
逢 甲 大 學
資 訊 工 程 學 系 碩 士 班

碩 士 論 文

以uC/OS-II核心設計與實作飛控系

統之可調變構型硬即時作業系統
A Configurable Hard Real-Time Operating

System Based on uC/OS-II Kernel for
Flight Controls

 指導教授：鍾葉青

 研 究 生：張傳鑫

中 華 民 國 九 十 一 年 七 月

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

i
逢甲大學 e-Thesys (90 學年度)

摘要

近年來，在電子資訊的應用領域裏，即時系統的重要性已逐漸增加，其中硬即

時的要求更通常是國防、航太、醫學及工廠自動化等即時系統設計上的基本規格。

有關硬即時系統的設計，除硬體性能的配合外，在軟體設計上，通常包含工作分割、

排程演算法設計及即時作業系統的支援等考量，其中即時作業系統的支援為整體硬

即時系統的設計與運作基礎。本篇論文係利用一個精簡且為開放程式碼的即時核

心，藉由相關工作排程機制的修改，強化其支援硬即時系統的功能，同時並增加其

可調變構型的功能，以提供設計者更大的彈性，最後結合修改後的作業系統核心與

一個實際的硬即時系統，藉由完整的系統開發環境以測試整體系統功能，同時並討

論系統設計人員設計硬即時系統應考量的因素。

關鍵字：即時系統，嵌入式系統，硬即時，安全關鍵性，排程，可調變，即時核

心，uC/OS-II。

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

ii
逢甲大學 e-Thesys (90 學年度)

Abstract

Recently, real-time systems have become more and more important in the field of

electronic and information applications. And the requirement of hard real-time has often

become the basic specification for the real-time systems used in national defense, space

technology, medication application and industrial automation.

Many applications deal with sets of activities or tasks and make them real-time

systems. They need an appropriate real-time operating system to support their

development and operation.

The basic design criteria for hard real-time systems includes hardware selection,

tasks arrangement, scheduling design and support of real-time system. Among them, the

real-time operating system is the most critical and essential issue.

uC/OS-II is a real-time operating system with open source code. Because of the

characteristics of priority-driven and preemptive for uC/OS-II, it is only used to develop

the soft real-time system. So we tried to revise the original kernel and increase its hard

real time performance.

In this paper, we discuss how to make uC/OS-II a configurable hard real-time

operating system. We verified our proposed solution on a simplified standalone

simulation system. And an existing hard real-time system is implemented base on our

revised uC/OS-II. The whole system is tested in the integrated development environment.

Finally, the design criteria to build a hard real-time system are also evaluated.

Index term: Real-time system, embedded system, hard real-time, safety-critical,

scheduling, configurable, real-time kernel, uC/OS-II

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

iii
逢甲大學 e-Thesys (90 學年度)

Table of Contents

1. Introduction…………………………………………………………………………..1

2. Background…………………………………………………………………………...5

2.1 The Hard Real-Time Issues…………………………………………...………….5

2.2 The Architecture of the uC/OS-II……………………………………….….…….7

2.3 The Operation of the uC/OS-II Kernel………………………………….…….….9

2.4 Shortcomings of uC/OS-II to Support the Hard Real-Time System……...….…12

3. Proposed Solution…………………………………………………………………...18

3.1 Revisions of uC/OS-II to Support the Hard Real-Time System……………...…18

3.1.1 Hard Real-Time Guarantee…………………………………………….…18

3.1.2 Deadlock Check……………………………………………………..……22

3.1.3 Real-Time Metrics……………………………………….…..……..…….26

3.1.4 Reconfiguration………………………………….…..……………………27

3.2 Analysis………………………………………………………………………....30

3.2.1 A Typical Flight Control System…………………………………………30

3.2.2 Evaluation……………………………………………………………...…38

3.3 Design Criteria…………………………………………………………………..42

3.4 Integrated Development and Verification Requirements…………………...…..43

3.5 Experiment Results…………………………………………………………...…45

4. Conclusions and Future Works……………………………………………….……50

References…………………………………………………………………………...…52

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

iv
逢甲大學 e-Thesys (90 學年度)

List of Figures

Figure 2.1 An example of a simple program loop…………………………………...6

Figure 2.2 uC/OS-II hardware/software architecture………………………………8

Figure 2.3 Task format of uC/OS-II…………………………………..…………….10

Figure 2.4 A sample application main program built on the uC/OS-II………..…11

Figure 3.1 Code for function OSTaskCreate()……………………………….…..…19

Figure 3.2 Code for function OSTaskCreateExt()………………………………….20

Figure 3.3 Code for function OSStart()…………………………………….……….21

Figure 3.4 Code for function OSTaskCreate() with time check…………….…..…23

Figure 3.5 Code for function OSTaskCreateExt() with time check…………….…24

Figure 3.6 Task format of uC/OS-II with execution time check(1) ………....….…25

Figure 3.7 Task format of uC/OS-II with execution time check(2) ……...….….…26

Figure 3.8 Algorithm for operator-triggered reconfiguration……………….……28

Figure 3.9 Algorithm for system-automatic reconfiguration…………………...…30

Figure 3.10 A simplified flight controller model……………………………...……31

Figure 3.11 Implementation of a generalized of flight controller…………………32

Figure 3.12 Hardware modules of a typical flight control system……..…….……32

Figure 3.13 Software modules of a typical flight control system…………….……34

Figure 3.14 Main program of the simplified flight control system built on the
uC/OS-II……………….…………………………………………...……35

Figure 3.15 Pseudo code for MajorTask()…………………………….……….……37

Figure 3.16 ISRs under uC/OS-II……………………………………………...……38

Figure 3.17 The tasks’ timing relationship of the original design……………...….41

Figure 3.18 The tasks’ timing relationship of the revised design…………….....….41

Figure 3.19 Development environment for FCC OFP……………………….….….44

Figure 3.20 The user interface of the experiment simulation……………….….….46

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

v
逢甲大學 e-Thesys (90 學年度)

List of Tables

Table 3.1 Hardware interrupts used for FCC……………………...……………….34

Table 3.2 Tasks of the simplified flight control system built on the uC/OS-II……36

Table 3.3 Tasks of the simplified flight control system built on the revised

uC/OS-II hardware interrupts used for FCC…………………………....40

Table 3.4 Test items of the FCC OFP built on the revised uC/OS-II…………...….45
Table 3.5 Test results #1……………………………………………….…………...…48
Table 3.6 Test results #2……………………………………………….…………...…48

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

1
逢甲大學 e-Thesys (90 學年度)

Chapter 1

Introduction

Real-time systems have become more and more important these days. There are a

lot of real-time systems in many applications, such as industrial and automation systems,

computing network systems, medical instruments and devices, military defense systems,

aviation equipments and entertainment applications. For those systems, the correctness of

the systems depends not only on the logical result of the computation, but also on the

time at which the results are produced and completed.

Traditionally, there are two kinds of classifications for real-time systems. They are

soft real-time and hard real-time systems. Soft real-time systems have no strict rules to

deal with the timing requirement. It is acceptable to miss the deadlines occasionally. On

the other hand, the timing requirement is very important for hard real-time systems.

Missing the deadline does not only make the system crash, but also will lead to the

catastrophic result. So the development of hard real-time systems has always been a

critical challenge.

Among the hard real-time systems, safety critical systems have direct influence to

human’s life. They are found in a wide range of industrial applications, such as nuclear,

chemical, aerospace and defense industries.

Safety critical applications often involve several distinct activities, each of which

has ‘hard’ inviolable timing constraints.[1] Developing such systems to meet critical

deadline requirement is a big challenge for system designers. Those activities, also called

tasks, should be carefully designed in the early stage of system development. From the

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

2
逢甲大學 e-Thesys (90 學年度)

industrial experience, different tasks are often divided into several software modules. The

reason for this strategy is that it is convenient for maintenance and easy to integrate team

efforts.

