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Abstract

The development of models using multiple modelling paradigms is necessary to
formulate and study current problems in environmental science. To simplify the
coupling of those models, a formal basis for a high-level specification of such models
must be set-up. In this paper we propose a Discrete EVent System specification
(DEVS) based modelling framework as a formal basis in environmental modelling.
The formal framework ensures that models are reusable and interoperable compo-
nents with well defined interfaces. Moreover, a wide variety of modelling paradigms
can be expressed in the DEVS formalism. We are also extending the modelling
paradigms that can be expressed in the DEVS framework with two techniques:
Feedback-DEVS for the specification of supervised-learning models and Vector-
DEVS for the specification of models in vector space. JDEVS is the java implemen-
tation of the framework. It enables discrete-event, general purpose, object-oriented,
component based, GIS connected, collaborative, visual simulation model develop-
ment and execution. A Feedback-DEVS neural-network model and a cellular infil-
tration model are described as experiments using JDEVS. Those models are later
coupled to show the new modelling scenarios enabled by the use of a formal frame-
work and the flexibility of the software.
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1 Introduction

Environmental systems are often acting over large spatial scales, long time
frames and heterogeneous units of study. The modelling and computer simu-
lation of such complex systems have become essential tools for understanding
those processes, predicting the future state of those systems and developing
new theories. To conceptualize the world, the modellers need systems of com-
puter metaphors in the form of modelling paradigms. A wide variety of mod-
elling paradigms, such as multi-agent or cellular modelling and simulation, are
in use today and implemented in modelling and simulation environments such
as SELES (Fall and Fall, 2002), SWARM (SWARM, 2002) or ECLPSS (Wood-
bury et al., 2002). What is becoming difficult is not only to formulate but also
to conceive higher level problems, whose complexity is such that they escape
definition through a single metaphor (Villa, 2001). Enhancing interaction be-
tween modelling paradigms, models interoperability and model reusability is
therefore an important issue that can be addressed by the use of a formal
framework that is sufficiently open and flexible.
We propose to base our formal framework on a methodology called multi-
faceted modelling introduced by Zeigler (1984). Based on system theory con-
cepts, the methodology recognizes the multiplicities of objectives and models
in the field of modelling and simulation. This methodology regards a model
as a mean to embody knowledge of a real system. It concentrates on the or-
ganization of models bases for a domain. We identify a domain (like ecology)
as a set of systems that shares common attributes, dynamics and represen-
tation schemes. The multifacetted modelling methodology is similar to the
domain analysis and modelling method (Praehofer et al., 2000) intended to
identify the essential features, interfaces, components, abstractions and limi-
tations of a family of systems in one domain. Ziegler also proposed modular,
hierarchical system modelling as a way to specify models identified by the
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multifacetted modelling methodology. Modular, hierarchical system modelling
is an approach to complex systems dynamics where modular building blocks
(system components with well defined interfaces) are coupled in a hierarchi-
cal manner to form complex systems. Modular building blocks are defined by
specifying their input and output interface in the form of input and output
ports through which all interaction with the environment occurs. Atomic and
coupled models are distinguished in system modelling. While an atomic model
specifies its internal structure in terms of its states and states transition func-
tions, a coupled model’s internal structure is specified by its components and
coupling scheme, i.e., how ports are connected. This modularity allows the
set-up of bases of reusable components as models that shares the same in-
terfaces are interchangeable. Modular hierarchical system modelling concepts
have been applied in several domains, most notably hardware design (San-
tucci et al., 1998), physical systems modelling (Wainer and Giambiasi, 2001),
and forest modelling (Vasconcelos et al., 1993). Inspired in System’s theory
Zeigler (1984) introduced the DEVS (Discrete EVent System specification) for
modular and hierarchical modelling in discrete events simulation.
DEVS is a set-theoretic formalism that includes a formal representation ca-
pable of mathematical manipulation just as differential equations serves this
role for continuous systems. It is possible to perform formal verifications of a
model using DEVS formal representation (Freigassner et al., 2000) thus de-
creasing testing and implementation time. Recently Vangheluwe et al. (2002)
demonstrates the uniqueness of DEVS in his meta-modelling approach by
mapping commonly used formalisms (Petri-nets, ODE, State charts, Bond
Graphs, etc..) into DEVS equivalents. In an effort to specify a standard se-
mantic for DEVS models, a Discrete-Event Systems Specification Product De-
velopment Group has been proposed at the Simulation Interoperability Stan-
dards Organization (SISO) (SISO, 2002). DEVS formalism also presents an
explicit separation between modelling and simulation, DEVS simulators are
generated automatically from a DEVS model description in an experimental
frame. The Experimental Frame (EF) describes a limited set of circumstances
under which a system (real or model) is to be observed or subjected to ex-
perimentation. As such, the Experimental Frame reflects the objectives of the
experimenter who performs experiments on a real system or, through simula-
tion, on a model. Nevertheless DEVS needs to be adapted and extended when
replaced in a domain-specific context. A wide set of techniques that derives
from DEVS have already been developed to serve some domain specific needs
(Zeigler et al., 2000). Some of those techniques such as Cell-DEVS (Wainer and
Giambiasi, 2001) for simulation based on cellular automata, DSDEVS (Barros,
1996) for the modelling and simulation of models with variable structures or
JAMES (Schattenberg and Uhrmacher, 2001) for multi-agent simulation are
well adapted in environmental modelling but to cover the needs not previously
tackled we have also developed two new techniques, Feedback-DEVS for the
modelling and simulation of supervised learning models and Vector-DEVS for
the simulation of phenomena in vector space.
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The goal of this paper is to motivate the need for a DEVS based formal frame-
work in the domain of environmental modelling. We also propose JDEVS as
an implementation of the framework. In the section 2 we make reference to do-
main analysis in environmental modelling and introduce the formal framework
and its semantics. In section 3 we specify in detail the new techniques that we
have integrated to the formal framework, Feedback-DEVS and Vector-DEVS.
In section 4 we present our Java implementation of the formal framework,
JDEVS. Finally, in section 5, we illustrate advantages of a DEVS framework
in terms of models reusability and interchange with the coupling of two differ-
ent pollution models that use different modelling paradigms. In the last section
we conclude by comparing JDEVS with other environmental modelling frame-
work and present the perspectives of work.

