.

Events are viewed as triggering affective states
(susceptible, infected, or recovered) that in turn engender
behavioural and biological responses having possible
downstream implications for disease. A tick of 30 minutes
is enough to transit from an S state to tomb.

Figure 1 also describes an experience of building and
deploying a wearable system for automatically sensing,
inferring, and logging a variety of physical activity to build
high level simulation server platforms that reliably sense
real world human actions and to develop intelligent
simulations that automatically infer high level human
behaviours from low-level sensor data.

The controls of excretion, disinfection, and virtual
density are due to AmI platforms where sensors data are
sent to service oriented architecture (SOA) servers (AmI
technologies) to capture the previous characteristics
generating spatial and social network structures influencing
infectious disease transmission within populations. The DSS
can indicate to people (personal smartphone notifications
with alerts levels) to wear some personal contamination
protection (maybe masks) before reaching some suspected
areas.

Epidemic modelling and computational infrastructures,
such as SOA, enable creating very detailed representations
since restful web services (RWS) perform intelligently to
generate the best accurate semantic-based model. With
accurate models, we can predict the outbreak detection, the
spread of diseases and simulate the effects of public health
authorities’ measures.

Parallel discrete-event simulation (PDES) has received
increasing interest as simulations become more runtime
consuming and geographically distributed. A rich literature
has already been developed in the last three decades, taking
advantage of the increasing availability of parallel and
distributed computing platforms, especially on emerging
platforms such as many-core processors, internet scale
simulation environments, and cloud-based virtualised
infrastructures (Fujimoto, 2000; Mittal, 2006; Mittal et al.,
2007, 2009; Al-zoubi and Wainer, 2013; Jafer et al., 2013;
Chen, 2018). Like popular PDES environments and their
hybrid synchronisation techniques, in SOA oriented
simulations (Mittal et al., 2009; Seo, 2009), the entire
simulation task is divided into a set of services (each model
is handled by a service) with each executed on a different
server.

Our simulation, integration and Fouille de données (SIF)
(data mining) researchers involved with SEMEP in such
design issues are developing a specific modelling platform
to help model, simulate and evaluate DSS. An important
challenge in designing DSS is to define immunisation
strategies that discover a meaningful group of individuals
(community) that are strongly related to the disease.

Once this community discarded, disease can be
eradicated (Liu and Zhang, 2011). AmI-based approaches
using semantic temporal network may be applied as novel
intelligent and dynamical immunisation strategies. To
simulate such strategies, a new AmI-based parallel and
distributed discrete event simulation server solution is
well-matched allowing the design of semantic atomic and
coupled models integrated in epidemic modelling digital
libraries (EMDL) (Silva et al., 2010) within simulation
servers. EMDL hold models as resource description
framework (RDF) graph to semantise modelling. The
semantic associated to models describes the how-to of
models and help simulation servers to perform intelligently
as it is designed in our approach. Thus, providing Modelling
and Simulation with semantics is prerequisite.

To pursue this goal, simulation servers use EMDL to
manage models while describing them with ontologies.
Knowledge may be shared between modellers and servers

560 M. Mokaddem et al.

themselves. Simulation servers perform a distributed
simulation execution requiring interoperability and natural
and transparent interactions that are important in AmI to
defend the fact that servers should subtly work on behalf of
the human tasks and minimise the psychological impact of
servers’ use. Furthermore, AmI-based servers can be used in
the same way in simulation to save modellers from doing
low-level but yet time-consuming modelling tasks such as
interoperability. Modellers can now focus on modelling
with a high aggregate-value, where the importance of the
human capital is vital (Pirkkalainen and Pawlowski, 2012;
Gómez-Goiri et al., 2014). AmI Abstraction has been
applied for representing a complex system in hierarchical
layers, with a higher layer hiding certain information from a
lower layer (Chen, 2018).

To achieve these aims, AmI-based servers need to
integrate and coordinate heterogeneous data sources or
service providers. Current trends, such as the web of things
(WoT) initiative (Guinard, 2011), propose a straightforward
integration of servers with the web using RWS. The
problem with this model is that it couples the
communication between nodes. This coupling can be
avoided by using indirect communication styles
(Gómez-Goiri et al., 2014). Indirect communication can be
space and/or time uncoupling. Space uncoupling is achieved
when the sender does not need to know the receiver or
receivers and vice versa. Time uncoupling happens when
senders and receivers do not need to exists in the same time.
Independently of the used model, the messages usually
exchanged between servers are diverse and simulation
session dependent. This implies that messages will not be
meaningful in other simulations unless a specialised system
converts and reinterprets them. A way to solve this problem
is annotating the message semantically as proposed by the
World Wide Web (WWW) (Berners-Lee et al., 2001;
Pirkkalainen and Pawlowski, 2012).

Triple-space computing (TSC) has been involved as a
coordination paradigm supporting indirect communication
based on semantic data. As simple as possible, a model
writes semantically annotated information in a shared space
that is queried out and used by other models.

In order to achieve this interoperability through
triple-spaces, we propose a simulation server middleware
solution called DEVSServer. This solution provides two core
features:
a it is designed to be simple, modular and extensible
b it runs in different computational platforms, allowing

Java SE, Java Mobile and Android interaction.
The underlying interface is based on SOA (Mokaddem
et al., 2011) and covers isolated features such as discovery,
maintenance or data access. Different simulations can
provide only certain features and still interact with each
other. In this way, it is possible to embed it in other real-
time simulations.

Regarding the immunisation strategy simulation, we do
not provide any specification; it is out of the scope of this

paper which is only concerned with the design of DEVSServer
over AmI interoperability.

The rest of the paper is organised as follows. Section 2
outlines related work. Section 3 describes the conceptual
model for an SOA-based TSC solution, let us say
DEVSServer principles. Section 4 details the implementation
made to adapt it to the necessities of AmI requirements.
Section 5 presents an epidemic modelling specification of
the tuberculosis (TB) disease under DEVSServer involving
temporal network and genetic programming (GP)
capabilities. Since we are trying to target both epidemic
modelling communities and general-purpose simulation
communities, this example lets epidemic modelling readers
be involved in SOA and AmI-based simulation servers.
Therefore, the TB as temporal network, the propagation
phase, and the immunisation phase need to be more detailed
to fit their concerns and to envision what is the contribution
of new simulation solutions in this topic. We hope that this
initiative will make DEVSServer more attractive and getting
more support. Discovering disease propagation and
immunisation strategies may show the lack of related
semantic-based simulation support tools and will certainly
motivate simulation communities to investigate
consequently. Finally, Section 6 concludes and discusses
future work.

2 Related work

In the following two subsections, we analyse both semantic
solutions of interoperability involving mobile and
embedded devices and concluding with TSC paradigm, and
the SOA-based modelling/simulation as synthesised by
Al-zoubi and Wainer (2013). We compare our solution with
the rest emphasising their strengths and weaknesses.

2.1 Ambient intelligence interoperability

Regarding representational state transfer (REST), its use in
resource constrained devices is a current trend defended by
the WoT initiative (Guinard, 2011). WoT proposes to
embed web servers in everyday things. These objects
expose their capabilities following the REST principles. In
this way, they fully integrate with the web. This has several
benefits:
 Availability of digital libraries and frameworks in most

of the existing computing platforms.
 Reuse of mechanism that have made the web truly

scalable. E.g., searching, caching, load-balancing or
indexing.

 The users can interact with the objects through a
familiar tool: the browser. They can browse or
bookmark them, share on social networks, etc.

 Direct integration with other web applications.

Tuple space (TS), also called space-based computing, is a
coordination paradigm based on the shared memory
approach (Gelernter, 1985). TS works with semi structured
data, which is accessed in an associative manner. Several

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 561

TS solutions have used semantics to enhance the shared data
(Khushraj et al., 2004). sTuples was conceived for scenarios
(Nixon et al., 2008). In sTuples, the clients access a
centralised space through a communication gateway. The
centralisation completely simplifies the solution, but makes
the whole system dependent on a single machine. Besides,
Otsopack (Gómez-Goiri et al., 2014), a lightweight
semantic framework for interoperable ambient intelligence
applications, avoids the need of gateways by requiring a
prominent protocol (i.e., HTTP) for the communication
between the nodes. TripCom (IST-4-027324-STP,
http://www.tripcom.org), a triple space communication,
distributes the space among different super-peers using
distributed hash tables. Specifically, it uses a hash function
over the subject, predicate, object and space URL to decide
where to store each triple. TripCom draws a clear
distinction between the clients, which consume data, and the
devices where the space resides. Otsopack also promotes the
direct communication between devices. In doing so, they
can access to the most updated data and manage their own
data. Finally, Smart-M3 (Honkola et al., 2010), an
information sharing platform, constitutes a remarkable
effort to bring the semantic space-based computing to many
different devices and protocols. To that end, it distinguishes
between two types of nodes: knowledge processors (KPs)
and semantic information brokers (SIBs). The SIBs manage
the space. The KPs are nodes accessing the space
information. The smart space access protocol (SSAP)
(Honkola et al., 2010), a Smart-M3 fully integrated
protocol, is used for the communication between both types
of nodes. The SSAP can be implemented on top of different
communication mechanisms. Although theoretically
possible, to the best of our knowledge no results have been
presented on the federation of two or more SIBs. This
makes the solution de facto centralised and also avoids the
definition of any new communication protocol. Instead, it
assumes that all the nodes will be able to work at
HTTP-level or have a gateway to do so on their behalf.
Thanks to that and to the prominence of libraries and tools
for this protocol the implementation on new platforms is
greatly simplified.

As was previously stated, our API is based on the TSC
paradigm. TSC is a TS variation where the information is
stored in RDF. Three key concepts (space, triples, graphs)
are important at this point: models share information in a
common space. A space is identified by a uniform resource
identifier (URI). Therefore, all the operations in TSC are
performed against a particular space. By default, all
simulation sessions connect to a common standard space,
but they can optionally choose to connect to a particular
private space. Within a space, the information is stored in
sets of triples called graphs. Each graph can also be
identified by an URI. The RDF triples are the underlying
concept of all the semantic web (SW) languages. Each triple
is composed by a subject (which is a URI), a predicate (also
a URI) and a value (which can be a URI or a literal). As
detailed later, the operations supported attempt to add or
remove graphs, as well as to query for graphs or for sets of

triples retrieved from different graphs. In order to perform
the queries, which enable the selection of a subset of the
semantic content hold in a given space, a template is
required.

We follow Otsopack to address these operations.
Gómez-Goiri et al. (2014) present further discussion about
knowledge distribution strategies.

2.2 Modelling and simulation interoperability

Mittal et al. (2007) present a test and development
environment using discrete event system specification
modelling language (DEVSML) and the SOA framework.
DEVSML is built on XML and provides model
interoperability among DEVS models hosted at remote
network addresses. The Client application that
communicates with multiple servers hosting DEVS
simulation services and the underlying SOA for DEVS
(SOADEVS) framework (Mittal et al., 2009). The authors
show how SOADEVS is positioned to address the need for
a Department of Defence Architecture Framework,
DoDAF-based net-centric paradigm (Mittal, 2006) for test
and evaluation at the system-of-systems and enterprise
systems levels. The SOADEVS framework provides the
needed feature of runtime composability of coupled systems
using the SOA framework. The integration of DEVSML
and SOADEVS is performed with the layout as shown in
Figure 2. The manner in which DEVSJAVA/DEVS-Suite
(ACIMS software site) models could be attained or
developed by client can be manifold. The models can be
created through natural language processing (NLP)
methods, raw java format, or BPMN/BPEL files. The
models rest with the client (Step 3, Figure 2). Once the
client has DEVSJAVA models, DEVSML server can be
used to integrate the client’s model with model available at
some other place on the web to get an enhanced integrated
DEVSML file that can reproduce DEVSJAVA model in
java format (Steps 4 and 5). The SOADEVS enabled server
can either take this integrated DEVSML file directly or can
ask the user to provide the top level coupled model through
the SOADEVS client application. Finally, the remote
simulation is conducted at various DEVS simulation
engines located over the web (Step 6) and be used for
simulation-based testing in a distributed environment.

