
2 Int. J. Simulation and Process Modelling, Vol. 12, No. 1, 2017

Copyright © 2017 Inderscience Enterprises Ltd.

Combining DEVS and model-checking: concepts
and tools for integrating simulation and analysis

Bernard P. Zeigler*
RTSync Corporation,
Arizona Center for Integrative Modelling and Simulation,
AZ, USA
Email: zeigler@rtsync.com
*Corresponding author

James J. Nutaro
OakRidge National Laboratory,
One Bethel Valley Road, Oak Ridge,
TN 37831, USA
Email: nutarojj@ornl.gov

Chungman Seo
RTSync Corporation,
Arizona Center for Integrative Modelling and Simulation,
AZ, USA
Email: cseo@rtsync.com

Abstract: Our objectives here are to discuss the development of a formal framework that
exploits the advantages of the discrete event system specification (DEVS) formalism and builds
upon recent extensive work on verification combining DEVS and model checking for hybrid
systems. DEVS offers the ability, via mathematical transformations called system morphisms, to
map a system expressed in a formalism suitable for analysis (e.g., timed automata or hybrid
automata) into the DEVS formalism for the purpose of simulation. We discuss a probabilistic
extension of the FD-DEVS formalism that enables a set of model classes and tools derived from
Markov-type models. The MS4 modelling environment provides a suite of tools that support this
extension, called FP-DEVS. In this paper, we describe these tools and the concepts underlying
them. We also provide examples of application of these concepts and discuss the open
opportunities for research in this direction.

Keywords: model checking; verification and validation; cyber-physical systems; autonomous
systems; cooperative systems; systems of systems; modelling and simulation; general dynamic
systems theory; discrete event system specification; DEVS; combining simulation and formal
verification; Markov models: Lumpable Markov chains.

Reference to this paper should be made as follows: Zeigler, B.P., Nutaro, J.J. and Seo, C.
(2017) ‘Combining DEVS and model-checking: concepts and tools for integrating simulation and
analysis’, Int. J. Simulation and Process Modelling, Vol. 12, No. 1, pp.2–15.

Biographical notes: Bernard P. Zeigler is a Chief Scientist of RTSync Corporation and Emeritus
Professor from Arizona Center for Integrative Modelling and Simulation. He is internationally
known for his seminal contributions in M&S theory, and has published several books including
Theory of Modelling and Simulation. IEEE named him a fellow of the IEEE for his invention of
the discrete event system specification (DEVS).

James J. Nutaro is senior research staff at Oak Ridge National Laboratory. He has extensive
experience in M&S and systems modelling in both defense and commercial domains.
He has applied M&S techniques for design, analysis, and testing in diverse enterprises including
missile systems, space systems, communications, uranium processing, electrical power, disease
processes, and high performance computing technology. He is also the author of Building
Software for Simulation: Theory and Algorithms, with Applications in C++.

Chungman Seo is a senior research engineer at MS4 Systems Company and a member of Arizona
Center for Integrative Modelling and Simulation (ACIMS). He received his PhD in Electrical and
Computer Engineering from The University of Arizona in 2009. His research includes MS4 Me
Product, web-based DEVS simulation system, DEVS/SOA-based distributed DEVS simulation,
and DEVS simulator interoperability.

 Combining DEVS and model-checking: concepts and tools for integrating simulation and analysis 3

This paper is a revised and expanded version of a paper entitled ‘Combining DEVS and
model-checking: using systems morphisms for integrating simulation and analysis in model
engineering’ presented at EMSS: European Modelling & Simulation Symposium, 26th edition,
Part of I3M2014, Bordeaux, France, 10–12 September 2014.

1 Introduction
Model checking, a well-known formal verification method,
systematically explores the state space of a system model to
check that states satisfy specified behavioural properties
(Baier and Joost-Pieter, 2008). Model checking methods
encounter state space explosion in analysing autonomous
systems that require complex logical processes to perform
complex decision making tasks. Moreover, because they
are limited in their expressive capability to restricted logics,
such methods must typically make stringent assumptions
about physical components and environments. These
assumptions and idealisations greatly reduce the methods’
applicability to cyber-physical systems where the interplay
of physical and computational elements is paramount.
Finally, cooperative multi-agent systems raise the state
space explosion exponentially through the cross product of
their individual state spaces. In the absence of workable
simulation approaches to enable virtual testing, the only
recourse for verification and validation (V&V) of cyber-
physical autonomous cooperative systems of systems
(CACSoS) is to brute-force methods which are severely
limited in the range of conditions they can test.

A key root cause of limitations in current V&V
approaches to CACSoS is that they are not based on a
general dynamic systems modelling and simulation
framework (MSF). Such a framework should be capable of
expressing the interaction of decision logic, discrete events,
and continuous dynamics that are the hallmarks of such
systems. We therefore propose that the discrete event
system specification (DEVS) formalism, as the
computational basis for a general dynamic systems theory
(Zeigler et al., 2000), provides a sound and practical
foundation for enhancing existing V&V methods to address
their limitations in addressing in CACSoS.

The value of Modelling and Simulation in defense and
other applications is well-known (Shaffer, 2012). A DEVS
model is a system-theoretic concept specifying inputs,
states, outputs, similar to a state machine (Mittal and
Martin, 2012). Critically different however, is that it
includes a time-advance function that enables it to represent
discrete event systems, as well as hybrids with continuous
components (Nutaro, 2011) in a straightforward
platform-neutral manner (Zeigler and Sarjoughian, 2012). A
recent thesis (Denil, 2013) presents a multi-paradigm
model-driven approach to design, verification and
deployment of software intensive systems, another
formulation of cyber-physical systems. It shows that DEVS
provides excellent features for modelling such systems. The
thesis provides a list of properties of DEVS and their
mapping to properties of automotive software and systems –
here viewed as instances of CACSoS:

• Concurrency: Multiple processors and communication
links are concurrent in a CACSoS system. The
semantics of DEVS coupled models supports
concurrency by appropriate interleaving of the
discrete-event behaviour of individual sub-models.

• Time: Real-time performance is a crucial property of
CACSoS embedded software. End-to-end latencies are
part of the requirements for these applications. The
time advance function of an atomic DEVS model can
be used to model latency.

• Events: Event-triggered and time-triggered
architectures use triggers in the form of either external
events or timing events to start certain pieces of
functionality. DEVS implements reaction to events
using the external transition functions.

• Priorities: Some real-time communication channels use
priority-based and other mechanisms for arbitration.
DEVS supports such arbitration by means of explicit
specification of executable events from the set of
simultaneous events.

• Simulation of the physical parts of the system: DEVS is
a very general formalism and is able to include
different other formalisms. This generality stems from
the infinite possible states that DEVS allows to model
and the (continuous) time elapse between the different
state transitions. The hierarchical coupling techniques
are used to integrate the different formalisms using
DEVS as a common denominator.

The rest of the paper is organised as follows: Section 2
provides needed background, while Section 3 discusses
limitations of current V&V methods. Section 4 details
DEVS support for complex system V&V followed by the
integration of DEVS and non-DEVS methods in Section 5.
Combining simulation and formal methods and support for
this combination are discussed in Sections 6 and 7,
respectively. Section 8 considers probabilistic DEVS and
Markov models implementation in MS4 Me. Applications
and future research are offered in Sections 9 and 10.