2 A DEVS formal framework in environmental modelling

We motivate the use of a DEVS based framework by the identification of the
essential features, interfaces, components, abstractions and limitations that
exists in the field of environmental modelling. We are first making a domain
analysis in the field of environmental modelling, then motivate and introduce
the discrete event formal framework and the DEVS semantics.

2.1 Environmental modelling domain analysis

Different abstraction levels exists in environmental systems with different
scales that ranges from the plant to the planet. For each of these scales the
questions are raised of the spatial organization of the system (spatial struc-
ture or geometry), its organization in sub-systems (topology), or its physical
behavior (energy flow through the system)(Coquillard and Hill, 1997). Our ob-
jective for the formal framework is to provide a set of techniques to study those
systems at different levels. The approach is similar to IMA (Integrated Mod-
eling Architecture) (Villa, 2001) and OME (Open Modelling Engine) (Reed
et al., 1999) that both provides an object oriented framework for developing
modelling systems. We identified from Villa (2001), Woodbury et al. (2002)
and Maxwell (1999) that such framework present the following:

• Features: Environmental models are often described as either non-spatial or
spatially explicit, structurally invariant or dynamic, stochastic, empiric or
deterministic, process-based or agent based. A general framework should not
be restricted to a few of those features. It should provide a set of modelling
paradigms that can be coupled at a higher level of specification.
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• Interfaces: The framework should provide interface with non-spatial or spa-
tially explicit databases (such as GIS Geographical Information Systems).
Initiatives like the Open Geodata Interoperability Specification (OpenGIS,
2002) have paved the way by providing an open framework for universal
geographic data access and processing. Models should also share the same
interfaces to be successfully integrated in a library of reusable components.

• Abstractions: If the environmental systems to be modelled operates in real
world and real time, models requires computer metaphors for space and
time. Raster, vector and agent are the most commonly used metaphors
to abstract the system dynamics and to represent space in environmental
modelling. Raster and vector maps are also the kind of data structures
available in GIS. Ecological models also requires a time representation either
continuous (discrete events) or discrete (time steps).

• Components: The basic component of a model are different depending on
the paradigm used, agents in agent simulation, cells in cellular simulation,
shapes for simulation in vector space and building blocks in process-based
simulation. Another important component of a modelling framework is the
experimental frame that describes the circumstances under which a model
is to be observed.

• Limitations: Even though current computers are capable of billions of op-
eration per second it is not possible to simulate every particles of a large
scaled system. Current computer models are limited in terms of purposes
by the assumptions made in the modelling paradigm used (Fall and Fall,
2002). The quality of the results is also limited by the quality of the input
data available (Bregt et al., 1991).

The essential features, interfaces, components, abstractions and limitations of
a family of systems in environmental modelling identifies the required mod-
elling paradigms to be integrated in the framework. In IMA Villa (2001) mo-
tivates the need to focus on multi-paradigm problems by the fact that:

• More than one modelling paradigm are often needed to capture the minimal
description of a complex system.

• Science needs new concepts to formalize and understand the complexity of
nature.

• The availability of an integrating framework to run and link multi-paradigm
models along with model analysis tools is essential for decision makers to
profit from the use of models and evaluate their appropriateness.

Villa (2001) proposed the IMA semantic to ensure clear, high-level, non-
redundant specification of models that can interoperate. He illustrates the
need for a common semantic with an analogy with DNA. Like DNA provides
a common language for the specification of all living beings, entities involved
in a modelled system should share a simple and uniform representation in
order to be used together with full interoperability.
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We motivate the need to use the DEVS formalism because is has the property
to be closed under composition. A formalism is said to be closed under com-
position if any composite system obtained by coupling components specified
by the formalism is itself specified by the formalism. The differential equa-
tion, and sequential state machine formalism are known to be closed under
composition. The significance of such closure is that it facilitates hierarchi-
cal construction of models by recursive application of the coupling procedures
(Zeigler, 1984). Moreover many of the modelling paradigms to be used in an
environmental modelling framework have already been adapted to DEVS and
shares the same properties and semantics. Nevertheless we have added new
techniques that the field still lacks: modelling paradigms for empirical models
and for the simulation of phenomena in vector space.