Figure 2 DEVSML and SOADEVS integrated (see online
version for colours)

562 M. Mokaddem et al.

However, Mittal et al. (2007) provide only platform
interoperability that employs JAVA serialisation which
converts JAVA objects into byte array to send messages to
simulators. This restricts interoperation to simulators based
on JAVA. To add the language interoperability to the
platform interoperability, (Seo and Zeigler, 2009) apply
neutral message passing and the SOA environment. Their
interoperability on DEVS uses simulator level
interoperability that uses common simulator interfaces to
simulate DEVS models. The simulator interface describes a
minimum agreement being able to implement a simulator
class using different languages such as JAVA, C++, and C#.
Their approach strengthens model reusability because
DEVS modelling and simulation separates models and
simulators. To increase model composability, they apply a
new construct called the DEVS namespace which is a
specific XML namespace to define unique message types
used at DEVS models in the DEVS simulator services.
Integrating different DEVS simulators provides semantic
interoperability. The main contribution of their work was to
design and implement interoperable DEVS simulation
environment using SOA and DEVS namespace. The
interoperable DEVS simulation environment is categorised
to the design of DEVS simulator service and DEVS
simulator service integrator. The DEVS simulator service
provides not only simulator level interoperability, but also
model level interoperability. Also, through the DEVS
namespace, they can couple DEVS simulator services with
same message types. In an interoperable DEVS
environment, web services represent DEVS simulators
embedding specific DEVS models. They have minimum
agreement for simulator and information of input/output
ports which have specific data types described in DEVS
namespace (Seo, 2009).

In the Frontier design environment (Seo et al., 2012),
authors exploit the reconfigurability inherent in a SOA with
orchestration of the offered services to provide much greater
flexibility. Such flexibility allows users to flow through the
processing steps at will bypassing intervening steps if
appropriate. To do so, they use the System Entity Structure
which is a high-level ontology framework targeted to
modelling, simulation, systems design and data engineering.
SESs are pruned to pruned entity structures (PES) to be
transformed to executable simulation models. A constrained
natural language approach to pruning has been developed
that not only allows easy manual pruning but also enables
automated specification through input pruning scripts. This
capability provides a key element in achieving the
flexibility to adapt to user requirements. The family of PESs
generated from a single pruning script constitutes the
solution space. These PESs are encoded in XML, and with
the help of an XMLToOWL converter, stored in a common
data service. In this form, they are available on demand to
Frontier SOA services where all information exchanges
between services are mediated by a common data service
within a web services environment that supports a ‘semantic
bus’. However, a more flexible orchestration is required to
implement automatic invocation of modelling services.

Eventually an intelligent learning system can implement
such flexibility. However, initially Frontier must be seeded
with some criteria for selecting services and invoking them
in a particular order, with outputs from some services
passed as input to others. Because Frontier is a
semantics-based system, an OWL-based representation is
most appropriate. This representation will reside in the
common data service and implemented in TripleStore, thus
providing support for orchestrating services. To level up in
flexibility from a static OWL representation, intelligence is
provided to perform simple matching between the declared
capabilities of the basic Frontier services and the declared
needs (including values) of the user. Eventually, an
intelligent learning system can make better matches. The
easiest and most simple-minded form of matching will look
for explicit matches, i.e., equal values, between
corresponding attributes (OWL properties) of the frontier
services and the user requiring the services. Such matching
will, at first, be crude, but it will be more than syntactic
signature matching because the properties represent
semantic information about both the demand and supply
side. More advanced matching will involve dynamic
orchestration decisions, such as examining the results from
one service and inferring – at that point – whether they
should be passed to another service, or whether perhaps the
previous inputs should be passed to another service, etc.
Whether such learned rules and/or choices can themselves
be represented in OWL or must be kept in a sub-symbolic
neural representation is not yet clear; but in either case,
Frontier will provide the ability to adapt its orchestration of
service’s needs (Seo, 2012).

Zeigler et al. (2017) show that DEVS offers the ability,
via mathematical transformations called system morphisms,
to map a system expressed in a formalism suitable for
analysis (e.g., timed automata or hybrid automata) into the
DEVS formalism for the purpose of simulation. They
discuss a probabilistic extension of the Finite Deterministic
DEVS (FD-DEVS) (Mittal et al., 2007; Zeigler and
Sarjoughian, 2012) formalism that enables a set of model
classes and tools derived from Markov-type models. The
MS4 (MS4 Me, 2013; Seo et al., 2013) modelling
environment provides a suite of tools that support this
extension, called finite probabilistic DEVS (FP-DEVS).
This extension, also, is based on PROMELA models that
are expressed in a high-level abstraction which does not
consider explicit representation of time or events. But, the
efficiency of the processes of verification and validation
relies on the accuracy of the models. Yacoub et al. (2017)
worked to develop a new extension of PROMELA for the
modelling of discrete-event systems so that the verification
of these models is then done by combining formal
verification and simulation-based verification.

The implementation of Frontier Simulation Services is
based on the author’s extension of the open source ADEVS
environment to support simulation using Web Services. The
resulting environment, called ADEVS/SOA, allows ADEVS
coupled models to be executed on an open-source
Tomcat-based SOA platform. Due to the differences in the

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 563

underlying languages, C++ and Java, ADEVS/SOA (C++)
does not support dynamic instantiation of ADEVS models,
ADEVS/SOA (C++) does not support reflection functions
for Object classes’ variables, ADEVS/SOA does not
support dynamic creation of XML DEVS messages from
ADEVS messages, and ADEVS/SOA does not create
ADEVS Simulator Services with uploaded ADEVS models.
These limitations imply that work must be done in
individually tailored, rather than automated, fashion to
integrate an ADEVS model to execute on ADEVS/SOA. In
particular, simulation servers must be individually
provisioned with simulator services with pre-assigned
atomic models. In contrast in the DEVS/SOA environment
based on DEVSJAVA, atomic models can be downloaded
to generic simulation servers and locally compiled. Much
remains to be done including design and implementation of
the semantics-based orchestration and an automated
approach to mappings of the SES to incorporated
abstractions. Authors also need to go beyond to the current
pairing of models to populating the environment with
services and models to address a full range of applications
objectives. Their ontologies-based approach is
under-development consistent with the development of the
semantics-based data store discussed above (Seo, 2012).

Al-zoubi and Wainer (2013) present a better simulation
interoperability concept background and describes their
restful interoperability simulation environment (RISE)
middleware that fits within this concept. Their objectives
were to enhance interoperability by decoupling/hiding
implementations. They highlighted some guidelines to be
followed to a general Web-based middleware container.
Interoperability, as they stated, enables two or more
different software systems to interface and use each service
correctly (Tolk, 2010). The complexity of interoperability
arises when systems are heterogeneous, as in the case of
some distributed simulations. This is usually because
systems have been developed independently with different
semantics (i.e., the meaning of the exchanged information)
and/or syntactic (i.e., the rules of structuring and
exchanging the information). Since such capabilities are
realised in software design and implementation,
interoperability needs to be studied from the software
perspective, in particular, at the API level (since this is how
systems access and use other systems services).

Al-zoubi and Wainer (2013) presented RISE
middleware as a layered architecture where each layer
defines its interoperability methods and provides services to
the layer above it. Following this concept, RISE is
organised in the following layers: middleware, simulation,
and modelling. The middleware layer provides a number of
services to the simulation layer, such as all means of
communication and managing all simulation experiments
lifecycle and executions. The simulation layer deploys
different simulation environment types, each of which
supports its own time management. The modelling layer
operates above the simulation layer. This represents the
system under study, which is simulated by a specific
simulation environment. These RISE model layers match

other existing interoperability conceptual layers, particularly
the level of conceptual interoperability model (LCIM)
(Tolk, 2010). The LCIM interoperability layer deals with
the software implementation of interoperation, including
simulation and middleware. In RISE, this layer is presented
in two layers: middleware and simulation. The simulation
layer contains the simulation engine implementation
including simulation algorithms and formalism. This makes
the simulation implementation and algorithms independent
of the middleware layer. Thus, the simulation layer can have
different types of simulation implementations and
algorithms. The middleware layer provides management
and common interoperability services to the simulation
services in the upper layer. Al-zoubi and Wainer (2013)
argued that SOAP-based WS simulations group the services
as procedures in WS ports (addressed by a single URI).
Thus, simulation data is exchanged and described in the
form of procedure parameters while the data channels are
described as procedures. SOAP messages in XML
(describing RPCs) are not exchanged at the simulation level,
but at the Web service technology layer. This is the case for
all SOAP-based WS simulations such as (Seo, 2009). They
however, realised that it was not possible due to the
restrictions imposed by SOAP WS structural rules. For
example, they cannot decouple interoperated systems
implementations if the data channels (procedures) and the
way data is described (programming parameters) are part of
implementation itself. Composition scalability is complex if
every service (implemented as procedure) at the simulations
at the server side require stubs on each simulation client.
Thus, this interoperability approach is difficult to achieve in
open communities as in the case of the Web. This is because
in such communities practice, systems need to be designed,
implemented, and evolved independently. On the other
hand, the SOAP-based WS ports (along with their
procedures) had to be created and compiled before even
starting up the system. This approach usually ends in a close
community where software developers can discuss with
each other to resolve systems API related design issues. The
web services description language (WSDL) role is to
describe the RPCs signatures (i.e., names and input/output
parameters). However, once the published WSDL document
is compiled to programming stubs (usually by a tool),
programmers need to code those stubs and compile them
with their software.

Finally, they presented two tables summarising the
comparison of RISE to current interoperability approaches
(Table 1) and comparing current Web-based simulation
approaches (Table 2). Many references related to each case
are mentioned.

In RISE, all functionalities are hidden in resources,
named with URIs. Those resources (URIs) are connected to
each other via uniform virtual channels in which the
simulation synchronisation is done using XML messages.
Thus, the RESTful interoperability approach allows system
designers, to decompose the systems in components (i.e.,
called resources/URIs), and to hide the implementation
within those components, hence separating component

564 M. Mokaddem et al.

interfaces from software implementation. These
fundamentals were adapted by the RWS style, which was
adapted by the WWW, the largest open computing
environment. In contrast, existing simulation
interoperability approaches do the opposite to these
principles by following procedural programming style,
hence mixing systems implementation and interface. By
going against the Web, interoperability principles will
always cause serious difficult interoperability issues when
interoperating on the Web with other existing systems.
These issues became obvious during the current efforts on
standardisation of DEVS (Zeigler et al., 2000; Wainer et al.,
2008, 2010; Wainer, 2009). This standardisation effort is
aiming at interoperating various DEVS-based
implementations systems via the web (Wainer et al., 2010).

RISE is not a real SOA server-based solution since
uploading model to specified servers to perform simulation
is not a full or real SOA-based simulation. SOA means that
application (simulation) Servers hold services that are
orchestrated over the web. Services are hosted by the
servers not uploaded at runtime. So, the best solution is to
implement simulation servers that host their own models.
The Admin of the server develops updates and stores
models in digital libraries. In RISE, the semantics of all
synchronisation messages is described in XML.

On the other hand, how these messages are handled
during implementation is out of the protocol scope (i.e., one
does not need to be a programmer to design the
synchronisation algorithms). Therefore, semantics is
required to handle interoperability and synchronisation
during implementation. RWS must be implemented using
semantics to handle models.