With the fast development of electronic industry, the performance of the electric

hardware has become more and more powerful. The computing speed has also become

tremendous fast. There is a common mistake that many people think only the powerful

hardware can achieve the real-time requirement. In fact, the function and performance of

the whole system comes from the operating combination of hardware and software. And

the software often plays a critical role.

For a complicated system, the load for the system to handle the tasks is often very

heavy. To meet the system’s design criteria, it needs the strict principles to arrange the

software modules and system resources optimally.

To design a hard real-time system, it often involves several design issues in the

system development process. For a system designer, it is essential to break the whole

system into several software modules. Then the scheduling mechanism should be

carefully designed to meet the real-time requirement.

The scheduling mechanism is operated according to the specific scheduling theory.

Hard real-time scheduling theory uses a simplified, abstract computational model to

represent the behavior of a preemptive, multitasking system. [2] Solving the scheduling

problems is essential for designing the real-time systems. For decades, there have been a

lot of studies in designing the scheduling theory and methodology. But there is still no

optimum solution. The real design is always tradeoff between the performance and

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

3
逢甲大學 e-Thesys (90 學年度)

system operation.

A system often consists of hardware and software. And the effort of software

design is mainly focused on the application layer. For convenience, the application is

often built on an off-the-shaft operating system. To build a hard real-time system, there

needs the full support from the operating system.

The operating system is responsible for the resource management. It supports the

application layer to access the hardware and manage the different tasks to operate timely

and correctly.

The recent trend is to use the non-commercial operating system with open source

code such as Linux and uC/OS-II to build the real-time system. The reason is not only

free of charge for proprietary fee, but also convenient in revision to meet the system’s

unique requirement. The most important is that the system designers can have fully

understanding and control about the detail of the whole system.

uC/OS-II, which stands for MicroController Operating System Version 2, is built

by Jean J. Labrosse in 1998. It is based on uC/OS that is the first version and was

published in 1992. The uC/OS-II is a real-time kernel. It is a highly portable, ROMable,

very scalable, preemptive real-time, multitasking kernel for microprocessors and micro

controllers. It can manage up to 63 application tasks and provides the following services:

semaphores, message mailboxes, message queues, task management (create, delete,

change priority, suspend/resume etc.), fixed sized memory block management, time

management, mutual exclusion semaphores (to reduce priority inversions) and event flags.

And the latest version is V2.51. [3] Because it is a kernel with open source code, it can be

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

4
逢甲大學 e-Thesys (90 學年度)

tailored to meet the requirements of different applications.

The reason we choose the uC/OS-II is because it is simple, compact, well

organized and documented. It is a good choice to be used to develop an embedded

real-time system.

Although uC/OS-II is called a real-time operating system, its original design has

limit to support the hard real-time requirement. To make uC/OS-II a hard real-time

operating system, we revise the system functions of the kernel about task creation. And a

parameter is used as a reference to check the real-time property of the task. The hard

real-time task’s execution is protected to meet its deadline. Furthermore, we use a

predefined timing parameter to check the execution of the hard real-time task to prevent

the deadlock situation. And we also design a mechanism to make the kernel become

re-configurable on-line. All the revision about the uC/OS-II only adds its capability to

support the hard real-time features, but does not affect its original function and

performance.

The rest of the paper is organized as follows. In Chapter 2, we discuss the

background of the problems. We present our design, analysis and experiment results in

Chapter 3. The paper is concluded in Chapter 4.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

5
逢甲大學 e-Thesys (90 學年度)

Chapter 2

Background

2.1 The Hard Real-time Issues

Hard real-time is the essential requirement for safety critical systems. To meet the

requirement, it is necessary to have an adequate scheduling mechanism and the full

support of the real time operating system.

A real-time system has a known set of tasks. It is also often desirable that

time-critical and non time-critical tasks coexist in a same real time system. For hard

real-time systems, the time-critical tasks must complete their jobs within their required

deadline. Traditionally, to guarantee the tasks’ real-time requirement, the software

programs are often designed as infinite loop containing several tasks and execute by

sequence as the example shown in Figure 2.1. [4]

In such a program, all the tasks can complete their jobs to the end. But the problem

with such design is that it does not scale and won’t meet the requirement of modern

complicated systems. As real-time systems get more complex, they need more complex

support and design philosophy.

Counter=500;
While(1){

If(data_on_sensor()){
Read_sensor();
Compute_output();
Counter--;

}

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

6
逢甲大學 e-Thesys (90 學年度)

if(!counter){
output();
counter=500;
}

}

Figure 2.1 An example of a simple program loop

Recently, real-time engineers often use the multi-tasking or multi-thread techniques

to build their systems. And they also use the priority parameters to handle the sequence of

the tasks’ execution. To increase the system’s capabilities, they also build their systems as

preemptive. So, with the fast development of electronic hardware and software

engineering, the real-time systems have become more powerful. However, the

engineering efforts needed to design a real-time system also become more and more

complicated.

Basically, there is a contradiction between hard real-time requirement and

preemptive design. For hard real-time systems, all the time-critical tasks have to meet

their individual deadline. But, for preemptive systems, the task with higher priority can

preempt the current executing task with lower priority. Under such condition, not all the

tasks can finish their deadline as required. So, there should have a refinement based on

the real need.

In order to build a hard real-time system with the functions of multi-tasks and

preemption, the system designers have to arrange the predefined tasks carefully in the

early stage of system development.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

7
逢甲大學 e-Thesys (90 學年度)

On the other way, if the operating system can support the development of hard

real-time system, the system designers can focus their efforts on the problem solving and

the whole design process will become efficient and time saving. So an appropriate

operating system will prove to be a big help to the system designers. That is the reason

we choose the uC/OS-II as our target of research.

2.2 The Architecture of the uC/OS-II

Jean Labrosse publishes the real time operating system uC/OS-II, which stands for

Micro Controller Operating System Version 2, in 1998. It is upward compatible with

uC/OS first published in 1992. The new version provides many improvements, such as

the addition of a fixed-sized memory manager; user-definable callouts on task creation,

task deletion, task switch, and system tick; Task Control Block (TCB) extensions support;

stack checking etc. [5] Mr. Jean also added components to adjust every function, and

made uC/OS-II much easier to port to different processors. So the uC/OS-II kernel is a

good choice for developing the embedded real-time system. The system architecture built

on the uC/OS-II is shown as Figure 2.2.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

8
逢甲大學 e-Thesys (90 學年度)

Figure 2.2 uC/OS-II hardware/software architecture

Hardware

Software

Application Software

µC/OS-II
(Processor-Independent Code)
OS_CORE.C OS_TASK.C
OS_MBOX.C OS_TIME.C
OS_MEM.C uCOS_II.C
OS_Q.C uCOS_II.H
OS_SEM.C

µC/OS-II Configuration
(Application-Specific Code)

OS_CFG.H
INCLUDES.H

µC/OS-II Port
(Processor-Specific Code)

OS_CPU.H
OS_CPU_A.ASM

OS_CPU_C.C

CPU

Timer

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

9
逢甲大學 e-Thesys (90 學年度)

2.3 The Operation of the uC/OS-II Kernel

uC/OS-II is designed to support the embedded systems and can be ported to any

microprocessor as long as the microprocessor provides stack ability and interrupt

enable/disable functions.

It can manage up to 64 tasks. However, the kernel uses two tasks for system use,

which are the idle task and the CPU usage statistics task. Every task has to be assigned a

priority and the priority numbers 0, 1, 2, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,

OS_LOWEST_PRIO-1 and OS_LOWEST_PRIO are reserved for future use. Therefore,

56 application tasks are available.

In order for uC/OS-II to manage the application task, the task has to be created by

system call: OSTaskCreate() or OSTaskCreateExt(). There are two kinds of formats for

the tasks of uC/OS-II. One is the infinite loop task and the other is the simple program

code that can be deleted by the system. These two tasks can be declared as shown in

Figure 2.3.

