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Abstract: To improve disease surveillance systems (DSS) with faster and accurate outbreak 
detection and epidemics propagation capabilities, the availability of fine-tuned models is required 
along with the design of server-based solutions that simulate the effects of public health 
authorities’ measures and integrate ambient intelligence (AmI) capabilities to semantise epidemic 
models. Hosting discrete event system specifications (DEVS) models, these AmI servers and 
their communication protocols are different, miscellaneous and require interoperability. The 
triple-space computing (TSC) paradigm addresses interoperability by sharing information 
represented in a semantic format through a common virtual space. In this paper, we present 
DEVSServer, a fully distributed TSC simulation server solution (middleware) designed to meet the 
needs of parallel and distributed discrete event simulation. DEVSServer defines a service oriented 
architecture (SOA) interface for the TSC operations. This interface complies with DEVS 
formalism and focuses on simplicity, conviviality and modularity, so that a single or many 
simulations that support different models can still interact. To assess DEVSServer, we provide a 
tuberculosis epidemic model simulation in time-varying temporal network with genetic 
programming immunisation strategy approach. 
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1 Introduction 

In recent years, contamination and its interaction with huge 
flow of quantitative social, demographic and behavioural 
data are used to improve disease surveillance systems (DSS) 
with faster and more accurate outbreak detection and 
epidemics propagation capabilities which depend on the 
availability of fine-tuned models. 

Demographic characteristics can explain differential 
health and disease transmission patterns within societies. 
Indicators of socioeconomic development (economic 
diversity, income disparity, social class fluidity), health care 
systems (refined measures of medical care), and public 
health characteristics are incorporated as health 
determinants rates. These characteristics, based in the social 
and economic organisation of societies, are postulated to 
have significant influences in shaping patterns of health and 
disease transmission. Community level characteristics are, 
as well, incorporated into the analysis of demographic and 
health behaviours. Communities provide a localised context 
for the social, economic, and political structures important 
to the interaction between these health and disease 
transmission determinants. But it is unclear which 
constellation of community variables has consistent effects. 
The absence of well-specified models has limited both 
theory building and the formulation of public health 
programs. 

The service of epidemiology and preventive medicine 
(SEMEP, i.e., French acronym for Service d’Epidémiologie 
et de MEdecine Préventive) addresses ways that the 
environments in which we live shape health. The SEMEP 
always try to improve health care models and helps finding 
practical solutions to population health challenges by 
assessing assets and barriers, identifying evidence-based 
practices and innovations, and developing practical tools 
that guide action in promoting health and preventing 
chronic disease and disease transmission (Brahami et al., 
2010; Amamra et al., 2012). 

The distribution of health-damaging experiences is not 
in any sense a ‘natural’ phenomenon but is the result of a 
toxic combination of poor social policies, unfair economic 
arrangements, and bad politics. 

With the evolution of technology and data (big data) and 
exchange standards, the SEMEP now has the opportunity to 
strengthen and modernise the infrastructure supporting its 
DSS. 

As part of the surveillance strategy, this modernisation 
is underway to enhance the system’s ability to provide more 
comprehensive, timely, and higher quality data than ever 
before for public health decision making. Through this 
initiative, the SEMEP seeks to increase the robustness of its 
DSS technological infrastructure so that it is based on 
interoperable, standardised data and exchange mechanisms 
that support internet of things (IoT) and ambient 
intelligence (AmI) technologies. AmI aims to enhance the 
way people interact with their environment to promote 
safety and to enrich their lives. The achievement of AmI 
largely depends on the technology deployed (sensors and 
devices interconnected through networks) as well as on the 
intelligence of the software used for decision-making 
(Augusto and McCullagh, 2007). AmI is an emerging 
discipline that brings intelligence to our everyday 
environments and makes those environments sensitive to us. 
AmI research builds upon advances in sensors and sensor 
networks, pervasive computing, and artificial intelligence 
(Bravo et al., 2016). 

An interesting area concerns the integration with real 
data from large scale health sensors (AmI constrained 
devices and smartphones). Actually, only a sample of users 
will be carrying sensors, the accuracy of the estimation of 
epidemic propagation-based solely on such a sample needs 
to be assessed on a real deployment. Due to these previous 
significant changes, the SEMEP is involved in applying new 
simulation solutions to deal with these AmI-based 
Surveillance Strategies. These solutions embed progress in 
information, computing, and communication systems. 
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Applying abstraction concept further to the computational 
thinking model for system design and implementation, 
which include an architecture-driven approach,  
model-driven development, and workflow-based design 
process (Chen, 2018) (Figure 1) is related to this special 
issue of the International Journal of Simulation and Process 
Modelling (IJSPM). 

Figure 1 Disease simulation in a virtual city (see online version 
for colours) 

 

Figure 1 concerns a DSS strategy showing a simulation-
based epidemiology with infection process model 
depending on social structure and filter type protection 
policy model with immunisation policy. The infection 
process model is divided into three basic models. The first 
one is a stage transition model of disease under the physical 
condition and medical treatment. The second (triangle 
arrowheads) is a city structure model and human activity 
model on the virtual city (smart city) that contains several 
types of social activities of agents. The third (circle 
arrowheads) is a contamination and infection models that 
contain protection policies against contamination and 
infection. Each individual carries/wears sensors during his 
moves. Human activity model deals with his temporal 
moves between home, traffic station, office area, school and 
hospital until tomb to detect if there are any face-to-face 
contacts patterns. The control of the virtual density is 
necessary. Many infected persons may be present. The 
disease stage model illuminates different stages of the 
process linking life events to disease. 

Events are viewed as triggering affective states 
(susceptible, infected, or recovered) that in turn engender 
behavioural and biological responses having possible 
downstream implications for disease. A tick of 30 minutes 
is enough to transit from an S state to tomb. 

Figure 1 also describes an experience of building and 
deploying a wearable system for automatically sensing, 
inferring, and logging a variety of physical activity to build 
high level simulation server platforms that reliably sense 
real world human actions and to develop intelligent 
simulations that automatically infer high level human 
behaviours from low-level sensor data. 

The controls of excretion, disinfection, and virtual 
density are due to AmI platforms where sensors data are 
sent to service oriented architecture (SOA) servers (AmI 
technologies) to capture the previous characteristics 
generating spatial and social network structures influencing 
infectious disease transmission within populations. The DSS 
can indicate to people (personal smartphone notifications 
with alerts levels) to wear some personal contamination 
protection (maybe masks) before reaching some suspected 
areas. 

Epidemic modelling and computational infrastructures, 
such as SOA, enable creating very detailed representations 
since restful web services (RWS) perform intelligently to 
generate the best accurate semantic-based model. With 
accurate models, we can predict the outbreak detection, the 
spread of diseases and simulate the effects of public health 
authorities’ measures. 

Parallel discrete-event simulation (PDES) has received 
increasing interest as simulations become more runtime 
consuming and geographically distributed. A rich literature 
has already been developed in the last three decades, taking 
advantage of the increasing availability of parallel and 
distributed computing platforms, especially on emerging 
platforms such as many-core processors, internet scale 
simulation environments, and cloud-based virtualised 
infrastructures (Fujimoto, 2000; Mittal, 2006; Mittal et al., 
2007, 2009; Al-zoubi and Wainer, 2013; Jafer et al., 2013; 
Chen, 2018). Like popular PDES environments and their 
hybrid synchronisation techniques, in SOA oriented 
simulations (Mittal et al., 2009; Seo, 2009), the entire 
simulation task is divided into a set of services (each model 
is handled by a service) with each executed on a different 
server. 

Our simulation, integration and Fouille de données (SIF) 
(data mining) researchers involved with SEMEP in such 
design issues are developing a specific modelling platform 
to help model, simulate and evaluate DSS. An important 
challenge in designing DSS is to define immunisation 
strategies that discover a meaningful group of individuals 
(community) that are strongly related to the disease. 

Once this community discarded, disease can be 
eradicated (Liu and Zhang, 2011). AmI-based approaches 
using semantic temporal network may be applied as novel 
intelligent and dynamical immunisation strategies. To 
simulate such strategies, a new AmI-based parallel and 
distributed discrete event simulation server solution is  
well-matched allowing the design of semantic atomic and 
coupled models integrated in epidemic modelling digital 
libraries (EMDL) (Silva et al., 2010) within simulation 
servers. EMDL hold models as resource description 
framework (RDF) graph to semantise modelling. The 
semantic associated to models describes the how-to of 
models and help simulation servers to perform intelligently 
as it is designed in our approach. Thus, providing Modelling 
and Simulation with semantics is prerequisite. 

To pursue this goal, simulation servers use EMDL to 
manage models while describing them with ontologies. 
Knowledge may be shared between modellers and servers 
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themselves. Simulation servers perform a distributed 
simulation execution requiring interoperability and natural 
and transparent interactions that are important in AmI to 
defend the fact that servers should subtly work on behalf of 
the human tasks and minimise the psychological impact of 
servers’ use. Furthermore, AmI-based servers can be used in 
the same way in simulation to save modellers from doing 
low-level but yet time-consuming modelling tasks such as 
interoperability. Modellers can now focus on modelling 
with a high aggregate-value, where the importance of the 
human capital is vital (Pirkkalainen and Pawlowski, 2012; 
Gómez-Goiri et al., 2014). AmI Abstraction has been 
applied for representing a complex system in hierarchical 
layers, with a higher layer hiding certain information from a 
lower layer (Chen, 2018). 

To achieve these aims, AmI-based servers need to 
integrate and coordinate heterogeneous data sources or 
service providers. Current trends, such as the web of things 
(WoT) initiative (Guinard, 2011), propose a straightforward 
integration of servers with the web using RWS. The 
problem with this model is that it couples the 
communication between nodes. This coupling can be 
avoided by using indirect communication styles  
(Gómez-Goiri et al., 2014). Indirect communication can be 
space and/or time uncoupling. Space uncoupling is achieved 
when the sender does not need to know the receiver or 
receivers and vice versa. Time uncoupling happens when 
senders and receivers do not need to exists in the same time. 
Independently of the used model, the messages usually 
exchanged between servers are diverse and simulation 
session dependent. This implies that messages will not be 
meaningful in other simulations unless a specialised system 
converts and reinterprets them. A way to solve this problem 
is annotating the message semantically as proposed by the 
World Wide Web (WWW) (Berners-Lee et al., 2001; 
Pirkkalainen and Pawlowski, 2012). 

Triple-space computing (TSC) has been involved as a 
coordination paradigm supporting indirect communication 
based on semantic data. As simple as possible, a model 
writes semantically annotated information in a shared space 
that is queried out and used by other models. 

In order to achieve this interoperability through  
triple-spaces, we propose a simulation server middleware 
solution called DEVSServer. This solution provides two core 
features: 
a it is designed to be simple, modular and extensible 
b it runs in different computational platforms, allowing 

Java SE, Java Mobile and Android interaction. 
The underlying interface is based on SOA (Mokaddem  
et al., 2011) and covers isolated features such as discovery, 
maintenance or data access. Different simulations can 
provide only certain features and still interact with each 
other. In this way, it is possible to embed it in other real-
time simulations. 

Regarding the immunisation strategy simulation, we do 
not provide any specification; it is out of the scope of this 

paper which is only concerned with the design of DEVSServer 
over AmI interoperability. 

