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Abstract: Our objectives here are to discuss the development of a formal framework that 
exploits the advantages of the discrete event system specification (DEVS) formalism and builds 
upon recent extensive work on verification combining DEVS and model checking for hybrid 
systems. DEVS offers the ability, via mathematical transformations called system morphisms, to 
map a system expressed in a formalism suitable for analysis (e.g., timed automata or hybrid 
automata) into the DEVS formalism for the purpose of simulation. We discuss a probabilistic 
extension of the FD-DEVS formalism that enables a set of model classes and tools derived from 
Markov-type models. The MS4 modelling environment provides a suite of tools that support this 
extension, called FP-DEVS. In this paper, we describe these tools and the concepts underlying 
them. We also provide examples of application of these concepts and discuss the open 
opportunities for research in this direction. 
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1 Introduction 
Model checking, a well-known formal verification method, 
systematically explores the state space of a system model to 
check that states satisfy specified behavioural properties 
(Baier and Joost-Pieter, 2008). Model checking methods 
encounter state space explosion in analysing autonomous 
systems that require complex logical processes to perform 
complex decision making tasks. Moreover, because they  
are limited in their expressive capability to restricted logics, 
such methods must typically make stringent assumptions 
about physical components and environments. These 
assumptions and idealisations greatly reduce the methods’ 
applicability to cyber-physical systems where the interplay 
of physical and computational elements is paramount. 
Finally, cooperative multi-agent systems raise the state 
space explosion exponentially through the cross product of 
their individual state spaces. In the absence of workable 
simulation approaches to enable virtual testing, the only 
recourse for verification and validation (V&V) of cyber-
physical autonomous cooperative systems of systems 
(CACSoS) is to brute-force methods which are severely 
limited in the range of conditions they can test. 

A key root cause of limitations in current V&V 
approaches to CACSoS is that they are not based on a 
general dynamic systems modelling and simulation 
framework (MSF). Such a framework should be capable of 
expressing the interaction of decision logic, discrete events, 
and continuous dynamics that are the hallmarks of such 
systems. We therefore propose that the discrete event 
system specification (DEVS) formalism, as the 
computational basis for a general dynamic systems theory 
(Zeigler et al., 2000), provides a sound and practical 
foundation for enhancing existing V&V methods to address 
their limitations in addressing in CACSoS. 

The value of Modelling and Simulation in defense and 
other applications is well-known (Shaffer, 2012). A DEVS 
model is a system-theoretic concept specifying inputs, 
states, outputs, similar to a state machine (Mittal and 
Martin, 2012). Critically different however, is that it 
includes a time-advance function that enables it to represent 
discrete event systems, as well as hybrids with continuous 
components (Nutaro, 2011) in a straightforward  
platform-neutral manner (Zeigler and Sarjoughian, 2012). A 
recent thesis (Denil, 2013) presents a multi-paradigm 
model-driven approach to design, verification and 
deployment of software intensive systems, another 
formulation of cyber-physical systems. It shows that DEVS 
provides excellent features for modelling such systems. The 
thesis provides a list of properties of DEVS and their 
mapping to properties of automotive software and systems – 
here viewed as instances of CACSoS: 

• Concurrency: Multiple processors and communication 
links are concurrent in a CACSoS system. The 
semantics of DEVS coupled models supports 
concurrency by appropriate interleaving of the  
discrete-event behaviour of individual sub-models. 

• Time: Real-time performance is a crucial property of 
CACSoS embedded software. End-to-end latencies are 
part of the requirements for these applications. The 
time advance function of an atomic DEVS model can 
be used to model latency. 

• Events: Event-triggered and time-triggered 
architectures use triggers in the form of either external 
events or timing events to start certain pieces of 
functionality. DEVS implements reaction to events 
using the external transition functions. 

• Priorities: Some real-time communication channels use 
priority-based and other mechanisms for arbitration. 
DEVS supports such arbitration by means of explicit 
specification of executable events from the set of 
simultaneous events. 

• Simulation of the physical parts of the system: DEVS is 
a very general formalism and is able to include 
different other formalisms. This generality stems from 
the infinite possible states that DEVS allows to model 
and the (continuous) time elapse between the different 
state transitions. The hierarchical coupling techniques 
are used to integrate the different formalisms using 
DEVS as a common denominator. 

The rest of the paper is organised as follows: Section 2 
provides needed background, while Section 3 discusses 
limitations of current V&V methods. Section 4 details 
DEVS support for complex system V&V followed by the 
integration of DEVS and non-DEVS methods in Section 5. 
Combining simulation and formal methods and support for 
this combination are discussed in Sections 6 and 7, 
respectively. Section 8 considers probabilistic DEVS and 
Markov models implementation in MS4 Me. Applications 
and future research are offered in Sections 9 and 10. 

2 Background 
The MSF (Zeigler, 1976) presents entities and relationships 
of a model and its simulation as background for the 
proposed work (Figure 1). The MSF separates models from 
simulators as entities that can be conceptually manipulated 
independently and then combined in a relation which 
defines correct simulation. The experimental frame defines 
a particular experimentation process, e.g., Latin hypercube 
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sampling for yielding model outcome measurements in 
accordance with specific analysis objectives. Figure 1 
depicts the notion of an optimisation frame to supplement 
the MSF experimental frame, where the optimisation frame 
directs search among the possible models for one or more 
that satisfy design space criteria, including those that 
minimise uncertainty about how well the implemented 
design will work. Figure 1 also emphasises the ability 
enabled by model continuity to transfer a simulation model 
from a logical-time simulator to a real-time simulator. In 
particular, DEVS models for autonomous control in 
CACSoS can be shifted without alteration (avoiding  
error-prone and tedious reprogramming) to interact with real 
environments in cooperative configurations after being 
verified in virtual environments (Zeigler and Sarjoughian, 
2012; Hu and Zeigler, 2008). The MSF underlies the DEVS 
Simulation Protocol which provides provably correct 
simulation execution of DEVS models thereby obviating 
time and state conflicts arising in simulation of multi-
formalism models. There are numerous implementations of 
DEVS simulators (Nutaro, 2011; Mittal and Martin, 2012). 