Infinite loop:
void TaskA(void *data){

while(true){
[user code;]
Call uC/OS-II service to delay or pend;
[user code;]

}
}

Simple code:
void TaskB(void *data){

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

10
逢甲大學 e-Thesys (90 學年度)

[user code;]
TaskDelete();

}

Figure 2.3 Task Format of uC/OS-II

When a task is created, a Task Control Block (TCB) is assigned and used to

maintain the task’s states when the task is preempted. The preempted task will be

resumed when it regains the CPU control. Each task under uC/OS-II’s control can be in

any one of six states: Dormant, Ready, Running, Delayed, Waiting and Interrupt.

uC/OS-II is a priority-driven kernel. Each task is assigned a unique task priority

level from 0 to 63. Priority 0 is the highest and priority 63 is the lowest one assigned to

an idle task in all cases.

To initialize the uC/OS-II, we should call function OSInit() before calling any of its

other services. OSInit() initializes all uC/OS-II variables and data structures. It creates the

idle task OSTaskIdle(), which is always ready to run. The priority of OSTaskIdle() is

always set to OS_LOWEST_PRIO. Under some conditions, OSInit() also creates the

statistic task OSTaskStat() and makes it ready to run. The priority of OSTaskStat() is

always set to OS_LOWEST_PRIO-1.

Multitasking is started by calling OSStart(). OSStart() runs the highest priority task

that is ready to run. All tasks that are ready to run are placed in a ready list. The

scheduling mechanism always checks the ready list to arrange the task execution based

on the task’s priority.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

11
逢甲大學 e-Thesys (90 學年度)

The main program for any application built on the uC/OS-II is shown as Figure 2.4.

void main (void)
{

OSInit();
…
Create application tasks
…
OSStart();

}

Figure 2.4 A sample application main program built on the uC/OS-II

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

12
逢甲大學 e-Thesys (90 學年度)

2.4 Shortcomings of uC/OS-II to Support the Hard Real-Time System

Comparing to the general operating system, the real-time operating system has the

advantage that the kernel can monitor the status of the system’s resources and control the

utilities more precisely. So, in order to build a real-time system, the system designers

often choose an off-the-shafts real-time operating system (RTOS) as a platform.

It is common to classify real-time systems into soft real-time and hard real-time.

But there is no hard RTOS or soft RTOS. A specific real-time operating system can only

allow you to develop a hard real-time system. There are several basic requirements a

real-time operating system should have, which are: support for multi preemptive threads,

thread priority, synchronization between threads, deterministic timing and support to

prevent priority inversion. [6]

Following the above ground rules, the uC/OS-II has all the basic RTOS features. It

really can be called real-time operating system. But there are many considerations for the

system designers to pay much attention to when building a real-time system on it.

The parameter used by the uC/OS-II to manage the tasks’ scheduling is only the

priority. And there is not any scheduling theory implemented. It completely depends on

the application programmers to assign the priorities to the tasks in the system design

process. The performance and efficiency mainly depends on the system designers’ strict

and overall consideration.

Based on the operation of the uC/OS-II’s scheduler, any running task can be

preempted if another task with higher priority is ready to run. This won’t meet the

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

13
逢甲大學 e-Thesys (90 學年度)

requirement of hard real-time system because that the task’s deadline cannot be

guaranteed.

However, any real-time operating system supporting the preemptive multi-tasking

function will encounter this contradiction. So a specific scheduling mechanism needed to

be implemented to the real-time operating system. And there is also some design

principles needed to be followed by the system designers in building a hard real-time

system.

There are a lot of applications built on the uC/OS-II, such as UPS monitor

(American Power Conversion Corp., USA), On-Board-Unit (OBU) of a road pricing

system (FELA Management AG, Switzerland), embedded controller for small and

medium-sized electrical installations (Lexel group, Denmark), electronic news gathering

analog/digital microwave transmitter/receiver (Microwave Radio Communications, USA),

credit card processing unit (Monitor Business Machines, New Zealand), 3-axis motor

control card (National Optronics Inc., USA), motorized self service payment terminal

(Prism Holdings Ltd., South Africa), embedded controller (X-traWeb Inc., USA),

standalone static power switch (Siel, Italy), satellite monitoring and management system

(Vistar Datacom, USA), and racing-car MPEG-2 video system (Wescam, USA) etc. [7]

The above systems are all commercial products. And the companies are all over the

world. Those products are all real-time embedded systems. This proves that the uC/OS-II

is suitable for building a real-time embedded system.

On the other way, there are many researches and solutions about how to build a

hard-real time kernel. Current solutions to make the operating system support the hard

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

14
逢甲大學 e-Thesys (90 學年度)

real-time systems are on many ways. There is approach on the design of the scheduler. [8]

However, more efforts are focused on the revision about the existing operating systems,

such as Linux.

Linux is a general-purpose operating system. The reason for its popularity is that it

is open source code. More and more people around the world use it and make change to it.

The community is growing tremendously fast. Various efforts are contributed to enforce

the performance and solve the problems of Linux. To build the real-time capability into

the Linux has also attracted a lot of works.

The Real-time Linux (RT-Linux) project at the New Mexico Institute of Mining

and Technology is the first promising contribution. [9] They minimize the changes made

to Linux itself. They design a new real-time component as a kernel module to handle all

real-time tasks. And they also design an interface called real-time fifo to communicate

with the original Linux kernel. The new design makes Linux to be preemptive and meet

the requirement of hard real time.

Before using RT-Linux, an embedded system designer has to be sure that all of the

needed functionality could be fit into one of the two domains, real time or non real time.

If a low-level device driver is implemented in the specific domain, then the task in

another domain cannot use it.

The current design lacks the function of priority inheritance to prevent priority

inversion.

RED Linux is originally a research project leaded by Kwei-Jay Lin in University of

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

15
逢甲大學 e-Thesys (90 學年度)

California. [10] Recently the researchers set up a company to develop different products

based on the original research. Unlike RT Linux, RED Linux has almost new scheduling

design. The scheduler is divided into two components: the Allocator and the Dispatcher.

The Dispatcher implements the different basic scheduling mechanism, and the Allocator

implement the policy that manages the CPU time and the system resources to meet the

real-time constraints of user jobs. They use preemption point to improve the kernel’s

response time and ensure the real-time requirement is met.

RED Linux provides a general scheduling framework to support different real-time

scheduling paradigm. It still has the shortcoming of large scale. To be used in the
embedded system, it needs a lot of efforts to tailor the kernel.

KURT means KU Real-Time Linux and is developed by the university of Kansas.

[11] They avoid the defect of RT Linux that the real-time tasks have no access to any

Linux kernel services. The design of KURT follows a modular approach by providing a

core which is responsible for the scheduling of real-time events and allowing the addition

of real-time modules which implement the functionality of a specific real-time task.

Those functions can be called as system calls.

KURT only supports firm and soft deadlines. The reason for that is because it is

limited by the original Linux structure. It cannot be sued as the kernel to build the hard

real-time system.

All of the above revisions about Linux still face a same problem that Linux is a

heavyweight ordinary operating system and not suitable for embedded system. So there

are a lot of research and effort in progress to shrink the Linux kernel and make it

real-time at the same time. But most of the works are done in the industry and they are

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

16
逢甲大學 e-Thesys (90 學年度)

propriety products.

Other real-time operating systems are commercial products, such as LynxOS [12]

and QNX [13]. Except for the cost of royalty, their internal structure are black boxes, the

only way the designers have to do is to follow their rules and limits. It is not suitable to

be used as the basis to build the safety critical systems.

For the scheduler design, the feasibility depends on the efficiency of scheduling

algorithms. But they are all based on the assumption, which simplifies the tasks’

operation. And the models are all too simple to be implemented in real applications. So

there is a big gap between the academic research and industrial application.

However, for those revisions of existing operating system, most of them are all

focused on general applications. Based on the original design, there are limits for some

specific application, such as embedded system. Sometimes it is not appropriate to build

system on them because of the existing limitations.

In the industrial and commercial market, there are a lot of off-the-shafts real-time

operating systems to support the development of hard real-time systems. But the price is

high. There is an urgent need for free open source code, such as the Linux and uC/OS-II.