The rest of the paper is organised as follows. Section 2 
outlines related work. Section 3 describes the conceptual 
model for an SOA-based TSC solution, let us say 
DEVSServer principles. Section 4 details the implementation 
made to adapt it to the necessities of AmI requirements. 
Section 5 presents an epidemic modelling specification of 
the tuberculosis (TB) disease under DEVSServer involving 
temporal network and genetic programming (GP) 
capabilities. Since we are trying to target both epidemic 
modelling communities and general-purpose simulation 
communities, this example lets epidemic modelling readers 
be involved in SOA and AmI-based simulation servers. 
Therefore, the TB as temporal network, the propagation 
phase, and the immunisation phase need to be more detailed 
to fit their concerns and to envision what is the contribution 
of new simulation solutions in this topic. We hope that this 
initiative will make DEVSServer more attractive and getting 
more support. Discovering disease propagation and 
immunisation strategies may show the lack of related 
semantic-based simulation support tools and will certainly 
motivate simulation communities to investigate 
consequently. Finally, Section 6 concludes and discusses 
future work. 

2 Related work 

In the following two subsections, we analyse both semantic 
solutions of interoperability involving mobile and 
embedded devices and concluding with TSC paradigm, and 
the SOA-based modelling/simulation as synthesised by  
Al-zoubi and Wainer (2013). We compare our solution with 
the rest emphasising their strengths and weaknesses. 

2.1 Ambient intelligence interoperability 

Regarding representational state transfer (REST), its use in 
resource constrained devices is a current trend defended by 
the WoT initiative (Guinard, 2011). WoT proposes to 
embed web servers in everyday things. These objects 
expose their capabilities following the REST principles. In 
this way, they fully integrate with the web. This has several 
benefits: 
 Availability of digital libraries and frameworks in most 

of the existing computing platforms. 
 Reuse of mechanism that have made the web truly 

scalable. E.g., searching, caching, load-balancing or 
indexing. 

 The users can interact with the objects through a 
familiar tool: the browser. They can browse or 
bookmark them, share on social networks, etc. 

 Direct integration with other web applications. 

Tuple space (TS), also called space-based computing, is a 
coordination paradigm based on the shared memory 
approach (Gelernter, 1985). TS works with semi structured 
data, which is accessed in an associative manner. Several 
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TS solutions have used semantics to enhance the shared data 
(Khushraj et al., 2004). sTuples was conceived for scenarios 
(Nixon et al., 2008). In sTuples, the clients access a 
centralised space through a communication gateway. The 
centralisation completely simplifies the solution, but makes 
the whole system dependent on a single machine. Besides, 
Otsopack (Gómez-Goiri et al., 2014), a lightweight 
semantic framework for interoperable ambient intelligence 
applications, avoids the need of gateways by requiring a 
prominent protocol (i.e., HTTP) for the communication 
between the nodes. TripCom (IST-4-027324-STP, 
http://www.tripcom.org), a triple space communication, 
distributes the space among different super-peers using 
distributed hash tables. Specifically, it uses a hash function 
over the subject, predicate, object and space URL to decide 
where to store each triple. TripCom draws a clear 
distinction between the clients, which consume data, and the 
devices where the space resides. Otsopack also promotes the 
direct communication between devices. In doing so, they 
can access to the most updated data and manage their own 
data. Finally, Smart-M3 (Honkola et al., 2010), an 
information sharing platform, constitutes a remarkable 
effort to bring the semantic space-based computing to many 
different devices and protocols. To that end, it distinguishes 
between two types of nodes: knowledge processors (KPs) 
and semantic information brokers (SIBs). The SIBs manage 
the space. The KPs are nodes accessing the space 
information. The smart space access protocol (SSAP) 
(Honkola et al., 2010), a Smart-M3 fully integrated 
protocol, is used for the communication between both types 
of nodes. The SSAP can be implemented on top of different 
communication mechanisms. Although theoretically 
possible, to the best of our knowledge no results have been 
presented on the federation of two or more SIBs. This 
makes the solution de facto centralised and also avoids the 
definition of any new communication protocol. Instead, it 
assumes that all the nodes will be able to work at  
HTTP-level or have a gateway to do so on their behalf. 
Thanks to that and to the prominence of libraries and tools 
for this protocol the implementation on new platforms is 
greatly simplified. 

As was previously stated, our API is based on the TSC 
paradigm. TSC is a TS variation where the information is 
stored in RDF. Three key concepts (space, triples, graphs) 
are important at this point: models share information in a 
common space. A space is identified by a uniform resource 
identifier (URI). Therefore, all the operations in TSC are 
performed against a particular space. By default, all 
simulation sessions connect to a common standard space, 
but they can optionally choose to connect to a particular 
private space. Within a space, the information is stored in 
sets of triples called graphs. Each graph can also be 
identified by an URI. The RDF triples are the underlying 
concept of all the semantic web (SW) languages. Each triple 
is composed by a subject (which is a URI), a predicate (also 
a URI) and a value (which can be a URI or a literal). As 
detailed later, the operations supported attempt to add or 
remove graphs, as well as to query for graphs or for sets of 

triples retrieved from different graphs. In order to perform 
the queries, which enable the selection of a subset of the 
semantic content hold in a given space, a template is 
required. 

We follow Otsopack to address these operations. 
Gómez-Goiri et al. (2014) present further discussion about 
knowledge distribution strategies. 

2.2 Modelling and simulation interoperability 

Mittal et al. (2007) present a test and development 
environment using discrete event system specification 
modelling language (DEVSML) and the SOA framework. 
DEVSML is built on XML and provides model 
interoperability among DEVS models hosted at remote 
network addresses. The Client application that 
communicates with multiple servers hosting DEVS 
simulation services and the underlying SOA for DEVS 
(SOADEVS) framework (Mittal et al., 2009). The authors 
show how SOADEVS is positioned to address the need for 
a Department of Defence Architecture Framework,  
DoDAF-based net-centric paradigm (Mittal, 2006) for test 
and evaluation at the system-of-systems and enterprise 
systems levels. The SOADEVS framework provides the 
needed feature of runtime composability of coupled systems 
using the SOA framework. The integration of DEVSML 
and SOADEVS is performed with the layout as shown in 
Figure 2. The manner in which DEVSJAVA/DEVS-Suite 
(ACIMS software site) models could be attained or 
developed by client can be manifold. The models can be 
created through natural language processing (NLP) 
methods, raw java format, or BPMN/BPEL files. The 
models rest with the client (Step 3, Figure 2). Once the 
client has DEVSJAVA models, DEVSML server can be 
used to integrate the client’s model with model available at 
some other place on the web to get an enhanced integrated 
DEVSML file that can reproduce DEVSJAVA model in 
java format (Steps 4 and 5). The SOADEVS enabled server 
can either take this integrated DEVSML file directly or can 
ask the user to provide the top level coupled model through 
the SOADEVS client application. Finally, the remote 
simulation is conducted at various DEVS simulation 
engines located over the web (Step 6) and be used for 
simulation-based testing in a distributed environment. 

Figure 2 DEVSML and SOADEVS integrated (see online 
version for colours) 
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However, Mittal et al. (2007) provide only platform 
interoperability that employs JAVA serialisation which 
converts JAVA objects into byte array to send messages to 
simulators. This restricts interoperation to simulators based 
on JAVA. To add the language interoperability to the 
platform interoperability, (Seo and Zeigler, 2009) apply 
neutral message passing and the SOA environment. Their 
interoperability on DEVS uses simulator level 
interoperability that uses common simulator interfaces to 
simulate DEVS models. The simulator interface describes a 
minimum agreement being able to implement a simulator 
class using different languages such as JAVA, C++, and C#. 
Their approach strengthens model reusability because 
DEVS modelling and simulation separates models and 
simulators. To increase model composability, they apply a 
new construct called the DEVS namespace which is a 
specific XML namespace to define unique message types 
used at DEVS models in the DEVS simulator services. 
Integrating different DEVS simulators provides semantic 
interoperability. The main contribution of their work was to 
design and implement interoperable DEVS simulation 
environment using SOA and DEVS namespace. The 
interoperable DEVS simulation environment is categorised 
to the design of DEVS simulator service and DEVS 
simulator service integrator. The DEVS simulator service 
provides not only simulator level interoperability, but also 
model level interoperability. Also, through the DEVS 
namespace, they can couple DEVS simulator services with 
same message types. In an interoperable DEVS 
environment, web services represent DEVS simulators 
embedding specific DEVS models. They have minimum 
agreement for simulator and information of input/output 
ports which have specific data types described in DEVS 
namespace (Seo, 2009). 

In the Frontier design environment (Seo et al., 2012), 
authors exploit the reconfigurability inherent in a SOA with 
orchestration of the offered services to provide much greater 
flexibility. Such flexibility allows users to flow through the 
processing steps at will bypassing intervening steps if 
appropriate. To do so, they use the System Entity Structure 
which is a high-level ontology framework targeted to 
modelling, simulation, systems design and data engineering. 
SESs are pruned to pruned entity structures (PES) to be 
transformed to executable simulation models. A constrained 
natural language approach to pruning has been developed 
that not only allows easy manual pruning but also enables 
automated specification through input pruning scripts. This 
capability provides a key element in achieving the 
flexibility to adapt to user requirements. The family of PESs 
generated from a single pruning script constitutes the 
solution space. These PESs are encoded in XML, and with 
the help of an XMLToOWL converter, stored in a common 
data service. In this form, they are available on demand to 
Frontier SOA services where all information exchanges 
between services are mediated by a common data service 
within a web services environment that supports a ‘semantic 
bus’. However, a more flexible orchestration is required to 
implement automatic invocation of modelling services. 

Eventually an intelligent learning system can implement 
such flexibility. However, initially Frontier must be seeded 
with some criteria for selecting services and invoking them 
in a particular order, with outputs from some services 
passed as input to others. Because Frontier is a  
semantics-based system, an OWL-based representation is 
most appropriate. This representation will reside in the 
common data service and implemented in TripleStore, thus 
providing support for orchestrating services. To level up in 
flexibility from a static OWL representation, intelligence is 
provided to perform simple matching between the declared 
capabilities of the basic Frontier services and the declared 
needs (including values) of the user. Eventually, an 
intelligent learning system can make better matches. The 
easiest and most simple-minded form of matching will look 
for explicit matches, i.e., equal values, between 
corresponding attributes (OWL properties) of the frontier 
services and the user requiring the services. Such matching 
will, at first, be crude, but it will be more than syntactic 
signature matching because the properties represent 
semantic information about both the demand and supply 
side. More advanced matching will involve dynamic 
orchestration decisions, such as examining the results from 
one service and inferring – at that point – whether they 
should be passed to another service, or whether perhaps the 
previous inputs should be passed to another service, etc. 
Whether such learned rules and/or choices can themselves 
be represented in OWL or must be kept in a sub-symbolic 
neural representation is not yet clear; but in either case, 
Frontier will provide the ability to adapt its orchestration of 
service’s needs (Seo, 2012). 

Zeigler et al. (2017) show that DEVS offers the ability, 
via mathematical transformations called system morphisms, 
to map a system expressed in a formalism suitable for 
analysis (e.g., timed automata or hybrid automata) into the 
DEVS formalism for the purpose of simulation. They 
discuss a probabilistic extension of the Finite Deterministic 
DEVS (FD-DEVS) (Mittal et al., 2007; Zeigler and 
Sarjoughian, 2012) formalism that enables a set of model 
classes and tools derived from Markov-type models. The 
MS4 (MS4 Me, 2013; Seo et al., 2013) modelling 
environment provides a suite of tools that support this 
extension, called finite probabilistic DEVS (FP-DEVS). 
This extension, also, is based on PROMELA models that 
are expressed in a high-level abstraction which does not 
consider explicit representation of time or events. But, the 
efficiency of the processes of verification and validation 
relies on the accuracy of the models. Yacoub et al. (2017) 
worked to develop a new extension of PROMELA for the 
modelling of discrete-event systems so that the verification 
of these models is then done by combining formal 
verification and simulation-based verification. 