Similarly, epidemiologists can develop epidemic models
for a wide variety of diseases in different formalisms and
store these models in digital libraries. These models are
ready to be used by communities, users have just to
integrate them through RWS in their own work. Therefore,
we have to develop models in a way that they can be
invoked by a RWS using java reflection. This RWS can
hold any model if this model has a standard specification
such as DEVS. All previously developed models in the
DEVS formalism (DEVSJAVA) will be conserved in the
server store as they are without any change. RWS is an
abstraction designed to call DEVS class methods using java
reflection Figure 3 shows a simple RWS algorithm. The
RWS first load the class model from the store. It obtains all
the model parameters. Each method, let it be deltaExt(),
deltaInt(), out() or the conf(), has its proper parameters that
differ from one model to another. So, the RWS asks the
model for each method parameters. It must obtain
parameters values from the TSC. Thus, these parameters
must be annotated semantically. Obtaining parameters, the
RWS passes them to the loaded class (DEVS model) and
asks it to perform its specific transition function according
to the events scheduling. In the TSC, information must be
semantically annotated. Especially, messages need to be
semantised, designed as graphs. Each RWS can easily find
all graphs (messages) destined to it. So, a RWS accesses the

TSC, looks for its input messages, performs its transitions
and generates semantically outputs (graphs) that it writes
back to the TSC. No direct communication between models
at the low level is used; communication is only through the
TSC and between RWS encapsulating models.

Figure 3 Algorithm of RWS model driving

3 DEVSSERVER principles

To deal with DEVSServer principles, let us consider two
coupled epidemic models AB and AC with atomic models
A, B and C according to DEVS formalism, Figure 4. Each
of A, via RWS. A is participating in two parallel simulation
sessions at the same time. AB and AC simulations are
sessions performed on separate servers by two different
clients (Figure 4). Servers store models in respective
EMDL. Each epidemic model consumes information from
its own EMDL (Silva et al., 2010). Thus, A, B and C are a
data mining-based model where a mining of some data is
applied to generate output (Barigou et al., 2010; Mokeddem
et al, 2013, 2015). Data are in the same EMDL as the model
using them. A and B are described with ontologies to allow
a modeller to link servers hosting these models while trying
to use each of them as sub-model of its own coupled model.
Many modellers may realise a coupled model conjointly.
AB, A and B and AC, A and C, respectively, represent
exchanged information as a standard ontology such as
friend of a friend (FOAF) to link models. This ontology is
designed as a shared space between these models.

In the example of Figure 4, two shared spaces are used
by the two sessions. In each shared space, models output
RDF triples to be added to the shared space. Models may
read triples into the shared space and perform their
transition functions. A is participating in the two sessions; it
uses the shared space according to the session. Finally, it
stores such ontology in the modeller’s server Triple Spaces.
Since Triple Spaces is used as shared space, this knowledge
is available for other servers using that shared space.

Another model (coordinator) may notify the other
models or users that there is a friend in this simulation
session or in this shared space. This coordinator may
populate the shared space with information produced by
these other models (Varela-Candamio and García-Álvarez,
2012). Prior to information retrieving, the coordinator

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 565

semantises the information according to the FOAF
ontology.

Figure 4 Simulation sessions with model sharing example
(see online version for colours)

Finally, it periodically looks into the space to check who is
friend of this model. Data mining-based model uses preview
data as follow: data are organised in a view from dataset
inside digital libraries. Each row of this view is an entity.
Many columns are properties of this entity. We apply
knowledge discovery from data (KDD) on these data to
extract rules that will be used by the model (Barigou et al.,
2010; Mokeddem et al., 2013, 2015). Therefore, a modeller
begins by applying KDD to discover knowledge that is used
to define transition functions of the model.

The interoperability is achieved when AC model, which
does not support the AB digital libraries, automatically
discovers a friend who is using the first model. This is
possible because both clients may share information in a
common space and use the same ontology.

A node, in DEVSServer architecture (Figure 5), is
composed of a repository, a Collector and a Mediator. The
Repository stores epidemic models, their datasets and
ontologies to characterise their semantic information.

The Mediator is a collection of web services that will
provide access to internal data and external sources, using
state-of-the-art semantic-web/grid technologies. The
Collector retrieves diseases models and their information
from publicly available DEVSServer servers.

Interfaces enable the admin of the server and the client
to perform Modelling and Simulation. Each node hosts its
own models developed by its Administrators. Models are
kept in a NoSQL database to ensure a quick search of
models and to deal with semantics inside models’

description for a machine adequate use. A node makes use
of the TSC paradigm to establish communication between
models during simulation.

A simulation is performed by many mediators
(coordinators) and RWS each one handling specific models.
Many nodes interact to perform a distributed simulation
execution.

In this section, we detail how models are hosted by
DEVSServer and how TSC is used to perform an SOA
simulation. Models read inputs and write outputs to the TSC
parameterised by the client (DEVS modeller). Two
subsections are detailed. The 1st one concerns the admin of
the server and the 2nd one the client part. The admin of the
server is responsible to add, update or delete models from
the server. Any client can perform a simulation while using
the models stored in the server. Let us see these two tasks in
detail involving the mediator, the repository and the
collector. This DEVSServer workflow and visual approaches,
in addition to service-oriented architecture and web services
fall down in a computational thinking when developing
complex systems as described in Chen (2018).

3.1 The admin tasks
Figure 5, inside the two red squares, depicts the diagram of
the Admin operations on the server. The configuration of
the server consists of adding and updating users and models.
Models need to be described with semantics to let machines
(other DEVSServer) use them adequately. Semantic is
conceived with RDF triples. The semantic of each function
must consider parameters of the model and the way they are
utilised. A model is described as an RDF graph to be easily
added to the NoSQL store. Such graph can be also
converted to ontology. Figure 6 shows some RDF triples
depicting the graph of a DEVS TB (tuberculosis). TB is the
RDF subject, arrows define the RDF predicates, and
helicoids are objects.

hasType, hasOwner, hasInPort, hasCreationDate,
hasJavaClass, hasInitialise, hasDeltaExt, etc. are some TB
predicates. AtomicModel, Mokaddem, 12/02/2016,
parameter, etc. are some objects that may be used as new
subjects to build a graph. Each model owns its functions
such as initialise(), deltaExt(), deltaInt(), out() and the
conf(). The initialise() function lets the model perform its
initialisation. Such initialisation concerns the time and the
states of the model.deltaExt() transition function concerns
the action to be performed when some inputs X1, X2; etc.
are received.

566 M. Mokaddem et al.

Figure 5 DEVSServer architecture (see online version for colours)

Let us notice that the inputs number differs from a model to
another. deltaInt() transition function deals with the inside
states change. The out() function generates the outputs of
the model. The predicate <u:hasJavaClass> refers to the
java code that will be loaded by the RWS by java reflection.
That means when calling a RWS handling any model to
initialise itself then the RWS just does a java reflection to
call at runtime the initialise() method of this java class
included in this code. This class is inserted as a large object
binary (LOB) in the NoSQL store. So, the related RWS
must first load this class from the store then use it by
reflection (Appendix A). A description of the model in
natural language may also help understanding the model
behaviour. The RWS always reads/writes from/to TSC.

When an event occurs, the RWS detects the event type.
If the event is an internal event, the RWS ensures that all
parameters are ready to invoke the model deltaInt()
transition. It does so for the external and initialisation
events. The RWS looks like the driver of the model.
insertModel(), deleteModel(), getModel() are some admin
methods to insert, delete and load a model from the store.
The readModelClass() is used by getModel() to load the
java class (DEVSJAVA) of the model. The WSDeltaExt()
performs a deltaExt() reflection and so on.

3.2 The client tasks

Figure 5, within the two green squares also, shows a client
loop, depicting the steps followed by a client in a simulation

session. A client may simulate an atomic or a coupled
model. A coupled model execution is more complex.

In the following, we show the two executions
respectively, commenting Figure 5 for each case.

Figure 6 Graph model of a DEVS TB example (see online
version for colours)

3.2.1 Atomic model execution

A client starts by selecting a model (atomic), no coupling is
needed, only the interaction with the client interface (CI).
This selection is performed as a natural language search.

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 567

Figure 7 A coupled model execution within three distant servers (see online version for colours)

The CI invokes the mediator which performs the search by
starting its repository. The repository returns the URLs of
the RWS handling the requested model which may be
remote. The mediator passes these URLs to its collector
which invokes the local/remote RWS to extract the
requested model RDF graphs. The mediator places these
graphs in the TSC and allows the client to query it
(SPARQL). The client can ask for the input/output ports, the
owner, a short description, etc. Finally, he chooses one from
the listed models. The mediator updates the TSC by deleting
the unneeded models and adding the full information of the
selected one as inserted by the admin (Figure 3). Since there
is no coupling, the client can initialise parameters and start
simulation. The mediator adds these parameters to the TSC
and invokes the RWS to perform its simulation.

The RWS will follow a standard DEVS simulation of
atomic model, according to Figures 3 and 7, but intelligently
since it reads/writes from/to TSC and checks transition
functions parameters.

Before requesting any step or any transition function, it
looks for its parameters and adds appropriate triples to allow
a significant and correct run. For each output, out() result, it
semantises its results before inserting in the TSC. The
Mediator sends this information to the CI for visualisation.
This simulation driving is given in Figure 3.

The contents available on a node (DEVSServer) are
completely browsable. The list of spaces a node is joined to
are available under /diseases (e.g., Epidemic Modelling
case). Each space is identified by an URI (e.g., http://
diseases/diseaseName). All the resources of that space are
listed under http://diseases/diseaseName/{space_uri}. For
example, the graph related to the TB deltaExt() is available
on http://diseases/TB/DeltaExt_TB, and its TSC is available
at http://diseases/TB/TSC. After loading the TB in its TSC,
deltaExt() becomes available at http://diseases/TB/
TSC/DeltaExt_TB. If we make an HTTP DELETE to that

resource, we will be taking that graph from the space (TSC
respectively). Let sp denotes a space URI (http://diseases), g
a graph URI, s, p and o-uri subject, predicate and object,
then some HTTP requests are as follow:

GET {sp}/graphs/{?g} returns the graph {g}.
GET {sp}/graphs/{?g}/{s}/{p}/{o-uri} returns the graph of all
triples such that the subject is {s}, the predicate is {p} and the
object is {o-uri}.
GET {sp}/graphs/{?g}/{s}/{p}/{o-type}/{o-val} returns the
graph of all triples such that the subject is {s}, the predicate is
{p} and the object type is {o-val}.
DELETE {sp}/graphs/{g} returns the deleted graph {g}.
DELETE {sp}/graphs/{g}/{s}/{p}/{o-uri} deletes all triples
from {g}such that the subject is {s}, the predicate is {p} and the
object is {o-uri} then returns the deleted triples as graph.
DELETE {sp}/graphs/{g}/{s}/{p}/{o-type}/{o-val} same as
previous but with object type.
PUT {sp}/graphs/{g}/{s}/{p}/{o-uri} adds the triple (s, p, o-
uri) to the graph g.
PUT {sp}/graphs/{g}/{g’} adds the sub-graph g’ to the graph g.

TSC provides some primitives to access to the semantic
information hold in each graph as follows:

writeToTSC (space_URI, graph_URI) : URI
writeToTSC (space_URI, triple) : URI
readFromTSC (space_URI, graph_URI) : graph
readFromTSC(space_URI, query_parameters) : graph
takeFromTSC (space_URI, graph_URI) : graph
takeFromTSC (space_URI, query_parameters) : graph

The writeToTSC() primitive allows writing a graph/triple
into a given graph (identified by its URI). It uses the
previous HTTP PUT requests. It returns the URI of the
updated graph. The readFromTSC() returns a graph

568 M. Mokaddem et al.

belonging to a given space which contains at least a triple
matching the query parameters or has the given URI as its
identifier. It should be remarked that it has been designed as
a non-blocking operation. It uses the previous HTTP GET
requests. The takeFromTSC() primitive behaves like a
destructive read, deleting the graph returned from the space.
It uses the previous HTTP DELETE requests.