Recently, there are a lot of efforts to make the Linux become a real-time kernel. It is

because that the Linux is very popular in the community of real-time systems. But the

uC/OS-II has more advantages than the Linux in some applications. The uC/OS-II is

more compact and has smaller size.

The target of our research is focused on the uC/OS-II. Our solution is to revise the

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

17
逢甲大學 e-Thesys (90 學年度)

original source code of uC/OS-II to add its capability to support the operation of hard

real-time systems instead of affecting its original functions.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

18
逢甲大學 e-Thesys (90 學年度)

Chapter 3

Proposed Solutions

3.1 Revisions of uC/OS-II to Support the Hard Real-Time System

3.1.1 Hard Real-Time Guarantee

uC/OS-II is a priority-driven kernel. It always executes the highest priority task

ready to run. The determination of which task has the highest priority is made by the

scheduler. According to the original design, the task-level scheduling is performed by the

system call OSSched() and the ISR-level scheduling is handled by another function

OSIntExit().

To make uC/OS-II a hard real-time operating system, we have to revise the

scheduler. The revised scheduler will check the properties of every task before executing

scheduling arrangement.

For all the tasks, the system designer or programmer has to make a classification in

the beginning of system design. Basically, two groups are recommended. They are hard

real-time tasks and non-hard-real-time tasks. For the hard real-time tasks, deadline

guarantee is the basic requirement. So the interruption is disabled and there is no

preemption during their execution. The task can execute within deadline. And the hard

real-time requirement is achieved.

In order to guarantee the hard real-time tasks’ execution, we try to let the system

enter the critical section during their execution. There are two functions used to protect

critical section of code, which are OS_ENTER_CRITICAL() and

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

19
逢甲大學 e-Thesys (90 學年度)

OS_EXIT_CRITICAL(). OS_ENTER_CRITICAL() disables interrupts and

OS_EXIT_CRITICAL() enables interrupts.

We add new parameter OS_HRT in the function OSTaskCreate() or

OSTaskCreateExt() as shown in Figure 3.1 and 3.2. So the programmer has to set the

parameter of task’s property before it is created.

INT8U OSTaskCreate (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U
prio, INT8U OS_HRT)

{
void *psp;
INT8U err;

OS_HRT = TRUE; /*TRUE for the hard real-time tasks
If (prio > OS_LOWEST_PRIO) {

return (OS_PRIO_INVALID);
…..
…..

}

Figure 3.1 Code for function OSTaskCreate()

INT8U OSTaskCreateExt (void (*task)(void *pd),
void *pdata,
OS_STK *ptos,
INT8U prio,
INT16U id,
OS_STK *pbos,
INT32U stk_size,
void *pext,
INT16U opt,

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

20
逢甲大學 e-Thesys (90 學年度)

INT8U OS_HRT)
{

void *psp;
INT8U err;
INT16U i;
OS_STK *pfill;

OS_HRT == TRUE; /*TRUE for the hard real-time tasks
If (prio > OS_LOWEST_PRIO) {

return (OS_PRIO_INVALID);
…..
…..

}

Figure 3.2 Code for function OSTaskCreateExt()

After the task is created, its property is set. Upon return from OSTaskCreate() and

OSTaskCreateExt(), the main program continues to execute. The function OSStart() is

called, multitasking has started.

The code for OSStart() is shown in Figure 3.3. When it is called, it finds the highest

priority task from the ready list. Then, OSStart() calls OSStartHighRdy() for the

processor being used. OSStartHighRdy() restores the CPU registers by popping them off

the task’s stack then executes a return from interrupt instruction, which forces the CPU to

execute your task’s code.

In order to ensure the hard real-time tasks to execute within its deadline, we add a

check function in OSStart(). Before OSStartHighRdy() is called, the task’s property is

checked. For hard real-time systems, we force the kernel enter the critical section by

calling OS_ENTER_CRITICAL(), then the task is executed. After the task completes,

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

21
逢甲大學 e-Thesys (90 學年度)

OS_EXIT_CRITICAL() is called to leave the critical section. And for the

non-hard-real-time tasks, there is no need to enter the critical section during their

execution.

void OSStart (void)
{

INT8U y;
INT8U x;

if (OSRunning == FALSE) {

y = OSUnMapTbl[OSRdyGrp];
x = OSUnMapTbl[OSRdyTbl[y]];
OSPrioHighRdy = (INT8U)((y << 3) + x);
OSTCBHighRdy = OSTCBPrioTBl[OSPrioHighRdy];
OSTCBCur = OSTCBHighRdy;
If (OS_HRT == TRUE) {

OS_ENTER_CRITICAL();
OSStartHighRdy();
OS_EXIT_CRITICAL();
}
Else {
OSStartHighRdy();
}

}
}

Figure 3.3 Code for function OSStart()

For our design, there is also a convenient way to change the task’s property. Like

the function OSTaskDel() is used to delete a task after it is created, the task’s real-time

property can also be changed at any time just by setting the parameter OS_HRT to false.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

22
逢甲大學 e-Thesys (90 學年度)

3.1.2 Deadlock Check

For the hard real-time tasks, the deadlines are guaranteed by entering the critical

section. But there could cause the deadlock problem. So the execution time of these tasks

should be monitored.

The problem is how to check the execution time of the tasks and terminate the

critical section. During the execution of the critical section, the code of the task can

complete its all jobs. When there is an error or any possible problem caused by

computation or coding, the kernel should have a mechanism to avoid the system’s failure.

We use a software test point to check the correctness of the task. When the execution time

of a specific task is over the predefined deadline, the kernel should terminate the task and

enable the following task ready to run.

We add new parameter OS_ExecTime in the function OSTaskCreate() or

OSTaskCreateExt() as shown in Figure 8 and 9. So the programmer has to set the

parameter of task’s property before it is created.

The execution time is like the software test point to keep the task not reaching a

deadlock.

INT8U OSTaskCreate (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U

prio, INT8U OS_HRT, INT8U OS_ExecTime)
{

void *psp;
INT8U err;

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

23
逢甲大學 e-Thesys (90 學年度)

OS_HRT = TRUE; /*TRUE for the hard real-time tasks
OS_ExecTime=predefined value; /*assign the task’s maximum

execution time
If (prio > OS_LOWEST_PRIO) {

return (OS_PRIO_INVALID);
…..
…..

}

Figure 3.4 Code for function OSTaskCreate() with time check

INT8U OSTaskCreateExt (void (*task)(void *pd),
void *pdata,
OS_STK *ptos,
INT8U prio,
INT16U id,
OS_STK *pbos,
INT32U stk_size,
void *pext,
INT16U opt,
INT8U OS_HRT
INT8U OS_ExecTime)

{
void *psp;
INT8U err;
INT16U i;
OS_STK *pfill;

OS_HRT == TRUE; /*TRUE for the hard real-time tasks
OS_ExecTime=predefined value; /*assign the task’s maximum

execution time

If (prio > OS_LOWEST_PRIO) {

return (OS_PRIO_INVALID);

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

24
逢甲大學 e-Thesys (90 學年度)

…
…

}

Figure 3.5 Code for function OSTaskCreateExt()with time check

After the task is created, its maximum execution time is set. In order to ensure the

hard real-time tasks to execute within their deadline, we add a check function in user

created tasks. Before OSStartHighRdy() is called, the task’s property is checked. For hard

real-time tasks, we check the execution time. When the execution time exceeds the

predefined value, the task is forced to leave the critical section. And for the

non-hard-real-time tasks, there is no need to check their execution time because interrupt

is allowed. The pseudo code for the task will become as Figure 10.

Infinite loop:
void TaskA(void *data){

while(true){
start=clock();
for(run_times = 0; run_times < N; run_times++){
[user code;]
Call uC/OS-II service to delay or pend;
[user code;]
}
end=clock();
exe_time=(end-start)/N;
if(exe_time > OS_ExecTime) exit;

}
}

Simple code:

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

25
逢甲大學 e-Thesys (90 學年度)

void TaskB(void *data){
[user code;]
TaskDelete();

}

Figure 3.6 Task Format of uC/OS-II with execution time check

The above method uses the ANSI C clock() function. We can obtain the time more

precisely by increasing the bound of run_times (i.e. N).