Figure 1 Model and simulation framework showing model 
continuity for SoS V&V (see online version  
for colours) 

 

3 Limitations of V&V methods applied to 
CACSOS 

Linear temporal logic (LTL) and computation tree logic 
(CTL) which are used for expressing desired behaviour and 
model checking have been applied to the development of 
vehicle routing and road monitoring in multi-UAV systems 
(Karaman and Frazzoli, 2008; Sirigineedi et al., 2010). 
Humphrey (2013) explored the use of LTL, the SPIN model 
checker, and the modelling language PROMELA (Gerth, 
1997; Baier and Joost-Pieter, 2008; Holzmann, 2004), for 
high-level design and verification in UAV related 
applications, reporting some success while suggesting 
limitations and needed extensions. Table 1 shows three 
UAV related cases she discussed. 

 

 

 

Table 1 Example applications of model checking to CACSoS 

Model: A centralised UAV cooperator controller that 
coordinates the actions of multiple UAVs performing a 
monitoring task. 
Focus of model checking: Assuring that All sensors are 
eventually visited. 
Sample simplifying assumptions: Communication between 
UAVs and sensors can only occur when in the same location 
and is error free. 
Model: A leader election protocol for a decentralised system of 
unattended ground sensors sending estimates of an intruder’s 
position to a UAV. 
Focus of model checking: At least one leader exists at every 
time step. 
Sample simplifying assumptions: The sensors all use sampling 
epochs of the same length enabling a single time step for time 
advance. 
Model: Verification of high level UAV mission plans for a 
scenario in which multiple UAVs must be used to safely escort 
an asset across a road network. 
Focus of model checking: The path travelled by the asset is 
safe, i.e., all road segments in the path have been scanned by 
UAV. 
Sample simplifying assumptions: UAVs and VIP were assumed 
to travel at the same speed. 

In each case, the focus of the model is shown along with a 
simplifying assumption. Because they are oriented to 
verification, model checking tools tend to lack many 
functions that exist in DEVS environments and require 
abstractions that fit the tools’ operation. This forces an 
abstraction of the real system that on the one hand enables 
the modeller to better understand the model, and on the 
other hand entails numerous assumptions to enable the 
model checker to verify the focal requirement. Despite these 
drastic simplifications, state space explosion prevents 
employing more than a handful of UAVs and sensors. 

Zervoudakis et al (2013) write that 
“Research in model checking has focused on 
enhancing its efficiency and scalability thereby 
enabling model builders to verify larger, more 
elaborate models. Popular model checkers tend 
to support low-level modelling languages that 
require intricate models to represent even the 
simplest systems. For example, PROMELA, 
the language of the model checker SPIN, is 
essentially a dialect of the low-level 
programming language C. Another example is 
the modelling language used by the 
probabilistic model checker PRISM, whose 
lack of control structures forces model builders 
to pollute model components with counter 
variables that explicitly encode the 
components’ state transitions.” 

 

 

 



 Combining DEVS and model-checking: concepts and tools for integrating simulation and analysis 5 

These authors show that mapping of domain knowledge, 
assuming it exists in the right form, can be used to reduce 
the manual and error-prone encoding of state transitions at 
relatively low levels of abstraction. Here we propose to 
develop such mappings using the domain knowledge 
contained within simulation models and their ontological 
representations within the DEVS-based MSF. 

4 DEVS Support for CACSoS 
Cyber-physical systems are real-time hybrid systems,  
i.e., include both discrete and continuous dynamics,  
which, as earlier indicated, are well represented within the 
DEVS-based MSF. Typically such a system is described by 
a state consisting of both discrete control phases and 
continuous variables (Nutaro, 2008; Wainer, 2015), 
Saadawi et al. (2012) developed a methodology that 
combines DEVS and timed automata (TA) (Bengtsson and 
Yi, 2004; Henzinger, 1997; Alur, 1995; Courcoubetis et al., 
1995) to allow the designer to model, simulate, verify, and 
deploy real-time hybrid systems. This is achieved by 
guaranteeing the correctness of the model with a 
methodology that verifies DEVS models with TA  
model-checking techniques and tools. Under model 
continuity (Figure 1) the verified DEVS models are then 
made executable on the target platform, thus eliminating the 
risk of introducing errors in the final system 
implementation. TA provides a solid theory and algorithms 
for model checking, and many existing tools implement 
these algorithms (e.g., UPPAAL). The combined DEVS/TA 
methodology deals with RTA-DEVS – a restriction of 
DEVS to rational (a subset of real) Time Advance values. 
For this subclass the methodology provides automated 
mappings to TA’s abstract formal system specification that 
is verifiable by decidable model checking. In this 
methodology, if UPPAAL (or other model checker) faces a 
problem of state explosion, and no answers can be obtained 
in reasonable time, the user can use model checking on an 
abstraction of the system while employing DEVS-based 
simulations to empirically check out properties not included 
in the formal analysis. In particular, the methodology 
applies to hybrid systems whose continuous components are 
expressed using differential equations solved using 
quantised state system (QSS) integration. Concurrently, a 
literature is developing on the use of QSS, a class of DEVS 
models, to efficiently and accurately model such systems, 
for example using multicore processors. 

While multi-agent-based simulation (ABS) is well 
established using DEVS (e.g., Perez et al., 2010), time-step 
scheduling is still used in classic ABS models (e.g., Repast, 
2009). However, Zhang et al. (2014) developed a DEVS 
simulation model which is significantly more efficient than 
the Repast ABS model (350 times faster for 10,000 agents) 
while keeping high model spatial fidelity and the same 
agent cognitive capability, collision avoidance, and low 
agent-to-agent communication cost. 