2 Background
The MSF (Zeigler, 1976) presents entities and relationships
of a model and its simulation as background for the
proposed work (Figure 1). The MSF separates models from
simulators as entities that can be conceptually manipulated
independently and then combined in a relation which
defines correct simulation. The experimental frame defines
a particular experimentation process, e.g., Latin hypercube

4 B.P. Zeigler et al.

sampling for yielding model outcome measurements in
accordance with specific analysis objectives. Figure 1
depicts the notion of an optimisation frame to supplement
the MSF experimental frame, where the optimisation frame
directs search among the possible models for one or more
that satisfy design space criteria, including those that
minimise uncertainty about how well the implemented
design will work. Figure 1 also emphasises the ability
enabled by model continuity to transfer a simulation model
from a logical-time simulator to a real-time simulator. In
particular, DEVS models for autonomous control in
CACSoS can be shifted without alteration (avoiding
error-prone and tedious reprogramming) to interact with real
environments in cooperative configurations after being
verified in virtual environments (Zeigler and Sarjoughian,
2012; Hu and Zeigler, 2008). The MSF underlies the DEVS
Simulation Protocol which provides provably correct
simulation execution of DEVS models thereby obviating
time and state conflicts arising in simulation of multi-
formalism models. There are numerous implementations of
DEVS simulators (Nutaro, 2011; Mittal and Martin, 2012).

Figure 1 Model and simulation framework showing model
continuity for SoS V&V (see online version
for colours)

3 Limitations of V&V methods applied to
CACSOS

Linear temporal logic (LTL) and computation tree logic
(CTL) which are used for expressing desired behaviour and
model checking have been applied to the development of
vehicle routing and road monitoring in multi-UAV systems
(Karaman and Frazzoli, 2008; Sirigineedi et al., 2010).
Humphrey (2013) explored the use of LTL, the SPIN model
checker, and the modelling language PROMELA (Gerth,
1997; Baier and Joost-Pieter, 2008; Holzmann, 2004), for
high-level design and verification in UAV related
applications, reporting some success while suggesting
limitations and needed extensions. Table 1 shows three
UAV related cases she discussed.

Table 1 Example applications of model checking to CACSoS

Model: A centralised UAV cooperator controller that
coordinates the actions of multiple UAVs performing a
monitoring task.
Focus of model checking: Assuring that All sensors are
eventually visited.
Sample simplifying assumptions: Communication between
UAVs and sensors can only occur when in the same location
and is error free.
Model: A leader election protocol for a decentralised system of
unattended ground sensors sending estimates of an intruder’s
position to a UAV.
Focus of model checking: At least one leader exists at every
time step.
Sample simplifying assumptions: The sensors all use sampling
epochs of the same length enabling a single time step for time
advance.
Model: Verification of high level UAV mission plans for a
scenario in which multiple UAVs must be used to safely escort
an asset across a road network.
Focus of model checking: The path travelled by the asset is
safe, i.e., all road segments in the path have been scanned by
UAV.
Sample simplifying assumptions: UAVs and VIP were assumed
to travel at the same speed.

In each case, the focus of the model is shown along with a
simplifying assumption. Because they are oriented to
verification, model checking tools tend to lack many
functions that exist in DEVS environments and require
abstractions that fit the tools’ operation. This forces an
abstraction of the real system that on the one hand enables
the modeller to better understand the model, and on the
other hand entails numerous assumptions to enable the
model checker to verify the focal requirement. Despite these
drastic simplifications, state space explosion prevents
employing more than a handful of UAVs and sensors.

Zervoudakis et al (2013) write that
“Research in model checking has focused on
enhancing its efficiency and scalability thereby
enabling model builders to verify larger, more
elaborate models. Popular model checkers tend
to support low-level modelling languages that
require intricate models to represent even the
simplest systems. For example, PROMELA,
the language of the model checker SPIN, is
essentially a dialect of the low-level
programming language C. Another example is
the modelling language used by the
probabilistic model checker PRISM, whose
lack of control structures forces model builders
to pollute model components with counter
variables that explicitly encode the
components’ state transitions.”

 Combining DEVS and model-checking: concepts and tools for integrating simulation and analysis 5

These authors show that mapping of domain knowledge,
assuming it exists in the right form, can be used to reduce
the manual and error-prone encoding of state transitions at
relatively low levels of abstraction. Here we propose to
develop such mappings using the domain knowledge
contained within simulation models and their ontological
representations within the DEVS-based MSF.

4 DEVS Support for CACSoS
Cyber-physical systems are real-time hybrid systems,
i.e., include both discrete and continuous dynamics,
which, as earlier indicated, are well represented within the
DEVS-based MSF. Typically such a system is described by
a state consisting of both discrete control phases and
continuous variables (Nutaro, 2008; Wainer, 2015),
Saadawi et al. (2012) developed a methodology that
combines DEVS and timed automata (TA) (Bengtsson and
Yi, 2004; Henzinger, 1997; Alur, 1995; Courcoubetis et al.,
1995) to allow the designer to model, simulate, verify, and
deploy real-time hybrid systems. This is achieved by
guaranteeing the correctness of the model with a
methodology that verifies DEVS models with TA
model-checking techniques and tools. Under model
continuity (Figure 1) the verified DEVS models are then
made executable on the target platform, thus eliminating the
risk of introducing errors in the final system
implementation. TA provides a solid theory and algorithms
for model checking, and many existing tools implement
these algorithms (e.g., UPPAAL). The combined DEVS/TA
methodology deals with RTA-DEVS – a restriction of
DEVS to rational (a subset of real) Time Advance values.
For this subclass the methodology provides automated
mappings to TA’s abstract formal system specification that
is verifiable by decidable model checking. In this
methodology, if UPPAAL (or other model checker) faces a
problem of state explosion, and no answers can be obtained
in reasonable time, the user can use model checking on an
abstraction of the system while employing DEVS-based
simulations to empirically check out properties not included
in the formal analysis. In particular, the methodology
applies to hybrid systems whose continuous components are
expressed using differential equations solved using
quantised state system (QSS) integration. Concurrently, a
literature is developing on the use of QSS, a class of DEVS
models, to efficiently and accurately model such systems,
for example using multicore processors.

While multi-agent-based simulation (ABS) is well
established using DEVS (e.g., Perez et al., 2010), time-step
scheduling is still used in classic ABS models (e.g., Repast,
2009). However, Zhang et al. (2014) developed a DEVS
simulation model which is significantly more efficient than
the Repast ABS model (350 times faster for 10,000 agents)
while keeping high model spatial fidelity and the same
agent cognitive capability, collision avoidance, and low
agent-to-agent communication cost.

Work on non-DEVS model checking for hybrid systems
includes that based on timed automata (Henzinger, 1997;

Alur, 1995; Courcoubetis et al., 1995), abstraction
and simplification of systems (Chauhan et al., 2002;
Clarke et al., 2003; Long, 1993), and statistical model
verification (Younes et al., 2006).