2.2 Discrete event systems and DEVS semantics

In general systems theory a system is defined by its inputs, outputs, states,
time base and transition functions to provide new states and outputs from
inputs. Like continuous systems, discrete event systems are a way to express
such system, but in discrete event systems, inputs can occur at any time,
while in continuous systems inputs are piecewise continuous function of time.
The discrete event representation of time is more general than the discrete
time steps used continuous systems. It gives the ability to fix time steps by
specifying a given time for a model to stay in a stable state, an activation
event being generated for the model for every fixed time step. The simulation
is then possible for models working at different time steps as they will share
the same event list that is sorted chronologically. Having this representation
of the system could also save simulation time. In discrete event simulation
if the state of the system is stable, it may not be evaluated until an event
arrives, while the state of a model would be evaluated at every time step in
a discrete time simulation. The interest of using discrete event simulation is
further discussed in other modelling environments that uses discrete events
such as SWARM (2002) or SELES (Fall and Fall, 2002).

DEVS is well adapted to be implemented in an object oriented framework
thus creating a component based modelling and simulation environment. It
is possible to generate a continuous time simulator out of a system modelled
using the DEVS formalism as all DEVS models are directly simulables by
abstract simulators also defined in the DEVS framework. DEVS formalism
introduces two kind of models, the basic models from which larger ones are
built, and coupled models (also called network of models) that connects those
models in a hierarchical fashion. Like in general systems theory, a DEVS model
contains a set of states and transition functions that are triggered by the
simulator.
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A basic DEVS model (BM) is a structure:
BM = < X,S, Y, δint, δext, λ, ta > Where:

• X: {(p, v)|(p∈ input ports, v∈ Xp)} The set of input ports and values for
the reception of external events,

• Y: {(p, v)|(p∈ output ports, v∈ Yp)} The set of output ports and values for
the emission of events,

• S: A set of internal sequential states,
• δint: S → S The internal transition function that will move the system to

the next state after the time returned by the time advance function,
• ta: S → R

+: The time advance function, that will give the life time of the
current state (returns the time to the next internal transition),

• δext: Q × X → S The external transition function that will schedule the
states changes in reaction to an input event,

• λ: Q×X → S: The output function that will generate external events just
before the internal transition takes places.

Interpretation:

• Q = {(s, e)|(s ∈ S, 0 < e < ta(s)} is the total state set.
• e is the elapsed time since last transition, and s the partial set of states for

the duration of ta(s) if no external event occur.
• δint: The model being in a state s at ti it will go into s’, s’ =δint(s), if no

external event occurs before ti + ta(s).
• δext: When an external event occurs, the model being in the state s since

the elapsed time e goes in s’, s’ =δext(s,e,x).
· The next state depends on the elapsed time in the present state.
· At every state change e is reset to 0.

• λ: The output function is executed before an internal transition, before
emitting an output event the model remains in a transient state.

• A state with an infinite life time is a passive state (steady state), else, it
is an active state (transient state). If the state s is passive, the model can
evolve only with an input event occurrence.

The coupled DEVS model (CM) is a structure:
CM = < X, Y,D, {Md ∈ D}, EIC,EOC, IC >

• X: The set of input ports for the reception of external events,
• Y: The set of output ports for the emission of external events,
• D: The set of components (coupled or basic models),
• Md: The DEVS model for each d ∈ D,
• EIC: The set of input links, that connects the inputs of the coupled model

to one or more of the inputs of the components that it contains,
• EOC: The set of output links, that connects the outputs of one or more of

the contained components to the output of the coupled model,
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• IC: The set of internal links, that connects the output ports of the compo-
nents to the input ports of the components in the coupled models.

In a coupled model, an output port from a model Md ∈ D can be connected
to the input of another Md ∈ D but not directly to itself. Both coupled and
basic models can stand alone and are stored in a models library for reuse and
archiving. Depending on the implementation of the formalism, it is possible
to hide the internals of coupled models and create higher level components.

We will not describe in detail the abstract simulators of DEVS models that
can be found in (Zeigler, 1984). Basically each basic model has a ”Simulator”
attached to it that trigger the execution of the functions. Each coupled model
has a ”Coordinator” attached to it that dispatch the events to its destination.
Finally at the top of the simulation tree stands the ”Root Coordinator” that
has a global event list where all the input and generated events are stored
and sorted chronologically until they are processed by a simulator or out-
putted. All these entities (Root, Coordinators and Simulators) are connected
hierarchically in the simulation tree. Figure 1 presents a DEVS model with a
corresponding simulation tree. In figure 1 connections between models within
Coupled model A (left side) corresponds to the set of input EIC, internal IC

and output EOC links, each link connect two ports (black square) that cor-
responds to the X and Y sets of models. The right side of figure 1 presents
the corresponding simulation tree, with links between the simulators corre-
sponding to the hierarchy links used by messages to transit from a simulator
to another, each message carrying an event. The next section presents the
enhancements to the DEVS formalism in order to simplify the definition of
specific kind of models of use in the environmental science.