Since all the resources of that space are listed under
http://sp/modelName/{space_uri}, we can discover the
http://sp/modelName/DeltaExt graph that contains available
and semantised data associated to the deltaExt() transition.
If the TSC is containing the following information for 2
models A and B:

<A> <hasDeltaExt> <sp:A/DeltaExt>
 <hasDeltaExt> <sp:B/DeltaExt>
<sp:A/DeltaExt><hasInputParameter><sp:A/DeltaExt/inport1>
<sp:A/DeltaExt><hasInputParameter><sp:A/DeltaExt/inport2>
<sp:A/DeltaExt><hasOutputParameter><sp:A/DeltaExt/outport1>
<sp:A/DeltaExt><hasOutputParameter><sp:A/DeltaExt/outport2>
<sp:A/DeltaExt/inport1><hasType> <u:message>
<sp:A/DeltaExt/inport2><hasType> <u:int>
<sp:A/DeltaExt/outport1><hasType> <u:double>
<sp:A/DeltaExt/outport2><hasType> <u:float>
<sp:A/DeltaExt/inport1><hasValue> value_of_parameter (data)
<sp:A/DeltaExt/inport2><hasValue> value_of_parameter (data)
<sp:A/DeltaExt/outport1><hasValue> value_of_parameter (data)
<sp:A/DeltaExt/outport2><hasValue> value_of_parameter (data)

<sp:B/DeltaExt><hasInputParameter><sp:B/DeltaExt/inport1>
<sp:B/DeltaExt><hasOutputParameter><sp:B/DeltaExt/outport1>
<sp:B/DeltaExt/inport1><hasType> <u:message>
<sp:B/DeltaExt/outport1><hasType> <u:double>
<sp:B/DeltaExt/inport1><hasValue> value_of_parameter (data)
<sp:B/DeltaExt/outport1><hasValue> value_of_parameter (data)

<A> <hasEvents> <sp:A/Events>
 <hasEvents> <sp:B/Events>
<sp:A/Events><hasEvent> <sp:A/Events/event1>
<sp:A/Events><hasEvent> <sp:A/Events/event2>
<sp:A/Events/event1><hasType> done
<sp:A/Events/event1><hasTime><t:time1>
<sp:A/Events/event1><hasPort> none
<t:time1><hasValue> 08:10:10:20
<sp:A/Events/event2><hasType> ext
<sp:A/Events/event2><hasTime> <t:time2>
<sp:A/Events/event2><hasPort><sp:A/DeltaExt/inport2>
<t:time2><hasValue> 08:10:10:40

To handle an external event, the RWS previously calls its
WSDeltaExt() method which calls the readFromTSC(sp:A,
sp:A/DeltaExt) to get the sub-graph sp:A/DeltaExt which
contains related parameters. Now, the RWS knows that A

has two input parameters and two other output parameters.
Before invoking the java class deltaExt() method, the RWS
get respectively the parameters values using:

readFromTSC(sp:A/DeltaExt/import1,<sp:A/DeltaExt/i
mport1> <hasValue> {?o})

for the 1st parameter and so on. Parameters passing is now
ready.

To compute its next event, the RWS invokes:
readFromTSC(sp:A/Events,{?s}<hasTime>{?t},{?t}

<hasValue>{?o})

which returns all the remaining events times and the RWS
takes the minimum. This event is event_tN. When the
simulation time is equal to tN (next event time), the RWS
calls takeFromTSC(sp:A/Events, sp:A/Events/event_tN) to
remove event_tN from the graph sp:A/Events and calls
delta!ext() to consume it. RWS do so for each occurring
event.

Space management requires some additional primitives
to join or leave a space using joinSpace(space_URI) or
leaveSpace(space_URI). The query query(space_URI,
query_pameters) aims to see the space as a whole
triplestore, returning all the triples matching the given
request.

The Mediator which may play the role of the
coordinator of some coupled model begins by creating a
new TSC using createTSC(). Then, the Mediator finds the
user defined model and add its graph to the TSC graph. This
is done with query(space_URI, graph_of_model) and
writeToTSC(graph_TSC, graph_of_model). The mediator
asks the model to join the TSC using
joinSpace(graph_TSC). Now the RWS performs its
simulation according the parameters initialisation provided
by the user through its CI.

3.2.2 Coupled model execution

When a coupled model is invoked, this means that each
atomic model involved must execute and synchronise itself
with respect to the coupling rules. Only RWS supervising
the models have to communicate and synchronise and each
RWS routes the request to its own model. Figure 7 depicts
two Client sessions. The 1st one runs the AB coupled model
and the 2nd the AC one. Each user uses a CI to connect. He
calibrates his simulation using the simulation interface (SI)
implemented as a Session Bean. Once a simulation starts,
each Mediator creates a TSC and inserts the simulation
parameters. These parameters involve the atomic models,
the coupling information and the initialisation conditions.
Now, RWS can join and read/write from/to TSC until the
simulation ends. According to TSC events, the SI picks and
sends to CI intermediate results for visualisation. Coupling
rules are RDF triples added by the Mediator once the client
finished his simulation configuration. These rules can be
obtained according to the model ontology.

Figure 8 is a very simple example of coupling between
AB, A, and B where in1 of AB is coupled to in2 of A, out1
of A is coupled to in3 of B, and out2 of B is coupled to out3

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 569

of AB. This is specified by the <u:isCoupledTo> predicate
as follows:

<u: A> <u: hasInPort> <u: in2>.
<u: A> <u: hasOutPort> <u: out2>.
<u: B> <u: hasInPort> <u: in3>.
<u: B> <u: hasOutPort> <u: out2>.
<u: AB> <u:hasInPort> <u:in1>.
<u: AB> <u: hasOutPort> <u:out3>.
<u:in1> <u: isCoupledTo> <u:in2>.
<u:out1> <u: isCoupledTo> <u:in3>.
<u:out2> <u: isCoupledTo> <u:out3>.

Figure 8 A coupling examples

Since the RWS driving the model has the same
functionalities as the driven model, the RWS may read
semantics of each transition function before invoking it to
synchronise itself within the simulation. The
synchronisation is also designed as triples. Each model has
and can compute its TL and TN times of its last and next
events with respect to TNOW the current simulation time.
When any transition function is invoked, the RWS checks if
necessary parameters are already computed. Though, a
model B can now know by reading the TSC that a model A
must product its output at a specified time and write it in the
TSC. If B does not find A output, it must wait until its
arriving before running its deltaExt(). This is described by
the semantic of the out() of A. According to a disease
spread, Epidemic Modelling can predict the next infected
contact time which is reported in the TSC.

The triple <u:A> <u:hasOutPort1NextTime> <u: value>
specifies that A will produce its next output on OutPort1 at
time equals value. The log of the events times is recorded in
the TSC until the end of the simulation session. The next
times of OutPorts events are also reported according to
TNOW.

4 Ambient intelligence adaptation

Nowadays constrained devices such as smartphones are
furnished with global positioning system (GPS). Free
Android/iOS applications can record contact locations in
data stores (NoSQL) using RWS. In the same way, other
health data, temperature, blood pressure, etc. can be
captured and recorded. These data may drive real-time
simulation.

IoT is a general concept that can be interpreted in
different contexts. Different protocols and standards can be
used for the communication between the devices and the
Internet. As described in this paper, IoT connects to Internet
through Internet protocols, such as HTTP, TCP and IP. The
data received from IoT is represented as Web data in forms
such as HTML, JSON, XML, and URI. This data is then

organised into ontology presented in RDF graphs, for
storing, analysing, and reasoning. The data is typically
processed in service-oriented and Web-based computing
environment. Repository, Mediator and Collector help
reduce RDF graphs handling and complexity and play a
main role in the tasks scheduling since related tasks are
scheduled in groups and are running simultaneously. At this
end, the IoT and its data are fully integrated into the Web
and the virtual world. A convenient way of programming
the IoT devices is critical to the success of the current
organisation stack, which allows the massive proliferation
of applications (Chen, 2016). Neto et al. (2017) presented a
study on the use of industrial internet of things (IIoT)
currently in industry context, its basic differences from IoT
and its expansion possibilities pointing out some challenges
related to a new approach within the industry. They argue
that the complex interconnection which is made possible
through the IIoT is able to optimise resources and reduce
exponentially the costs of production processes in most
stages and is gradually changing the direction of society in
labour relations. Their advances in manufacturing processes
are feasible as the internet of things is not simply inserting
intelligence in equipment, but allowing interconnection,
reconfiguring functions and anticipating loss of productivity
or failures that might occur in real-time. Within this context,
the IIoT can be understood as a broad and complex concept
that encompasses asset and performance management areas,
availability of increased data and intelligent corporate.
Brozek and Jakes (2017) presented a study that addresses
the potential of using mobile devices in a distributed
simulation. The study also focused on the possibility of
applying the various technologies and architectures in
context of using mobile devices in simulation. Lamamra
et al. (2018) presented an acquisition and processing of
coded data from temperature sensors used in radiotherapy
rooms of the Hospital Pierre and Marie Curie Centre
(PMCC). Their aim was to acquire and check remotely the
temperatures of rooms to trigger alarms and their control
thereafter in order to avoid mistakes of manipulation which
are deadly for patients if they happen or arise. Their system
modelling was made before proceeding to the
implementation in practice using an artificial neural network
to acquire and decrypt the temperature data received from
the sensors placed in the treatment rooms.

DEVSServer can be considered as an autonomous
decentralised system (ADS) that enables the system to
continue to function in the event of component failures.

The mathematical modelling of infectious disease
spreading has been extensively studied for a long time
(Hethcote, 2000). A lot of epidemic models, such as the
compartmental models that are composed of differential
equations, have been developed and analysed (Hethcote,
2000; Xiao et al., 2011). The population is divided into
different compartments and each compartment corresponds
to an epidemiological state which depends on the
characteristics of the particular disease being modelled and
its transmission over complex heterogeneous networks
where a node is an individual and an edge stands for

570 M. Mokaddem et al.

interaction between nodes allowing disease transmission
(Hethcote, 2000; Pastor-Satorras and Vespignani, 2001;
Moreno et al., 2002; Olinky and Stone, 2004; Liu and Hu,
2005; Yang et al., 2007; Zhang et al., 2009; Liu and Zhang,
2011; Xiao et al., 2011; Zhang et al., 2011, 2012). It is
shown that the SIS (Barabási and Albert, 1999) and the SIR
(Moreno et al., 2002) models indicated that the connectivity
fluctuations of the network play a major role by strongly
enhancing the incidence of infection. To deal with these
connectivity fluctuations, AmI capabilities are provided.

Spreading processes are strongly interacting with huge
flow of quantitative social, demographic and behavioural
data that may be used to improve the immunisation strategy.
The topology of the pattern of contacts between individuals
plays a fundamental role in determining the spreading
patterns of epidemic processes embedding the mechanism
of diverse infection periods and is an impact on the
properties of the dynamical behaviours of the spreading
process. The existing immunisation strategies are limited by
their computational requirements and still have the problem
of scaling in large networks. Optimal immunisation
strategies shed light on how the role and importance of
nodes depend on their properties and can yield importance
rankings of nodes.

Contacts positions, social and environment information
are dynamically and periodically gathered by devices before
applying any strategy. The simulated strategy detects the
appropriate contacts once running on DEVSServer. Contacts
on constrained devices are dynamically advised to avoid a
critical and unsafe location as a prediction due to AmI
servers’ simulation. Contacts can move safely avoiding
disease contamination. Notification, data gathering and
geographical visualisation applications for mobile are part
of the platform and may be installed on contacts constrained
devices. Typical information on disease can also be
visualised and critical regions coloured on a map (admin
and CI of Figure 5). Parallel diseases surveillance is
captured so that contacts related to a specific disease are
advised with their disease state.

5 Epidemic modelling

We consider a typical network (Figure 9). Nodes represent
different individuals of a real system and links represent the
connection between nodes. A connection is designed as a
set of routes intersections. A route is the sequence of visited
positions by each node of the network. Routes intersection
design a pair of participating individuals which were in
face-to-face close proximity (≈1–2m), with a temporal
resolution of 20 s inside the radius of a designed area. Since
the mobility of individuals can play an important role in the
epidemic spreading process, we must gather such
information using AmI devices. From AmI technological
advances, we are now in a position to gather data describing
the contacts in groups of individuals at several temporal and

spatial scales and resolutions. Contacts are connected to the
system via Smartphones with GPS and Health Sensors.
Figure 9 shows the relation between contacts and their
respective stores. Some contacts are stored in 4 SEMEPs
stores (SEMEP A, B, C, and D). A city like Mostaganem
has four SEMEPs. For example, a contact X from
Mostaganem District is vaccinated at SEMEP A and
SEMEP B with some vaccines, and he is vaccinated with
many other vaccines at SEMEP C. He has been admitted in
a public hospital of another city, reported in SEMEP D. To
gather X information, we have to connect to the SEMEPs A,
B, C, and D, in a distributed and parallel manner. Moves of
individuals are also captured in their respective stores
(Figure 9).