5 Integrating DEVS and non-DEVS verification
methods

As discussed earlier, several DEVS methodologies have
been developed which incorporate non-DEVS verification
methods (Zeigler and Sarjoughian, 2012; Hu and Zeigler,
2008). These methodologies attempt to employ DEVS to
enable loosening the simplifying assumptions typically
made by non-simulation models. For example, the Sample
Simplifying Assumptions in Table 1 include:

a perfect communication among component systems
occur when they are in exactly specified locations

b time advances for all components use the same fixed
time step

c speeds of vehicles are constant or change
instantaneously.

However, so far, such methodologies have not provided a
general approach to combining simulation and verification
using available system theoretic concepts to relax such
assumptions.

Our objective here is to develop and employ system
morphisms and model transformations to integrate the
various types of models to be included in a general
DEVS-based framework for verification in model
engineering. Model transformations are a key means of
converting between different model types and must preserve
desired aspects of structure and behaviour to qualify as
system morphisms. Our approach is to define system
morphisms for such transformations and to prove these
morphisms are mathematically correct using existing theory
of system morphisms (Zeigler, 1976). This will enable us
eventually to automate verification of properties for
complex simulation models as opposed to simplified models
developed specifically for model checking. Then we will
explore algorithmic approaches to automate the construction
of these types of systems mappings. Such automation is
necessary to create a practical tool for engineering systems
of systems.

Figure 2 compares the methodology of Saadawi et al.
(2012) which provides automated transformations from
RTA-DEVS to TA enabling tractable model-checking using
UPPAAL (Behrman, 2004) with the approach we discuss
here. The RTA-DEVS approach seeks to verify DEVS
models by transforming them into a subset of TA that can
be verified using UPPAAL. To do this, it must appropriately
limit the class of DEVS models to a subclass that can be
mapped to the input class of TA for UPPAAL via 1-1 weak
bi-simulation with the safety TA subclass of TA. Weak
bi-simulation will be shown to be a system morphism. The
mappings are not automated.

6 B.P. Zeigler et al.

Figure 2 Comparing DEVS-based verification approaches
(see online version for colours)

In contrast, as shown in Figure 2, our approach is to start
with the FD-DEVS (Zeigler and Sarjoughian, 2012)
subclass of DEVS models having finite sets of states, inputs,
and outputs and whose construction is supported by
MS4 Me. Then two mappings are defined:

1 map FD-DEVS models into non-deterministic automata
that are subject to model checking using
SPIN/PROMELA

2 elaborate FD-DEVS models into full-fledged DEVS
models that can be simulated to obtain behaviour of
interest and possibly to discover unexpected or
emergent behaviours via simulation.

Aznam et al. (2014), at about the same time as the original
conference paper that gave rise to this version (Zeigler and
Nutaro, 2014), discussed the complementarity between
simulation and formal verification using transformation of
PROMELA models into FD-DEVS models. To illustrate the
general idea, we use a different example to construct an
illustrative, mathematically verifiable transformation from
DEVS models to model checking models and vice versa.
We then employ this example in our discussion of the
extension to probabilistic DEVS.

5.1 Example of system morphism between
PROMELA and DEVS

For an example of this approach, consider the alternating bit
protocol introduced by Bartlett et al. (1969) for
implementing full-duplex communications over half-duplex
communication lines. This protocol is illustrated in Figure
3. It has been used to illustrate fundamental elements and
analysis capabilities of the PROMELA language by proving
that the protocol operates correctly (see the SPIN manual;
Gerth, 1997); that is, that “Every message fetched by A is
received error-free at least once and accepted at most once
by B”. It is apparent from the figure that this PROMELA
model is a finite state automaton, and all finite state
automata are instances of DEVS models that have a fixed
time advance (see Zeigler et al., 2000). Hence, a DEVS
model of this protocol can be built in a simple way.

Figure 3 Model for automatic verification of ABP alternating bit
protocol

We do this by adding two pieces of information to the
PROMELA description: the time T to transmit a bit and the
probability p of an error. One important use of this DEVS
model is to answer questions about performance of the
protocol. Conversely, we may map any instance of this
DEVS model with parameters p and T onto a PROMELA
model by abstracting away the specific probability
distribution and stating only that a bit may arrive or not
arrive.

In the original conference paper that gave rise to this
version (Zeigler and Nutaro, 2014), we constructed a DEVS
model manually to demonstrate this process. Since then we
have extended the concept of FD-DEVS to a probabilistic
version with supporting tools. Consequently we leave the
discussion of this example to later in the paper. Before
proceeding to the presentation of the extended DEVS
capabilities, we note that these simulations provide
important, systems level performance metrics that cannot be
obtained via a query of the PROMELA model. At the same
time, we may be certain that the simulation model preserves
the formal properties that we have proven about the protocol
by use of the PROMELA model. The capability to construct
performance studies, like this bit rate study, using a
simulation model derived directly from the formal
verification model illustrates the power of the proposed
approach for engineering complex systems.

5.2 Extending the range of verification models with
simulation models

Transformations between simulation models and
verification models can also facilitate the reuse of model
components throughout the lifecycle of an M&S system,
and this reuse can have the important effect of revealing
implicit assumptions in proofs constructed for the
verification model. For instance, it is natural to use the
alternating bit protocol as a media access control layer
within a more comprehensive network simulation. This
more comprehensive model could have a sender and
receiver each with two components.

This is illustrated in Figure 4. The first component is our
DEVS model of the alternating bit protocol. The second
component sends and receives messages, rather than just
bits, and queues messages that are pending transmission.
This second component appends to each message the bit

 Combining DEVS and model-checking: concepts and tools for integrating simulation and analysis 7

that it receives from the MAC layer, and sends to the MAC
layer the first bit in each message received from the network
or an error indicator, as appropriate. Transmissions in the
upper layer occur at the instant that a bit is received from
the MAC layer below. Central to understanding the
behaviour of this model is its queue capacity, rate of
requests to send messages, and bit rate.

Figure 4 Message layer addition to ABP (see online version
for colours)

5.2.1 Alternating bit protocol with infinite queue
Let us first consider a combination of these that may be
reduced to a slightly more complex version of the
verification model for the alternating bit protocol. To obtain
this model we reduce the queue to two states: empty and
occupied. The former indicates no messages waiting for
transmission and the latter indicates a message waiting to be
transmitted. Adding these states to the transmitter increases
the size of the verification model from 25 states to 50 states,
and we may prove for this larger model that every message
transmitted is received once and only once. This proof is
significant because it reflects the intended, but idealised,
behaviour of the system. If, for instance, this assertion could
not be proved then the design of the system should be
reconsidered before moving to other forms of testing.

5.2.2 Alternating bit protocol with finite queue
However, this proof does not indicate how the system will
behave over its entire range of structural variations and
realisable behaviours. In particular, we may encounter a
case where the queue’s capacity is finite. In this case, the bit
rate and rate of requests to send messages may be such that
at certain points in time the queue’s capacity is exceeded as
can be predicted by simple queuing theory (Jain, 1991). The
consequence of this will be messages that are lost: a clear
violation of the above proof! In this simple example, the
cause of this violation is obvious. The verification model
assumes that the queue never reaches its capacity, and so the
proof implicitly assumes a restricted range of values for the
queue capacity, rate of transmission requests, and bit rate.