3 Modeling paradigms in the DEVS Framework

DEVS formalism is not spatial, structurally invariant and deterministic. Much
work has already been done to provide extensions to the methodology so that
it can express more modelling paradigm. Among the paradigms of interest in
environmental science that has been the subject of extensions of DEVS we
can note:

• Cell-DEVS (Wainer and Giambiasi, 2001) for simulation based on cellular
automata and spatially explicit models,

• JAMES (Schattenberg and Uhrmacher, 2001) for multi-agent simulation,
• Fuzzy-DEVS (Zeigler et al., 2000) for the modelling and simulation of mod-

els with fuzzy states.
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Nevertheless some of the main techniques and tools of use in environmen-
tal modelling cannot be expressed directly in DEVS. This section presents
Feedback-DEVS and Vector-DEVS techniques developed to overcome some
of these limitations. Feedback-DEVS helps the integration of empirical and
supervised-learning models such as Neural-Networks. Vector-DEVS address
the need for a modelling methodology that allows the specifications of mod-
els that could use vector maps to express the knowledge of spatial properties.
Vector maps are widely used by scientists in GIS since it often provides a more
accurate description of spatial information than raster maps.

3.1 Feedback-DEVS

A limitation of using DEVS is that the modeller must have a deep knowledge
of the physical behavior of the studied system in order to have good results.
To get around this limitation the modeller might want to use empirical mod-
els. Feedback-DEVS extends the basic DEVS formalism to permit an explicit
definition of supervised-learning models (such as Neural Networks). This tech-
nique has been successfully implemented in a model of a photovoltaic power
system with a Feedback-DEVS neural network battery damage model (Fil-
ippi et al., 2002) and is illustrated in section 5 in a neural-network nitrogen
concentration model.

A basic Feedback-DEVS model (FM) is a structure:

FM = < X,S, Y, δint, δext, δreact, λ, ta > Where

• X: {(pi, vi)(pf , vf )|(pi ∈ standard input ports, pf ∈ feedback input ports,
vi ∈ Xpi, vf ∈ Xpf)} set of input ports and values for each ports (standard
or feedback),

• S: S ′ ⋃ Sf is the internal state set with S’ the state set for a normal behavior
and Sf the states that the model could reach in a reaction to a feedback.

• δreact: Q × X → S is the reaction transition function,

In FM < Y, δint, δext, λ > are identical to basic DEVS components, the dif-
ference with the standard basic model being the explicit separation between
standard and feedback inputs in the input set. This enables a different pro-
cessing of the events arriving in Xpi and Xpf . The Xpi inputs are processes
by δext while Xpf inputs are processes by δreact. Feedback-DEVS basic model
can be coupled in unmodified DEVS coupled model.

The feedback-DEVS formalism presented here enables the integration of adap-
tive modelling technique into a general purpose simulation framework. This
permits the study of interactions between physical systems modelled using
different techniques. The Vector-DEVS technique presented next is address-
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ing a different problem in environmental modelling, the need for a high level
modelling technique suitable to study spatial organization on a large scale.
Furthermore this technique introduces the ”Spatial Manager”, a simulation
component that manages the interaction of spatially distributed models (such
as cellular, entity or vector propagation models).

3.2 Vectors-DEVS

The Vector-DEVS methodology has been designed to study the evolution of
physical interfaces of phenomena. The physical interfaces of a phenomenon is
the subject of observation of most propagation models and represent the outer
bond of the system observed (the interface of a forest fire is the fire front).
For this class of systems, Vector-DEVS enables the simulation of large scale,
high resolution models. The physical interface is viewed as a set of moving
vertices that constitute a shape. This technique is devoted to work at a higher
abstraction level than cellular propagation models that solves the physical
model expressed in partial differential equation. One of the main application
of the vector propagation models is using the resolutions of the physical models
for a vast number of scenarios, these resolutions are giving propagation speeds
that can be stored in a database and retrieved during simulation.

Description of vector models

We are defining geographic agents as points that can move into space by chang-
ing their geographic attributes. A set of such points represents a shape as each
point also has a structural link to its next geographical point through the shape
network. In this section we will call ”point” a geographic agent because agents
are representing a shape. A phenomenon is described by its shape that is evolv-
ing in space and structure through time according to the space attributes (like
a fire front). Using this methodology, the behavior of a phenomena is modelled
by the definition of a basic point/segment that represents the generic point of
the borderline of the phenomena. Each point has a displacement vector that is
used to calculate the time to the next environmental change, an environmen-
tal change occurs when a point enters in an area that has different properties.
A Spatial Manager contains all the properties of the space and provides cou-
pling with other spatially explicit models. The formalism used to specify vector
models is an adaptation from the DSDEVS formalism introduced by Barros
(1996). DSDEVS allows the specification of dynamic structured networks of
discrete event systems. Proofs that DSDEVS models are DEVS models and
closed under composition are available in (Barros, 1996).