The uC/OS-II also provides system functions to measure a task’s execution time,

which are PC_Elapsedstart() and PC_ElapsedStop(). These two functions are

implemented by using the PC’s 82C54 timer#2. Before using these two functions, we

need to call the function PC_ElapsedInit() to initialize the elapsed time module by

determining how long the start and stop functions take to execute. The execution time (in

microseconds) returned by PC_ElapsedStop() consists exclusively of the code we are

measuring. The pseudo code for the task will become as Figure 11.

Infinite loop:
void TaskA(void *data){

while(true){
PC_ElapsedInit()
If (OS_HRT == TRUE) {

PC_ElapsedStart();
[user code;]
Call uC/OS-II service to delay or pend;
[user code;]

exe_time= PC_ElapsedStop();
if(exe_time > OS_ExecTime) exit;

}

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

26
逢甲大學 e-Thesys (90 學年度)

}

Simple code:
void TaskB(void *data){

[user code;]
TaskDelete();

}

Figure 3.7 Task Format of uC/OS-II with execution time check(2)

3.1.3 Real-Time Metrics

For the development of real-time systems, it is important to have measuring tools

to test the evolution of the executing tasks. Although uC/OS-II has already provided

several parameters to check the timing characters of the executing tasks, such as

calculation of tasks, CPU usage and task switch time etc., there are no parameters used

for checking the status of specific hard real-time tasks. So we follow the idea proposed in

RT-Minix [14] to build a data structure that is accessible to the user via a system call. The

structure includes the following items:

typedef struct {

INT8U OS_NoHRT; /* Number of hard real-time tasks*/
 INT8U OS_NoMisDln; /* Number of missed deadlines or forced leaving

critical section*/
…

} rt_status

The parameter OS_NoMisDln comes from the calculation that the executions of

hard real-time tasks exceed their predefined deadline. We can add up the number after it

reaches a predefined value and increase the deadline of the hard real-time tasks that

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

27
逢甲大學 e-Thesys (90 學年度)

experience missing deadline. Another threshold for the deadline increment has to be

defined in advance to activate a false alarm or shut down the whole system for the safety

issue.

There are other timing parameters can be defined in the data structure depending on

the requirements of the system designers. All the statistics can be monitored online easily.

3.1.4 Reconfiguration

There is need for the operating system to be re-configurable during operation. The

reason for this function is because the tasks’ characteristics need to be modified based on

the specific requirement of operation or consideration of system performance.

For an embedded real-time system, the function is usually designed to meet the

specific requirement. Sometimes, in certain circumstances, the executing sequence and

priority of the tasks need to be re-arranged. This situation can be activated by the operator

or the system itself based on the predefined condition. We can add the criteria check point

in the task execution module and change its real-time characteristic by setting the

parameter OS_HRT true (for hard real-time) or false (for non hard real-time). Also, we

can change the task’s priority by change the value of the parameter prio.

The algorithm for operator-triggered reconfiguration is shown as Figure 3.8.

set checkpoint for task X;
check criteria(ex. specific system status or critical mission);
accept the operator’s command to change the task’s real-time character;
while meeting the criteria, do

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

28
逢甲大學 e-Thesys (90 學年度)

set OS_HRT true;
end do;
task X becomes hard real-time and deadline guarantee;
accept the operator’s command to restore the task’s real-time character;
set OS_HRT false;

Figure 3.8 Algorithm for operator-triggered reconfiguration

On the other way, when there are hard real-time tasks missing the deadline very

often during operation. It is necessary to re-configure all the task’s timing characteristics

to maintain the original required performance.

In order to prevent the deadlock of the hard real-time tasks, we increase their

execution time. But there needs further scheduling evaluation for all the tasks to get the

optimization.

The original scheduling policy for uC/OS-II is priority-driven. The priority of the

task is defined by its importance. For the practical design philosophy, the tasks of a

real-time system are often arranged in a specific time frame. And the job of the system

designer is to keep all the tasks occurring, executing and completing inside the main time

frame. Our on-line mechanism of re-configuration is to ensure the predictable behavior.

And the baseline is under the constraint of the original time frame for all the tasks.

There are several parameters for the tasks can be used as the reference of

re-configuration. We increase the execution time to prevent the deadlock of hard real-time

tasks. Because the execution of the hard real-time tasks is guaranteed, no other tasks can

preempt during critical section. This will affect other tasks’ execution. So, in order to

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

29
逢甲大學 e-Thesys (90 學年度)

ensure the whole system’s performance, we lower the rate or increase the occurring

period of the hard real-time tasks whose execution time has been increased. We add new

parameter OS_Period in the function OSTaskCreate() or OSTaskCreateExt(). Its value

has to be set before the task is created. And when the execution time of the task has been

forced to change, we change the period at the same time.

The algorithm for system-automatic reconfiguration is shown as Figure 3.9.

set checkpoint to check the number of missing deadline for task X;
set threshold for deadline increment t and iteration number(which are related
with other task’s period);

execute deadline check for hard real-time task X;
while missing the deadline, do
 exit task X;
 deadline = deadline + t;
 count = count + 1;
 if count >= predefined value, then
 exit task X;
 end if;
end do;
execute deadline check for hard real-time task X;
while missing the deadline, do
 activate hardware backup or operator’s manual control(redundancy design);
end do;

set threshold for refined period for critical non hard real-time task Y;
count the executing occurrence of task Y;
revise OS_Period for task Y until it operates normally;
while task Y s’ period is greater than refined period, do

activate hardware backup or operator’s manual control(redundancy
design);

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

30
逢甲大學 e-Thesys (90 學年度)

end do;

Figure 3.9 Algorithm for system-automatic reconfiguration

The principle of the on-line re-configuration can also be used in off-line evaluation

to test system correctness without actually running it.

3.2 Analysis

To check the effectiveness of the revised uC/OS-II, we use an existing hard

real-time system as the based target, which is a typical Flight Control System (FCS) and

is built on uC/OS-II kernel by Chen. [15]

3.2.1 A Typical Flight Control System

The FCS discussed in this thesis is primarily designed for the Unmanned Aerial

Vehicle (UAV). It is built with an embedded Operational Flight Program (OFP) executed

on the Flight Control Computer (FCC). Because the UAV is controlled by the remote

Ground Control Station (GCS), there is no complicated user interface for the pilots. So

the software OFP is simpler than traditional avionics system. The major function of the

FCS is to get the external sensor data, and perform the computation of control laws to

achieve aircraft flight dynamics control. In addition, the FCS contains the communication

data link interface to receive uplink commands from the GCS, and to transmit aircraft’s

operational status as downlink message to GCS for pilot monitoring.

Traditionally, the FCS can be considered as a closed loop control system and

implemented with a Proportional-Integral-Derivative (PID) controller. Its major task is

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

31
逢甲大學 e-Thesys (90 學年度)

responsible for the plane’s maneuver and maintenance of the flight stability. The basic

idea for the Flight Controller is to get the sensors’ input, conduct the control-law

computation and output commands to activate the actuators continually. The design of the

controller will seriously influence the flight quality of the plane. But it belongs to the

field of control theory and practice. We will only focus on the design of software

architecture.

The simplified model for flight controller is shown as Figure 3.8. Such a system is

called a feedback control loop and can be implemented as an infinite loop in Figure 3.9.