Figure 9 Global network dispatching (see online version
for colours)

We must investigate the network dynamics affected by
individual diversity of susceptibility and infectivity that may
be caused by individuals’ intrinsic differences that may lead
in infections periods. For each node i, τi(t) and ίi(t)
correspond to its contamination and immunity degrees and
Տi(t) is its state. To address the heterogeneous connectivity,
we measure these two important degrees τi(t) and ίi(t). The
state Տi(t) may be susceptible ‘S’, infected ‘I’, recovered ‘R’
to correspond to a SIR model (Figure 9, blue =‘S’, red =‘I’,
green=‘R’) in widely held situations. Since it is computed
dynamically, we can adopt any other model SI, SIS or SEIR
(Liu and Zhang, 2011) as the Tuberculosis model below.
We compute dynamically τ(t), the disease contamination
threshold, and ί(t), its immunisation threshold. τi(t)>τ(t)
means the contamination of i is strong otherwise it is weak
and ίi(t) < ί(t) means i has a weak immunity otherwise it is
strong. When a contact occurs between i and j, if τi(t) is
strong, then j is strongly affected and if τi(t) is weak then j is
weakly affected. A strong immunity means a susceptible
individual will not be infected but his immunity degree will
decrease and a weak immunity means a susceptible
individual will be infected resulting in a state change. Each
disease is associated to rules that change dynamically the
states and the degrees of its related individuals and its
thresholds.

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 571

Figure 10 The fitness computation

Table 1 Data of Mostaganem City corresponding to 2015 used in simulations

 Masculine Feminine Individuals Percentage

Total population 445,992 (50.21) 442,262 (49.79) 888,254 -
Urban population 203,551 201,848 405,399 45.64 %
2nd urban population 61,235 60,722 121,957 13.73 %
Sparse population 181,207 179,691 360,898 40.63%
Population <= 5 years old 49,170 47,495 96,655 10.88%
Population 6-19 years old 104,501 102,249 206,750 24.77%
Population 19 - 59 years old 264,790 262,420 527,210 63.17%
Population > 60 years old 27,635 29,992 57,627 6.90%
Detected cases of TB* 303 0.2%
Estimation of infected individuals * 413 0.3%
Cavitation forms* 104 34.32%
Detected cases of HIV* 3 0.99%
Risk factors* - 65.4%
Total annual mortality* - 0.03%
Negative Treatment* - 0.1%
Failed Treatment* - 0.2%
Relapsed* 12 3.96%
Treatment abandonment rate* - 1.2%
Diagnosis delay (days) 48 -

Notes: All percentages are with respect to the total population of Mostaganem, except (*) which is with respect to the total
number of TB patients of Mostaganem district.

572 M. Mokaddem et al.

Table 2 Population repartition of Mostaganem district according to age range

DISTRICT
0–5 years 6–19 years 16–59 years 60 years and + Total

M F M F M F M F M F

MOSTAGANEM 9,141 8,754 18,211 17,891 49,610 51,083 5,640 7,184 78,055 80,391

For example, if τi(t) > τ(t) and ίi(t) < ί(t) and Տi(t) = ‘S’ then
Տi(t) = ‘I’. Some rules change the thresholds values of τ(t)
and ί(t). Some rules compute the values of τi(t), ίi(t) for each
node i. These degrees depend of environmental, social and
health data like sex, age, weight, climate, humidity, etc.
Data mining tools help discretise these data more
efficiently. Figure 10 is a set of some rules related to
Tuberculosis. The periodic change of temperature, humidity
profiles, or even the succession of school terms and
holidays, can lead to periodic phenomena of epidemics and
affect these degrees. Some mutated viruses propagate again,
rendering a new epidemic outbreak. This process occurs
repeatedly; the immunisation strategy needs to handle this
phenomenon to give a better description of these seasonal
epidemics.

We follow Montañola-Sales et al. (2015) and Prats et al.
(2016) to consider a typical tuberculosis case study inside
Mostaganem Virtual City. Tables 1 and 2 give some related
data to Tuberculosis in Mostaganem. This model is based
on general knowledge about the natural history of
tuberculosis gathered from the previous SEMEPs stores as
RDF graph. There are two essential characteristics of TB
that must be taken into account in any epidemiological
model. On the one hand, an infected individual does not
necessarily develop an active disease. On average, only
10% of infected people become ill. Moreover, a person
remains infected for a long time and may develop active
tuberculosis after several years. Infected people are usually
not diagnosed. On the other hand, only an ill individual can
disseminate the infection. The infection rate increases if the
patient has TB with cavitation. Once an individual is
diagnosed with TB, the pharmaceutical treatment lasts six
months. Once the treatment is finished, the possibility of
getting sick again remains at 1% for two years post-
diagnosis (Zhang et al., 2011, 2012).

Once infected, the individual may develop active TB
according to a certain annual probability that decreases with
infection time following a quadratic during the seven years’
post-infection. It is neglected for the subsequent years (t > 7
years). The discrete time step of one day is assumed, as
mentioned. Since simulation time does not cover periods
longer than ten years, the approximation is good enough.
This probability has a ten-fold increase for
immunosuppressed people, and it is multiplied by a factor
of 1.5 if there are other risk factors. The chance of
becoming an individual ill with TB is evaluated at each time
step for all infected persons. Globally, the average of 10%
of the infected developing an active disease is satisfied. The
possibility of relapse (getting sick again) for recovered
patients is also evaluated daily according to the individual
relapse probability. Once an individual gets sick, the disease
time counter starts running until the assigned individual

diagnosis time is reached. If the disease is developed, then
the individual enters the sick state. In this state, the agent
not only presents symptoms but also becomes infectious
(that is, can spread the tuberculosis among healthy or
treated people). This state considers the time since the
disease became active, whether the lesions include cavitated
tissue, and the number of days that will pass until the
individual is diagnosed (diagnosis time delay).

Each individual has a particular diagnosis time that is
randomly assigned when becoming ill, following a
truncated exponential with mean diagnosis delay (MDD) of
45 days. Once diagnosed, the agent enters the medical
treatment state and stops spreading TB. The treatment state
accounts for the number of days since the treatment started
and finishes in 180 days. There is a certain probability that
an individual may abandon the treatment before finishing it.
This possibility is evaluated at every time step for each
patient under treatment, according to the input abandonment
probability. If an individual abandons the treatment during
the initial 15 days post-diagnosis, the patient becomes sick
again. If the patient abandons the treatment after 15 to 180
days post-diagnosis, then he or she is considered to be
recovered but with a certain probability of relapse the
following two years. This probability is considered to
linearly decrease from 100% at 15-day abandonment to 1%
at the 180-day treatment period.

The basic entities of the model are individuals. We
consider five possible states according to TB infection
dynamics: healthy, infected, ill (i.e., with active TB), under
treatment and recovered. The state variables of the
individuals refer mainly to their status in the infection cycle
as well as the time spent in such phases and individual
diagnosis time when ill.

Other individual state variables and parameters are age,
weight, itinerancy, possible risk factors (e.g., smoking), and
possible immunosuppression (mainly AIDS). Once a person
is infected, the presence (or not) of pulmonary cavitation is
also considered.

We used individuals’ dataset with the following
attributes to compute the fitness function (Figure 10) that
defines the immunity ίi(t) and contamination τi(t) degrees
and the state Տi(t) of an individual. These attributes are:
weight, age, smoking, alcoholism, HIV, corticoid therapy,
previous TB, itinerancy, physical activity, We used
individuals’ dataset with the following attributes to compute
the fitness function (Figure 10) that defines the immunity
ίi(t) and contamination τi(t) degrees and the state Տi(t) of an
individual. These attributes are: weight, age, smoking,
alcoholism, HIV, corticoid therapy, previous TB, itinerancy,
physical activity, injecting drug user (IDU), chronic stress,
diabetes, cancer, social level, malnutrition, immunity

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 573

degree, contamination degree, and state. Some initial
conditions are initialised at the beginning of simulation.

Data shown in Tables 1 and 2 are used to generate the
initial population of the Virtual City of Mostaganem
(Figure 1). Number of healthy, infected, sick, under
treatment and recovered individuals; MDD; mean treatment
abandonment rate; and individuals with risk factors and
with AIDS. Some other initial variables were assigned
randomly: individual age, weight, and time spent in the
infection state (Zhang et al., 2011, 2012).

The time step is set to one day, and the simulation may
cover up to a period of one or more years. A healthy
individual is assumed to not have any bacteria in his
organism and therefore is not able to infect others as well as
not presenting symptoms. Generally, this individual can be
seen as a person that does not smoke, not drink, not having
caught a previous TB, performing a sport, not having any
form of stress, having a healthy home with high social level
(job + vacation, etc.), not having used corticoids, having a
stable eating and sleeping regimes, with no diabetes or
cancer or HIV. On the other side, a risky individual may
have some disturbance in some of these factors. However,
common properties such (age, weight, itinerancy, risk
factors, diabetes and previous TB) must be well suited if
randomly generated.

Individuals may get infected with TB by their close
contacts. This depends on the type of TB disease that the
sick person has either cavitated or non-cavitated. A
cavitation is considered to double the infection probability.
These probabilities are fixed to reproduce the ratios of ten
infections/cavitated TB sick and five infections/
non-cavitated TB sick in 60 days. Once infected, an
individual may develop active TB according to a certain
annual probability that decreases with infection time
following a quadratic during the seven years’ postinfection.
It is neglected for the subsequent years (t > 7 years). Since
simulation time does not cover periods longer than ten
years, the approximation is good enough. This probability
has a ten-fold increase for immunosuppressed people, and it
is multiplied by a factor of 1.5 if there are other risk factors.
The chance of becoming an individual ill with TB is
evaluated at each time step for all infected persons.
Globally, the average of 10% of the infected developing an
active disease is satisfied. The possibility of relapse (getting
sick again) for recovered patients is also evaluated daily
according to the individual relapse probability. Once an
individual gets sick, the disease time counter starts running
until the assigned individual diagnosis time is reached (Prats
et al., 2016). To deal with the previous assumptions, we
define a chromosome with risk factors as follows:

60 77 0.3 0.8 15 10 0 0 1 1 0 1 0 1 0

The used risk factors are respectively: age, weight, social
level, malnutrition, smoking, alcoholism, itinerancy, IDU,
previous TB, physical activity, corticoid therapy, chronic
stress, HIV, diabetes, and cancer (composing rules of fitness
in Figure 10). This individual is 60 years old, 77 kg, a poor
man, with high malnutrition, smoking 15 cigarettes/day,

drinking 10 litres/month, with no itinerancy, no drug user,
previous TB, sport practice, no corticoid experience, no
stress, with diabetes and no cancer.

A contamination is no more than a crossover between
chromosomes of individuals in contacts. We compare these
chromosomes gene by gene. If the respective genes are
close, we move to the next. Otherwise, we use this gene as
the crossover point and apply a permutation between the
remaining genes as shown below.

In the example below, we assume all genes differences
in the interval [0, 5]. A max of five years for the age is not
significant, so 1st genes (ages) are close since (|32–29| ≤ 5).
Also, weights (|48–56| ≤ 5) are close. A social level equal to
0.3 or 0.8 means that the 1st person is poor and the 2nd one
is, may be, rich. The same thing for malnutrition for the
values 0.8 (high malnutrition) or 0.4 (almost healthy). We,
also, assume that a difference of more than five cigarettes
(|12–5| ≥ 5) is important and produces a crossover. The cut
is at smoking genes.

According to these values and the rules of Figure 10, the 1st
and the 2nd persons have an immunity degree = 0.2 (0.8)
and a state = ‘Infected’ (‘Susceptible’) respectively.