A point it contains the definition of its dynamics over space (speed and direc-
tion). It is a modified basic DEVS model with the standard transition functions
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and additional ChV (change displacement vector function) and ChS (change
structure function). The point evolves in space by changing to a new state
from a set of internal states and a set of spatial properties managed outside
the agent. A DEVS point model (PM) is described as follow:

PM = < X,S(V d,E), Y, ChV,ChS, δint, λ, ta > With

• X is the input events set,
• S is the state set, (with Vd the displacement vector and E the local space

property (including the coordinates)),
• Y is the output events set.

There are also the five functions that are defining the behavior of a basic point:

• ChV: is the change displacement vector function, that define the speed and
direction of the displacement vector according to the new space property,

• ChS: is the change structure function that will determine the time to the
next structural change structure,

• λ is outputting the new states of the point,
• δint is updating the internal states set,
• ta will return the time to next change.

The shape network is a container for all interconnected points that compose a
shape, it is in charge of the activation of the points (ordering the actions of the
points). During the initialization of the simulation, the necessary number of
those basic points will be instantiated to compose the initial shape of the phe-
nomenon. The shape network also contains a special component, the network
executive, that manages the interconnection between each points. The shape
network, (SN) is a modified DSDE Network (DN) that contains geographical
properties, is is defined by the 5 tuples.

SNN =< XN , YN , GSN , χ,Mχ > With

• N is the network name,
• XN is the network input values set,
• YN is the network output values set,
• GSN is a set of geographical properties that contains the boundaries of the

environment where the shape is evolving,
• χ is the name of the dynamic network executive,
• Mχ is the model of the executive χ.

In this shape network χ is an unmodified DSDEVS network executive in charge
of the structure of the shape. The executive is an atomic model that contains
all the coupling information for a network of models. χ contains the structure
function defines the dynamic of the structure by managing, adding or deleting
points to the shape network when structural changes has been scheduled by
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ChS function of a point. The interested reader will find detailed description
about DSDEVS and the network executive in (Barros, 1996).

In a simulation where multiple shapes evolves in space, duplicating spatial
properties for each shape networks was not possible using a reasonable amount
of memory. As an implementation issue to simplify the data input/output with
GIS we have integrated another component to the framework, the spatial man-
ager. The spatial manager is linked to every shape network or other spatial
models that compose the simulation space. It manages all properties of space
that are used in the basic spatial components (cell or point). At each struc-
tural change of a shape, the spatial manager informs the shape network of the
boundaries of the new environment where the shape is evolving. The spatial
manager is not a DEVS model, but a container for the states that are used in
DEVS spatial models. It is connected to a GIS to retrieve geographic informa-
tion for the simulated models. At each structural change of a shape network
it will load the specific geographic information about the boundaries of the
shapes that composes the environment where the phenomenon is evolving.

A similar technique is already functional and available in models like FARSITE
(Finney and Andrews, 1994) for fire spread simulation, but FARSITE is re-
stricted to a modified Huygens principles of wavelets propagation to determine
the change in the shape of the simulated phenomenon, and simulating using
variable time steps. It is not the topic of this paper to provide details about the
vector propagation technique, an in depth specification of the Vector-DEVS
technique is available in (Filippi and Bisgambiglia, 2002). As Vector-DEVS
are DSDEVS models and thus DEVS models, coupling procedures are identi-
cal to the standard coupling procedures with other DEVS models, models are
still accessible trough coupling between ports, and during simulation events
passed from one type of models to another have the same format. Next section
presents the implementation of the framework in the form of a toolkit.

4 The java DEVS toolkit

JDEVS is the java implementation of the formal framework. JDEVS is com-
posed of five independent modules. A simulation kernel, a graphical modelling
interface, a models library, a connection to a GIS and the simulation panels.
They can interact with other modules that are already developed and some
elements, including the java simulation kernel, might be changed for better
performance. Figure 2 describe the general architecture of JDEVS.

The only programming task that the domain specialist has to do is the redef-
inition of the four methods of a basic model. Once a basic model is created, it
is stored in the library to be used later in a federation (coupled model). In case
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of a spatially distributed system, the federation is automatic in the simulation
panels, atom cells or points are instantiated according to the property map
exported from the GIS, interfaces of the resulted model beiing stored in XML
in the library with reference to the initialization map. For a component dia-
gram model, the coupling between models is made graphically by the modeller
in the block diagram GUI, then stored in XML into the library. This section
presents the details of the five modules.

4.1 Modelling and simulation kernel

The modelling and simulation kernel is a java implementation of the DEVS
formalism. The DEVS semantics is currently mapped to a set of JAVA instruc-
tions until a standard semantic becomes available. Basic and coupled models
are described as follow.