The implementation of Frontier Simulation Services is 
based on the author’s extension of the open source ADEVS 
environment to support simulation using Web Services. The 
resulting environment, called ADEVS/SOA, allows ADEVS 
coupled models to be executed on an open-source  
Tomcat-based SOA platform. Due to the differences in the 
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underlying languages, C++ and Java, ADEVS/SOA (C++) 
does not support dynamic instantiation of ADEVS models, 
ADEVS/SOA (C++) does not support reflection functions 
for Object classes’ variables, ADEVS/SOA does not 
support dynamic creation of XML DEVS messages from 
ADEVS messages, and ADEVS/SOA does not create 
ADEVS Simulator Services with uploaded ADEVS models. 
These limitations imply that work must be done in 
individually tailored, rather than automated, fashion to 
integrate an ADEVS model to execute on ADEVS/SOA. In 
particular, simulation servers must be individually 
provisioned with simulator services with pre-assigned 
atomic models. In contrast in the DEVS/SOA environment 
based on DEVSJAVA, atomic models can be downloaded 
to generic simulation servers and locally compiled. Much 
remains to be done including design and implementation of 
the semantics-based orchestration and an automated 
approach to mappings of the SES to incorporated 
abstractions. Authors also need to go beyond to the current 
pairing of models to populating the environment with 
services and models to address a full range of applications 
objectives. Their ontologies-based approach is  
under-development consistent with the development of the 
semantics-based data store discussed above (Seo, 2012). 

Al-zoubi and Wainer (2013) present a better simulation 
interoperability concept background and describes their 
restful interoperability simulation environment (RISE) 
middleware that fits within this concept. Their objectives 
were to enhance interoperability by decoupling/hiding 
implementations. They highlighted some guidelines to be 
followed to a general Web-based middleware container. 
Interoperability, as they stated, enables two or more 
different software systems to interface and use each service 
correctly (Tolk, 2010). The complexity of interoperability 
arises when systems are heterogeneous, as in the case of 
some distributed simulations. This is usually because 
systems have been developed independently with different 
semantics (i.e., the meaning of the exchanged information) 
and/or syntactic (i.e., the rules of structuring and 
exchanging the information). Since such capabilities are 
realised in software design and implementation, 
interoperability needs to be studied from the software 
perspective, in particular, at the API level (since this is how 
systems access and use other systems services). 

Al-zoubi and Wainer (2013) presented RISE 
middleware as a layered architecture where each layer 
defines its interoperability methods and provides services to 
the layer above it. Following this concept, RISE is 
organised in the following layers: middleware, simulation, 
and modelling. The middleware layer provides a number of 
services to the simulation layer, such as all means of 
communication and managing all simulation experiments 
lifecycle and executions. The simulation layer deploys 
different simulation environment types, each of which 
supports its own time management. The modelling layer 
operates above the simulation layer. This represents the 
system under study, which is simulated by a specific 
simulation environment. These RISE model layers match 

other existing interoperability conceptual layers, particularly 
the level of conceptual interoperability model (LCIM) 
(Tolk, 2010). The LCIM interoperability layer deals with 
the software implementation of interoperation, including 
simulation and middleware. In RISE, this layer is presented 
in two layers: middleware and simulation. The simulation 
layer contains the simulation engine implementation 
including simulation algorithms and formalism. This makes 
the simulation implementation and algorithms independent 
of the middleware layer. Thus, the simulation layer can have 
different types of simulation implementations and 
algorithms. The middleware layer provides management 
and common interoperability services to the simulation 
services in the upper layer. Al-zoubi and Wainer (2013) 
argued that SOAP-based WS simulations group the services 
as procedures in WS ports (addressed by a single URI). 
Thus, simulation data is exchanged and described in the 
form of procedure parameters while the data channels are 
described as procedures. SOAP messages in XML 
(describing RPCs) are not exchanged at the simulation level, 
but at the Web service technology layer. This is the case for 
all SOAP-based WS simulations such as (Seo, 2009). They 
however, realised that it was not possible due to the 
restrictions imposed by SOAP WS structural rules. For 
example, they cannot decouple interoperated systems 
implementations if the data channels (procedures) and the 
way data is described (programming parameters) are part of 
implementation itself. Composition scalability is complex if 
every service (implemented as procedure) at the simulations 
at the server side require stubs on each simulation client. 
Thus, this interoperability approach is difficult to achieve in 
open communities as in the case of the Web. This is because 
in such communities practice, systems need to be designed, 
implemented, and evolved independently. On the other 
hand, the SOAP-based WS ports (along with their 
procedures) had to be created and compiled before even 
starting up the system. This approach usually ends in a close 
community where software developers can discuss with 
each other to resolve systems API related design issues. The 
web services description language (WSDL) role is to 
describe the RPCs signatures (i.e., names and input/output 
parameters). However, once the published WSDL document 
is compiled to programming stubs (usually by a tool), 
programmers need to code those stubs and compile them 
with their software. 

Finally, they presented two tables summarising the 
comparison of RISE to current interoperability approaches 
(Table 1) and comparing current Web-based simulation 
approaches (Table 2). Many references related to each case 
are mentioned. 

In RISE, all functionalities are hidden in resources, 
named with URIs. Those resources (URIs) are connected to 
each other via uniform virtual channels in which the 
simulation synchronisation is done using XML messages. 
Thus, the RESTful interoperability approach allows system 
designers, to decompose the systems in components (i.e., 
called resources/URIs), and to hide the implementation 
within those components, hence separating component 
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interfaces from software implementation. These 
fundamentals were adapted by the RWS style, which was 
adapted by the WWW, the largest open computing 
environment. In contrast, existing simulation 
interoperability approaches do the opposite to these 
principles by following procedural programming style, 
hence mixing systems implementation and interface. By 
going against the Web, interoperability principles will 
always cause serious difficult interoperability issues when 
interoperating on the Web with other existing systems. 
These issues became obvious during the current efforts on 
standardisation of DEVS (Zeigler et al., 2000; Wainer et al., 
2008, 2010; Wainer, 2009). This standardisation effort is 
aiming at interoperating various DEVS-based 
implementations systems via the web (Wainer et al., 2010). 

RISE is not a real SOA server-based solution since 
uploading model to specified servers to perform simulation 
is not a full or real SOA-based simulation. SOA means that 
application (simulation) Servers hold services that are 
orchestrated over the web. Services are hosted by the 
servers not uploaded at runtime. So, the best solution is to 
implement simulation servers that host their own models. 
The Admin of the server develops updates and stores 
models in digital libraries. In RISE, the semantics of all 
synchronisation messages is described in XML. 

On the other hand, how these messages are handled 
during implementation is out of the protocol scope (i.e., one 
does not need to be a programmer to design the 
synchronisation algorithms). Therefore, semantics is 
required to handle interoperability and synchronisation 
during implementation. RWS must be implemented using 
semantics to handle models. 

Similarly, epidemiologists can develop epidemic models 
for a wide variety of diseases in different formalisms and 
store these models in digital libraries. These models are 
ready to be used by communities, users have just to 
integrate them through RWS in their own work. Therefore, 
we have to develop models in a way that they can be 
invoked by a RWS using java reflection. This RWS can 
hold any model if this model has a standard specification 
such as DEVS. All previously developed models in the 
DEVS formalism (DEVSJAVA) will be conserved in the 
server store as they are without any change. RWS is an 
abstraction designed to call DEVS class methods using java 
reflection Figure 3 shows a simple RWS algorithm. The 
RWS first load the class model from the store. It obtains all 
the model parameters. Each method, let it be deltaExt(), 
deltaInt(), out() or the conf(), has its proper parameters that 
differ from one model to another. So, the RWS asks the 
model for each method parameters. It must obtain 
parameters values from the TSC. Thus, these parameters 
must be annotated semantically. Obtaining parameters, the 
RWS passes them to the loaded class (DEVS model) and 
asks it to perform its specific transition function according 
to the events scheduling. In the TSC, information must be 
semantically annotated. Especially, messages need to be 
semantised, designed as graphs. Each RWS can easily find 
all graphs (messages) destined to it. So, a RWS accesses the 

TSC, looks for its input messages, performs its transitions 
and generates semantically outputs (graphs) that it writes 
back to the TSC. No direct communication between models 
at the low level is used; communication is only through the 
TSC and between RWS encapsulating models. 

Figure 3 Algorithm of RWS model driving 

 

3 DEVSSERVER principles 

To deal with DEVSServer principles, let us consider two 
coupled epidemic models AB and AC with atomic models 
A, B and C according to DEVS formalism, Figure 4. Each 
of A, via RWS. A is participating in two parallel simulation 
sessions at the same time. AB and AC simulations are 
sessions performed on separate servers by two different 
clients (Figure 4). Servers store models in respective 
EMDL. Each epidemic model consumes information from 
its own EMDL (Silva et al., 2010). Thus, A, B and C are a 
data mining-based model where a mining of some data is 
applied to generate output (Barigou et al., 2010; Mokeddem 
et al, 2013, 2015). Data are in the same EMDL as the model 
using them. A and B are described with ontologies to allow 
a modeller to link servers hosting these models while trying 
to use each of them as sub-model of its own coupled model. 
Many modellers may realise a coupled model conjointly. 
AB, A and B and AC, A and C, respectively, represent 
exchanged information as a standard ontology such as 
friend of a friend (FOAF) to link models. This ontology is 
designed as a shared space between these models. 

In the example of Figure 4, two shared spaces are used 
by the two sessions. In each shared space, models output 
RDF triples to be added to the shared space. Models may 
read triples into the shared space and perform their 
transition functions. A is participating in the two sessions; it 
uses the shared space according to the session. Finally, it 
stores such ontology in the modeller’s server Triple Spaces. 
Since Triple Spaces is used as shared space, this knowledge 
is available for other servers using that shared space. 

Another model (coordinator) may notify the other 
models or users that there is a friend in this simulation 
session or in this shared space. This coordinator may 
populate the shared space with information produced by 
these other models (Varela-Candamio and García-Álvarez, 
2012). Prior to information retrieving, the coordinator 
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semantises the information according to the FOAF 
ontology. 

Figure 4 Simulation sessions with model sharing example  
(see online version for colours) 

 
Finally, it periodically looks into the space to check who is 
friend of this model. Data mining-based model uses preview 
data as follow: data are organised in a view from dataset 
inside digital libraries. Each row of this view is an entity. 
Many columns are properties of this entity. We apply 
knowledge discovery from data (KDD) on these data to 
extract rules that will be used by the model (Barigou et al., 
2010; Mokeddem et al., 2013, 2015). Therefore, a modeller 
begins by applying KDD to discover knowledge that is used 
to define transition functions of the model. 

The interoperability is achieved when AC model, which 
does not support the AB digital libraries, automatically 
discovers a friend who is using the first model. This is 
possible because both clients may share information in a 
common space and use the same ontology. 

A node, in DEVSServer architecture (Figure 5), is 
composed of a repository, a Collector and a Mediator. The 
Repository stores epidemic models, their datasets and 
ontologies to characterise their semantic information. 