After applying a crossover, a permutation occurs as
follow:

This scenario means that a behaviour contamination
occurred, in other words these individuals became friends
and changed habits (behaviours). If one of them was a
smoker or a drinker, then the second has taken this habit and
became also a smoker or a drinker.

Since some values such as previous TB, diabetes, etc.
cannot change, a mutation must be performed on the initial
chromosome, according to the last result concerning each
chromosome. Only, the genes in red squares, below, are
may change.

1st individual result

2nd individual result

574 M. Mokaddem et al.

The first individual does not change his weight, nor his
social level, nor his malnutrition, but his smoking and his
drinking have decreased. He gets a home. He still has a
previous TB, he starts playing physical activity. He stops
taking corticoid. He has now no stress.

The second individual does not change his weight, nor
his social level, nor his malnutrition, but his smoking and
his drinking have increased. He loses his home. He still has
not a previous TB, he stops playing physical activity. He
starts taking corticoid. He has now a stress.

According to these new values and the rules of
Figure 10, the immunity degree and the health state become
respectively for the two persons 0.7 (0.5) and ‘recovered’
(‘Ill’) respectively. So, we can see that the first individual
grants from an immunity degree of 0.2 to 0.7 and from a
state of ‘Infected’ to ‘Recovered’, only after changing his
residence, taking a treatment, and moving to a new best
neighbourhood. On the other side, the second individual
which had an immunity degree of 0.8 and a state
‘Susceptible’ is got decreased to an immunity degree of 0.5
and becomes ‘Ill’.

These changes take effect over many years, by starting
with low/high values and increasing/decreasing to new
values. This risk factors effect is straightforward.

To apply crossover and mutation, let us consider that a
district is a set of individuals in the same neighbourhood.
The within individuals are permanently changing
behaviours over chromosomes crossovers and mutations.
We define a district chromosome which is the mean
chromosome of the chromosomes of individuals of the same
district. This mean chromosome is updated dynamically. It
shows the state of the district. It gives a quick idea on the
effects of the related disease. It shows, also, if a district is a
poor or rich district, a district of delinquents, and so on.
When a new individual is introduced in such district for a
long time, he performs, periodically, a crossover with this
mean chromosome which changes instantly. His
chromosome changes slowly until he became a delinquent, a
rich or a poor.

The set of RDF triples of any contact defines his RDF
graph (his ontology). This ontology includes his previous
vaccinations, nurses, centres, virus related to vaccinations,
weights, heights, type of home including humidity, climate,
temperature, pressure, etc. These data are required to
compute an individual’s immunity and contamination
degrees and disease thresholds. Some of these data are
temporal, which means that they are not significant after a
deadline time. We need to collect the network topology and
its knowledge to apply efficient acquaintance immunisation
strategies.

We consider datasets describing the contacts occurring
in a population during a time interval [TB, TE] and a
predefined space area, TB and TE are respectively the
beginning and the end times. Only contacts inside these area
and time interval are included in the temporal network.
Contacts can reach or leave dynamically the area at that
time interval. Such information is gathered via contacts
smartphones/sensors using DEVSServer APIs deployed on the

SEMEPs. This network is fully distributed over many
DEVSServers. Each one builds its own subgraph. The full
network is obtained by assembling these subgraphs into a
TSC. Semantic is embedded in the RDF triples of each node
and its links. The final temporal network of concerned
contacts defines the full intelligent temporal network.
Figure 11, extracted from the global network of Figure 9,
corresponds to the subnet of SEMEP A. The times of the
contacts between vertices A–D are indicated on the edges.
Assume that, for example, a disease starts spreading at
vertex A and spreads further as soon as a contact occurs.
The dashed lines and vertices show this spreading process
for three different times. The spreading will not continue
further than what is indicated in the t = ∞ picture, i.e., D
cannot get infected. However, if the spreading started at
vertex D, the entire set of vertices would eventually be
infected. Aggregating the edges into one static graph cannot
capture this effect that arises from the time ordering of
contacts. To apply an immunisation strategy, we use and
increment a global time TNOW between TB and TE. The next
discrete event time is the increment step. When a move or
an information effect occurs, the system state (individuals’
state and degrees) is updated. Accordingly, we focus on
rules that do not ignore the consequences of the time and
space ordering by, e.g., projecting out the interaction times.

When an epidemiologist connects to DEVSServer to apply
an immunisation strategy, he begins by creating the TSC in
his own node by calling the Mediator createTSC() method.
After that, his Mediator add the area and the time interval
data inputs to the TSC, using the writeToTSC() method. The
Mediator executes its constructTemporalGraph() primitive
to ask the Repository to retrieve all concerned Mediators
URLs. A Repository is updated every time information is
added to a node, telling that this node is owning that
information. Once getting mediators URLs, the Mediator
allows these Mediators to access its own TSC using the
readFromTSC() and writeToTSC() primitives.

Figure 11 Illustration of reachability issue and the intransitivity
of temporal networks (more specifically a contact
sequence) (see online version for colours)

Each Mediator invokes its own findAllContactsAround
Position() primitive to collect its subgraph forwarding this
to its own Collector that invokes its getContactRoutes() and
getContactInfo() primitives to get routes and information of
concerned contacts. Finally, the temporal network is ready
to be used in the TSC, it summarises all the events
occurring in the system. Immunisation strategy can now be
applied.

For instance, consider two epidemiologist mobile
applications. The first one consumes information from its

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 575

TSC on SEMEP A using standard ontologies to link
epidemiologists working jointly on some epidemics. Since
the application uses TSC, this information is available for
the Mediators in the shared space from SEMEPs B, C, D.
The Mediators in the same party (session) populate
dynamically the contacts moving in the case of real time
immunisation. The second epidemiologist independent
application, which try to immunise another disease, may
notify the first epidemiologist when the two diseases have
common contacts moving which means that immunisation
strategies can affect each other. The second application may
populate the first TSC by dumping information retrieved
from its TSC. Prior to the dump, the application semantises
the information according to the ontology. Finally, it
periodically looks into the space to check the contacts
leaving the space area and remove them from the network.
TSC provides space decoupling, so applications do not
know where the information is physically located. They just
access the space requesting, removing or providing
information. Therefore, the conceptual scheme the
developer should have in mind is that multiple nodes
interact through different spaces (represented by clouds).
Each space contains multiple graphs (represented by
temporal networks). These graphs are composed by a set of
triples represented by nodes and links within each SEMEP
and corresponding to the area and time interval provided.
However, AmI environments are mainly populated by
mobile devices and sensors. These devices frequently join
and leave the spaces and the information they hold
constantly changes. Thus, AmI environments are highly
dynamic. As a consequence, we decided to adopt a
distributed strategy which locally stores, or even generates
on demand, the information necessary to answer a query.
Doing so, we ensure the freshness of the responses
regarding the sensed data. The main drawback is that
whenever a node is temporarily unavailable its contents
become unavailable for the rest of the nodes too. However,
this faithfully represents the actual state of the space. Our
TSC design does this by allowing each node, no matter how
complex or simple it is, to manage its own information.
Besides, it establishes a communication channel with the
space it wants to join to, i.e. with each of the nodes
belonging to it. Queries are propagated to other nodes which
previously joined that space (regardless of who they are at
each moment). Possible responses are received from them
using the same communication channel. In this scheme,
each node actually has the sets of graphs locally allowing
knowledge distribution strategies.

5.1 DEVS Specification

Let us consider the example of Figure 11, four contacts (A,
B, C, D) are considered as atomic temporal DEVS models.
The coupling is defined temporally by the network
topology. When simulation time advances, each model
looks in TSC to find if it has a coupling or data updates at
that time. If so, it generates its outputs according to that
dynamic coupling and writes its outputs to the TSC.
According to Figure 11, the start time is zero and the end

time is 14. So, we consider the time interval = [0, 14] to be
the window in which we observe the simulation. The DEVS
global coupled model of the example is shown in
Appendix B. Let us detail the simulation steps ordered as
follows:

1 Generate the virtual city according to data of table.

2 Apply TB propagation.

3 Apply immunisation strategy.

5.2 Virtual city generation

This step ends with the temporal network building in TSC.
Since a city is a set of districts and a district is a set of
individuals and each individual has a chromosome and a
route that is a sequence of positions, we need a DEVS
model VirtualCity that generates the overall virtual city
population, a DEVS model GenerateDistrict that generates
a district population, a DEVS model GenerateContact that
generates an individual and an DEVS model
GenerateChromosome that generates a chromosome. Each
contact has his own routes composed of positions giving a
DEVS model route of DEVS model position.

These models are typical generators with two states. The
deltaExt() changes the generator to busy. Since the
generator is busy, the deltaInt() generates an output and the
out() writes it as RDF triples in the TSC. Let say that a
generated contact is a graph that is a set of RDF triples
describing each contact. The initialise() function of the
VirtualCity reads the data of Table 1 from a file, initiates the
number of districts and their names. For each district, it
initiates also the numbers of individuals. The first and last
names of each individual are selected randomly from files
of names given as input to the VirtualCity model, masculine
and feminine names are considered. The address of each
individual is obtained by calling a Google RWS by giving a
well randomly selected position (longitude and latitude).

All the chromosomes data are randomly generated using
rules, considering that a child is not a smoker or drinker.
These rules are used to help obtaining useful chromosomes.
We used some previous individuals’ data to generate these
rules as described in Section 3, paragraph 3.

Route generation consists of choosing a centre and a
radius, and generates a position in that area. A position is
defined by a longitude, latitude, a start time (the time the
individual reached the position), a last time (the time the
individual left the position), and an address.

Google(http://maps.googleapis.com/maps/api/geocode/j
son),Geonames(http://api.geonames.org/findNearbyPlaceNa
me?),Gisgraphy(http://services.gisgraphy.com/geoloc/geolo
csearch?) RWS are used conjointly to help route generation.
Addresses and routes fit in the area of Mostaganem districts.

A result of an individual random generation extracted
from a full virtual city of Mostaganem generation is
presented in Appendix B. The simulation uses the
Mostaganem District population that is 158,446 respecting
the number of men and women and the data of Table 1.
Routes were randomly chosen to be fewer than ten positions

576 M. Mokaddem et al.

each. We used three storage nodes to store data assuming
that Mostaganem has only three SEMEPs. Each node is
deployed on a distinct computer following the topology of
Figure 9. At each node, a DEVSServer (Figure 7) is also
deployed. Individuals are stored according to their
respective SEMEP.

The woman ‘Fallak Abou’ of the example (Appendix B)
is 19 years old and lives at ‘Avenue Khemisti Mohamed,
Mostaganem’. Her weight is 55 kg, she is poor (social level
very low) but has no malnutrition. She has no stress, no
cancer, no previous TB, no itinerancy, no corticoid therapy.
She is not alcoholic but drinks sometimes, same for
smoking. She is not diabetic but presents a little glucose’s
rate. She has a home and does not undertake any physical
activity. She has a medium immunity and she is ill but not
infectious. She leaves her home to go to an urban station
(position_1), then to the university (position_2) then to the
city centre (position_3), then back to the urban station
(position_4) and to home. We can validate this itinerary
using the start and end time to confirm that it is serial. In a
real-life system, health data and moves of that woman are
gathered dynamically using her smartphone and sent to her
respective store. Some health data are already in the
SEMEP store.

5.3 Propagation phase

In this step, the first thing to do is to capture the temporal
network in the area where the disease is suspected. This area
is specified with a centre position and a radius. We also
need the start time when the disease begins to propagate and
the last time when the propagation is estimated to end. So,
we have to look for each individual that reaches this area in
this interval time. This search is done on each SEMEP
whom individuals are included. The whole temporal
network is composed of subnetworks related to these
SEMEPs.

The simulation of the propagation starts at the previous
start time and ends at the previous last time. The
epidemiologist starts his CI and ask his DEVS model,
propagation, to start building the network. Since we have
three instances of DEVSServer, we have three propagation
models, each one on its respective server. Each propagation
model calls its respective Mediator that put the related
information in its TSC. Propagation model asks the
Mediator to collect the list of its own individuals that are in
that area and interval time. This list is put by the Mediator
in its TSC.