4.1.1 Basic DEVS models definition

The DEVS formalism is offering well defined interfaces for the description of
systems. The concept of model abstraction permits use of models that are
coded in various object oriented languages. Those models are then accessed
thought a software interface specified in DEVS with Java Remote Method
Invocation (RMI). Modelling basic models in JDEVS is done directly in JAVA.
To help the modeller in this task, the GUI generates a java skeleton, stores
it in the models library and compiles it. Figure 3 shows generated Java code
skeleton for:

DevsAtom=< X{Xpi{i1},Xpf{f1}}, Y {o1}, S{A}, δint, δext, δreact, λ, ta >

Output and external transition functions are returning event vectors that are
appended to the event list.

4.1.2 Coupled models description in JDEVS

If the user wants to interact directly with the simulation engine, the coupling
between models can be made directly in a java class. However, with the use
of the GUI, it is possible to graphically construct the model structure that is
saved in XML (Bernardi and Santucci, 2002). Every kind of coupled models
(Cellular, Vector, Diagram...) have a specific XML structure, however, to per-
form coupling between different types of models they must share a minimum
set of nodes (the interested reader will find details about XML language in
(Means and Harold, 2001)). The resulted XML document type definition with
the minimum set of nodes for a coupled model is:
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<!ELEMENT MODEL (TYPE, NAME, BOUNDS?, INPUT*, OUTPUT*, CHILD*,

EIC?, EOC?, IC?)>

With TYPE defining the kind of coupled model, NAME the name of the
model, BOUNDS the position of the model on the screen (used only by the
GUI), INPUT = (PORT*) the set of input ports, OUTPUT = (PORT*) the
set of output ports, CHILD = (MODEL*) the index for the components of
the coupled model (in the priority order). For the coupling a generic LINK
= (PORT, PORT) tag is created to store couplings, EIC = (LINK*) is the
external input coupling set, EOC = (LINK*) the external output coupling set
and IC = (LINK*) the internal coupling set. Each coupled model is stored in a
different XML file. Thanks to the XML format, the definition can be extended
for other kind of model (such as cellular models) and new tags can be added
while keeping the file backward compatible. A specific parser is defined for
each type of models. The specific parser automatically instantiates the models
and creates the links recursively from the top of the simulation tree to the
atomics. If a model is constituted of different types of sub-models, the parser
which is at the top of the simulation tree instantiates the appropriate parser
for each CHILD node.

4.2 Hierarchical block modelling and simulation interface

The graphical user interface is the modelling front-end of the toolkit, using
this front end, the user can graphically create, compile, link and store ba-
sic and coupled models, debug the resulting model and perform simulations.
Distributed modelling is made using the GUI, if different modellers work on
sub-coupled models and store them in the same library, it is possible to fed-
erate those models in another graphical modelling client. Figure 4 shows the
modelling and simulation interface.

At the left stands the models library (with basic and coupled models), with
a mouse click the selected model is added to the selected coupled model. In
the center stands the hierarchical block diagram representation of the model,
all components can be moved with the mouse, the linking between models is
performed by a click from the origin port to the destination port. On the right
stand the property panel of the selected component. If it is a basic model, the
user can edit and compile it from this properties panel. At the bottom of the
figure stands the simulation panel, the user load the input events from this
panel and run the simulation to the screen or to a file. To debug the model, it
is possible to track the simulation. In this mode, a chosen delay is set between
the processing of each event. The diagram representation of the models is then
displaying the event queue and the states of the selected models during the
run.
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The coupling between different kind of models is done with this interface.
Selection of specific kinds of models, such as Cellular models, is made in the
library and results in the creation of a block component representation of the
model with input and output ports. If a simulation is run, the appropriate
panels are automatically generated to track the simulation.

4.3 Generic models library

A complete description of the library can be found in Bernardi and San-
tucci (2002). The purpose of the library is to provide easy model storage and
reusability. The software design in itself can be seen as an object oriented
database.
In addition to the structural links, the library stores the inheritance and the
abstraction link between models. The models stored in the library are called
”context-out” models (usually the source code). To retrieve a model, it is in-
stantiated, and then put ”in context”. During this phase the state of the model
is set back to the state it has when it has been stored. Several simulation sce-
narios can create several ”context-in” model from the same ”context-out”
model description.

The implementation of the library description in JDEVS is resulting in a
module in the GUI. This module presents models according to its domain and
sub-domain, all classified in a tree like architecture.

4.4 GIS interconnection

Brandmeyer and Karimi (2000) have detailed various GIS coupling method-
ologies. To keep the modular architecture of the toolkit, the connection to the
GIS is made through a loose coupling. In this kind of coupling, the data is
exported from the GIS to the spatial manager, and results are imported back
after the simulation. Input/Output operations are performed via the Geotools
(2002) java software library that supports the Arcview, ASCII and GML (Ge-
ographic Markup Language) formats.