The Mediator is a collection of web services that will 
provide access to internal data and external sources, using 
state-of-the-art semantic-web/grid technologies. The 
Collector retrieves diseases models and their information 
from publicly available DEVSServer servers. 

Interfaces enable the admin of the server and the client 
to perform Modelling and Simulation. Each node hosts its 
own models developed by its Administrators. Models are 
kept in a NoSQL database to ensure a quick search of 
models and to deal with semantics inside models’ 

description for a machine adequate use. A node makes use 
of the TSC paradigm to establish communication between 
models during simulation. 

A simulation is performed by many mediators 
(coordinators) and RWS each one handling specific models. 
Many nodes interact to perform a distributed simulation 
execution. 

In this section, we detail how models are hosted by 
DEVSServer and how TSC is used to perform an SOA 
simulation. Models read inputs and write outputs to the TSC 
parameterised by the client (DEVS modeller). Two 
subsections are detailed. The 1st one concerns the admin of 
the server and the 2nd one the client part. The admin of the 
server is responsible to add, update or delete models from 
the server. Any client can perform a simulation while using 
the models stored in the server. Let us see these two tasks in 
detail involving the mediator, the repository and the 
collector. This DEVSServer workflow and visual approaches, 
in addition to service-oriented architecture and web services 
fall down in a computational thinking when developing 
complex systems as described in Chen (2018). 

3.1 The admin tasks 
Figure 5, inside the two red squares, depicts the diagram of 
the Admin operations on the server. The configuration of 
the server consists of adding and updating users and models. 
Models need to be described with semantics to let machines 
(other DEVSServer) use them adequately. Semantic is 
conceived with RDF triples. The semantic of each function 
must consider parameters of the model and the way they are 
utilised. A model is described as an RDF graph to be easily 
added to the NoSQL store. Such graph can be also 
converted to ontology. Figure 6 shows some RDF triples 
depicting the graph of a DEVS TB (tuberculosis). TB is the 
RDF subject, arrows define the RDF predicates, and 
helicoids are objects. 

hasType, hasOwner, hasInPort, hasCreationDate, 
hasJavaClass, hasInitialise, hasDeltaExt, etc. are some TB 
predicates. AtomicModel, Mokaddem, 12/02/2016, 
parameter, etc. are some objects that may be used as new 
subjects to build a graph. Each model owns its functions 
such as initialise(), deltaExt(), deltaInt(), out() and the 
conf(). The initialise() function lets the model perform its 
initialisation. Such initialisation concerns the time and the 
states of the model.deltaExt() transition function concerns 
the action to be performed when some inputs X1, X2; etc. 
are received. 
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Figure 5 DEVSServer architecture (see online version for colours) 

 

 
Let us notice that the inputs number differs from a model to 
another. deltaInt() transition function deals with the inside 
states change. The out() function generates the outputs of 
the model. The predicate <u:hasJavaClass> refers to the 
java code that will be loaded by the RWS by java reflection. 
That means when calling a RWS handling any model to 
initialise itself then the RWS just does a java reflection to 
call at runtime the initialise() method of this java class 
included in this code. This class is inserted as a large object 
binary (LOB) in the NoSQL store. So, the related RWS 
must first load this class from the store then use it by 
reflection (Appendix A). A description of the model in 
natural language may also help understanding the model 
behaviour. The RWS always reads/writes from/to TSC. 

When an event occurs, the RWS detects the event type. 
If the event is an internal event, the RWS ensures that all 
parameters are ready to invoke the model deltaInt() 
transition. It does so for the external and initialisation 
events. The RWS looks like the driver of the model. 
insertModel(), deleteModel(), getModel() are some admin 
methods to insert, delete and load a model from the store. 
The readModelClass() is used by getModel() to load the 
java class (DEVSJAVA) of the model. The WSDeltaExt() 
performs a deltaExt() reflection and so on. 

3.2 The client tasks 

Figure 5, within the two green squares also, shows a client 
loop, depicting the steps followed by a client in a simulation 

session. A client may simulate an atomic or a coupled 
model. A coupled model execution is more complex. 

In the following, we show the two executions 
respectively, commenting Figure 5 for each case. 

Figure 6 Graph model of a DEVS TB example (see online 
version for colours) 

 

3.2.1 Atomic model execution 

A client starts by selecting a model (atomic), no coupling is 
needed, only the interaction with the client interface (CI). 
This selection is performed as a natural language search. 
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Figure 7 A coupled model execution within three distant servers (see online version for colours) 

 

 
The CI invokes the mediator which performs the search by 
starting its repository. The repository returns the URLs of 
the RWS handling the requested model which may be 
remote. The mediator passes these URLs to its collector 
which invokes the local/remote RWS to extract the 
requested model RDF graphs. The mediator places these 
graphs in the TSC and allows the client to query it 
(SPARQL). The client can ask for the input/output ports, the 
owner, a short description, etc. Finally, he chooses one from 
the listed models. The mediator updates the TSC by deleting 
the unneeded models and adding the full information of the 
selected one as inserted by the admin (Figure 3). Since there 
is no coupling, the client can initialise parameters and start 
simulation. The mediator adds these parameters to the TSC 
and invokes the RWS to perform its simulation. 

The RWS will follow a standard DEVS simulation of 
atomic model, according to Figures 3 and 7, but intelligently 
since it reads/writes from/to TSC and checks transition 
functions parameters. 

Before requesting any step or any transition function, it 
looks for its parameters and adds appropriate triples to allow 
a significant and correct run. For each output, out() result, it 
semantises its results before inserting in the TSC. The 
Mediator sends this information to the CI for visualisation. 
This simulation driving is given in Figure 3. 

The contents available on a node (DEVSServer) are 
completely browsable. The list of spaces a node is joined to 
are available under /diseases (e.g., Epidemic Modelling 
case). Each space is identified by an URI (e.g., http:// 
diseases/diseaseName). All the resources of that space are 
listed under http://diseases/diseaseName/{space_uri}. For 
example, the graph related to the TB deltaExt() is available 
on http://diseases/TB/DeltaExt_TB, and its TSC is available 
at http://diseases/TB/TSC. After loading the TB in its TSC, 
deltaExt() becomes available at http://diseases/TB/ 
TSC/DeltaExt_TB. If we make an HTTP DELETE to that 

resource, we will be taking that graph from the space (TSC 
respectively). Let sp denotes a space URI (http://diseases), g 
a graph URI, s, p and o-uri subject, predicate and object, 
then some HTTP requests are as follow: 

GET {sp}/graphs/{?g} returns the graph {g}. 
GET {sp}/graphs/{?g}/{s}/{p}/{o-uri} returns the graph of all 
triples such that the subject is {s}, the predicate is {p} and the 
object is {o-uri}. 
GET {sp}/graphs/{?g}/{s}/{p}/{o-type}/{o-val} returns the 
graph of all triples such that the subject is {s}, the predicate is 
{p} and the object type is {o-val}. 
DELETE {sp}/graphs/{g} returns the deleted graph {g}. 
DELETE {sp}/graphs/{g}/{s}/{p}/{o-uri} deletes all triples 
from {g}such that the subject is {s}, the predicate is {p} and the 
object is {o-uri} then returns the deleted triples as graph. 
DELETE {sp}/graphs/{g}/{s}/{p}/{o-type}/{o-val} same as 
previous but with object type. 
PUT {sp}/graphs/{g}/{s}/{p}/{o-uri} adds the triple (s, p, o-
uri) to the graph g. 
PUT {sp}/graphs/{g}/{g’} adds the sub-graph g’ to the graph g. 

TSC provides some primitives to access to the semantic 
information hold in each graph as follows: 

writeToTSC (space_URI, graph_URI) : URI 
writeToTSC (space_URI, triple) : URI 
readFromTSC (space_URI, graph_URI) : graph 
readFromTSC(space_URI, query_parameters) : graph 
takeFromTSC (space_URI, graph_URI) : graph 
takeFromTSC (space_URI, query_parameters) : graph 

The writeToTSC() primitive allows writing a graph/triple 
into a given graph (identified by its URI). It uses the 
previous HTTP PUT requests. It returns the URI of the 
updated graph. The readFromTSC() returns a graph 
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belonging to a given space which contains at least a triple 
matching the query parameters or has the given URI as its 
identifier. It should be remarked that it has been designed as 
a non-blocking operation. It uses the previous HTTP GET 
requests. The takeFromTSC() primitive behaves like a 
destructive read, deleting the graph returned from the space. 
It uses the previous HTTP DELETE requests. 

Since all the resources of that space are listed under 
http://sp/modelName/{space_uri}, we can discover the 
http://sp/modelName/DeltaExt graph that contains available 
and semantised data associated to the deltaExt() transition. 
If the TSC is containing the following information for 2 
models A and B: 

<A> <hasDeltaExt> <sp:A/DeltaExt> 
<B> <hasDeltaExt> <sp:B/DeltaExt> 
<sp:A/DeltaExt><hasInputParameter><sp:A/DeltaExt/inport1> 
<sp:A/DeltaExt><hasInputParameter><sp:A/DeltaExt/inport2> 
<sp:A/DeltaExt><hasOutputParameter><sp:A/DeltaExt/outport1> 
<sp:A/DeltaExt><hasOutputParameter><sp:A/DeltaExt/outport2> 
<sp:A/DeltaExt/inport1><hasType> <u:message> 
<sp:A/DeltaExt/inport2><hasType> <u:int> 
<sp:A/DeltaExt/outport1><hasType> <u:double> 
<sp:A/DeltaExt/outport2><hasType> <u:float> 
<sp:A/DeltaExt/inport1><hasValue> value_of_parameter (data) 
<sp:A/DeltaExt/inport2><hasValue> value_of_parameter (data) 
<sp:A/DeltaExt/outport1><hasValue> value_of_parameter (data) 
<sp:A/DeltaExt/outport2><hasValue> value_of_parameter (data) 
 
<sp:B/DeltaExt><hasInputParameter><sp:B/DeltaExt/inport1> 
<sp:B/DeltaExt><hasOutputParameter><sp:B/DeltaExt/outport1> 
<sp:B/DeltaExt/inport1><hasType> <u:message> 
<sp:B/DeltaExt/outport1><hasType> <u:double> 
<sp:B/DeltaExt/inport1><hasValue> value_of_parameter (data) 
<sp:B/DeltaExt/outport1><hasValue> value_of_parameter (data) 
 
<A> <hasEvents> <sp:A/Events> 
<B> <hasEvents> <sp:B/Events> 
<sp:A/Events><hasEvent> <sp:A/Events/event1> 
<sp:A/Events><hasEvent> <sp:A/Events/event2> 
<sp:A/Events/event1><hasType> done 
<sp:A/Events/event1><hasTime><t:time1> 
<sp:A/Events/event1><hasPort> none 
<t:time1><hasValue> 08:10:10:20 
<sp:A/Events/event2><hasType> ext 
<sp:A/Events/event2><hasTime> <t:time2> 
<sp:A/Events/event2><hasPort><sp:A/DeltaExt/inport2> 
<t:time2><hasValue> 08:10:10:40 

To handle an external event, the RWS previously calls its 
WSDeltaExt() method which calls the readFromTSC(sp:A, 
sp:A/DeltaExt) to get the sub-graph sp:A/DeltaExt which 
contains related parameters. Now, the RWS knows that A 

has two input parameters and two other output parameters. 
Before invoking the java class deltaExt() method, the RWS 
get respectively the parameters values using: 

readFromTSC(sp:A/DeltaExt/import1,<sp:A/DeltaExt/i
mport1> <hasValue> {?o}) 

for the 1st parameter and so on. Parameters passing is now 
ready. 