Once propagation model has the list of concerned
individuals, it starts RWS to meet the number of
individuals. Each RWS is seen as an Individual DEVS
model. Now that we have individual models running,
propagation models acting as a coordinator, and the first
propagation as root-coordinator, the simulation is ready to
start. Propagation models read/write from/in the TSC of the
root. Individual models and each propagation model
read/write from/in their local TSC.

At each node, propagation model initialises itself and
asks its individual models to do so. Each individual

computes the time of its next event TN that is the time of its
next move. Propagation asks eminent individual models,
models with the minimum next event time, to perform their
moves, searches from the eminent individual models which
were at the same place and the same time, applies a
crossover operation between their chromosomes and then
applies the fitness computation. Each propagation model
reports its contacts into the global TSC as follow:

1st propagation model

<u: Birth_270000> <u: hasPosition> <u: Position_3>.
<u: Birth_270004> <u: hasPosition> <u: Position_5>.
<u: Birth_270008> <u: hasPosition> <u: Position_1>.

2nd propagation model

<u: Birth_270002> <u: hasPosition> <u: Position_3>.
<u: Birth_270005> <u: hasPosition> <u: Position_4>.
<u: Birth_270009> <u: hasPosition> <u: Position_5>.

3rd propagation model

<u: Birth_270001> <u: hasPosition> <u: Position_3>.
<u: Birth_270003> <u: hasPosition> <u: Position_6>.
<u: Birth_270007> <u: hasPosition> <u: Position_4>.

The root-coordinator deduces and adds these triples

<u: Birth_270000> <u: isWith> <u: Birth_270002>.
<u: Birth_270000> <u: isWith> <u: Birth_270001>.
<u: Birth_270002> <u: isWith> <u: Birth_270001>.
<u: Birth_270005> <u: isWith> <u: Birth_270002>.
<u: Birth_270007> <u: isWith> <u: Birth_270001>.

Five (5) crossover operations occur between the above
individuals producing change of their chromosomes. These
operations increase or decrease the respective immunity and
contamination degrees, states are changing accordingly by
the fitness performance. If a state is affected with ‘Infected’,
then a propagation occurred. This contact is added to the
‘Infected’ list. Ill individuals are added to the ‘Ill’ list and so
on. Propagation models stay in this loop until individuals
consumes all their moves or until the simulation reaches the
interval last time. At the end of the propagation, the number
of infected gives the prevalence and the incidence factors.
Holland (1975, 1992) has shown that crossover and
mutation operators on chromosome can destruct it, resulting
in the death of the individual. He used a probability of this
destruction.

5.4 Immunisation phase

The immunisation strategy process follows the propagation
process. Since the propagation produces lists of infected, ill,
under treatment, recovered and healthy individuals, the
immunisation strategy consists of producing solutions to
eradicate the disease. It proposes a solution for each
category. In this paper, we only deal with the infected
category.

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 577

A simple solution consists of vaccinating or
quarantining all the infected individuals. An important
challenge is to define immunisation strategies that discover
a meaningful group of individuals (community) that are
strongly related to the disease. Once this community
discarded, disease can be eradicated. To find the strongly
related individuals to a disease, we need to use protocols as
stated by Starnini et al. (2013) where the authors consider
that an immunisation strategy is defined as the choice of a
set of nodes (individuals) who cannot catch nor transmit the
disease. They argued that this choice is performed according
to a ranking of the nodes of the temporal network. They
consider various ranking strategies, focusing in particular on
the role of the training window during which the nodes’
properties are measured in the time-varying network. We
follow their work but we use the immunity and
contamination degrees to rank nodes. The node with the
higher contamination degree and the lower immunity degree
is the best ranked. To be more careful, a contamination
degree in the interval [0.8–1] is considered to be very strong
and an immunity degree in [0–0.4] is very weak. We can
test other least values for immunity and highest values for
contamination respectively. The best choice is designed by
the Epidemiologist under the disease circumstances.

To rank nodes the previous intervals, the immunisation
DEVS model computes the rank of every infected
individual in the ‘Infected’ list, then it applies a mutation
operation on the best ranked ones found in the interval
[0–0.4] for immunity and [0.8–1] for contamination. The
immunisation model restarts the propagation process and
compares the obtained list with the previous one. If they
have the same size, the immunisation process stops. If the
two lists are different, the immunisation process loops again
until the list sizes are equal. After each individual move,
immunisation model sends a message to the CI to visualise
this move with the corresponding individual information
showing their behaviour on the map. Map colouring
indicates the gravity of the propagation. Another message
(notification) is sent to the individual smartphone
preventing him to perform the move if a contamination is
simulated to occur.

6 Conclusions

A new concept and ideas for distributed simulation are
implemented as DEVSServer showing that the design of
DEVSServer principles (TSC paradigm, mediator, collector,
and repository) can achieve interoperability. The TSC
interoperability style at the web level (RWS) allows
DEVSServer to take advantage of new Web-based features or
technologies. On the other hand, DEVSServer provides better
interoperability applying RWS principles among the TSC
paradigm.

DEVSServer is specially designed to deal with DSS but it
can be applied to similar systems. DSS with Epidemic
Modelling deal with a large number of contacts moving
dynamically and temporally. Each contact is using AmI
devices to join/disjoin the distributed structure dynamically
at run time. Therefore, DEVSServer is designed to adapt to
AmI environments and aims to distribute the simulation
among different types of nodes in a dynamic way.

Before detailing future directions such as DEVSServer
cloud implementation, we aim to consider implementing the
visualisation process with its web interface. A real-time
simulation with online data under AmI assistance to show
the DEVSServer ability to a wide range of interaction and
pursue its intelligent interoperability aspect is to be
considered. We hope to choose a testbed of volunteers to
validate this ability.

Since distributed intelligence is a part of the IoIT that
has adequate computing capacity to perform complex
computations, and the gang scheduling and real-time
scheduling techniques in ad hoc distributed systems and on
the elastic cloud environment ensure the coordination of
these intelligent devices. We can improve DEVSServer
performance with replacing IoT constrained devices with
the so called IoIT objects and increase the Mediator with
these scheduling capabilities. The recent Intel IoT-enabled
architecture, such as Galileo and Edison, makes it easy to
program these devices as Web services (Chen, 2016).

We also consider integrating the immunisation strategies
of the other categories such as ‘Ill’, ‘UnderTreatment’,
‘recovered’ and ‘healthy’ so that ‘Ill’ recovers soon, ‘under
treatment’ does not relapse or abandon treatment, and
‘recovery’ does not relapse. Such proposals are related to
artificial intelligence and are part of actual AmI systems.

The tuberculosis example with its GP application is
under work and will be another paper to be submitted soon.
We also aim to use its agent-based simulation
implementation using GP. Others diseases are under study
to make DEVSServer a fully integrated epidemic modelling
tool.

Acknowledgements

This work has been supported by a CNEPRU research
project entitled BIOSIF II (Code: B*01820120086) an
extension of BIOSIF I (Code: B*01820080016) funded by
the SIF Team under the supervision of the LIO labs and the
SEMEP services of the Algerian Health Ministry.

Funding

This research received no specific grant from any funding
agency in the public, commercial or not-for-profit sectors.

578 M. Mokaddem et al.

References
ACIMS software site [online] http://acims.asu.edu/software

(accessed May 2018).
Al-zoubi, K. and Wainer, G. (2013) ‘RISE: a general simulation

interoperability middleware container’, Journal of Parallel
and Distributed Computing, Elsevier, Vol. 73, No. 5,
pp.580–594.

Amamra, L., Mokaddem, M. and Atmani, B. (2012) Mesure de la
qualité de la vaccination guidée par les données, Sixième
Atelier sur les Systèmes Décisionnels ASD’2012, 1–3 Avril,
Université Saad Dahlab, Blida, Algérie, ISBN: 978-9947-0-
3416-3.

Augusto, J.C. and McCullagh, P. (2007) ‘Ambient intelligence:
concepts and applications’, Computer Science and
Information Systems, Vol. 4, No. 1.

Barabási, A.L. and Albert, R. (1999) ‘Emergence of scaling in
random networks’, Science, Vol. 286, No. 5439, pp.509–512.

Barigou, F., Mokaddem, M., Atmani, B. and Beldjilali, B. (2010)
‘Towards an automated system for extracting named entity
from medical reports’, International Congress on Models
Optimization and Security of Systems, Du 29–31 May, Tiaret,
Algeria.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001) ‘The semantic
web’, Scientific American, Vol. 284, No. 5, pp.34–43.

Brahami, M., Atmani, B. and Mokaddem, M. (2010)
‘CARTOCEL: un outil de cartographie des connaissances
guidée par la machine cellulaire CASI’, Conference
Extraction et Gestion des Connaissances EGC, pp.625–626.

Bravo, J., Cook, D. and Riva, G. (2016) ‘Ambient intelligence for
health environments’, Journal of Biomedical Informatics,
Elsevier, Vol. 64, pp.207–210 [online]
https://doi.org/10.1016/j.jbi.2016.10.009 (accessed May
2018).

Brozek, J. and Jakes, M. (2017) ‘Application of mobile devices
within distributed simulation-based decision making’, Int. J.
Simulation and Process Modelling, Vol. 12, No. 1, pp.16–28.

Chen, Y. (2016) ‘Analyzing and visual programming internet of
things and autonomous decentralized systems’, Simulation
Modelling Practice and Theory, Elsevier, Vol. 65, pp.1–10
[online] https://doi.org/10.1016/j.simpat.2016.05.002
(accessed May 2018).

Chen, Y. (2018) Service-Oriented Computing and System
Integration: Software, IoT, Big Data, and AI as Services,
Kendall Hunt Publishing Company, ISBN: 9781524951658
[online] https://he.kendallhunt.com/product/service-oriented-
computing-and-system-integration-software-iot-big-data-and-
ai-services (accessed May 2018).

Fujimoto, R. (2000) Parallel and Distribution Simulation Systems,
John Wiley and Sons, New York.

Gelernter, D. (1985) ‘Generative communication in Linda’, ACM
Transactions on Programming Languages and Systems
(TOPLAS), Vol. 7, p.80112.

Gómez-Goiri, A., Orduña, P., Diego, J. and López-de-Ipiña, D.
(2014) ‘Otsopack: lightweight semantic framework for
interoperable ambient intelligence applications’, Computers
in Human Behavior, Elsevier, Vol. 30. pp.460–467, DOI:
10.1016/j.chb.2013.06.022.

Guinard, D. (2011) A Web of Things Application Architecture
Integrating the Real-world into the Web, PhD ETH Zurich.

Hethcote, H.W. (2000) ‘The mathematics of infectious diseases’,
Society for Industrial and Applied Mathematics SIAM Rev,
Vol. 42, No. 4, pp.599–653.

Holland, J.H. (1975/1992) Adaptation in Natural and Artificial
Systems, Second ed. (First ed., 1975), MIT Press, Cambridge,
MA.

Honkola, J., Laine, H., Brown, R. and Tyrkko, O. (2010)
‘Smart-M3 information sharing platform’, IEEE Symposium
on Computers and Communications ISCCs, pp.1041–1046.

Jafer, S., Liu, Q. and Wainer, G. (2013) ‘Synchronization methods
in parallel and distributed discrete-event simulation’,
Simulation Modelling Practice and Theory, Elsevier, Vol. 30,
pp.54–73 [online] https://doi.org/10.1016/
j.simpat.2012.08.003 (accessed May 2018).

Khushraj, D., Lassila, O. and Finin, T. (2004) ‘sTuples: semantic
tuple spaces’, The First Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services,
MOBIQUITOUS, pp.268–277.

Lamamra, K., Allam, A. and Afiane, M. (2018) ‘Artificial neural
networks for acquisition and processing of sensors data in a
radiotherapy application’, International Journal of Simulation
and Process Modelling (IJSPM), Vol. 13, No. 1, pp.15–23.