6 Combining simulation and formal verification
These types of implicit assumptions can be difficult to
identify in a large model, and simulation offers an
opportunity to explore the system’s parameter space and
identify boundaries beyond which any particular proof fails
to hold.

As illustrated in Figure 5, the combination of simulation
and formal verification gives a much more powerful
capability to test designs than can be achieved with either
alone. In a design process that incorporates both types of
analysis, verification models can be used to obtain absolute
answers concerning system behaviour under idealised
conditions. Failures in this verification stage clearly indicate
a need to find and correct fundamental flaws in the system
design.

Figure 5 Relation between verification and simulation

On the other hand, a successfully verified model can be
formally extended into a simulation model for which the
verification model is a homomorphic simplification. Hence,
the simulation model retains the properties that were
verified with the simpler model, and then can be used to
explore scenarios that are necessarily outside the scope of
formal verification. In some cases, other simplifications of a
full-fledged simulation model can be applied (for example,
as mentioned above, queueing theory can predict the
probability of a finite capacity queue being exceeded).
However, in general, simulation models can incorporate the
complexity needed to deal with real systems using the base
model concept. The traceability between these two types of
models, which is obtained by the application for formal
system morphisms, is central to the success of this two
tiered approach to testing.

7 FD-DEVS extension to support combined
simulation and verification

7.1 Finite probabilistic DEVS
Finite probabilistic DEVS (FP-DEVS) is an extension of
finite deterministic DEVS (FD-DEVS) (Mittal et al., 2007)
which is a foundation of DEVS Natural Language (DNL).
FP-DEVS allows internal transitions out of a state to one of
a finite set of possible states where the choice is made
probabilistically. This relaxes the FD-DEVS rule that
restricts internal transitions to a single (deterministic)
transition. Starting with the FD-DEVS specification of
internal transition table, the FP-DEVS extension follows:

8 B.P. Zeigler et al.

()
:

 [0,1]
InternalTransitionTable
StateSet X UBlank StateSet→

For example, to express the probability of an internal
transition from Phase to Phase’ with probability p, we
write:

(), ’,
where 0 1
InternalTransitionTable Phase p Phase

p
=

≤ ≤

There can be several such entries, one for each destination
state from the same source state; the sum of the associated
probabilities is bounded by unity. If a transition back to the
source is not specified, the difference between unity and the
sum is attributed to the probability of the self-transition.

To express a deterministic internal transition as in the
original FD-DEVS, the probability argument is left blank,
as in:

(,)
() ’

InternalTransitionTable PHASE Blank
InternalTransitionTable PHASE PHASE= =

The InternalTransitionTable determines the phase of the
next state in DEVS by:

1 gathering all the entries for the outgoing transitions
from a source phase

2 creating a cumulative distribution function from the
associated probability values

3 selecting a phase based on the distribution using a
random number generator

4 setting the new phase to the one selected.

The time advance of the next state with this phase is set to
the unique value associated with the internal transition.

Figure 6 Example of FP-DEVS

Figure 6 illustrates an example of FP-DEVS which has one
input (?) and three outputs (!). S1 state can be changed to
three states according to probability values at the internal
transition stage. The time advances for these transitions are
all the same as indicated by the Ta value for S1. Each of the
target states can have any of the original specifications. So
if you want to generate different outputs with given
probabilities you can follow the approach of Figure 6 for
outputs A, B, or C. Note that a probabilistic response to an

input can also be expressed as an external transition to
probabilistic source state as shown in the Figure 6.

7.2 MS4 Me software
MS4 Me software (MS4 Me, 2013) implements DEVS
modelling and simulation with a Java computer language in
an Eclipse environment. DEVS modelling and simulation
consists of atomic model (behavioural description), coupled
model (model structure description), and simulation. In the
MS4 Me software, the atomic model can be constructed
from a state diagram designer which is a graphic user
interface to help users visualise behaviours of the atomic
model with symbols. Also, it can be created using a
restricted DNL whose keywords are highlighted in a DNL
editor in the MS4 Me software. A graphical design of an
atomic model is eventually converted to a DNL file
automatically transformed to a Java file for simulation. The
DNL file is made of atomic model component, data
component, and Java component. The atomic model
component contains states, transitions, and ports (input and
output). The data component displays variables and
message types. The Java component covers Java features
such as adding Java libraries, defining additional functions
(methods), and handling (calculating) messages for which
the DNL file has tag blocks enclosing Java codes for data
calculation at internal transition, external transition, and
output functions. The coupled model is an instance of
system entity structure (SES) which describes a system with
entities’ relationships and coupling information in restricted
natural languages. Entities represent atomic models or
coupled models in the SES, and entities’ relationships
consist of aspect, specialisation, and multi-aspects
(Zeigler, 1984). The coupling information captures message
flows between entities. Theoretically, an SES with all
relationships can generate an infinite number of coupled
models through a pruning process which defines selections
for specialisation relationships and the number of instances
for multi-aspect relationships. MS4 Me provides a sequence
diagram to graphically generate a SES from which
associated entities are automatically converted to DNL files.
The simulation is executed with a coupled Java model
generated through a pruning process with a SES document
and atomic Java models from DNL files. DNL and SES
documents describe atomic models and coupled models.
Although a DNL document contains Java specific contexts
to generate a Java model, it can be utilised in other
application such as web application interacting with users
according to model’s information.

8 Markov models: implementing morphisms in
FP-DEVS

Finite state Markov chain model classes (Kemeny and Snell,
1960; Feller, 1966), with both discrete and continuous time
bases, have been implemented in MS4 Me using the above
described FP-DEVS capabilities. A useful example of a
morphism such as discussed in Section 5.1 was developed

 Combining DEVS and model-checking: concepts and tools for integrating simulation and analysis 9

which maps from a continuous time Markov (CTM) model
to a discrete time Markov (DTM) chain approximation. A
second class of morphisms is illustrated by the mapping of
compositions of CTMs to their components.

Figure 7 Stock market CTM model example (see online version
for colours)

Source: From Wikipedia

An example of a Markov model supported by MS4 Me is
the Stock Market model taken from Wikipedia (2014) as
shown in Figure 7. The transition system underlying this
example is interpreted as either a CTM or DTM by taking
the approach of Soares and Castro (2012). Here the
continuous time interpretation employs the probabilities
associated with internal transitions as specifications of their
time advances. Indeed, let the transitions out of a state
(phase, σ) be

(){ }’ | ’ , ’, ’phase p phaseτ τ =

where p’ is the probability of going to phase’ – also called
the rate of transition to phase’. Then the time advance for
the state is

() (){ } ’ | ’ 1/ ’next min p ln rσ σ σ= = −

where r is a random number between 0 and 1. The phase
selected is the one whose sigma is the minimum (or one of
this minimal set, if more than one exists). This implements
the Markov assumption that transitions occur independently
as events with Poisson distributions with exponential
distribution parameters .λ’ = 1/p’. The model remains in
phase for the computed time advance and transitions
immediately to the selected phase. Thus the smaller is a
probability of transition, the longer is the associated time to
its next occurrence (on average) and the less likely it is to be
selected as the transition to take (the self-transition is
omitted as a contender to selection).