To compute its next event, the RWS invokes: 
readFromTSC(sp:A/Events,{?s}<hasTime>{?t},{?t} 

<hasValue>{?o}) 

which returns all the remaining events times and the RWS 
takes the minimum. This event is event_tN. When the 
simulation time is equal to tN (next event time), the RWS 
calls takeFromTSC(sp:A/Events, sp:A/Events/event_tN) to 
remove event_tN from the graph sp:A/Events and calls 
delta!ext() to consume it. RWS do so for each occurring 
event. 

Space management requires some additional primitives 
to join or leave a space using joinSpace(space_URI) or 
leaveSpace(space_URI). The query query(space_URI, 
query_pameters) aims to see the space as a whole 
triplestore, returning all the triples matching the given 
request. 

The Mediator which may play the role of the 
coordinator of some coupled model begins by creating a 
new TSC using createTSC(). Then, the Mediator finds the 
user defined model and add its graph to the TSC graph. This 
is done with query(space_URI, graph_of_model) and 
writeToTSC(graph_TSC, graph_of_model). The mediator 
asks the model to join the TSC using 
joinSpace(graph_TSC). Now the RWS performs its 
simulation according the parameters initialisation provided 
by the user through its CI. 

3.2.2 Coupled model execution 

When a coupled model is invoked, this means that each 
atomic model involved must execute and synchronise itself 
with respect to the coupling rules. Only RWS supervising 
the models have to communicate and synchronise and each 
RWS routes the request to its own model. Figure 7 depicts 
two Client sessions. The 1st one runs the AB coupled model 
and the 2nd the AC one. Each user uses a CI to connect. He 
calibrates his simulation using the simulation interface (SI) 
implemented as a Session Bean. Once a simulation starts, 
each Mediator creates a TSC and inserts the simulation 
parameters. These parameters involve the atomic models, 
the coupling information and the initialisation conditions. 
Now, RWS can join and read/write from/to TSC until the 
simulation ends. According to TSC events, the SI picks and 
sends to CI intermediate results for visualisation. Coupling 
rules are RDF triples added by the Mediator once the client 
finished his simulation configuration. These rules can be 
obtained according to the model ontology. 

Figure 8 is a very simple example of coupling between 
AB, A, and B where in1 of AB is coupled to in2 of A, out1 
of A is coupled to in3 of B, and out2 of B is coupled to out3 
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of AB. This is specified by the <u:isCoupledTo> predicate 
as follows: 

<u: A> <u: hasInPort> <u: in2>. 
<u: A> <u: hasOutPort> <u: out2>. 
<u: B> <u: hasInPort> <u: in3>. 
<u: B> <u: hasOutPort> <u: out2>. 
<u: AB> <u:hasInPort> <u:in1>. 
<u: AB> <u: hasOutPort> <u:out3>. 
<u:in1> <u: isCoupledTo> <u:in2>. 
<u:out1> <u: isCoupledTo> <u:in3>. 
<u:out2> <u: isCoupledTo> <u:out3>. 

Figure 8 A coupling examples 

 

Since the RWS driving the model has the same 
functionalities as the driven model, the RWS may read 
semantics of each transition function before invoking it to 
synchronise itself within the simulation. The 
synchronisation is also designed as triples. Each model has 
and can compute its TL and TN times of its last and next 
events with respect to TNOW the current simulation time. 
When any transition function is invoked, the RWS checks if 
necessary parameters are already computed. Though, a 
model B can now know by reading the TSC that a model A 
must product its output at a specified time and write it in the 
TSC. If B does not find A output, it must wait until its 
arriving before running its deltaExt(). This is described by 
the semantic of the out() of A. According to a disease 
spread, Epidemic Modelling can predict the next infected 
contact time which is reported in the TSC. 

The triple <u:A> <u:hasOutPort1NextTime> <u: value> 
specifies that A will produce its next output on OutPort1 at 
time equals value. The log of the events times is recorded in 
the TSC until the end of the simulation session. The next 
times of OutPorts events are also reported according to 
TNOW. 

4 Ambient intelligence adaptation 

Nowadays constrained devices such as smartphones are 
furnished with global positioning system (GPS). Free 
Android/iOS applications can record contact locations in 
data stores (NoSQL) using RWS. In the same way, other 
health data, temperature, blood pressure, etc. can be 
captured and recorded. These data may drive real-time 
simulation. 

IoT is a general concept that can be interpreted in 
different contexts. Different protocols and standards can be 
used for the communication between the devices and the 
Internet. As described in this paper, IoT connects to Internet 
through Internet protocols, such as HTTP, TCP and IP. The 
data received from IoT is represented as Web data in forms 
such as HTML, JSON, XML, and URI. This data is then 

organised into ontology presented in RDF graphs, for 
storing, analysing, and reasoning. The data is typically 
processed in service-oriented and Web-based computing 
environment. Repository, Mediator and Collector help 
reduce RDF graphs handling and complexity and play a 
main role in the tasks scheduling since related tasks are 
scheduled in groups and are running simultaneously. At this 
end, the IoT and its data are fully integrated into the Web 
and the virtual world. A convenient way of programming 
the IoT devices is critical to the success of the current 
organisation stack, which allows the massive proliferation 
of applications (Chen, 2016). Neto et al. (2017) presented a 
study on the use of industrial internet of things (IIoT) 
currently in industry context, its basic differences from IoT 
and its expansion possibilities pointing out some challenges 
related to a new approach within the industry. They argue 
that the complex interconnection which is made possible 
through the IIoT is able to optimise resources and reduce 
exponentially the costs of production processes in most 
stages and is gradually changing the direction of society in 
labour relations. Their advances in manufacturing processes 
are feasible as the internet of things is not simply inserting 
intelligence in equipment, but allowing interconnection, 
reconfiguring functions and anticipating loss of productivity 
or failures that might occur in real-time. Within this context, 
the IIoT can be understood as a broad and complex concept 
that encompasses asset and performance management areas, 
availability of increased data and intelligent corporate. 
Brozek and Jakes (2017) presented a study that addresses 
the potential of using mobile devices in a distributed 
simulation. The study also focused on the possibility of 
applying the various technologies and architectures in 
context of using mobile devices in simulation. Lamamra  
et al. (2018) presented an acquisition and processing of 
coded data from temperature sensors used in radiotherapy 
rooms of the Hospital Pierre and Marie Curie Centre 
(PMCC). Their aim was to acquire and check remotely the 
temperatures of rooms to trigger alarms and their control 
thereafter in order to avoid mistakes of manipulation which 
are deadly for patients if they happen or arise. Their system 
modelling was made before proceeding to the 
implementation in practice using an artificial neural network 
to acquire and decrypt the temperature data received from 
the sensors placed in the treatment rooms. 

DEVSServer can be considered as an autonomous 
decentralised system (ADS) that enables the system to 
continue to function in the event of component failures. 

The mathematical modelling of infectious disease 
spreading has been extensively studied for a long time 
(Hethcote, 2000). A lot of epidemic models, such as the 
compartmental models that are composed of differential 
equations, have been developed and analysed (Hethcote, 
2000; Xiao et al., 2011). The population is divided into 
different compartments and each compartment corresponds 
to an epidemiological state which depends on the 
characteristics of the particular disease being modelled and 
its transmission over complex heterogeneous networks 
where a node is an individual and an edge stands for 
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interaction between nodes allowing disease transmission 
(Hethcote, 2000; Pastor-Satorras and Vespignani, 2001; 
Moreno et al., 2002; Olinky and Stone, 2004; Liu and Hu, 
2005; Yang et al., 2007; Zhang et al., 2009; Liu and Zhang, 
2011; Xiao et al., 2011; Zhang et al., 2011, 2012). It is 
shown that the SIS (Barabási and Albert, 1999) and the SIR 
(Moreno et al., 2002) models indicated that the connectivity 
fluctuations of the network play a major role by strongly 
enhancing the incidence of infection. To deal with these 
connectivity fluctuations, AmI capabilities are provided. 

Spreading processes are strongly interacting with huge 
flow of quantitative social, demographic and behavioural 
data that may be used to improve the immunisation strategy. 
The topology of the pattern of contacts between individuals 
plays a fundamental role in determining the spreading 
patterns of epidemic processes embedding the mechanism 
of diverse infection periods and is an impact on the 
properties of the dynamical behaviours of the spreading 
process. The existing immunisation strategies are limited by 
their computational requirements and still have the problem 
of scaling in large networks. Optimal immunisation 
strategies shed light on how the role and importance of 
nodes depend on their properties and can yield importance 
rankings of nodes. 

Contacts positions, social and environment information 
are dynamically and periodically gathered by devices before 
applying any strategy. The simulated strategy detects the 
appropriate contacts once running on DEVSServer. Contacts 
on constrained devices are dynamically advised to avoid a 
critical and unsafe location as a prediction due to AmI 
servers’ simulation. Contacts can move safely avoiding 
disease contamination. Notification, data gathering and 
geographical visualisation applications for mobile are part 
of the platform and may be installed on contacts constrained 
devices. Typical information on disease can also be 
visualised and critical regions coloured on a map (admin 
and CI of Figure 5). Parallel diseases surveillance is 
captured so that contacts related to a specific disease are 
advised with their disease state. 

5 Epidemic modelling 

We consider a typical network (Figure 9). Nodes represent 
different individuals of a real system and links represent the 
connection between nodes. A connection is designed as a 
set of routes intersections. A route is the sequence of visited 
positions by each node of the network. Routes intersection 
design a pair of participating individuals which were in 
face-to-face close proximity (≈1–2m), with a temporal 
resolution of 20 s inside the radius of a designed area. Since 
the mobility of individuals can play an important role in the 
epidemic spreading process, we must gather such 
information using AmI devices. From AmI technological 
advances, we are now in a position to gather data describing 
the contacts in groups of individuals at several temporal and 

spatial scales and resolutions. Contacts are connected to the 
system via Smartphones with GPS and Health Sensors. 
Figure 9 shows the relation between contacts and their 
respective stores. Some contacts are stored in 4 SEMEPs 
stores (SEMEP A, B, C, and D). A city like Mostaganem 
has four SEMEPs. For example, a contact X from 
Mostaganem District is vaccinated at SEMEP A and 
SEMEP B with some vaccines, and he is vaccinated with 
many other vaccines at SEMEP C. He has been admitted in 
a public hospital of another city, reported in SEMEP D. To 
gather X information, we have to connect to the SEMEPs A, 
B, C, and D, in a distributed and parallel manner. Moves of 
individuals are also captured in their respective stores 
(Figure 9). 