Work on non-DEVS model checking for hybrid systems 
includes that based on timed automata (Henzinger, 1997; 

Alur, 1995; Courcoubetis et al., 1995), abstraction  
and simplification of systems (Chauhan et al., 2002;  
Clarke et al., 2003; Long, 1993), and statistical model 
verification (Younes et al., 2006). 

5 Integrating DEVS and non-DEVS verification 
methods 

As discussed earlier, several DEVS methodologies have 
been developed which incorporate non-DEVS verification 
methods (Zeigler and Sarjoughian, 2012; Hu and Zeigler, 
2008). These methodologies attempt to employ DEVS to 
enable loosening the simplifying assumptions typically 
made by non-simulation models. For example, the Sample 
Simplifying Assumptions in Table 1 include: 

a perfect communication among component systems 
occur when they are in exactly specified locations 

b time advances for all components use the same fixed 
time step 

c speeds of vehicles are constant or change 
instantaneously. 

However, so far, such methodologies have not provided a 
general approach to combining simulation and verification 
using available system theoretic concepts to relax such 
assumptions. 

Our objective here is to develop and employ system 
morphisms and model transformations to integrate the 
various types of models to be included in a general  
DEVS-based framework for verification in model 
engineering. Model transformations are a key means of 
converting between different model types and must preserve 
desired aspects of structure and behaviour to qualify as 
system morphisms. Our approach is to define system 
morphisms for such transformations and to prove these 
morphisms are mathematically correct using existing theory 
of system morphisms (Zeigler, 1976). This will enable us 
eventually to automate verification of properties for 
complex simulation models as opposed to simplified models 
developed specifically for model checking. Then we will 
explore algorithmic approaches to automate the construction 
of these types of systems mappings. Such automation is 
necessary to create a practical tool for engineering systems 
of systems. 

Figure 2 compares the methodology of Saadawi et al. 
(2012) which provides automated transformations from 
RTA-DEVS to TA enabling tractable model-checking using 
UPPAAL (Behrman, 2004) with the approach we discuss 
here. The RTA-DEVS approach seeks to verify DEVS 
models by transforming them into a subset of TA that can 
be verified using UPPAAL. To do this, it must appropriately 
limit the class of DEVS models to a subclass that can be 
mapped to the input class of TA for UPPAAL via 1-1 weak 
bi-simulation with the safety TA subclass of TA. Weak  
bi-simulation will be shown to be a system morphism. The 
mappings are not automated. 
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Figure 2 Comparing DEVS-based verification approaches  
(see online version for colours) 

 

In contrast, as shown in Figure 2, our approach is to start 
with the FD-DEVS (Zeigler and Sarjoughian, 2012) 
subclass of DEVS models having finite sets of states, inputs, 
and outputs and whose construction is supported by  
MS4 Me. Then two mappings are defined: 

1 map FD-DEVS models into non-deterministic automata 
that are subject to model checking using 
SPIN/PROMELA 

2 elaborate FD-DEVS models into full-fledged DEVS 
models that can be simulated to obtain behaviour of 
interest and possibly to discover unexpected or 
emergent behaviours via simulation. 

Aznam et al. (2014), at about the same time as the original 
conference paper that gave rise to this version (Zeigler and 
Nutaro, 2014), discussed the complementarity between 
simulation and formal verification using transformation of 
PROMELA models into FD-DEVS models. To illustrate the 
general idea, we use a different example to construct an 
illustrative, mathematically verifiable transformation from 
DEVS models to model checking models and vice versa. 
We then employ this example in our discussion of the 
extension to probabilistic DEVS. 

5.1 Example of system morphism between 
PROMELA and DEVS 

For an example of this approach, consider the alternating bit 
protocol introduced by Bartlett et al. (1969) for 
implementing full-duplex communications over half-duplex 
communication lines. This protocol is illustrated in Figure 
3. It has been used to illustrate fundamental elements and 
analysis capabilities of the PROMELA language by proving 
that the protocol operates correctly (see the SPIN manual; 
Gerth, 1997); that is, that “Every message fetched by A is 
received error-free at least once and accepted at most once 
by B”. It is apparent from the figure that this PROMELA 
model is a finite state automaton, and all finite state 
automata are instances of DEVS models that have a fixed 
time advance (see Zeigler et al., 2000). Hence, a DEVS 
model of this protocol can be built in a simple way. 

Figure 3 Model for automatic verification of ABP alternating bit 
protocol 

 

We do this by adding two pieces of information to the 
PROMELA description: the time T to transmit a bit and the 
probability p of an error. One important use of this DEVS 
model is to answer questions about performance of the 
protocol. Conversely, we may map any instance of this 
DEVS model with parameters p and T onto a PROMELA 
model by abstracting away the specific probability 
distribution and stating only that a bit may arrive or not 
arrive. 

In the original conference paper that gave rise to this 
version (Zeigler and Nutaro, 2014), we constructed a DEVS 
model manually to demonstrate this process. Since then we 
have extended the concept of FD-DEVS to a probabilistic 
version with supporting tools. Consequently we leave the 
discussion of this example to later in the paper. Before 
proceeding to the presentation of the extended DEVS 
capabilities, we note that these simulations provide 
important, systems level performance metrics that cannot be 
obtained via a query of the PROMELA model. At the same 
time, we may be certain that the simulation model preserves 
the formal properties that we have proven about the protocol 
by use of the PROMELA model. The capability to construct 
performance studies, like this bit rate study, using a 
simulation model derived directly from the formal 
verification model illustrates the power of the proposed 
approach for engineering complex systems. 