As the simulation is event driven, the map is never entirely updated during
the run. The output of the simulation is a set of events that represents only
what has changed on the map over time. This greatly reduces the size of the
log file and accelerates the execution, but this format cannot be outputted
directly to the GIS. Here is an example of the output of a cellular model of
bug propagation:

time cell value
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20 546 10.0

22 778 20.0

25 837 20.0

Where ’time’ is the time when the change has happened, ’cell’ is a reference
to the cell where the change has happened and ’value’ is the new value for the
cell.

The simulation events must be ’flattened’ is order to create maps that can be
sent back to the GIS. Those maps are snapshots of the simulation at a certain
time. To create those snapshots, the program takes the initial value of the
map and apply all changes that has occurred before the time defined by the
user.

4.5 Cellular simulation panels

The cellular simulation panels are the experimental frames for the cellular
models. The panels share the same simulation engine than the other modules
so they have access to the general input and output ports of the models loaded
in the JDEVS GUI when both the GUI and the panels are launched.

The cellular panel allows to perform (and debug) simulation of a cellular
model. The user can directly interact with the simulation, as he can send events
using the mouse. Otherwise the interactions are predefined in an interaction
event file. The general architecture adapted from Wainer and Giambiasi (2001)
and shown in figure 5 has been adopted to model cellular systems.

It is composed of a distributor and cells in a cellular coupled model. The
general input is connected to the ’value’ input port of the distributor. The
distributor can send a value to either all the cell or to the cell that is selected
by an event in its ’Select’ port. All cells are also connected to a general output
(one output port for each cell).

Using the GIS connector the cellular panel load the maps, automatically in-
stantiates one cell for each point of the grid and perform the coupling. Once
the model is created, it is sent to the simulator that performs the simulation.
During the simulation run, the evolution of the model can be observed in the
2D or 3D simulation panels (figure 6).

Those simulation panels can also run as applets in any java enabled browser,
thus creating a wide range of new applications. As an example of such applica-
tions, models developed in JDEVS can be directly published and experimental
frames set-up for a certain type of user. The modeller can decide to define an
experimental frame (a chosen model and a site of interest) for a stake holder,
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then publish the experiment on the web. The stake holder will then be able
to try himself different simulation scenarios.

4.6 Vector simulation panels

The vector simulation panels are the experimental frames for the vector mod-
els. Vector models and cellular models are superposed in figure 7 to shows
a sample simulation of vector model and the equivalent cellular model (vote
automata (Moore, 1996)). On the figure, the two simulations are independent
and superposed only to show the equivalence in terms of results.

In figure 7 (1) the model is in its initial state. The model is decomposed
in four points (A,B,C,D) that shares the same location but have different
displacement vectors. We chose four points to have here the equivalence with
the cellular Von-Neumann neighborhood (North, East, South, West). Each
point also has a ’geographical link’ to its next point and is aware of its position
and neighborhood (A is linked to B, B to C, C to D and D to A). Each point
also have a displacement vector that can vary in speed and direction. A point
will be decomposed when it collides another surface or if its link to another
point collides another surface.

At the initial state the points are instantiated to represent the initial shape
of the phenomena. The initial displacement vectors can also be set as initial
states of the points, if no initial value is given, the points will calculate speed
and direction according to the space properties.

The time taken until the next event is then calculated for each of the points:
the shape network activate the points by sending the position of all points
constituting its neighborhood (any spatial entities in the direction of the point
and segment). Once they get the information, the points are sending a message
containing their current position to the shape network. The time to collision is
calculated by dividing the distance to the closer vertices of the neighborhood
by the speed of the point.

In figure 7 (2) the point A will be the first to have a collision with a different
space entity, so the model directly moves from the initial state to the first
collision (2).

The point A will then schedule a change and the shape network instantiates
two other points according to its decomposition policy. Next, the two points are
changing their behavior according to the new space attribute and the spatial
manager informs the shape network of their neighborhood. They are then
calculating their time to next event (a change in direction and decomposition
for point (A2)(3), and the last collision for point D(4).
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We can see from the figure 7 the advantages in terms of computational cost
of the technique: for this cellular voting model, and at this terrain resolution
the vector models calculates 20 intersections between each point and each
vertices, while the cellular model makes 46 transitions (one for each cell).
Basically, both algorithms are of the same complexity (O(n)), with n = the
number of cells for the cellular automata (Moore, 1996) and n = the number
of vertices for the vector model.

We are currently developing some models of wave propagation to validate
to which extent the vector modelling paradigm is applicable. The paradigm
seems also appropriate for the modelling of propagation of fire fronts on a
large scale with a reasonable level of details (Filippi and Bisgambiglia, 2002).
Nevertheless, this technique is limited by the fact that a shape only represents
an homogenous phenomenon, so this modelling paradigm is only of interest to
study physical interfaces (such as fire front).

JDEVS has been successfully used for the modelling and simulation of fruit fly
propagation in an orchard (Faure, 2001), fire propagation and a photovoltaic
power system with a neural network battery damage model (Filippi and Bis-
gambiglia, 2002). The following section presents an experiment that illustrates
a multi-paradigm modelling process with JDEVS.