The discrete time version is parameterised by a time step
(or cycle length in the common Markov terminology). As
with the basic FP-DEVS convention, transitions occur with
a time advance equal to the time step and with specified
probabilities, in this case, determined by the given rates and
the time step. For small enough time steps, the employed
probabilities are given by the product of the corresponding
CTM values and the time step, For larger time steps, a better

approximation is given by employing probabilities equal to
1 – exp(–h * p) where h is the time step and p the
corresponding CTM probability (this is the probability that
the first event in the Poisson process happens in the time
step interval). The approximation loses accuracy with
longer time steps as more than one intervening event
becomes likely.

Figure 8 Experimental frame for continuous to discrete
morphism (see online version for colours)

An experimental frame for the approximation of CTM by
DTM models, illustrated in Figure 8, concerns preservation
of state accessibility and state probabilities. A perfect
approximation is one in which the same set of states is
accessible from the initial state in corresponding models.
Likewise, the relative times that the process dwells in the
states are the same for both models. See Soares and Castro
(2012) for a detailed comparison of simulation and analytic
solution method results. A Markov Chain is obtained by
ignoring timing and employing only the transition
probabilities of the CTM. In this representation, the state is
a vector of probabilities and the state trajectory becomes a
sequence of state vectors on an integer time base. MS4 Me
provides a class MarkovMat and a transformation from the
FP-DEVS CTM to its MarkovMat corresponding matrix
representation. A MarkovMat instance is in fact a discrete
time FD-DEVS with a state vector as a state variable and an
internal transition function which multiplies the vector by
the matrix to update it at every time step. A test for reaching
an equilibrium (stationary) state is included in the internal
transition. Figure 9 depicts the convergence of the stock
model Markov chain within 30 iterations. The accessible
states from an initial state are computed as those with
non-zero probability values in such an equilibrium state.

The mapping from a CTM to its associated MarkovMat
is a structure morphism that preserves state accessibility and
occupation probabilities but not residence times since no
timing information is preserved (except sequencing). This is
illustrated in Table 2 which shows the agreement of the
equilibrium probabilities of the Markov chain with the
relative occupation times observed in a run of the
corresponding CTM. Due to the stochastic behaviour of the
CTM, the simulation takes much longer than the matrix
iteration with convergence determined by confidence
interval criteria.

10 B.P. Zeigler et al.

Figure 9 Trajectories of state vector probabilities for stock
market model (see online version for colours)

Table 2 Comparison of CTM and MarkovMat statistics

State
CTM time

in state
T = 22,300

CTM
probabilities
(relative time

in state)

MarkovMat
equilibrium
probabilities

Bull 13,774 .63 .62
Stagnant 1,384 .06 .06
Bear 7,135 .31 .32

State

CTM
occupation

counts
(frequencies)

CTM avg.
residence time

in state

Sum of
outgoing
transition

probabilities

Bull 1,400 9.8 .1
Stagnant 686 2.0 .5
Bear 1,407 5.0 .2

Note that the occupation time in state over an interval
equals the average residence time in it × the occupation
count (number of times it has been entered). Sampled CTM
trajectories produce such counts and therefore also average
residence times as in Table 2. For consistency, such times
should equal those computed as inverses of the total
outgoing transition probabilities. Also Table 2 shows how
the MarkovMat class plays the same role as the model
checking tools described earlier in that it deals only with a
limited set of properties (e.g., state accessibility) but
makes them easier to compute than the more expressive
super-class.

8.1 Representing lumpable Markov chains
Lumpability is a well-known condition applicable to
Markov chains (Kemeny and Snell, 1960; Buchholz, 1994)
that can be expressed as a structure morphism for pairs of
models in the MarkovMat class. Lumpability is a kind of
aggregation uniformity condition (Zeigler et al. 2000) that
preserves state transition behaviour modulo a partition of
the states. The class BaseLumpedMarkovMat takes a base
and lumped model pair where the lumped model is
constructed from a MatrixMat serving as a base model using

a given state partition. The lumped probabilities are
computed by averaging the elements in the inverse images
of the pairs of lumped states. For example, in Figure 10,
p0,1 = (1/blocksize0)∑pi,j where the sum is over the pairs i, j
for which i maps to 0 and j maps to 1 and blocksize0 is the
cardinality of the state block containing 0.

Figure 10 Lumpability

Source: Example taken from Wikipedia

The lumpability condition requires that the elements in each
row in the inverse images sum to the same value. The
definition of the morphism just given applies to any matrix
and gives the same results as lumpability when the
condition holds. In fact under this condition, the mapping
becomes a homomorphism from a discrete time system
specification (base DTSS) to a lumped DTSS and the
extension allows it to be studied as an approximate
homomorphism for its error propagation behaviour
(Buchholz, 1994; Zeigler et al., 2000).

8.2 Compositions of FP-DEVS and Markov models
Since FP-DEVS models are atomic DEVS models, they can
be coupled to create hierarchical coupled DEVS models.
MS4 Me’s support of this functionality means that Markov
models can be treated as ordinary DEVS models with inputs
and outputs in addition to their state specifications. This
resulting model can be coupled with other DEVS models,
including those derived from other classes (Zeigler et al.,
2000). This allows both the simulation and analytic
capabilities to co-exist within the same M&S environment.

8.3 Cross-products of Markov models
Let us restrict our focus to compositions restricted to
Markov models for a moment. This raises the question of
closure under coupling for such model classes. For example,
does coupling a pair of CTM models result in a model
expressible as a CTM? Underlying this question is the zero
memory property of Markov models. There are two
questions:

1 Is the minimal state space of the resultant of such a pair
constituted by the cross product of their state sets?

2 Can the state transitions be expressed using the CTM
probabilities mechanism?

 Combining DEVS and model-checking: concepts and tools for integrating simulation and analysis 11

Further restricting the consideration to the case where there
is no cross coupling between components, we get a parallel
composition or cross-product of CTMs.

Figure 11 shows a coupled model in MS4 Me composed
of two randomly generated CTMs each coupled to its own
experimental frame and to a joint frame, The individual
frames are the same as the one in Figure 8 and track the
states reported by their respective components. The joint
frame however is more complex. It tracks pairs of states,
where a pair gets recorded as occupied during the intervals
where the individual member states overlap (since state
transitions occur at random times, pairs of states do not
necessarily get established in a single event).

Figure 11 Composition of CTMs with experimental frames for
state reachability and residence times (see online
version for colours)

The tools discussed above allow one to check whether the
coupled CTM model’s relative occupation times in states
can be predicted by a Markov matrix model. Figure 12
illustrates how the experimental frames and models are
constructed to do this. The matrices underlying the CTM
models are combined in a cross product representing the
joint independent combination of the Markov processes.
The states of the crossproduct are the pairs i, j where i is a
state of M1 and j is a state of M2. The i, j, k, lth entry of the
crossproduct transition matrix is set to p1(i, k) * p2(j, l), the
probability of independent transitions from i to k in M1 and
j to l in M2 (Dayar, 2013). With this definition it is easy to
see that there is a lumping morphism from the joint model
to each of the component models determined by respective
projection maps [the block mapping to the ith state of M1 is
the pair of states i, j where j ranges over the states of M2.
The transition probabilities of each of these states to the
block mapping to the k th state sum to p1(i, k)]. This lumping
can be viewed as a generalisation of the well-known
homomorphism of parallel compositions of deterministic
state systems (Zeigler, 1976). However, as indicated, while
the crossproduct specifies a CTM it is not necessarily
representative of the resultant of the coupled CTM model.
The EFPair of Figure 12 enables us to check the predictions
of the crossproduct with the actual stochastic behaviour of
the CTM.