5.2 Extending the range of verification models with 
simulation models 

Transformations between simulation models and 
verification models can also facilitate the reuse of model 
components throughout the lifecycle of an M&S system, 
and this reuse can have the important effect of revealing 
implicit assumptions in proofs constructed for the 
verification model. For instance, it is natural to use the 
alternating bit protocol as a media access control layer 
within a more comprehensive network simulation. This 
more comprehensive model could have a sender and 
receiver each with two components. 

This is illustrated in Figure 4. The first component is our 
DEVS model of the alternating bit protocol. The second 
component sends and receives messages, rather than just 
bits, and queues messages that are pending transmission. 
This second component appends to each message the bit 
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that it receives from the MAC layer, and sends to the MAC 
layer the first bit in each message received from the network 
or an error indicator, as appropriate. Transmissions in the 
upper layer occur at the instant that a bit is received from 
the MAC layer below. Central to understanding the 
behaviour of this model is its queue capacity, rate of 
requests to send messages, and bit rate. 

Figure 4 Message layer addition to ABP (see online version  
for colours) 

 

5.2.1 Alternating bit protocol with infinite queue 
Let us first consider a combination of these that may be 
reduced to a slightly more complex version of the 
verification model for the alternating bit protocol. To obtain 
this model we reduce the queue to two states: empty and 
occupied. The former indicates no messages waiting for 
transmission and the latter indicates a message waiting to be 
transmitted. Adding these states to the transmitter increases 
the size of the verification model from 25 states to 50 states, 
and we may prove for this larger model that every message 
transmitted is received once and only once. This proof is 
significant because it reflects the intended, but idealised, 
behaviour of the system. If, for instance, this assertion could 
not be proved then the design of the system should be 
reconsidered before moving to other forms of testing. 

5.2.2 Alternating bit protocol with finite queue 
However, this proof does not indicate how the system will 
behave over its entire range of structural variations and 
realisable behaviours. In particular, we may encounter a 
case where the queue’s capacity is finite. In this case, the bit 
rate and rate of requests to send messages may be such that 
at certain points in time the queue’s capacity is exceeded as 
can be predicted by simple queuing theory (Jain, 1991). The 
consequence of this will be messages that are lost: a clear 
violation of the above proof! In this simple example, the 
cause of this violation is obvious. The verification model 
assumes that the queue never reaches its capacity, and so the 
proof implicitly assumes a restricted range of values for the 
queue capacity, rate of transmission requests, and bit rate. 

6 Combining simulation and formal verification 
These types of implicit assumptions can be difficult to 
identify in a large model, and simulation offers an 
opportunity to explore the system’s parameter space and 
identify boundaries beyond which any particular proof fails 
to hold. 

As illustrated in Figure 5, the combination of simulation 
and formal verification gives a much more powerful 
capability to test designs than can be achieved with either 
alone. In a design process that incorporates both types of 
analysis, verification models can be used to obtain absolute 
answers concerning system behaviour under idealised 
conditions. Failures in this verification stage clearly indicate 
a need to find and correct fundamental flaws in the system 
design. 

Figure 5 Relation between verification and simulation 

 

On the other hand, a successfully verified model can be 
formally extended into a simulation model for which the 
verification model is a homomorphic simplification. Hence, 
the simulation model retains the properties that were 
verified with the simpler model, and then can be used to 
explore scenarios that are necessarily outside the scope of 
formal verification. In some cases, other simplifications of a 
full-fledged simulation model can be applied (for example, 
as mentioned above, queueing theory can predict the 
probability of a finite capacity queue being exceeded). 
However, in general, simulation models can incorporate the 
complexity needed to deal with real systems using the base 
model concept. The traceability between these two types of 
models, which is obtained by the application for formal 
system morphisms, is central to the success of this two 
tiered approach to testing. 

7 FD-DEVS extension to support combined 
simulation and verification 

7.1 Finite probabilistic DEVS 
Finite probabilistic DEVS (FP-DEVS) is an extension of 
finite deterministic DEVS (FD-DEVS) (Mittal et al., 2007) 
which is a foundation of DEVS Natural Language (DNL). 
FP-DEVS allows internal transitions out of a state to one of 
a finite set of possible states where the choice is made 
probabilistically. This relaxes the FD-DEVS rule that 
restricts internal transitions to a single (deterministic) 
transition. Starting with the FD-DEVS specification of 
internal transition table, the FP-DEVS extension follows: 
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( )
:

  [0,1]   
InternalTransitionTable
StateSet X UBlank StateSet→

 

For example, to express the probability of an internal 
transition from Phase to Phase’ with probability p, we 
write: 

( ),   ’,  
where 0  1
InternalTransitionTable Phase p Phase

p
=

≤ ≤
 

There can be several such entries, one for each destination 
state from the same source state; the sum of the associated 
probabilities is bounded by unity. If a transition back to the 
source is not specified, the difference between unity and the 
sum is attributed to the probability of the self-transition. 

To express a deterministic internal transition as in the 
original FD-DEVS, the probability argument is left blank, 
as in: 

( , )
( ) ’

InternalTransitionTable PHASE Blank
InternalTransitionTable PHASE PHASE= =

 

The InternalTransitionTable determines the phase of the 
next state in DEVS by: 

1 gathering all the entries for the outgoing transitions 
from a source phase 

2 creating a cumulative distribution function from the 
associated probability values 

3 selecting a phase based on the distribution using a 
random number generator 

4 setting the new phase to the one selected. 

The time advance of the next state with this phase is set to 
the unique value associated with the internal transition. 

Figure 6 Example of FP-DEVS 

 

Figure 6 illustrates an example of FP-DEVS which has one 
input (?) and three outputs (!). S1 state can be changed to 
three states according to probability values at the internal 
transition stage. The time advances for these transitions are 
all the same as indicated by the Ta value for S1. Each of the 
target states can have any of the original specifications. So 
if you want to generate different outputs with given 
probabilities you can follow the approach of Figure 6 for 
outputs A, B, or C. Note that a probabilistic response to an 

input can also be expressed as an external transition to 
probabilistic source state as shown in the Figure 6. 