Figure 3.10 A simplified flight controller model

set timer to interrupt periodically with period T;
at each timer interrupt, do

sample and digitize sensor readings to get measured values;
compute control output from measured and state-variable values;
convert control output to analog form;
estimate and update plane parameters;

reference
input

Actuator Sensor Plane

Controller

Output Input

A/D

A/D

Control Law
Computation

D/A

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

32
逢甲大學 e-Thesys (90 學年度)

compute and update state variables;
end do;

Figure 3.11 Implementation of A Generalized of Flight Controller

In the above figure, we consider the FCS as a multi-input/multi-output type and the

assumption is that the system can provide a timer to set the sampling period T. The

selection of sampling period is mainly dependent on the perceived responsiveness of the

overall system (i.e. the plane and the controller) and the dynamic behavior of the plane. In

general, the faster a plane can and must respond to change in the reference input, the

faster the output to its actuator varies, and the shorter the sampling period should be.

The FCC is an 80486-based Industrial Personal Computer (IPC) with several input

and output interfaces as shown in Figure 3.10.

Figure 3.12 Hardware modules of a typical flight control system

The FCC gets sensor data including altitude, altitude rate, airspeed, heading,

attitude data, fuel quantity and engine data through the A/D interface, GPS data through

CPU Board

RS232 Interface

RS422 Interface

D/A Interface

A/D Interface

PWM Interface

GPS

Payload

Sensor

GCS

Actuator

GPS: Global Position System

GCS: Ground Control Station

Payload: Camera System

PWM: Pulse Width Modulation

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

33
逢甲大學 e-Thesys (90 學年度)

RS422 interface, and receives uplink commands from GCS by way of the RS422

interface. After data processing and computation, it then sends actuator outputs including

surface, fuel, nose wheel and brake commands through the PWM interface, payload’s

rotation commands through the D/A interface, and transmit downlink messages to GCS

by way of the RS422 interface.

The hardware interrupt mechanism in the FCC is similar to that of the general PC

system. It contains two interrupt controllers (Intel 82C59A PIC) to provide 15 sources of

interrupts to CPU. Interrupts are labeled IRQ0 through IRQ15. The priority order of the

interrupt is according to its IRQ number: the lower the IRQ number, the higher the

priority order. The interrupt arrangement for FCC is shown in Table 3.1.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

34
逢甲大學 e-Thesys (90 學年度)

Table 3.1. Hardware interrupts used for FCC

IRQ number Interrupt Vector Description Function Priority
Order

IRQ0 8 Timer uC/OS-II Real-time
Clock

1

IRQ9 121 COM4 (RS422) Data Link 2

IRQ15 127 Spare Watch Dog Timer 3

IRQ3 11 COM2 (RS232) DGPS 4

IRQ4 12 COM1 (RS232) GPS 5

IRQ5 13 COM3 (RS422) Payload 6

Based on the hardware architecture and system’s function requirement, the software

OFP can be built with consideration for modular design. The software modules of the

system are designed as shown in Figure 3.11.

Figure 3.13 Software modules of a typical flight control system

Power-up
Module

Executive
Module

Built-in-Test
Module

Communication
Module

Signal Management
Module Control Laws

Module
Output Control

Module

RS232/422
Interface

A/D
Interface

D/A
Interface

Power-up

Interrupts

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

35
逢甲大學 e-Thesys (90 學年度)

Basically, the flight control system should execute different tasks to meet the

requirements of flight dynamics control. Each individual task contains different specific

functions or subroutines. They are designed to get and convert the sensor data, to perform

the control law computation, and to convert and output the actuator control data. So the

flight vehicles can fly smoothly and safely in the air.

From Chen’s design, the main program of the simplified flight control system built

on the uC/OS-II is shown as Figure 3.12 and the function, task type and priority order are

shown as Table 3.2. [11]

void main (void)
{

OSInit();
…
OSTaskCreate(MajorTask,…,Major_PRIO); //Create MajorTask
OSTaskCreate(COM1Task,…,COM1_PRIO); //Create COM1Task
OSTaskCreate(COM2Task,…,COM2_PRIO); //Create COM1Task
OSTaskCreate(COM3Task,…,COM3_PRIO); //Create COM3Task
…
OSStart();

}

Figure 3.14 Main program of the simplified flight control system built on the
uC/OS-II

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

36
逢甲大學 e-Thesys (90 學年度)

Table 3.2 Tasks of the simplified flight control system built on the uC/OS-II

Task Name Main Function Working
Rate

Task Type Priority
order

Major Task Input signal computation

 Control law computation

 Output control

40Hz Periodic 4

COM1Task Receive the GPS data 10Hz Periodic 2

COM2Task Receive the payload feedback data

(GPS transmits the position data in
10Hz)

10Hz Periodic 3

COM3Task Receive flight command:

 Manual & Autopilot Mode

 Navigation & Return Home
Mode (Command-driven)

 10Hz

―

 Periodic

 Aperiodic

1

The PID flight controller for flight dynamics control is implemented in the Major

Task. This task contains jobs to get and convert the sensor data, to perform the control

law computation, and to convert and output the actuator control data. There are specific

functions or subroutine to complete all the jobs. Referring to Figure , the Major Task for

the flight controller will contain the Signal Management module, the Control Laws

module and the Output Control module. As required, the sampling rate of the flight

controller is 40 Hz. So the period of the Major Task is 25ms, and the deadlines of the jobs

inside the task should coincide with this period. The pseudo code for the MajorTask() is

shown in Figure 3.13.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

37
逢甲大學 e-Thesys (90 學年度)

void MajorTask (void)
{

/* Set the clock tick */
OS_ENTER_CRITICAL();
PC_VecSet(0x08, OSTickISR); /* Install uC/OS-II’s clock tick ISR
PC_SetTickRate(OS_TICKS_PER_SEC);/*Reprogram tick rate
OS_EXIT_CRITICAL();
………
PreTickCount = OSTimeGet();
While (true) {

TickCount = OSTimeGet();
If (TickCount != PreTickCount){

FrameCount %= 40; /*40 Hz task loop
40 Hz task
If (FrameCount % 4 == 0){ /*10Hz task loop

10 Hz task
}
………
FrameCount ++;
PreTickCount = TickCount;

}
}

}

Figure 3.15 Pseudo code for MajorTask()

The reason for using COM1, COM2 and COM3 as the task’s name is because the

flight control system is a computing system with multi-channels communicating with

different sensors and actuators of the flight vehicle. And the data coming into the flight

control computer is handled by the interrupt mechanism.

According to the system requirement, the GPS, payload data and manual &

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

38
逢甲大學 e-Thesys (90 學年度)

autopilot mode command are all transmitted to FCC in 10Hz rate separately, they can be

considered as periodic tasks. On the other hand, the Navigation & Return Home Mode

Command is command-driven. So it is an aperiodic task.

To implement the interrupt service routine (ISR) under uC/OS-II, the function

OSIntEnter() should be called. The pseudo code for an ISR is shown as Fig. 3.14.

YourISR:
Save all CPU registers;
Call OSIntEnter();
Execute user code to service ISR;
Call OSIntExit();
Restore all CPU registers;
Execute a return from interrupt instruction;

Figure 3.16 ISRs under uC/OS-II

3.2.2 Evaluation

When we reexamine Chen’s original design, COM1Task, COM2Task and

COM3Task are all activated by the interrupted devices, so they have higher priorities than

the MajorTask. Because uC/OS-II allows interrupt nesting, the COM3Task can interrupt

all other tasks at anytime. On the other way, the MajorTask has the lowest priority, so it

can be interrupted and the deadline is not guaranteed.

Basically, the above priority order comes from the limitation of the hardware

instead of the system requirement. Meanwhile, the frequency for the GPS, payload data

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

39
逢甲大學 e-Thesys (90 學年度)

and GCS command are all based on the individual equipments, which don’t synchronize

with the FCS. From the viewpoint of FCS, all the data coming from interrupted devices

will all be aperiodic tasks. So the real situation will contradict the designer’s original idea.

And the operation becomes unpredictable.

In Chen’s Design, the task’s execution rate is controlled by the parameter frame

count number, which comes from the tick rate increment. The critical issue to guarantee

such system operate as expectation and not crash is in the design of every task’s load. It

depends on the system programmers’ experience and lots of try-and-error processes in the

development period.