Figure 9 Global network dispatching (see online version  
for colours) 

 

We must investigate the network dynamics affected by 
individual diversity of susceptibility and infectivity that may 
be caused by individuals’ intrinsic differences that may lead 
in infections periods. For each node i, τi(t) and ίi(t) 
correspond to its contamination and immunity degrees and 
Տi(t) is its state. To address the heterogeneous connectivity, 
we measure these two important degrees τi(t) and ίi(t). The 
state Տi(t) may be susceptible ‘S’, infected ‘I’, recovered ‘R’ 
to correspond to a SIR model (Figure 9, blue =‘S’, red =‘I’, 
green=‘R’) in widely held situations. Since it is computed 
dynamically, we can adopt any other model SI, SIS or SEIR 
(Liu and Zhang, 2011) as the Tuberculosis model below. 
We compute dynamically τ(t), the disease contamination 
threshold, and ί(t), its immunisation threshold. τi(t)>τ(t) 
means the contamination of i is strong otherwise it is weak 
and ίi(t) < ί(t) means i has a weak immunity otherwise it is 
strong. When a contact occurs between i and j, if τi(t) is 
strong, then j is strongly affected and if τi(t) is weak then j is 
weakly affected. A strong immunity means a susceptible 
individual will not be infected but his immunity degree will 
decrease and a weak immunity means a susceptible 
individual will be infected resulting in a state change. Each 
disease is associated to rules that change dynamically the 
states and the degrees of its related individuals and its 
thresholds. 
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Figure 10 The fitness computation 

 

Table 1 Data of Mostaganem City corresponding to 2015 used in simulations 

 Masculine Feminine Individuals Percentage 

Total population 445,992 (50.21) 442,262 (49.79) 888,254 - 
Urban population 203,551 201,848 405,399 45.64 % 
2nd urban population 61,235 60,722 121,957 13.73 % 
Sparse population 181,207 179,691 360,898 40.63% 
Population <= 5 years old 49,170 47,495 96,655 10.88% 
Population 6-19 years old 104,501 102,249 206,750 24.77% 
Population 19 - 59 years old 264,790 262,420 527,210 63.17% 
Population > 60 years old 27,635 29,992 57,627 6.90% 
Detected cases of TB*   303 0.2% 
Estimation of infected individuals *   413 0.3% 
Cavitation forms*   104 34.32% 
Detected cases of HIV*   3 0.99% 
Risk factors*   - 65.4% 
Total annual mortality*   - 0.03% 
Negative Treatment*   - 0.1% 
Failed Treatment*   - 0.2% 
Relapsed*   12 3.96% 
Treatment abandonment rate*   - 1.2% 
Diagnosis delay (days)   48 - 

Notes: All percentages are with respect to the total population of Mostaganem, except (*) which is with respect to the total 
number of TB patients of Mostaganem district. 
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Table 2 Population repartition of Mostaganem district according to age range 

DISTRICT 
0–5 years  6–19 years  16–59 years  60 years and +  Total 

M F  M F  M F  M F  M F 

MOSTAGANEM 9,141 8,754  18,211 17,891  49,610 51,083  5,640 7,184  78,055 80,391 

 
For example, if τi(t) > τ(t) and ίi(t) < ί(t) and Տi(t) = ‘S’ then 
Տi(t) = ‘I’. Some rules change the thresholds values of τ(t) 
and ί(t). Some rules compute the values of τi(t), ίi(t) for each 
node i. These degrees depend of environmental, social and 
health data like sex, age, weight, climate, humidity, etc. 
Data mining tools help discretise these data more 
efficiently. Figure 10 is a set of some rules related to 
Tuberculosis. The periodic change of temperature, humidity 
profiles, or even the succession of school terms and 
holidays, can lead to periodic phenomena of epidemics and 
affect these degrees. Some mutated viruses propagate again, 
rendering a new epidemic outbreak. This process occurs 
repeatedly; the immunisation strategy needs to handle this 
phenomenon to give a better description of these seasonal 
epidemics. 

We follow Montañola-Sales et al. (2015) and Prats et al. 
(2016) to consider a typical tuberculosis case study inside 
Mostaganem Virtual City. Tables 1 and 2 give some related 
data to Tuberculosis in Mostaganem. This model is based 
on general knowledge about the natural history of 
tuberculosis gathered from the previous SEMEPs stores as 
RDF graph. There are two essential characteristics of TB 
that must be taken into account in any epidemiological 
model. On the one hand, an infected individual does not 
necessarily develop an active disease. On average, only 
10% of infected people become ill. Moreover, a person 
remains infected for a long time and may develop active 
tuberculosis after several years. Infected people are usually 
not diagnosed. On the other hand, only an ill individual can 
disseminate the infection. The infection rate increases if the 
patient has TB with cavitation. Once an individual is 
diagnosed with TB, the pharmaceutical treatment lasts six 
months. Once the treatment is finished, the possibility of 
getting sick again remains at 1% for two years post-
diagnosis (Zhang et al., 2011, 2012). 

Once infected, the individual may develop active TB 
according to a certain annual probability that decreases with 
infection time following a quadratic during the seven years’ 
post-infection. It is neglected for the subsequent years (t > 7 
years). The discrete time step of one day is assumed, as 
mentioned. Since simulation time does not cover periods 
longer than ten years, the approximation is good enough. 
This probability has a ten-fold increase for 
immunosuppressed people, and it is multiplied by a factor 
of 1.5 if there are other risk factors. The chance of 
becoming an individual ill with TB is evaluated at each time 
step for all infected persons. Globally, the average of 10% 
of the infected developing an active disease is satisfied. The 
possibility of relapse (getting sick again) for recovered 
patients is also evaluated daily according to the individual 
relapse probability. Once an individual gets sick, the disease 
time counter starts running until the assigned individual 

diagnosis time is reached. If the disease is developed, then 
the individual enters the sick state. In this state, the agent 
not only presents symptoms but also becomes infectious 
(that is, can spread the tuberculosis among healthy or 
treated people). This state considers the time since the 
disease became active, whether the lesions include cavitated 
tissue, and the number of days that will pass until the 
individual is diagnosed (diagnosis time delay). 

Each individual has a particular diagnosis time that is 
randomly assigned when becoming ill, following a 
truncated exponential with mean diagnosis delay (MDD) of 
45 days. Once diagnosed, the agent enters the medical 
treatment state and stops spreading TB. The treatment state 
accounts for the number of days since the treatment started 
and finishes in 180 days. There is a certain probability that 
an individual may abandon the treatment before finishing it. 
This possibility is evaluated at every time step for each 
patient under treatment, according to the input abandonment 
probability. If an individual abandons the treatment during 
the initial 15 days post-diagnosis, the patient becomes sick 
again. If the patient abandons the treatment after 15 to 180 
days post-diagnosis, then he or she is considered to be 
recovered but with a certain probability of relapse the 
following two years. This probability is considered to 
linearly decrease from 100% at 15-day abandonment to 1% 
at the 180-day treatment period. 

The basic entities of the model are individuals. We 
consider five possible states according to TB infection 
dynamics: healthy, infected, ill (i.e., with active TB), under 
treatment and recovered. The state variables of the 
individuals refer mainly to their status in the infection cycle 
as well as the time spent in such phases and individual 
diagnosis time when ill. 

Other individual state variables and parameters are age, 
weight, itinerancy, possible risk factors (e.g., smoking), and 
possible immunosuppression (mainly AIDS). Once a person 
is infected, the presence (or not) of pulmonary cavitation is 
also considered. 

We used individuals’ dataset with the following 
attributes to compute the fitness function (Figure 10) that 
defines the immunity ίi(t) and contamination τi(t) degrees 
and the state Տi(t) of an individual. These attributes are: 
weight, age, smoking, alcoholism, HIV, corticoid therapy, 
previous TB, itinerancy, physical activity, We used 
individuals’ dataset with the following attributes to compute 
the fitness function (Figure 10) that defines the immunity 
ίi(t) and contamination τi(t) degrees and the state Տi(t) of an 
individual. These attributes are: weight, age, smoking, 
alcoholism, HIV, corticoid therapy, previous TB, itinerancy, 
physical activity, injecting drug user (IDU), chronic stress, 
diabetes, cancer, social level, malnutrition, immunity 
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degree, contamination degree, and state. Some initial 
conditions are initialised at the beginning of simulation. 

Data shown in Tables 1 and 2 are used to generate the 
initial population of the Virtual City of Mostaganem  
(Figure 1). Number of healthy, infected, sick, under 
treatment and recovered individuals; MDD; mean treatment 
abandonment rate; and individuals with risk factors and 
with AIDS. Some other initial variables were assigned 
randomly: individual age, weight, and time spent in the 
infection state (Zhang et al., 2011, 2012). 

The time step is set to one day, and the simulation may 
cover up to a period of one or more years. A healthy 
individual is assumed to not have any bacteria in his 
organism and therefore is not able to infect others as well as 
not presenting symptoms. Generally, this individual can be 
seen as a person that does not smoke, not drink, not having 
caught a previous TB, performing a sport, not having any 
form of stress, having a healthy home with high social level 
(job + vacation, etc.), not having used corticoids, having a 
stable eating and sleeping regimes, with no diabetes or 
cancer or HIV. On the other side, a risky individual may 
have some disturbance in some of these factors. However, 
common properties such (age, weight, itinerancy, risk 
factors, diabetes and previous TB) must be well suited if 
randomly generated. 

Individuals may get infected with TB by their close 
contacts. This depends on the type of TB disease that the 
sick person has either cavitated or non-cavitated. A 
cavitation is considered to double the infection probability. 
These probabilities are fixed to reproduce the ratios of ten 
infections/cavitated TB sick and five infections/ 
non-cavitated TB sick in 60 days. Once infected, an 
individual may develop active TB according to a certain 
annual probability that decreases with infection time 
following a quadratic during the seven years’ postinfection. 
It is neglected for the subsequent years (t > 7 years). Since 
simulation time does not cover periods longer than ten 
years, the approximation is good enough. This probability 
has a ten-fold increase for immunosuppressed people, and it 
is multiplied by a factor of 1.5 if there are other risk factors. 
The chance of becoming an individual ill with TB is 
evaluated at each time step for all infected persons. 
Globally, the average of 10% of the infected developing an 
active disease is satisfied. The possibility of relapse (getting 
sick again) for recovered patients is also evaluated daily 
according to the individual relapse probability. Once an 
individual gets sick, the disease time counter starts running 
until the assigned individual diagnosis time is reached (Prats 
et al., 2016). To deal with the previous assumptions, we 
define a chromosome with risk factors as follows: 

60 77 0.3 0.8 15 10 0 0 1 1 0 1 0 1 0 

The used risk factors are respectively: age, weight, social 
level, malnutrition, smoking, alcoholism, itinerancy, IDU, 
previous TB, physical activity, corticoid therapy, chronic 
stress, HIV, diabetes, and cancer (composing rules of fitness 
in Figure 10). This individual is 60 years old, 77 kg, a poor 
man, with high malnutrition, smoking 15 cigarettes/day, 

drinking 10 litres/month, with no itinerancy, no drug user, 
previous TB, sport practice, no corticoid experience, no 
stress, with diabetes and no cancer. 

A contamination is no more than a crossover between 
chromosomes of individuals in contacts. We compare these 
chromosomes gene by gene. If the respective genes are 
close, we move to the next. Otherwise, we use this gene as 
the crossover point and apply a permutation between the 
remaining genes as shown below. 

In the example below, we assume all genes differences 
in the interval [0, 5]. A max of five years for the age is not 
significant, so 1st genes (ages) are close since (|32–29| ≤ 5). 
Also, weights (|48–56| ≤ 5) are close. A social level equal to 
0.3 or 0.8 means that the 1st person is poor and the 2nd one 
is, may be, rich. The same thing for malnutrition for the 
values 0.8 (high malnutrition) or 0.4 (almost healthy). We, 
also, assume that a difference of more than five cigarettes  
(|12–5| ≥ 5) is important and produces a crossover. The cut 
is at smoking genes. 

 

According to these values and the rules of Figure 10, the 1st 
and the 2nd persons have an immunity degree = 0.2 (0.8) 
and a state = ‘Infected’ (‘Susceptible’) respectively. 