7.2 MS4 Me software 
MS4 Me software (MS4 Me, 2013) implements DEVS 
modelling and simulation with a Java computer language in 
an Eclipse environment. DEVS modelling and simulation 
consists of atomic model (behavioural description), coupled 
model (model structure description), and simulation. In the 
MS4 Me software, the atomic model can be constructed 
from a state diagram designer which is a graphic user 
interface to help users visualise behaviours of the atomic 
model with symbols. Also, it can be created using a 
restricted DNL whose keywords are highlighted in a DNL 
editor in the MS4 Me software. A graphical design of an 
atomic model is eventually converted to a DNL file 
automatically transformed to a Java file for simulation. The 
DNL file is made of atomic model component, data 
component, and Java component. The atomic model 
component contains states, transitions, and ports (input and 
output). The data component displays variables and 
message types. The Java component covers Java features 
such as adding Java libraries, defining additional functions 
(methods), and handling (calculating) messages for which 
the DNL file has tag blocks enclosing Java codes for data 
calculation at internal transition, external transition, and 
output functions. The coupled model is an instance of 
system entity structure (SES) which describes a system with 
entities’ relationships and coupling information in restricted 
natural languages. Entities represent atomic models or 
coupled models in the SES, and entities’ relationships 
consist of aspect, specialisation, and multi-aspects  
(Zeigler, 1984). The coupling information captures message 
flows between entities. Theoretically, an SES with all 
relationships can generate an infinite number of coupled 
models through a pruning process which defines selections 
for specialisation relationships and the number of instances 
for multi-aspect relationships. MS4 Me provides a sequence 
diagram to graphically generate a SES from which 
associated entities are automatically converted to DNL files. 
The simulation is executed with a coupled Java model 
generated through a pruning process with a SES document 
and atomic Java models from DNL files. DNL and SES 
documents describe atomic models and coupled models. 
Although a DNL document contains Java specific contexts 
to generate a Java model, it can be utilised in other 
application such as web application interacting with users 
according to model’s information. 

8 Markov models: implementing morphisms in 
FP-DEVS 

Finite state Markov chain model classes (Kemeny and Snell, 
1960; Feller, 1966), with both discrete and continuous time 
bases, have been implemented in MS4 Me using the above 
described FP-DEVS capabilities. A useful example of a 
morphism such as discussed in Section 5.1 was developed 
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which maps from a continuous time Markov (CTM) model 
to a discrete time Markov (DTM) chain approximation. A 
second class of morphisms is illustrated by the mapping of 
compositions of CTMs to their components. 

Figure 7 Stock market CTM model example (see online version 
for colours) 

 
Source: From Wikipedia 

An example of a Markov model supported by MS4 Me is 
the Stock Market model taken from Wikipedia (2014) as 
shown in Figure 7. The transition system underlying this 
example is interpreted as either a CTM or DTM by taking 
the approach of Soares and Castro (2012). Here the 
continuous time interpretation employs the probabilities 
associated with internal transitions as specifications of their 
time advances. Indeed, let the transitions out of a state 
(phase, σ) be 

( ){ }’ |  ’  , ’, ’phase p phaseτ τ =  

where p’ is the probability of going to phase’ – also called 
the rate of transition to phase’. Then the time advance for 
the state is 

( ) ( ){ }    ’ |  ’ 1/ ’next min p ln rσ σ σ= = −  

where r is a random number between 0 and 1. The phase 
selected is the one whose sigma is the minimum (or one of 
this minimal set, if more than one exists). This implements 
the Markov assumption that transitions occur independently 
as events with Poisson distributions with exponential 
distribution parameters .λ’ = 1/p’. The model remains in 
phase for the computed time advance and transitions 
immediately to the selected phase. Thus the smaller is a 
probability of transition, the longer is the associated time to 
its next occurrence (on average) and the less likely it is to be 
selected as the transition to take (the self-transition is 
omitted as a contender to selection). 

The discrete time version is parameterised by a time step 
(or cycle length in the common Markov terminology). As 
with the basic FP-DEVS convention, transitions occur with 
a time advance equal to the time step and with specified 
probabilities, in this case, determined by the given rates and 
the time step. For small enough time steps, the employed 
probabilities are given by the product of the corresponding 
CTM values and the time step, For larger time steps, a better 

approximation is given by employing probabilities equal to 
1 – exp(–h * p) where h is the time step and p the 
corresponding CTM probability (this is the probability that 
the first event in the Poisson process happens in the time 
step interval). The approximation loses accuracy with 
longer time steps as more than one intervening event 
becomes likely. 

Figure 8 Experimental frame for continuous to discrete 
morphism (see online version for colours) 

 

An experimental frame for the approximation of CTM by 
DTM models, illustrated in Figure 8, concerns preservation 
of state accessibility and state probabilities. A perfect 
approximation is one in which the same set of states is 
accessible from the initial state in corresponding models. 
Likewise, the relative times that the process dwells in the 
states are the same for both models. See Soares and Castro 
(2012) for a detailed comparison of simulation and analytic 
solution method results. A Markov Chain is obtained by 
ignoring timing and employing only the transition 
probabilities of the CTM. In this representation, the state is 
a vector of probabilities and the state trajectory becomes a 
sequence of state vectors on an integer time base. MS4 Me 
provides a class MarkovMat and a transformation from the 
FP-DEVS CTM to its MarkovMat corresponding matrix 
representation. A MarkovMat instance is in fact a discrete 
time FD-DEVS with a state vector as a state variable and an 
internal transition function which multiplies the vector by 
the matrix to update it at every time step. A test for reaching 
an equilibrium (stationary) state is included in the internal 
transition. Figure 9 depicts the convergence of the stock 
model Markov chain within 30 iterations. The accessible 
states from an initial state are computed as those with  
non-zero probability values in such an equilibrium state. 