The experimental frames and models to which they are
applicable as well as the derivability relationship among
them are shown in Table 3. The derivability relation is
explained as follows: EFMM is directly applicable to

MarkovMat models (in both atomic or product form) and
can predict probabilities of states in equilibrium (as well as
measures derivable from such probabilities such as first
passage times (Kemeny and Snell, 1960). Now a CTM can
serve as the base model to such a lumped model (as in
Table 2) in which case, EFMM is derivable from EFCTM but
not conversely. EFPair is needed to observe a coupled model
of CTMs and can yield state occupation times. Both EFMM
and EFCTM are derivable from EFPair.

Figure 12 Experimental frames for consistency checking of
coupled CTM models (see online version for colours)

Table 3 Experimental frames and applicable models

Exp.
frame

Directly applicable
to model

Can provide
information on:

Derivable
from:

EFMM MarkovMat Equilibrium
state occupation

times for
corresponding

CTM

EFCTM

EFMM Crossproduct of
matrices

Equilibrium
state occupation

times for
coupled CTM

EFPair

EFCTM Continuous time
Markov

State occupation
times for CTM

EFPair

EFPair Coupled CTM
model

State occupation
times for

Coupled CTM

8.4 Downward and upward preservation of
properties

Zeigler and Nutaro (2015) discuss the question of upward
preservation of properties from a lumped model to a base
model of which it is a homomorphic image. The question is
important in the context of combined simulation and model
checking where it concerns whether established properties
of the simplified model carry over to its complex simulation
counterpart. The crossproduct of the previous section
provides an example where this upward preservation
demonstrably fails to hold as we now demonstrate. The
property we focus on here is reachability from the initial
state. It is easy to show that a state is reachable from another

12 B.P. Zeigler et al.

in the crossproduct if, and only if, its projective
images are in the same reachability relation in both
components. Now, consider a case in which one of the
components has unreachable states, while the other has all
states reachable from the initial state. Then this case
provides a counterexample to the upward preservation of
connectedness for the lumping morphism: the second
component has the reachability property but it is not shared
by the pre-image since the other component does not.
However, downward preservation of connectedness holds
(it is assured by the only-if direction of the basic condition).

8.5 Transformations between non-deterministic
models and FP-DEVS

Non-deterministic models such as the alternating bit
protocol in Figure 3 can be directly represented in
FP-DEVS. Here we note that the PROMELA model is
actually deterministic except for the inputs which arrive
without further specification in time. DEVS treats such
unspecified arrivals as external events to a fully
deterministic model.

8.5.1 Mapping an FD-DEVS to an equivalent FP-
DEVS CTM

This leads to a general approach to mapping from an
FD-DEVS atomic model to an FP-DEVS CTM model. We
define an input-driven FD-DEVS as one for which every
state is passive, i.e., it is time advance is infinite. Such a
model waits indefinitely for input to make it transition to a
next state. We discuss removing this restriction in a
moment. As illustrated in Figure 13, the mapping is actually
from a DEVS coupled model to the constructed FP-DEVS.
The coupled model couples an independent Poisson process
generator to at least one input port of the FP-DEVS to
represent the arrival process of external events on that port.
The added processes are independent with their own rate
parameters.

Figure 13 Mapping an Input-driven FD-DEVS to an equivalent
FP-DEVS CTM (see online version for colours)

The equivalence is justified as follows: having just entered a
state, the FD-DEVS model waits there for the first external
event to arrive (there are no internal events). This is
mirrored by FP-DEVS which, in the same state, executes
the time of next event method (Section 8) with rate
parameters given by the ones specified for the coupled
model input processes. In both cases, the transition taken is
due to the earliest input to arrive. To obtain the general case
in which states have finite time advances, the time of next
event method can be amended to take account of the
scheduled internal event by realising that that the actual
event to occur is the one that occurs earliest. Thus if none of
the sampled external event times is smaller than the
scheduled time advance, the internal transition is executed,
otherwise the earliest external transition is performed. The
resulting FP-DEVS model is a modified CTM with a
mixture of externally and internally derived transitions.
Although the transformation has not been automated, it
quite straightforward and could be done automatically,
requiring only the rate parameters of the input processes
from the user. In the next section, we return to the
alternating bit protocol example to illustrate this
construction.

9 Applications
9.1 Performance modelling
The tools enabled by FP-DEVS open up numerous
application areas, especially where the use of stochastic
modelling is novel or has been problematic in the past. The
area of performance modelling is a high user of stochastic
modelling (see e.g., Obaidat and Boudriga, 2010), however
the combined use of verification and simulation is still
under development. As a case in point, let’s reconsider the
alternating bit protocol in Figure 3 where we introduced
parameters for the time T to transmit a bit and the
probability p of an error to the PROMELA description. The
FD-DEVS equivalent of this PROMELA model has three
input ports – one for each binary digit and one for the error
notification. Following the construction of Figure 13, we
posit Poisson input generation processes where the
parameter T specifies the mean parameter of the bit arrival
processes, while the parameter p specifies the probability of
the error arrival process. The result is a CTM expressible in
FP-DEVS.

Table 4 shows the results of a simulation study, using
the constructed FP-DEVS, to discover how the bit rate of
the protocol varies as a function of T and p. This table was
constructed with the DEVS simulation model by sweeping
over a range of values for T and p, and for each combination
recording the bits per second that could be exchanged by the
system assuming 100% utilisation of the communication
channel. The experimental frame for each combination is a
transducer (Zeigler and Sarjoughian, 2012) which counts
the number of bits produced at the output of the model in
the observation time interval. Interestingly, because it relies
on bit identities, this throughput frame is not derivable from

 Combining DEVS and model-checking: concepts and tools for integrating simulation and analysis 13

any of the frames associated with Markov models discussed
above. Executing the model produces results as in Table 4
which confirms that the throughput is directly proportional
to the arrival rate (1/T) and to the probability of correct
transmission (1 – p). The MarkovMat matrix model which
is directly derivable from the CTM model offers some
verification help in that it predicts reachability of states. For
example, it confirms that states S4 and S5 are not reachable
from the initial state when the error probability is zero.
Although obvious by inspection in this simple example, this
approach does offer a fast reachability check for more
complex models.

These simulations provide important systems level
performance metrics that cannot be obtained via a query of
the PROMELA model. At the same time, if upwards
preservation is established, the simulation model may also
have the formal properties that can be proven about the
protocol by use of the PROMELA model. The capability to
construct performance studies, like this throughput study,
using a simulation model derived directly from the formal
verification model illustrates the power of the proposed
approach for engineering complex systems.