The most serious problem for Chen’s design is that the MajorTask should have the

highest priority among all the tasks instead of COM3Task. It is because that the

MajorTask does the most important computation for the whole system. It converts the

input data and executes the control law computation to give the air vehicle best control.

Its deadline should be guaranteed and not interrupted during execution. But for the

original design of uC/OS-II, even we set the MajorTask with highest priority; we still

cannot guarantee it not interrupted by other tasks. When the software module accesses the

shared data, it is dangerous if the code is not protected. Because the uC/OS-II use

different mechanism to handle the interrupt service routine and task level scheduling. And

the general task does not get any protection from any outside interruptions.

So, we make use of the features of the revised uC/OS-II to set the real-time

property for every task. In our example, the MajorTask should be defined as hard

real-time task to guarantee its execution. The function, type, priority order and real-time

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

40
逢甲大學 e-Thesys (90 學年度)

property are revised as Table 3.3.

Table 3.3 Tasks of the simplified flight control system built on the revised
uC/OS-II

Task Name Main Function Working

Rate
Task Type Priority

Order
Real-time
Property

Major Task Input signal computation

 Control law computation

 Output control

40Hz Periodic 1 Hard
real-time

COM1Task Receive the GPS data 10Hz Periodic 3 Non hard
real-time

COM2Task Receive the payload feedback
data

10Hz Periodic 4 Non hard
real-time

COM3Task Receive flight command:

 Manual & Autopilot Mode

 Navigation & Return Home
Mode

10Hz

―

Periodic

Aperiodic

2

Non hard
real-time

We can compare the tasks’ timing relationship of the original and the revised design

as shown in Figure 3.17 and 3.18.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

41
逢甲大學 e-Thesys (90 學年度)

Major Task
25ms

COM1 Task

COM2 Task

COM3 Task

100ms

100ms

100ms

(priority : 4)

(priority : 2)

(priority : 3)

(priority : 1)

Figure 3.17 The tasks’ timing relationship of the original design

Major Task
35ms

COM1 Task

COM2 Task

COM3 Task

100ms

100ms

100ms

(priority : 1)

(priority : 3)

(priority : 4)

(priority : 2)

Figure 3.18 The tasks’ timing relationship of the revised design

From the above figure, we can see that all the four tasks do not synchronize in the

system initialization. So it is difficult to guarantee the deadline requirement during run

time. For the original design, the COM3 task is the only one can get deadline guarantee

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

42
逢甲大學 e-Thesys (90 學年度)

because it has the highest priority. For other tasks, there is no deadline guarantee and

make the system not meet the requirement of hard real-time and safety critical.

Based on our method, we change the task’s priority first to let the operation criteria

make sense. The hard real-time task can complete its job before deadline. And changing

its period, other tasks can also have the fair chance to finish their jobs on time. After

several iteration and continuous evaluation, we can fine-tune the system to operate

smoothly and meet the design requirements.

3.3 Design Criteria

Unlike Windows or Linux programming which all come along a vast community,

uC/OS-II does not support a convenient programming environment for system developers.

So, using the uC/OS-II as the basis to build a real-time system deserves the designers to

pay much attention to some design criteria.

We revise the uC/OS-II to guarantee the hard real-time tasks complete their jobs

within deadline by forcing the kernel enter the critical section. But, using uC/OS-II

macros to disable and enable interrupts, the interrupt latency should be considered.

Disabling interrupts too long will affect the system’s response to interrupts. So based on

our revised uC/OS-II, the more hard real-time tasks are defined, the longer the system’s

response to interrupts. It is the system designer’s responsibility to define the appropriate

number of hard real-time tasks.

On the other way, although the tasks have been grouped into hard real-time and non

hard real-time, they still have different priorities. The system designer has to arrange the

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

43
逢甲大學 e-Thesys (90 學年度)

task’s priorities carefully. The basic rule is that hard real-time tasks should always have

higher priorities than non-hard real-time tasks.

To use the deadline parameter as a checking point during the critical section, the

designers should test the execution time of an individual task. It will involve many

individual module tests to get the timing estimation.

Finally, the whole system’s performance should also be considered. In order to

guarantee all the hard real-time tasks to complete their jobs, the execution time for all

tasks should be pre-calculated to evaluate the system’s performance. On some conditions,

high performance hardware and dual processors may help to meet the system’s strict

real-time requirements.

For a real-time system, multi-task arrangement is always the programmer’s first

choice. The system designers have to build appropriate data structure for shared data.

Also, even supported by a powerful and stable operating system, the application code for

every task should be designed carefully to prevent the system from crash.

3.4 Integrated Development and Verification Requirements

For hard real-time systems, especially safety critical systems, the test to verify the

design criteria is very important. The verification is not just to check if the system’s

function really meets the requirement, but also gains the end users’ confidence.

Sometimes, it has to demonstrate the whole test process to the authorities that are

responsible for the safety issue.

There is always practical to have a complete integrated environment to develop a

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

44
逢甲大學 e-Thesys (90 學年度)

hard real-time system for the industry. To perform debugging and testing of the software

such as the FCS OFP, a development environment including the Flight Control Test

Station (FCTS) and Six Degree-freedom Simulator (SDS) was built and provided. The

development is PC-based and the architecture is shown as Figure 3.19.

Figure 3.19 Development Environment for FCC OFP

Based on the development environment as Figure 3.19, the flight status of the FCC

can be simulated and all the required parameters can be monitored on time. The different

operational modes of the air vehicle, which are manual, autopilot, navigation and return

home mode, can all be tested. There is a specific test procedure to conduct the software

and hardware integration test for the FCC and there are also different test cases designed

to verify all the functions of the FCC OFP Software.

Pilot’s
Command

Flight

Dynamics

Parameters

Data Link

Control

Command

Six DoF
Simulator

PC/Win98

Flight Control
Computer

(OFP Software)

Actuator
Position

Development
Host

PC/Win98

Flight Control
Test Station

PC/Win98

Display

PC/Win98

Load OFP

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

45
逢甲大學 e-Thesys (90 學年度)

We assume that both the hardware and application level software have been

correctly designed. Our goal is just transfer the existing system to our revised uC/OS-II

kernel. We have to follow the procedure made by Chen and use the pre-designed

development environment to test our new system. The test items are designed to cover all

the operation mode of the system as Table 3.4. Due to the busy schedule for the integrated

test station of the Flight Control System, we won’t be able to test the real FCC OFP, so

we scaled down our experiment to a standalone simulation.

Table 3.4 Test items of the FCC OFP built on the revised uC/OS-II

Verification and Validation Test

Item No. Test Item

1 Manual Mode Test

2 Autopilot Mode Test

3 Navigation Mode Test

4 Return-Home Mode Test

3.5 Experiment Results

In order to verify the feasibility of our proposed design, we use a simplified model

to simulate the function of the revised kernel. The simplified model is based on Jean J.

Labrosse’s example program. The original program is used to demonstrate the uC/OS-II’s

new features, such as the user-defined context switch hook and statistic task hook. We use

it as a platform to simulate our proposed functions.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

46
逢甲大學 e-Thesys (90 學年度)

As we mention above, due to the lack of the integrated test station of the Flight

Control System, we scaled down our experiment to a standalone simulation. The

hardware is a Personal Computer with Intel 550 MHz Pentium III CPU and 64 MB RAM.

The uC/OS-II kernel is revised and has the ability to guarantee the hard real-time tasks

and support the flexibility of reconfiguration. The application run on the revised uC/OS-II

kernel has multi-tasks but no I/O. The user interface is as Figure 3.20.

Figure 3.20 The user interface of the experiment simulation

The program structure is just like the sample application mentioned in Chapter 2.

There are total 13 tasks in the program, including the idle task, statistic task that are

created by the kernel and the other 11 tasks. Among the 11 tasks, the ‘ StartTask’ is

responsible for the display of the test result and creation for other tasks. The ‘Clock Task’

gets the system time. So we don’t consider those two task’s behaviors, and set their

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

47
逢甲大學 e-Thesys (90 學年度)

priorities higher than the other 9 tasks, which are our experimented targets. We

continually monitor all the 9 tasks’ execution time, and their deadline. We also

accumulate the total execution time and time frame.