The mapping from a CTM to its associated MarkovMat 
is a structure morphism that preserves state accessibility and 
occupation probabilities but not residence times since no 
timing information is preserved (except sequencing). This is 
illustrated in Table 2 which shows the agreement of the 
equilibrium probabilities of the Markov chain with the 
relative occupation times observed in a run of the 
corresponding CTM. Due to the stochastic behaviour of the 
CTM, the simulation takes much longer than the matrix 
iteration with convergence determined by confidence 
interval criteria. 
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Figure 9 Trajectories of state vector probabilities for stock 
market model (see online version for colours) 

 

Table 2 Comparison of CTM and MarkovMat statistics 

State 
CTM time  

in state  
T = 22,300 

CTM 
probabilities 
(relative time 

in state) 

MarkovMat 
equilibrium 
probabilities 

Bull 13,774 .63 .62 
Stagnant 1,384 .06 .06 
Bear 7,135 .31 .32 

State 

CTM 
occupation 

counts 
(frequencies) 

CTM avg. 
residence time 

in state 

Sum of 
outgoing 
transition 

probabilities 

Bull 1,400 9.8 .1 
Stagnant 686 2.0 .5 
Bear 1,407 5.0 .2 

Note that the occupation time in state over an interval 
equals the average residence time in it × the occupation 
count (number of times it has been entered). Sampled CTM 
trajectories produce such counts and therefore also average 
residence times as in Table 2. For consistency, such times 
should equal those computed as inverses of the total 
outgoing transition probabilities. Also Table 2 shows how 
the MarkovMat class plays the same role as the model 
checking tools described earlier in that it deals only with a 
limited set of properties (e.g., state accessibility) but  
makes them easier to compute than the more expressive 
super-class. 

8.1 Representing lumpable Markov chains 
Lumpability is a well-known condition applicable to 
Markov chains (Kemeny and Snell, 1960; Buchholz, 1994) 
that can be expressed as a structure morphism for pairs of 
models in the MarkovMat class. Lumpability is a kind of 
aggregation uniformity condition (Zeigler et al. 2000) that 
preserves state transition behaviour modulo a partition of 
the states. The class BaseLumpedMarkovMat takes a base 
and lumped model pair where the lumped model is 
constructed from a MatrixMat serving as a base model using  
 
 

a given state partition. The lumped probabilities are 
computed by averaging the elements in the inverse images 
of the pairs of lumped states. For example, in Figure 10,  
p0,1 = (1/blocksize0)∑pi,j where the sum is over the pairs i, j 
for which i maps to 0 and j maps to 1 and blocksize0 is the 
cardinality of the state block containing 0. 

Figure 10 Lumpability 

 
Source: Example taken from Wikipedia 

The lumpability condition requires that the elements in each 
row in the inverse images sum to the same value. The 
definition of the morphism just given applies to any matrix 
and gives the same results as lumpability when the 
condition holds. In fact under this condition, the mapping 
becomes a homomorphism from a discrete time system 
specification (base DTSS) to a lumped DTSS and the 
extension allows it to be studied as an approximate 
homomorphism for its error propagation behaviour 
(Buchholz, 1994; Zeigler et al., 2000). 

8.2 Compositions of FP-DEVS and Markov models 
Since FP-DEVS models are atomic DEVS models, they can 
be coupled to create hierarchical coupled DEVS models. 
MS4 Me’s support of this functionality means that Markov 
models can be treated as ordinary DEVS models with inputs 
and outputs in addition to their state specifications. This 
resulting model can be coupled with other DEVS models, 
including those derived from other classes (Zeigler et al., 
2000). This allows both the simulation and analytic 
capabilities to co-exist within the same M&S environment. 

8.3 Cross-products of Markov models 
Let us restrict our focus to compositions restricted to 
Markov models for a moment. This raises the question of 
closure under coupling for such model classes. For example, 
does coupling a pair of CTM models result in a model 
expressible as a CTM? Underlying this question is the zero 
memory property of Markov models. There are two 
questions: 

1 Is the minimal state space of the resultant of such a pair 
constituted by the cross product of their state sets? 

2 Can the state transitions be expressed using the CTM 
probabilities mechanism? 
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Further restricting the consideration to the case where there 
is no cross coupling between components, we get a parallel 
composition or cross-product of CTMs. 

Figure 11 shows a coupled model in MS4 Me composed 
of two randomly generated CTMs each coupled to its own 
experimental frame and to a joint frame, The individual 
frames are the same as the one in Figure 8 and track the 
states reported by their respective components. The joint 
frame however is more complex. It tracks pairs of states, 
where a pair gets recorded as occupied during the intervals 
where the individual member states overlap (since state 
transitions occur at random times, pairs of states do not 
necessarily get established in a single event). 

Figure 11 Composition of CTMs with experimental frames for 
state reachability and residence times (see online 
version for colours) 

 

The tools discussed above allow one to check whether the 
coupled CTM model’s relative occupation times in states 
can be predicted by a Markov matrix model. Figure 12 
illustrates how the experimental frames and models are 
constructed to do this. The matrices underlying the CTM 
models are combined in a cross product representing the 
joint independent combination of the Markov processes. 
The states of the crossproduct are the pairs i, j where i is a 
state of M1 and j is a state of M2. The i, j, k, lth entry of the 
crossproduct transition matrix is set to p1(i, k) * p2(j, l), the 
probability of independent transitions from i to k in M1 and 
j to l in M2 (Dayar, 2013). With this definition it is easy to 
see that there is a lumping morphism from the joint model 
to each of the component models determined by respective 
projection maps [the block mapping to the ith state of M1 is 
the pair of states i, j where j ranges over the states of M2. 
The transition probabilities of each of these states to the 
block mapping to the k th state sum to p1(i, k)]. This lumping 
can be viewed as a generalisation of the well-known 
homomorphism of parallel compositions of deterministic 
state systems (Zeigler, 1976). However, as indicated, while 
the crossproduct specifies a CTM it is not necessarily 
representative of the resultant of the coupled CTM model. 
The EFPair of Figure 12 enables us to check the predictions 
of the crossproduct with the actual stochastic behaviour of 
the CTM. 