Table 4 Performance study of the alternating bit protocol

T
(SECONDS) P

BITS
PER

SECOND

T
(SECONDS) P

BITS
PER

SECOND

1E–9 0 5.0E8 1E–6 0 5.0E5
0.25 3.8E8 0.25 3.8E5
0.5 2.5E8 0.5 2.5E5

9.2 Healthcare intervention quality/cost tradeoffs
Another illustrative direct application is to evaluation of
cost effectiveness of healthcare interventions. There is an
ongoing controversy in evaluating the tradeoff of quality of
life with cost in drug therapy. This controversy relates to the
use of Markov modelling versus what they call Discrete
Event Simulation (DES). Karnon and Afzali (2014) review
a large number of studies in the area and discuss pros and
cons of the use of the first vs the second. Basically Markov
models are also called cohort models which follow patients
as a group over time in aggregated form. Consequently,
these models cannot accommodate patient differences
However, they are easier to develop and calibrate and run
very fast. In contrast, DES requires more detailed data, are
much slower to execute and require numerous runs to
achieve statistical validity. However, they can easily
accommodate individual patient stochastic disease and
treatment trajectories. Rather than either-or use of Markov
and DES, FP-DEVS allows both approaches to be used in
an integrated manner. The Markov model classes CTM,
DTM, and MarkovMat support cohort level models where
aggregations of homogeneous patients are tracked.
Moreover, the embedding of CTM and DTM models within
FP-DEVS enables them to serve within patient models to

produce the individualised stochastic and disease
trajectories of DES.

Figure 14 illustrates a coupled model with CTMs
representing processes that predict readmission to hospital
after discharge for patients with normal, chronic disease and
behavioural health issues. One or both of the chronic and
behavioural CTM model components are pruned depending
on an individual patient’s attributes. The output, signalling
the patient’s readmission to hospital, is the earliest output
received by the WaitForFirst component from the CTM risk
of readmission models. Moreover, consistency checking and
cross-validation between the two levels of representation are
supported by the morphisms and bi-simulation classes
(e.g., BaseLumpedMarkovMat) discussed above. This
integration obviates the need to make the either-or choice
assumed in some healthcare effectiveness evaluation
communities.

Figure 14 FP-DEVS coupled model of components that can be
pruned to represent individual attributes (see online
version for colours)

9.3 Physics
Markov chain models have been studied in physics under
the name ‘interacting particle system’, an example of which
is the well-known Ising model, a stochastic cellular
automaton. The generalisation of FD-DEVS to FP-DEVS
follows the spirit of the generalisation from deterministic
cellular spaces to stochastic versions (Ligget, 1997).

9.4 Ballistic missile defense
Ballistic missiles follow a four-phased trajectory path:
boost, ascent, midcourse, and terminal. Since systems of
systems to detect and intercept such missiles cannot be
tested at the mission level, developing trustworthy abstract
models is desired (Mittal and Rainey, 2015). Similar to
disease stages in healthcare, each of the missile phases can

14 B.P. Zeigler et al.

be represented by families of FP-DEVS models and coupled
together at different levels of granularity.

10 Future research
Future research must develop robust transformation
techniques together with proofs that show them to be
systems morphisms of suitable types. This will ensure
consistency between the results of verification of emergent
foreseen behaviours using computational analytical
techniques and the discovery of emergent unforeseen
behaviours through dynamic simulations. Such techniques
will require formulating a meta-modelling approach that
will lead to a multi-step verification process that can handle
the dynamical complexity of CACSoS. We recognise that
the most expeditious way to develop an inclusive
framework is to build on existing methods and software
tools to the extent possible. The multi-step verification
process will help to manage and cross-check results
obtained from the various analytical and simulation
methods, as well as from integrated methods that are
supported by the proposed framework. This approach helps
to deal with the complexities of CACSoS by enabling more
robust designs and a more thorough and organised
simulation and verification process. These complexities can
be addressed with the help of the theory of M&S (Zeigler,
1976) to develop methods for hierarchical decomposition
and simplification as essential tools within the emerging
field of model engineering (Zhang et al., 2014).

References
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A.,

Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J. and Yovine, S.
(1995) ‘The algorithmic analysis of hybrid systems’,
Theoretical Computer Science, Vol. 138, No. 1, pp.3–34.

Baier, C. and Joost-Pieter, K. (2008) Principles of Model
Checking, The MIT Press, Cambridge, MA.

Bartlett, K.A., Scantlebury, R.A. and Wilkinson, P.T. (1969)
‘A note on reliable full-duplex transmission over half-duplex
lines’, Comm. of the ACM, Vol. 12, No. 5, pp.260–265.

Behrmann, G., David, A. and Larsen, K. (2004) ‘A tutorial on
UPPAAL’, Proceedings of the 4th International School on
Formal Methods for the Design of Computer,
Communication, and Software Systems, LNCS, Vol. 3185.

Bengtsson, J. and Yi, W. (2004) ‘Timed automata: semantics,
algorithms and tools’, Lectures on Concurrency and Petri
Nets, Vol. 3098.

Buchholz, P. (1994) ‘Exact and ordinary lumpability in finite
Markov chains’, J. Appl. Probab., Vol. 31, pp.59–75.

Chauhan, P., Clarke, E., Kukula, J., Sapra, S., Veith, H. and
Wang, D. (2002) ‘Automated abstraction refinement for
model checking large state spaces using SAT based conflict
analysis’, in Aagaard, M.D. and O’Leary, J.W. (Eds.):
FMCAD, LNCS, Vol. 2517, pp.33–51, Springer, Heidelberg.

Clarke, E., Grumberg, O., Jha, S., Lu, Y. and Veith, H. (2003)
‘Counterexample-guided abstraction refinement for symbolic
model checking’, Journal of the ACM (JACM), Vol. 50,
No. 5, pp.752–794.

Dayar, T. (2013) Analyzing Markov Chains using Kronecker
Products: Theory and Applications, Springer, Briefs in
Mathematics, Berlin, Germany, DOI: 10.1007/978-1-4614-
4190-86.

Denil, J. (2013) Design, Verification and Deployment of Software
Intensive Systems: A Multi-Paradigm Modelling Approach,
PhD dissertation, University of Antwerp.

Feller, W. (1966) An Introduction to Probability Theory and its
Applications, pp.1–2, Wiley, New York, NY.

Gerth, R. (1997) Concise PROMELA Reference [online]
http://SPINroot.com/SPIN/Man/Quick.html (accessed July
2014).

Henzinger, T.A., Ho, P.H. and Wong-Toi, H. (1997) ‘HyTech:
a model checker for hybrid systems’, International Journal
on Software Tools for Technology Transfer (STTT), Vol. 1,
No. 1, pp.110–12.

Holzmann, G.J. (2004) The SPIN Model Checker: Primer and
Reference Manual, Addison Wesley Publishing Company,
Boston, MA.

Hu, X. and Zeigler, B.P. (2005) ‘A simulation-based virtual
environment to study cooperative robotic systems’, Integrated
Computer-Aided Engineering (ICAE), Vol. 12, No. 4,
pp.353–367.