Following our proposed solution, the function to guarantee a specific task hard

real-time property and to change the task’s period of occurrence is designed to be

operator-driven. During the simulation program’s execution, the operator can change any

task’s hard real-time property or period at any time. And the whole system’s behavior

such as other tasks’ execution time change can be monitored continuously. On the other

way, the adjustment of all the tasks’ deadline and priorities is executed automatically. We

implemented a mechanism to rearrange the priorities of all the tasks based on the

execution time of every task. We let the shortest task run first, i.e. have higher priority. In

practice, other scheduling algorithm can also be implemented depending on the system

requirements for different applications.

There are three cases to be verified. First, the 9 tasks execute continuously. And in

the beginning, we set the deadline of every task a bigger value as shown in Figure 3.20.

After the fine adjustment, the deadline for every task is tuned to an optimized value. And

the time frame is also set and meets the design requirement. The test result is as shown in

Table 3.5.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

48
逢甲大學 e-Thesys (90 學年度)

Table 3.5 Test results #1

Task Name Original
Priority

Revised
Priority

Original
Deadline

Revised
Deadline

MsgQ Tx Task 5 13 20 10
MsgQ Rx Task#1 7 9 20 5
MsgQ Rx Task#2 9 7 20 5

MboxPostPendTask 11 11 20 4
TimeDlyTask 13 5 20 4

Right Spin Task 15 17 20 5
Left Spin Task 17 15 20 5
Count Up Task 19 21 20 5

Count Down Task 21 19 20 7

After adjustment, the time frame is controlled to 50 and the total execution time is

always less than the deadline limit.

There is a situation when the time frame is required to be smaller than the

recommended value. And we have to readjust the time frame to meet the tasks’

requirement. The test result is as shown in Table 3.6.

Table 3.6 Test results #2

Task Name Original
Priority

Revised
Priority

Original
Deadline

Revised
Deadline

MsgQ Tx Task 5 13 5 5
MsgQ Rx Task#1 7 11 5 6
MsgQ Rx Task#2 9 9 5 4

MboxPostPendTask 11 7 5 3
TimeDlyTask 13 5 5 4

Right Spin Task 15 17 5 5
Left Spin Task 17 15 5 5
Count Up Task 19 21 5 7

Count Down Task 21 19 5 6

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

49
逢甲大學 e-Thesys (90 學年度)

The original required time frame is 45. After we change the time frame to 48, the

timing requirement is met.

Sometimes, if the designers insist to maintain a predefined time frame, and even we

readjust the time frame, it still cannot meet the requirements, than we have to make a

suggestion to the designers to reconsider the timing arrangement.

All the test results show that an application with multi-tasks built on our revised

uC/OS-II kernel meets the functional and operational requirements of hard real-time and

reconfiguration.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

50
逢甲大學 e-Thesys (90 學年度)

Chapter 4

Conclusions and Future works

Developing safety critical systems is a real challenge for all the system designers.

The essential requirement is to guarantee the hard real-time tasks to meet their deadlines.

Building an embedded hard real-time system on the uC/OS-II kernel has many

advantages such as open source code, compact and modulated.

We use an existing kernel uC/OS-II to implement new features to support the hard

real-time system. In order to guarantee the hard real-time requirement of the system, we

revise the scheduling mechanism of the kernel. For our approach, the programmers need

to separate their tasks into two groups: hard real-time tasks and non-hard real-time tasks.

Although the hard real-time tasks can be guaranteed to meet their deadlines, the system

designers have to determine the task’s property very carefully. Too many hard real-time

tasks can degrade the system’s overall performance.

Although the uC/OS-II is simple, well documented and came with source code,

very appropriate in building the embedded system, it still has many shortcomings. First of

all is the lack of graphic and windows support. So it can be used as an embedded control

system and not appropriate for the current personal information appliances.

On the other hand, when the system designers use the uC/OS-II as the platform to

build their application, there is a big chance that they have to face more new problems

than their original target problems. The reason is that there are still no enough support for

system development, such as device drivers and different processors porting problems. It

still needs more and more support to strengthen the community. If the author can make

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

51
逢甲大學 e-Thesys (90 學年度)

the uC/OS-II to be more commercial, an IDE (Integrated Development Environment) will

give the system designers more help.

Often, to build safety critical systems needs to meet the strict certification. The

uC/OS-II has already been certifiable for use in safety critical systems. Supported by a

software testing company Validated Software Corporation in USA, the uC/OS-II

Validation Suite which contains source codes with complete software design documents,

test plans, test procedures and test reports has been certified to the civil aircraft software

standard RTCA DO-178B Level B by the Federal Flight Agency of USA in July, 2000.

This makes the reliability of uC/OS-II more convincible.

From our design, we make the whole system operate in a predictable way. It is

essential to design a hard real-time and safety critical system. The approach we proposed

can really be implemented in an existing system. But the performance of the system

needs be further evaluated. Moreover, the fault tolerance mechanism is also an open issue

for the future research.

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

52
逢甲大學 e-Thesys (90 學年度)

References

[1] Burns, A. and Wellings, A.J., “Real-Time Systems and their Programming
Languages,” Addison-Wesley, 1990

[2] N. C. Audsley A. Burns M. F. Richardson A. J. Wellings, “Incorporating Unbounded
Algorithms Into Predictable Real-Time Systems,” 1993

[3] http://www.ucos-ii.com/, Web site of uC/OS-II

[4] Victor Yodaiken, “The RTLinux Manifesto”

[5] Jean J. Labrosse, “MicroC/OS-II The Real-Time Kernel,” Prentice Hall Inc, 1996

[6] Martin Timmerman and Jean-Christophe Monfret, “Windows NT as Real-Time OS?,”
Real-Time Magazine, Feb. 1997

[7] http://www.ucos-ii.com/prod.htm, Web site of uC/OS-II

[8] Iain John Bate, “Scheduling and Timing Analysis for Safety Critical Real-Time
Systems,” Department of Computer Science, University of York, 1998

[9] Victor Yodaiken and Michael Barabanov, “RTLinux Version 2,” 1999

[10] Yu-Chung Wang and Kwei-Jay Lin, “Enhancing the real-time capability of the Linux
kernel,” 1998

[11] Robert Hill, Balaji Srinivasan, Shyam Pather and Douglas, “Temporal Resolution
and Real-Time Extensions to Linux,” 1998

[12] http://www.lynx.com/, Web site of LynxOS

[13] http://www.qnx.com/, Web site of QNX

[14] Pablo J. Rogina and Gabriel Wainer, “New Real-Time Extensions to the MINIX
operating system,” August, 1999

[15] Wu-Fong Chen, “A Real-Time Flight Control Embedded System Based on uC/OS-II
Kernel,” 2000

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

53
逢甲大學 e-Thesys (90 學年度)

感謝詞

能於工作之餘順利完成資訊工程研究所的課業及研究論文，特別要感謝指導教

授鍾葉青老師的諄諄教導，讓我能從學習中建立獨立研究與解決問題的能力，而所

內各個領域學有專精的老師們，則拓展了我資訊工程的豐富知識，另外，還要感謝

工作上的長官及同仁給我的鼓勵，研究所畢業僅僅是人生一個小階段的結束，未來，

又是一個新的開始，回首來時路，謹對一路上幫助我的師長、同事、家人及好友，

表達個人無限的感謝。

A Configurable Hard Real-Time Operating System Based on uC/OS-II Kernel for Flight Controls

54
逢甲大學 e-Thesys (90 學年度)

作者簡介

姓 名：張傳鑫

生 日：民國 54 年 10 月 28 日

出生地：新竹市

學 歷：新竹民富國小

新竹成德國中

新竹高中

中正理工學院機械工程學系

逢甲大學資訊工程研究所

經 歷：國防部中山科學研究院助理研究員