The experimental frames and models to which they are 
applicable as well as the derivability relationship among 
them are shown in Table 3. The derivability relation is 
explained as follows: EFMM is directly applicable to 

MarkovMat models (in both atomic or product form) and 
can predict probabilities of states in equilibrium (as well as 
measures derivable from such probabilities such as first 
passage times (Kemeny and Snell, 1960). Now a CTM can 
serve as the base model to such a lumped model (as in  
Table 2) in which case, EFMM is derivable from EFCTM but 
not conversely. EFPair is needed to observe a coupled model 
of CTMs and can yield state occupation times. Both EFMM 
and EFCTM are derivable from EFPair. 

Figure 12 Experimental frames for consistency checking of 
coupled CTM models (see online version for colours) 

 

Table 3 Experimental frames and applicable models 

Exp. 
frame 

Directly applicable 
to model 

Can provide 
information on: 

Derivable 
from: 

EFMM MarkovMat Equilibrium 
state occupation 

times for 
corresponding 

CTM 

EFCTM 

EFMM Crossproduct of 
matrices 

Equilibrium 
state occupation 

times for 
coupled CTM 

EFPair 

EFCTM Continuous time 
Markov 

State occupation 
times for CTM 

EFPair 

EFPair Coupled CTM 
model 

State occupation 
times for 

Coupled CTM 

 

8.4 Downward and upward preservation of 
properties 

Zeigler and Nutaro (2015) discuss the question of upward 
preservation of properties from a lumped model to a base 
model of which it is a homomorphic image. The question is 
important in the context of combined simulation and model 
checking where it concerns whether established properties 
of the simplified model carry over to its complex simulation 
counterpart. The crossproduct of the previous section 
provides an example where this upward preservation 
demonstrably fails to hold as we now demonstrate. The 
property we focus on here is reachability from the initial 
state. It is easy to show that a state is reachable from another 
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in the crossproduct if, and only if, its projective  
images are in the same reachability relation in both 
components. Now, consider a case in which one of the 
components has unreachable states, while the other has all 
states reachable from the initial state. Then this case 
provides a counterexample to the upward preservation of 
connectedness for the lumping morphism: the second 
component has the reachability property but it is not shared 
by the pre-image since the other component does not. 
However, downward preservation of connectedness holds  
(it is assured by the only-if direction of the basic condition). 

8.5 Transformations between non-deterministic 
models and FP-DEVS 

Non-deterministic models such as the alternating bit 
protocol in Figure 3 can be directly represented in  
FP-DEVS. Here we note that the PROMELA model is 
actually deterministic except for the inputs which arrive 
without further specification in time. DEVS treats such 
unspecified arrivals as external events to a fully 
deterministic model. 

8.5.1 Mapping an FD-DEVS to an equivalent FP-
DEVS CTM 

This leads to a general approach to mapping from an  
FD-DEVS atomic model to an FP-DEVS CTM model. We 
define an input-driven FD-DEVS as one for which every 
state is passive, i.e., it is time advance is infinite. Such a 
model waits indefinitely for input to make it transition to a 
next state. We discuss removing this restriction in a 
moment. As illustrated in Figure 13, the mapping is actually 
from a DEVS coupled model to the constructed FP-DEVS. 
The coupled model couples an independent Poisson process 
generator to at least one input port of the FP-DEVS to 
represent the arrival process of external events on that port. 
The added processes are independent with their own rate 
parameters. 

Figure 13 Mapping an Input-driven FD-DEVS to an equivalent 
FP-DEVS CTM (see online version for colours) 

 
 

 

The equivalence is justified as follows: having just entered a 
state, the FD-DEVS model waits there for the first external 
event to arrive (there are no internal events). This is 
mirrored by FP-DEVS which, in the same state, executes 
the time of next event method (Section 8) with rate 
parameters given by the ones specified for the coupled 
model input processes. In both cases, the transition taken is 
due to the earliest input to arrive. To obtain the general case 
in which states have finite time advances, the time of next 
event method can be amended to take account of the 
scheduled internal event by realising that that the actual 
event to occur is the one that occurs earliest. Thus if none of 
the sampled external event times is smaller than the 
scheduled time advance, the internal transition is executed, 
otherwise the earliest external transition is performed. The 
resulting FP-DEVS model is a modified CTM with a 
mixture of externally and internally derived transitions. 
Although the transformation has not been automated, it 
quite straightforward and could be done automatically, 
requiring only the rate parameters of the input processes 
from the user. In the next section, we return to the 
alternating bit protocol example to illustrate this 
construction. 

9 Applications 
9.1 Performance modelling 
The tools enabled by FP-DEVS open up numerous 
application areas, especially where the use of stochastic 
modelling is novel or has been problematic in the past. The 
area of performance modelling is a high user of stochastic 
modelling (see e.g., Obaidat and Boudriga, 2010), however 
the combined use of verification and simulation is still 
under development. As a case in point, let’s reconsider the 
alternating bit protocol in Figure 3 where we introduced 
parameters for the time T to transmit a bit and the 
probability p of an error to the PROMELA description. The 
FD-DEVS equivalent of this PROMELA model has three 
input ports – one for each binary digit and one for the error 
notification. Following the construction of Figure 13, we 
posit Poisson input generation processes where the 
parameter T specifies the mean parameter of the bit arrival 
processes, while the parameter p specifies the probability of 
the error arrival process. The result is a CTM expressible in 
FP-DEVS. 