Humphrey, L.R. (2013) ‘Model checking for verification in UAV
cooperative control applications recent advances in research
on unmanned aerial vehicles’, Lecture Notes in Control and
Information Sciences, Vol. 444, pp.69–117.

Jain, R.K. (1991) The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling Hardcover, 685 pp., Wiley,
New York, NY.

Karaman, S. and Frazzoli, E. (2008) ‘Vehicle routing with linear
temporal logic specifications: applications to multi-UAV
mission planning’, in Proceedings of the AIAA Conference on
Guidance, Navigation, and Control.

Karnon, J. and Afzali, H.H.A. (2014) ‘When to use discrete event
simulation (DES) for the economic evaluation of health
technologies? A review and critique of the costs and benefits
of DES’, PharmacoEconomics, Vol. 32, pp.547–558.

Kemeny, J.G. and Snell, J.L. (1960) Finite Markov Chains,
v. Nostrand, Princeton, NJ.

Liggett, T.M. (1997) ‘Stochastic models of interacting systems’,
The Annals of Probability, Vol. 25, No. 1, pp.1–29, Institute
of Mathematical Statistics.

Long, D.E. (1993) Model Checking, Abstraction, and
Compositional Verification, PhD thesis, Carnegie Mellon
University.

Mittal, S. and Martin, J.L.R. (2012) Netcentric System of Systems
Engineering with DEVS Unified Process, 1st ed., CRC Press,
Boca Raton, FL.

Mittal, S. and Rainey, L.B. (2015) ‘Engineering emergence in
system of systems: the ballistic, missile defense system as a
case study’, Journal of Defense Modeling and Simulation,
(accepted for publication).

Mittal, S., Zeigler, B.P. and Hwang, M.H. (2007) XFD-DEVS
[online] http://www.duniptechnologies.com/research/
xfddevs/ (accessed June 2015).

MS4 Me (2013) MS4 Me Software V 3.0 (Markov Modeling
Capability) [online] http://www.ms4systems.com.

 Combining DEVS and model-checking: concepts and tools for integrating simulation and analysis 15

Nutaro, J. (2008) ‘On constructing optimistic simulation
algorithms for the discrete event system specification’, ACM
Transactions on Modeling and Computer Simulation, Vol. 19,
No. 1, pp.1–21.

Nutaro, J. (2011) Building Software for Simulation: Theory and
Algorithms with Applications in C++, Wiley, New York, NY.

Obaidat, M.S. and Boudriga, N. (2010) Fundamentals of
Performance Evaluation of Computer and Telecommunications
Systems, John Wiley & Sons, ISBN: 0471269832, New York,
NY.

Perez, E., Ntaimo, L., Bailey, C. and McCormack, P. (2010)
‘Modeling and simulation of nuclear medicine patient service
management in DEVS’, Simulation-Transactions of the
Society for Modeling and Simulation International, Vol. 86,
Nos. 8–9, pp.481–501.

Repast (2009) Repast Home Page [online] http://repast.source
forge.net (accessed July 2014).

Saadawi, H., Wainer, G. and Moallemi, M. (2012) ‘Principles of
models verification for real-time embedded applications’,
in K. Popovici and P. Mosterman (Eds.): Real-Time
Simulation Technologies: Principles, Methodologies, and
Applications, Taylor and Francis, CRC Press.

Seo, C., Zeigler, B.P., Coop, R. and Kim, D. (2013) ‘DEVS
modeling and simulation methodology with MS4 Me
software tool’, Proceedings of the Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium
(TMS-DEVS), April, San Diego, CA.

Shaffer, A.R. (2012) ‘The value of modeling and simulation for
the Department of Defense’, M&S Journal, Fall 2012, pp.2–3.

Sirigineedi, G., Tsourdos, A., White, B. and Zbikowski, R. (2010)
‘Kripke modelling and model checking of a multiple UAV
system monitoring road network’, in Proceedings of the AIAA
Guidance, Navigation, and Control Conference.

Soares, M.O. and Castro, L.L.C. (2012) ‘Continuous time
simulation and, discretized models for cost-effectiveness
analysis’, Pharmacoeconomics, 1 December, Vol. 30, No. 12,
pp.1101–1117, doi: 10.2165/11599380-000000000-00000..

Wainer, G.A. (2015) ‘The cell-DEVS formalism as a method for
activity tracking in spatial modelling and simulation’,
Int. J. of Simulation and Process Modelling, Vol. 10, No. 1
pp.19–38.

Wikipedia (2014) [online] http://en.wikipedia.org/wiki/
Markov_chain (accessed July 2014).

Yacoub, A., Hamri, M. and Frydman, C. (2014) ‘Complementarity
between simulation and formal verification, transformation of
PROMELA models into FDDEVS models: application to a
case study’, Simultech.

Younes, H.L.S., Kwiatkowska, M., Norman, G. and Parker, D.
(2006) ‘Numerical vs. statistical probabilistic model
checking’, International Journal on Software Tools for
Technology Transfer (STTT), Vol. 8, No. 3, pp.216–228.

Zeigler, B.P. (1976) Theory of Modeling and Simulation, 1st ed.,
John Wiley & Sons, New York, NY.

Zeigler, B.P. (1984) Multifaceted Modeling and Discrete Event
Simulation, Academic Press, London, UK.

Zeigler, B.P. (2014) ‘The role of modeling and simulation in
coordination of health care’, Proceedings of Simultech,
Vienna, Video [online] http://vimeo.com/105849693.

Zeigler, B.P. and Nutaro, J. (2014) ‘Combining DEVS and
model-checking: using systems morphisms for integrating
simulation and analysis in model engineering’, EMSS:
European Modelling & Simulation Symposium, 26th ed., Part
of I3M2014, Bordeaux, France, 10–12 September 2014.

Zeigler, B.P. and Nutaro, J. (2015) ‘Towards a framework for
more robust validation and verification of simulation models
for systems of systems’, JDMS, 26 February 2015, doi:
10.1177/1548512914568657 (to be published 2016).

Zeigler, B.P. and Sarjoughian, H.S. (2012) Guide to Modeling and
Simulation of Systems of Systems, p.393, Springer, Berlin,
Germany.

Zeigler, B.P., Praehofer, H. and Kim, T.G. (2000) Theory of
Modeling and Simulation, 2nd ed., Academic Press, London,
UK.

Zervoudakis, F., Rosenblumy, D.S., Elbaumz, S. and
Finkelstein, A. (2013) ‘Cascading verification: an integrated
method for domain-specific model checking’, ESEC/FSE,
Saint Petersburg, Russia.

Zhang, B., Chan, W.K.V. and Ukkusuri, S.V. (2014) ‘On the
modelling of transportation evacuation: an agent-based
discrete-event hybrid-space approach’, Journal of Simulation,
Vol. 8, No. 4, pp.259–270, doi:10.1057/jos.2014.

Zhang, L., Shen, Y.W., Zhang, X.S., Song, X., Tao, F. and Liu, Y.
(2014) ‘The model engineering for complex system
simulation’, The 26th European Modeling & Simulation
Symposium (Simulation in Industry), Bordeaux, France,
September 10–12.