After applying a crossover, a permutation occurs as 
follow: 

 

This scenario means that a behaviour contamination 
occurred, in other words these individuals became friends 
and changed habits (behaviours). If one of them was a 
smoker or a drinker, then the second has taken this habit and 
became also a smoker or a drinker. 

Since some values such as previous TB, diabetes, etc. 
cannot change, a mutation must be performed on the initial 
chromosome, according to the last result concerning each 
chromosome. Only, the genes in red squares, below, are 
may change. 

1st individual result 

 

2nd individual result 
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The first individual does not change his weight, nor his 
social level, nor his malnutrition, but his smoking and his 
drinking have decreased. He gets a home. He still has a 
previous TB, he starts playing physical activity. He stops 
taking corticoid. He has now no stress. 

The second individual does not change his weight, nor 
his social level, nor his malnutrition, but his smoking and 
his drinking have increased. He loses his home. He still has 
not a previous TB, he stops playing physical activity. He 
starts taking corticoid. He has now a stress. 

According to these new values and the rules of  
Figure 10, the immunity degree and the health state become 
respectively for the two persons 0.7 (0.5) and ‘recovered’ 
(‘Ill’) respectively. So, we can see that the first individual 
grants from an immunity degree of 0.2 to 0.7 and from a 
state of ‘Infected’ to ‘Recovered’, only after changing his 
residence, taking a treatment, and moving to a new best 
neighbourhood. On the other side, the second individual 
which had an immunity degree of 0.8 and a state 
‘Susceptible’ is got decreased to an immunity degree of 0.5 
and becomes ‘Ill’. 

These changes take effect over many years, by starting 
with low/high values and increasing/decreasing to new 
values. This risk factors effect is straightforward. 

To apply crossover and mutation, let us consider that a 
district is a set of individuals in the same neighbourhood. 
The within individuals are permanently changing 
behaviours over chromosomes crossovers and mutations. 
We define a district chromosome which is the mean 
chromosome of the chromosomes of individuals of the same 
district. This mean chromosome is updated dynamically. It 
shows the state of the district. It gives a quick idea on the 
effects of the related disease. It shows, also, if a district is a 
poor or rich district, a district of delinquents, and so on. 
When a new individual is introduced in such district for a 
long time, he performs, periodically, a crossover with this 
mean chromosome which changes instantly. His 
chromosome changes slowly until he became a delinquent, a 
rich or a poor. 

The set of RDF triples of any contact defines his RDF 
graph (his ontology). This ontology includes his previous 
vaccinations, nurses, centres, virus related to vaccinations, 
weights, heights, type of home including humidity, climate, 
temperature, pressure, etc. These data are required to 
compute an individual’s immunity and contamination 
degrees and disease thresholds. Some of these data are 
temporal, which means that they are not significant after a 
deadline time. We need to collect the network topology and 
its knowledge to apply efficient acquaintance immunisation 
strategies. 

We consider datasets describing the contacts occurring 
in a population during a time interval [TB, TE] and a 
predefined space area, TB and TE are respectively the 
beginning and the end times. Only contacts inside these area 
and time interval are included in the temporal network. 
Contacts can reach or leave dynamically the area at that 
time interval. Such information is gathered via contacts 
smartphones/sensors using DEVSServer APIs deployed on the 

SEMEPs. This network is fully distributed over many 
DEVSServers. Each one builds its own subgraph. The full 
network is obtained by assembling these subgraphs into a 
TSC. Semantic is embedded in the RDF triples of each node 
and its links. The final temporal network of concerned 
contacts defines the full intelligent temporal network. 
Figure 11, extracted from the global network of Figure 9, 
corresponds to the subnet of SEMEP A. The times of the 
contacts between vertices A–D are indicated on the edges. 
Assume that, for example, a disease starts spreading at 
vertex A and spreads further as soon as a contact occurs. 
The dashed lines and vertices show this spreading process 
for three different times. The spreading will not continue 
further than what is indicated in the t = ∞ picture, i.e., D 
cannot get infected. However, if the spreading started at 
vertex D, the entire set of vertices would eventually be 
infected. Aggregating the edges into one static graph cannot 
capture this effect that arises from the time ordering of 
contacts. To apply an immunisation strategy, we use and 
increment a global time TNOW between TB and TE. The next 
discrete event time is the increment step. When a move or 
an information effect occurs, the system state (individuals’ 
state and degrees) is updated. Accordingly, we focus on 
rules that do not ignore the consequences of the time and 
space ordering by, e.g., projecting out the interaction times. 

When an epidemiologist connects to DEVSServer to apply 
an immunisation strategy, he begins by creating the TSC in 
his own node by calling the Mediator createTSC() method. 
After that, his Mediator add the area and the time interval 
data inputs to the TSC, using the writeToTSC() method. The 
Mediator executes its constructTemporalGraph() primitive 
to ask the Repository to retrieve all concerned Mediators 
URLs. A Repository is updated every time information is 
added to a node, telling that this node is owning that 
information. Once getting mediators URLs, the Mediator 
allows these Mediators to access its own TSC using the 
readFromTSC() and writeToTSC() primitives. 

Figure 11 Illustration of reachability issue and the intransitivity 
of temporal networks (more specifically a contact 
sequence) (see online version for colours) 

 

Each Mediator invokes its own findAllContactsAround 
Position() primitive to collect its subgraph forwarding this 
to its own Collector that invokes its getContactRoutes() and 
getContactInfo() primitives to get routes and information of 
concerned contacts. Finally, the temporal network is ready 
to be used in the TSC, it summarises all the events 
occurring in the system. Immunisation strategy can now be 
applied. 

For instance, consider two epidemiologist mobile 
applications. The first one consumes information from its 
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TSC on SEMEP A using standard ontologies to link 
epidemiologists working jointly on some epidemics. Since 
the application uses TSC, this information is available for 
the Mediators in the shared space from SEMEPs B, C, D. 
The Mediators in the same party (session) populate 
dynamically the contacts moving in the case of real time 
immunisation. The second epidemiologist independent 
application, which try to immunise another disease, may 
notify the first epidemiologist when the two diseases have 
common contacts moving which means that immunisation 
strategies can affect each other. The second application may 
populate the first TSC by dumping information retrieved 
from its TSC. Prior to the dump, the application semantises 
the information according to the ontology. Finally, it 
periodically looks into the space to check the contacts 
leaving the space area and remove them from the network. 
TSC provides space decoupling, so applications do not 
know where the information is physically located. They just 
access the space requesting, removing or providing 
information. Therefore, the conceptual scheme the 
developer should have in mind is that multiple nodes 
interact through different spaces (represented by clouds). 
Each space contains multiple graphs (represented by 
temporal networks). These graphs are composed by a set of 
triples represented by nodes and links within each SEMEP 
and corresponding to the area and time interval provided. 
However, AmI environments are mainly populated by 
mobile devices and sensors. These devices frequently join 
and leave the spaces and the information they hold 
constantly changes. Thus, AmI environments are highly 
dynamic. As a consequence, we decided to adopt a 
distributed strategy which locally stores, or even generates 
on demand, the information necessary to answer a query. 
Doing so, we ensure the freshness of the responses 
regarding the sensed data. The main drawback is that 
whenever a node is temporarily unavailable its contents 
become unavailable for the rest of the nodes too. However, 
this faithfully represents the actual state of the space. Our 
TSC design does this by allowing each node, no matter how 
complex or simple it is, to manage its own information. 
Besides, it establishes a communication channel with the 
space it wants to join to, i.e. with each of the nodes 
belonging to it. Queries are propagated to other nodes which 
previously joined that space (regardless of who they are at 
each moment). Possible responses are received from them 
using the same communication channel. In this scheme, 
each node actually has the sets of graphs locally allowing 
knowledge distribution strategies. 

5.1 DEVS Specification 

Let us consider the example of Figure 11, four contacts (A, 
B, C, D) are considered as atomic temporal DEVS models. 
The coupling is defined temporally by the network 
topology. When simulation time advances, each model 
looks in TSC to find if it has a coupling or data updates at 
that time. If so, it generates its outputs according to that 
dynamic coupling and writes its outputs to the TSC. 
According to Figure 11, the start time is zero and the end 

time is 14. So, we consider the time interval = [0, 14] to be 
the window in which we observe the simulation. The DEVS 
global coupled model of the example is shown in  
Appendix B. Let us detail the simulation steps ordered as 
follows: 

1 Generate the virtual city according to data of table. 

2 Apply TB propagation. 

3 Apply immunisation strategy. 

5.2 Virtual city generation 

This step ends with the temporal network building in TSC. 
Since a city is a set of districts and a district is a set of 
individuals and each individual has a chromosome and a 
route that is a sequence of positions, we need a DEVS 
model VirtualCity that generates the overall virtual city 
population, a DEVS model GenerateDistrict that generates 
a district population, a DEVS model GenerateContact that 
generates an individual and an DEVS model 
GenerateChromosome that generates a chromosome. Each 
contact has his own routes composed of positions giving a 
DEVS model route of DEVS model position. 

These models are typical generators with two states. The 
deltaExt() changes the generator to busy. Since the 
generator is busy, the deltaInt() generates an output and the 
out() writes it as RDF triples in the TSC. Let say that a 
generated contact is a graph that is a set of RDF triples 
describing each contact. The initialise() function of the 
VirtualCity reads the data of Table 1 from a file, initiates the 
number of districts and their names. For each district, it 
initiates also the numbers of individuals. The first and last 
names of each individual are selected randomly from files 
of names given as input to the VirtualCity model, masculine 
and feminine names are considered. The address of each 
individual is obtained by calling a Google RWS by giving a 
well randomly selected position (longitude and latitude). 

All the chromosomes data are randomly generated using 
rules, considering that a child is not a smoker or drinker. 
These rules are used to help obtaining useful chromosomes. 
We used some previous individuals’ data to generate these 
rules as described in Section 3, paragraph 3. 

Route generation consists of choosing a centre and a 
radius, and generates a position in that area. A position is 
defined by a longitude, latitude, a start time (the time the 
individual reached the position), a last time (the time the 
individual left the position), and an address. 

Google(http://maps.googleapis.com/maps/api/geocode/j
son),Geonames(http://api.geonames.org/findNearbyPlaceNa
me?),Gisgraphy(http://services.gisgraphy.com/geoloc/geolo
csearch?) RWS are used conjointly to help route generation. 
Addresses and routes fit in the area of Mostaganem districts. 

A result of an individual random generation extracted 
from a full virtual city of Mostaganem generation is 
presented in Appendix B. The simulation uses the 
Mostaganem District population that is 158,446 respecting 
the number of men and women and the data of Table 1. 
Routes were randomly chosen to be fewer than ten positions 
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each. We used three storage nodes to store data assuming 
that Mostaganem has only three SEMEPs. Each node is 
deployed on a distinct computer following the topology of 
Figure 9. At each node, a DEVSServer (Figure 7) is also 
deployed. Individuals are stored according to their 
respective SEMEP. 

The woman ‘Fallak Abou’ of the example (Appendix B) 
is 19 years old and lives at ‘Avenue Khemisti Mohamed, 
Mostaganem’. Her weight is 55 kg, she is poor (social level 
very low) but has no malnutrition. She has no stress, no 
cancer, no previous TB, no itinerancy, no corticoid therapy. 
She is not alcoholic but drinks sometimes, same for 
smoking. She is not diabetic but presents a little glucose’s 
rate. She has a home and does not undertake any physical 
activity. She has a medium immunity and she is ill but not 
infectious. She leaves her home to go to an urban station 
(position_1), then to the university (position_2) then to the 
city centre (position_3), then back to the urban station 
(position_4) and to home. We can validate this itinerary 
using the start and end time to confirm that it is serial. In a 
real-life system, health data and moves of that woman are 
gathered dynamically using her smartphone and sent to her 
respective store. Some health data are already in the 
SEMEP store. 