Table 4 shows the results of a simulation study, using 
the constructed FP-DEVS, to discover how the bit rate of 
the protocol varies as a function of T and p. This table was 
constructed with the DEVS simulation model by sweeping 
over a range of values for T and p, and for each combination 
recording the bits per second that could be exchanged by the 
system assuming 100% utilisation of the communication 
channel. The experimental frame for each combination is a 
transducer (Zeigler and Sarjoughian, 2012) which counts 
the number of bits produced at the output of the model in 
the observation time interval. Interestingly, because it relies 
on bit identities, this throughput frame is not derivable from 
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any of the frames associated with Markov models discussed 
above. Executing the model produces results as in Table 4 
which confirms that the throughput is directly proportional 
to the arrival rate (1/T) and to the probability of correct 
transmission (1 – p). The MarkovMat matrix model which 
is directly derivable from the CTM model offers some 
verification help in that it predicts reachability of states. For 
example, it confirms that states S4 and S5 are not reachable 
from the initial state when the error probability is zero. 
Although obvious by inspection in this simple example, this 
approach does offer a fast reachability check for more 
complex models. 

These simulations provide important systems level 
performance metrics that cannot be obtained via a query of 
the PROMELA model. At the same time, if upwards 
preservation is established, the simulation model may also 
have the formal properties that can be proven about the 
protocol by use of the PROMELA model. The capability to 
construct performance studies, like this throughput study, 
using a simulation model derived directly from the formal 
verification model illustrates the power of the proposed 
approach for engineering complex systems. 

Table 4 Performance study of the alternating bit protocol 

T 
(SECONDS) P 

BITS 
PER 

SECOND 

T 
(SECONDS) P 

BITS 
PER 

SECOND 

1E–9 0 5.0E8 1E–6 0 5.0E5 
0.25 3.8E8  0.25 3.8E5 
0.5 2.5E8  0.5 2.5E5 

9.2 Healthcare intervention quality/cost tradeoffs 
Another illustrative direct application is to evaluation of 
cost effectiveness of healthcare interventions. There is an 
ongoing controversy in evaluating the tradeoff of quality of 
life with cost in drug therapy. This controversy relates to the 
use of Markov modelling versus what they call Discrete 
Event Simulation (DES). Karnon and Afzali (2014) review 
a large number of studies in the area and discuss pros and 
cons of the use of the first vs the second. Basically Markov 
models are also called cohort models which follow patients 
as a group over time in aggregated form. Consequently, 
these models cannot accommodate patient differences 
However, they are easier to develop and calibrate and run 
very fast. In contrast, DES requires more detailed data, are 
much slower to execute and require numerous runs to 
achieve statistical validity. However, they can easily 
accommodate individual patient stochastic disease and 
treatment trajectories. Rather than either-or use of Markov 
and DES, FP-DEVS allows both approaches to be used in 
an integrated manner. The Markov model classes CTM, 
DTM, and MarkovMat support cohort level models where 
aggregations of homogeneous patients are tracked. 
Moreover, the embedding of CTM and DTM models within 
FP-DEVS enables them to serve within patient models to 

produce the individualised stochastic and disease 
trajectories of DES. 

Figure 14 illustrates a coupled model with CTMs 
representing processes that predict readmission to hospital 
after discharge for patients with normal, chronic disease and 
behavioural health issues. One or both of the chronic and 
behavioural CTM model components are pruned depending 
on an individual patient’s attributes. The output, signalling 
the patient’s readmission to hospital, is the earliest output 
received by the WaitForFirst component from the CTM risk 
of readmission models. Moreover, consistency checking and 
cross-validation between the two levels of representation are 
supported by the morphisms and bi-simulation classes  
(e.g., BaseLumpedMarkovMat) discussed above. This 
integration obviates the need to make the either-or choice 
assumed in some healthcare effectiveness evaluation 
communities. 

Figure 14 FP-DEVS coupled model of components that can be 
pruned to represent individual attributes (see online 
version for colours) 

 

9.3 Physics 
Markov chain models have been studied in physics under 
the name ‘interacting particle system’, an example of which 
is the well-known Ising model, a stochastic cellular 
automaton. The generalisation of FD-DEVS to FP-DEVS 
follows the spirit of the generalisation from deterministic 
cellular spaces to stochastic versions (Ligget, 1997). 

9.4 Ballistic missile defense 
Ballistic missiles follow a four-phased trajectory path: 
boost, ascent, midcourse, and terminal. Since systems of 
systems to detect and intercept such missiles cannot be 
tested at the mission level, developing trustworthy abstract 
models is desired (Mittal and Rainey, 2015). Similar to 
disease stages in healthcare, each of the missile phases can 



14 B.P. Zeigler et al.  

be represented by families of FP-DEVS models and coupled 
together at different levels of granularity. 

10 Future research 
Future research must develop robust transformation 
techniques together with proofs that show them to be 
systems morphisms of suitable types. This will ensure 
consistency between the results of verification of emergent 
foreseen behaviours using computational analytical 
techniques and the discovery of emergent unforeseen 
behaviours through dynamic simulations. Such techniques 
will require formulating a meta-modelling approach that 
will lead to a multi-step verification process that can handle 
the dynamical complexity of CACSoS. We recognise that 
the most expeditious way to develop an inclusive 
framework is to build on existing methods and software 
tools to the extent possible. The multi-step verification 
process will help to manage and cross-check results 
obtained from the various analytical and simulation 
methods, as well as from integrated methods that are 
supported by the proposed framework. This approach helps 
to deal with the complexities of CACSoS by enabling more 
robust designs and a more thorough and organised 
simulation and verification process. These complexities can 
be addressed with the help of the theory of M&S (Zeigler, 
1976) to develop methods for hierarchical decomposition 
and simplification as essential tools within the emerging 
field of model engineering (Zhang et al., 2014). 
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