Liu, J. and Zhang, T. (2011) ‘Epidemic spreading of an SEIRS
model in scale-free networks’, Communication in Nonlinear
Science and Numerical Simulation, Elsevier, Vol. 16, No. 8,
pp.3375–84.

Liu, Z. and Hu, B. (2005) ‘Epidemic spreading in community
networks’, Europhys Lett., Vol. 72, No. 2, pp.315–21.

Mittal, S. (2006) ‘Extending DoDAF to allow DEVS-based
modeling and simulation’, Special Issue on DoDAF, Journal
of Defense Modeling and Simulation, Vol. 3, No. 2,
pp.95–123.

Mittal, S., Risco-Martín, J.L. and Zeigler, B.P. (2007)
‘DEVS-based simulation web services for net-centric T&E’,
Proceedings of the 2007 Summer Computer Simulation
Conference SCSC, San Diego, CA, USA, pp.357–366.

Mittal, S., Risco-Martín, J.L. and Zeigler, B.P. (2007) ‘DEVSML:
automating DEVS execution over SOA towards transparent
simulators’, Proceedings of the 2007 Spring Simulation
Multi-conference SpringSim ‘07, San Diego, CA, USA,
pp.287–295.

Mittal, S., Risco-Martín, J.L. and Zeigler, B.P. (2009)
‘DEVS/SOA: a cross-platform framework for net-centric
modeling and simulation in DEVS unified process’,
Simulation, Vol. 85, No. 7, pp.419–450.

Mokaddem, M., Bahnes, A. and Atmani, B. (2011) ‘Création
dynamique orientée services de contenu pédagogique en
e-learning’, Journées Doctorales du Laboratoire
d’informatique d’Oran, JDLIO ‘2011, Oran, Algérie.

Mokeddem, S., Atmani, B. and Mokaddem, M. (2013) ‘Supervised
feature selection for diagnosis of coronary artery disease
based on genetic algorithm’, First International Conference
on Computational Science and Engineering (CSE 2013),
Dubai, UAE, May, pp.53–64, ISSN: 2231-5403, ISBN: 978-
1-921987-23-6.

Mokeddem, S., Atmani B. and Mokaddem, M. (2015) ‘An
effective feature selection approach driven genetic algorithm
wrapped Bayes Naïve’, Int. Nat. Journal of Data Analysis
Technics and Strategies, ISSN: online: 1755-8069 ISSN print:
1755-8050.

Montañola-Sales, C., Gilabert-Navarro, J.F., Casanovas-Garcia, J.,
Prats, C., López, D., Valls, J., Cardona, P.J. and Vilaplana, C.
(2015) ‘Modeling tuberculosis in Barcelona, a solution to
speed-up agent-based simulations’, Proceedings of the 2015
Winter Simulation Conference, Yilmaz, L., Chan, W.K.V.,
Moon, I., Roeder, T.M.K., Macal, C. and Rossetti, M.D.
(Eds.).

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 579

Moreno, Y., Pastor-Satorras, R. and Vespignani, A. (2002)
‘Epidemic outbreaks in complex heterogeneous networks’,
Eur Phys J B., Vol. 26, No. 4, pp.521–9.

MS4 Me (2013) MS4 Me Software V 3.0 (Markov Modeling
Capability) [online] http://www.ms4systems.com (accessed
May 2018).

Neto, A.R., Ribeiro, M.F.G., Cunha, G.G. and Landau, L. (2017)
‘The industrial internet of things and technological innovation
in its applications for resources optimisation’, Int. J. of
Simulation and Process Modelling, Vol. 12, No. 6,
pp.525–534.

Nixon, L.J., Simperl, E., Krummenacher, R. and
Martin-Recuerda, F. (2008) ‘Tuple space-based computing
for the semantic web: a survey of the state-of-the-art’,
Knowledge Engineering Review, Vol. 23, No. 2, p.181–212.

Olinky, R. and Stone, L. (2004) ‘Unexpected epidemic thresholds
in heterogeneous networks: the role of disease transmission’,
Phys Rev E, Vol. 70, p.030902(R).

Pastor-Satorras, R. and Vespignani, A. (2001) ‘Epidemic dynamics
in scale-free networks’, Phys Rev Lett., Vol. 86, No. 14,
p.3200.

Pirkkalainen, H. and Pawlowski, J.M. (2012) ‘The knowledge
intervention integration process: a process-oriented view to
enable global social knowledge management’, International
Journal of Knowledge Society Research (IJKSR), Vol. 3,
No. 3, pp.45–57.

Prats, C., Montañola-Sales, C., Gilabert-Navarro, J.F., Valls, J.,
Casanovas-Garcia, J., Vilaplana, C., Cardona, P.J. and
López, D. (2016) ‘Individual-based modeling of tuberculosis
in a user-friendly interface: understanding the
epidemiological role of population heterogeneity in a city’,
Frontiers in Microbiology, January, Vol. 6, Article 1564.

Seo, C. and Zeigler, B.P. (2009) ‘Interoperability between DEVS
simulators using service oriented architecture and DEVS
namespace, a joint symposium devs integrative M&S (DEVS)
and high performance computing (HPC)’, Proceedings of the
Spring Simulation Conference.

Seo, C. (2009) Interoperability between DEVS Simulators using
Service Oriented Architecture and DEVS Namespace, PhD
dissertation, University of Arizona, Tucson, Arizona.

Seo, C., Zeigler, B.P., Coop, R. and Kim, D. (2013) ‘DEVS
modeling and simulation methodology with MS4 Me
software tool’, Proceedings of the Symposium on Theory of
Modeling and Simulation: DEVS Integrative M&S
Symposium (TMS-DEVS), April, San Diego, CA.

Silva, M.J., Da Silva, F.A.B., Lopes, L.F. and Couto, F.M. (2010)
‘Building a digital library for epidemic modelling’,
Proceedings of ICDL 2010 – The International Conference on
Digital Libraries, New Delhi, India.

Starnini, M., Machens, A., Cattuto, C., Barrat, A. and
Pastor-Satorras, R. (2013) ‘Immunization strategies for
epidemic processes in time-varying contact networks’,
Journal of Theoretical Biology, Elsevier, Vol. 337,
pp.89–100.

Tolk, A. (2010) ‘Interoperability and composability’, Banks, C.
and Sokolowski, J. (Eds.): Modeling and Simulation
Fundamentals: Theoretical Underpinnings and Practical
Domains, pp.373–402, Wiley, New Jersey.

Varela-Candamio, L. and García-Álvarez, M.T. (2012) ‘Analysis
of information and communication technologies in higher
education: a case study of business degree’, International
Journal of Engineering Education, Vol. 28, No. 6,
pp.1301–1308.

Wainer, G., Al-Zoubi, K., Mittal, S., Risco Martín, J.L.,
Sarjoughian, H. and Zeigler, B. (2010) Discrete-Event
Modeling and Simulation: Theory and Applications in
Wainer, G. and Mosterman, P. (Eds.), pp.389–494
(Chapters 15–18), CRC Press, Taylor and Francis.

Wainer, G., Madhoun, R. and Al-Zoubi, K. (2008) ‘Distributed
simulation of DEVS and Cell-DEVS models in CD++ using
web services’, Simulation Modelling Practice and Theory,
Elsevier, Vol. 16, No. 9, pp.1266–1292.

Wainer, G. (2009) Discrete-Event Modeling and Simulation: a
Practitioner’s Approach, CRC Press, Taylor and Francis
Group, Boca Raton, Florida.

Xiao, Y., Zhou, Y. and Tang, S. (2011) ‘Modelling disease spread
in dispersal networks at two levels’, Math Med Biol., Vol. 28,
No. 3, pp.227–44.

Yacoub, A., Hamri, M.E.A., Frydman, C., Seo, C. and
Zeigler, B.P. (2017) ‘DEv-PROMELA: an extension of
PROMELA for the modelling, simulation and verification of
discrete-event systems’, International Journal of Simulation
and Process Modelling (IJSPM), Vol. 12, Nos. 3/4,
pp.313–327.

Yang, R., Wang, B.H., Ren, J., Bai, W.J., Shi, Z.W., Wang, W.X.
and Zhou, T. (2007) ‘Epidemic spreading on heterogeneous
networks with identical infectivity’, Phys Lett A., Vol. 364,
Nos. 3–4, pp.189–93.

Zeigler, B.P. and Sarjoughian, H.S. (2012) Guide to Modeling and
Simulation of Systems of Systems, p.393, Springer, Berlin,
Germany.

Zeigler, B.P., Praehofer, H. and Kim, T. (2000) Theory of
Modeling and Simulation, Academic Press, San Diego, CA.

Zeigler, B.P., Nutaro, J.J. and Seo, C. (2017) ‘Combining DEVS
and model-checking: concepts and tools for integrating
simulation and analysis’, Int. J. Simulation and Process
Modelling, Vol. 12, No. 1, pp.2–15.

Zhang, H. and Fu, X. (2009) ‘Spreading of epidemics on scale-free
networks with nonlinear infectivity’, Nonlinear Anal Theory
Methods Appl., Vol. 70, No. 9, pp.3273–8.

Zhang, J.P. and Jin, Z. (2012) ‘Epidemic spreading on complex
networks with community structure’, Appl Math Comput.,
Vol. 219, No. 6, pp.2829–38.

Zhang, J.P. and Jin, Z. (2011) ‘The analysis of an epidemic model
on networks’, Appl Math Comput., Vol. 217, No. 17,
pp.7053–64.

580 M. Mokaddem et al.

Appendix A

Restful web service model invocation

@XmlRootElement public class ModelSchema {
String name, owner, creationDate,
String description, initialiaze, deltaExt, deltaInt;
int inports; int outports;
byte[] modelclass ;

@XmlRootElement
public class ModelAccess {
private static Key key = null;
private static KVStore mystore;
public static final String MOD_PREFIX = "DEVS”;
public static KVStore getStore() { }
public static void insertModel(String username,
 String modelName,
 int inports, int outports,
 String owner,
 String creationDate,
 String description,
 String inisliaze,
 String deltaExt,
 String deltaInt,
 File modelFile){
}
public static ModelSchema getModel(String username,
 String modelName){
ModelSchema model = new ModelSchema(nameOfModel,
 inports, outports,
 owner,
 dateCreation,
 description,
 initialiaze,
 deltaExt, deltaInt,
 modelClass);
return model;
 }
public static void deleteModel(String username,
 String modelName){
 }
}
@GET
@Produces(value = { "application/xml", "text/plain" })
@Path("readModelClass/{username}/{modelName}")
public Object readModelClass (@PathParam("username")
 String username,
 @PathParam("modelName")

 String modelName) {
ModelSchema model = new ModelSchema();
model = ModelAccess.getModel(username, modelName);
Object o = null;
ByteArrayClassLoader baCL = new ByteArrayClassLoader();
Class modelClass = baCL.findClass(model.getClasse());
try {
 o = modelClass.newInstance();
 } catch (IllegalAccessException e) {
 System.out.println("access not found ");
 }
 catch (InstantiationException e) {
 System.out.println("instance not found");
 }
 return o;
}
@GET
@Produces(value = { "application/xml", "text/plain" })
@Path("readModelClass/{username}/{modelName}")
public void WSDeltaExt (@PathParam("username")
 String username,
 @PathParam("modelName")
 String modelName) {
……..
try {
 Object o = mv.readModelClass(username, modelName);
 for (Field field : o.getClass().getDeclaredFields())
 for (Method method : o .getClass().getDeclaredMethods())
 o.getClass().getDeclaredField("state").equals("S");
Method method =
o.getClass().getDeclaredMethod("DeltaExt",String.class);
 Object r = method.invoke(o, "infection");
 } catch (Exception io) {
 io.printStackTrace();
 System.out.println("model "+ modelName+" not found");
 } finally { }
 ModelSchema mm = mv.readModel(username,

modelName);
………..
}
System.out.println("model "+ modelName+" not found");
} finally { }
ModelSchema mm = mv.readModel(username,
modelName);
………..
}

 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 581

Appendix B

A snapshot of a random contact generation with his route