5.3 Propagation phase 

In this step, the first thing to do is to capture the temporal 
network in the area where the disease is suspected. This area 
is specified with a centre position and a radius. We also 
need the start time when the disease begins to propagate and 
the last time when the propagation is estimated to end. So, 
we have to look for each individual that reaches this area in 
this interval time. This search is done on each SEMEP 
whom individuals are included. The whole temporal 
network is composed of subnetworks related to these 
SEMEPs. 

The simulation of the propagation starts at the previous 
start time and ends at the previous last time. The 
epidemiologist starts his CI and ask his DEVS model, 
propagation, to start building the network. Since we have 
three instances of DEVSServer, we have three propagation 
models, each one on its respective server. Each propagation 
model calls its respective Mediator that put the related 
information in its TSC. Propagation model asks the 
Mediator to collect the list of its own individuals that are in 
that area and interval time. This list is put by the Mediator 
in its TSC. 

Once propagation model has the list of concerned 
individuals, it starts RWS to meet the number of 
individuals. Each RWS is seen as an Individual DEVS 
model. Now that we have individual models running, 
propagation models acting as a coordinator, and the first 
propagation as root-coordinator, the simulation is ready to 
start. Propagation models read/write from/in the TSC of the 
root. Individual models and each propagation model 
read/write from/in their local TSC. 

At each node, propagation model initialises itself and 
asks its individual models to do so. Each individual 

computes the time of its next event TN that is the time of its 
next move. Propagation asks eminent individual models, 
models with the minimum next event time, to perform their 
moves, searches from the eminent individual models which 
were at the same place and the same time, applies a 
crossover operation between their chromosomes and then 
applies the fitness computation. Each propagation model 
reports its contacts into the global TSC as follow: 

1st propagation model 

<u: Birth_270000> <u: hasPosition> <u: Position_3>. 
<u: Birth_270004> <u: hasPosition> <u: Position_5>. 
<u: Birth_270008> <u: hasPosition> <u: Position_1>. 

2nd propagation model 

<u: Birth_270002> <u: hasPosition> <u: Position_3>. 
<u: Birth_270005> <u: hasPosition> <u: Position_4>. 
<u: Birth_270009> <u: hasPosition> <u: Position_5>. 

3rd propagation model 

<u: Birth_270001> <u: hasPosition> <u: Position_3>. 
<u: Birth_270003> <u: hasPosition> <u: Position_6>. 
<u: Birth_270007> <u: hasPosition> <u: Position_4>. 

The root-coordinator deduces and adds these triples 

<u: Birth_270000> <u: isWith> <u: Birth_270002>. 
<u: Birth_270000> <u: isWith> <u: Birth_270001>. 
<u: Birth_270002> <u: isWith> <u: Birth_270001>. 
<u: Birth_270005> <u: isWith> <u: Birth_270002>. 
<u: Birth_270007> <u: isWith> <u: Birth_270001>. 

Five (5) crossover operations occur between the above 
individuals producing change of their chromosomes. These 
operations increase or decrease the respective immunity and 
contamination degrees, states are changing accordingly by 
the fitness performance. If a state is affected with ‘Infected’, 
then a propagation occurred. This contact is added to the 
‘Infected’ list. Ill individuals are added to the ‘Ill’ list and so 
on. Propagation models stay in this loop until individuals 
consumes all their moves or until the simulation reaches the 
interval last time. At the end of the propagation, the number 
of infected gives the prevalence and the incidence factors. 
Holland (1975, 1992) has shown that crossover and 
mutation operators on chromosome can destruct it, resulting 
in the death of the individual. He used a probability of this 
destruction. 

5.4 Immunisation phase 

The immunisation strategy process follows the propagation 
process. Since the propagation produces lists of infected, ill, 
under treatment, recovered and healthy individuals, the 
immunisation strategy consists of producing solutions to 
eradicate the disease. It proposes a solution for each 
category. In this paper, we only deal with the infected 
category. 
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A simple solution consists of vaccinating or 
quarantining all the infected individuals. An important 
challenge is to define immunisation strategies that discover 
a meaningful group of individuals (community) that are 
strongly related to the disease. Once this community 
discarded, disease can be eradicated. To find the strongly 
related individuals to a disease, we need to use protocols as 
stated by Starnini et al. (2013) where the authors consider 
that an immunisation strategy is defined as the choice of a 
set of nodes (individuals) who cannot catch nor transmit the 
disease. They argued that this choice is performed according 
to a ranking of the nodes of the temporal network. They 
consider various ranking strategies, focusing in particular on 
the role of the training window during which the nodes’ 
properties are measured in the time-varying network. We 
follow their work but we use the immunity and 
contamination degrees to rank nodes. The node with the 
higher contamination degree and the lower immunity degree 
is the best ranked. To be more careful, a contamination 
degree in the interval [0.8–1] is considered to be very strong 
and an immunity degree in [0–0.4] is very weak. We can 
test other least values for immunity and highest values for 
contamination respectively. The best choice is designed by 
the Epidemiologist under the disease circumstances. 

To rank nodes the previous intervals, the immunisation 
DEVS model computes the rank of every infected 
individual in the ‘Infected’ list, then it applies a mutation 
operation on the best ranked ones found in the interval  
[0–0.4] for immunity and [0.8–1] for contamination. The 
immunisation model restarts the propagation process and 
compares the obtained list with the previous one. If they 
have the same size, the immunisation process stops. If the 
two lists are different, the immunisation process loops again 
until the list sizes are equal. After each individual move, 
immunisation model sends a message to the CI to visualise 
this move with the corresponding individual information 
showing their behaviour on the map. Map colouring 
indicates the gravity of the propagation. Another message 
(notification) is sent to the individual smartphone 
preventing him to perform the move if a contamination is 
simulated to occur. 

6 Conclusions 

A new concept and ideas for distributed simulation are 
implemented as DEVSServer showing that the design of 
DEVSServer principles (TSC paradigm, mediator, collector, 
and repository) can achieve interoperability. The TSC 
interoperability style at the web level (RWS) allows 
DEVSServer to take advantage of new Web-based features or 
technologies. On the other hand, DEVSServer provides better 
interoperability applying RWS principles among the TSC 
paradigm. 

 

 

 

DEVSServer is specially designed to deal with DSS but it 
can be applied to similar systems. DSS with Epidemic 
Modelling deal with a large number of contacts moving 
dynamically and temporally. Each contact is using AmI 
devices to join/disjoin the distributed structure dynamically 
at run time. Therefore, DEVSServer is designed to adapt to 
AmI environments and aims to distribute the simulation 
among different types of nodes in a dynamic way. 

Before detailing future directions such as DEVSServer 
cloud implementation, we aim to consider implementing the 
visualisation process with its web interface. A real-time 
simulation with online data under AmI assistance to show 
the DEVSServer ability to a wide range of interaction and 
pursue its intelligent interoperability aspect is to be 
considered. We hope to choose a testbed of volunteers to 
validate this ability. 

Since distributed intelligence is a part of the IoIT that 
has adequate computing capacity to perform complex 
computations, and the gang scheduling and real-time 
scheduling techniques in ad hoc distributed systems and on 
the elastic cloud environment ensure the coordination of 
these intelligent devices. We can improve DEVSServer 
performance with replacing IoT constrained devices with 
the so called IoIT objects and increase the Mediator with 
these scheduling capabilities. The recent Intel IoT-enabled 
architecture, such as Galileo and Edison, makes it easy to 
program these devices as Web services (Chen, 2016). 

We also consider integrating the immunisation strategies 
of the other categories such as ‘Ill’, ‘UnderTreatment’, 
‘recovered’ and ‘healthy’ so that ‘Ill’ recovers soon, ‘under 
treatment’ does not relapse or abandon treatment, and 
‘recovery’ does not relapse. Such proposals are related to 
artificial intelligence and are part of actual AmI systems. 

The tuberculosis example with its GP application is 
under work and will be another paper to be submitted soon. 
We also aim to use its agent-based simulation 
implementation using GP. Others diseases are under study 
to make DEVSServer a fully integrated epidemic modelling 
tool. 
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Appendix A 

Restful web service model invocation 

@XmlRootElement public class ModelSchema { 
String name, owner, creationDate, 
String description, initialiaze, deltaExt, deltaInt; 
int inports; int outports; 
byte[] modelclass ; 
 
@XmlRootElement 
public class ModelAccess { 
private static Key key = null; 
private static KVStore mystore; 
public static final String MOD_PREFIX = "DEVS”; 
public static KVStore getStore() { } 
public static void insertModel(String username, 
 String modelName, 
 int inports, int outports, 
 String owner, 
 String creationDate, 
 String description, 
 String inisliaze, 
 String deltaExt, 
 String deltaInt, 
 File modelFile){ 
} 
public static ModelSchema getModel(String username, 
 String modelName){ 
ModelSchema model = new ModelSchema( nameOfModel, 
 inports, outports, 
 owner, 
 dateCreation, 
 description, 
 initialiaze, 
 deltaExt, deltaInt, 
 modelClass); 
return model; 
 } 
public static void deleteModel(String username, 
 String modelName){ 
 } 
}  
@GET 
@Produces(value = { "application/xml", "text/plain" }) 
@Path("readModelClass/{username}/{modelName}") 
public Object readModelClass (@PathParam("username") 
 String username, 
 @PathParam("modelName") 

 String modelName) { 
ModelSchema model = new ModelSchema(); 
model = ModelAccess.getModel(username, modelName); 
Object o = null; 
ByteArrayClassLoader baCL = new ByteArrayClassLoader(); 
Class modelClass = baCL.findClass(model.getClasse()); 
try { 
 o = modelClass.newInstance(); 
 } catch (IllegalAccessException e) { 
 System.out.println("access not found "); 
 } 
 catch (InstantiationException e) { 
 System.out.println("instance not found ...."); 
 } 
 return o; 
}  
@GET 
@Produces(value = { "application/xml", "text/plain" }) 
@Path("readModelClass/{username}/{modelName}") 
public void WSDeltaExt ( @PathParam("username") 
 String username, 
 @PathParam("modelName") 
 String modelName) { 
…….. 
try { 
 Object o = mv.readModelClass(username, modelName); 
 for (Field field : o.getClass().getDeclaredFields()) 
 for (Method method : o .getClass().getDeclaredMethods()) 
 o.getClass().getDeclaredField("state").equals("S"); 
Method method = 
o.getClass().getDeclaredMethod("DeltaExt",String.class); 
 Object r = method.invoke(o, "infection" ); 
 } catch (Exception io) { 
 io.printStackTrace(); 
 System.out.println("model "+ modelName+" not found"); 
 } finally { } 
 ModelSchema mm = mv.readModel(username, 

modelName); 
……….. 
} 
System.out.println("model "+ modelName+" not found"); 
} finally { } 
ModelSchema mm = mv.readModel(username, 
modelName); 
……….. 
} 



 DEVSServer: ambient intelligence and DEVS modelling-based simulation server for epidemic modelling 581 

Appendix B 

A snapshot of a random contact generation with his route 

 

 

 

 

 

 

 
 