5 Applications

This section use a case-study to illustrate the main advantages of using JDEVS:
coupling and reusability of models in a multi-paradigm framework. The two
following applications, a cellular pollution infiltration model, and a nitrogen
concentration model are simplified implementations of Zeigler et al. (1996)
and Lek et al. (1999). The purpose of these models is to illustrates the new
modelling scenarios possible by the use of the formal framework. With the
first model we show an implementation of a cellular model in JDEVS and give
an overview of the effort needed to implement such model in the framework.
The second model, a hierarchical block Feedback-DEVS model, illustrates the
integration of a neural network in a DEVS basic model. The two models are
different in nature. One is a model of spatial organization, while the second
is a non spatial empirical model. Nevertheless, the last part of this section
shows that a multi paradigm model resulting of the coupling of these models
is greatly simplified because models are sharing the same simulation engine
and the same interfaces.
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5.1 Cellular pollution infiltration model with 3D visualization

To manage natural resources such as water, it is necessary to model the phe-
nomenon that alter those natural resources in order to quantify and qualify
them. The sample model is adapted from Zeigler et al. (1996). Figure 8 shows a
simulation of the model developed to quantify pollution in catchments basins.
Like any other basic model, this cellular pollution model is described in one
file, the atom cell description file. The behavior is described in programming
code. The skeleton for the file is generated by the GUI, it contains the four
functions of the basic model as well as the following state set:

<X{N, S, E, W, in },Y{N, S, E, W, out},S{poros, elev, pollut}> (N,S,E,W corre-
sponds to the North, South, East and West ports of their neighborhood). In
this model:

• The λ function (output) is sending to the neighboring cells its elevation and
quantity of pollutant. This function is called by the simulator in case of an
activation.

• The δext function (input) is receiving the quantity of pollutant and altitude
from the neighboring cells, and send an activation message if its elevation
is significantly lower than the elevation of the neighboring cell.

• The δint function (internal) is called when the cell receive an activation. It
updates the states (here the quantity of pollutant) according to the quantity
received and the porosity of the ground.

• The ta function (time advance) defines the time to the next self-activation
of the cell according to the quantity of pollutant (thus defining the flow
speed). Here is the Java transcription of the output function, λ, as a code
example:

EventVector outFunction(Message m){

e = new EventVector();

e.add(new Event(N,"Elev","Pollut"));

e.add(new Event(S,"Elev","Pollut"));

e.add(new Event(E,"Elev","Pollut"));

e.add(new Event(W,"Elev","Pollut"));

return e;}

Those four functions constitutes the only programming task that the specialist
(mathematician, physicist, ecologist) has to implement in order to have his
model working. Once the behavior of the basic cell model is described, the
only work that has to be done is in the data preprocessing into the GIS
(generation of ASCII raster maps of the initial states: porosity, elevation and
quantity pollutant, choice of cell size). The 3d simulation panel serves as the
experimental frame of the simulation of these phenomena. Java3D library is
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used to paint the outputs of 2d or 3d cellular models. The elevation map
exported from the GIS permits to reconstruct a 3d world and the 3d panel
enables here the visualizations of the polluted zones. To interact with the
model, it is possible to click on the map during the simulation run and add
pollutant to a specific cell. General outputs of the model are a file containing
a set of each output events that occurred during the simulation and a file
containing raster ASCII maps generated at fixed times during the simulation
run.

5.2 A neural network model of nitrogen concentration

The model of nitrogen concentration is adapted from Lek et al. (1999). It
uses Feedback-DEVS for the implementation of an ANN (Artificial Neural
Network) in a DEVS framework.
Figure 9 presents the model in the JDEVS GUI. The neural network has been
trained to provide the daily quantity of nitrogen (TNC) produced by a patch
of land. The independent input variables for the models are:

• The percentage of the patch area under forest, FOR,
• The percentage of cultivated area of the patch, AGR,
• The percentage of urban area of the patch, URB,
• The percentage of wetland area of the patch, WET,
• The percentage of other kind of area of the patch, OTH,
• The animal unit density, ANI,
• The daily runoff over the patch, FLO,
• The daily precipitation over the patch, PRE.

In figure 9, the box A corresponds to the Feedback-DEVS model that encap-
sulates the pre-trained neural-network. In this model the variable FOR, AGR,
URB, WET, OTH and ANI are parameters. The model is simulating the re-
sponse in terms of quantity of nitrogen for a patch with a fixed repartition
of forest, cultivated, urban, wetland or other area and with a fixed animal
density. This basic models has two input ports, ’PRE’, the daily precipitation,
and ’FLO’, the average water flow. The daily quantity of nitrogen is emitted
by the output port ’TNC’. This model also have a Feedback input port ’Feed-
backTNC’ when an external event is received on this port the model triggers
the learning function (here back-propagation (Lek et al., 1999)) to learn the
new nitrogen quantity for the value of rainfall and runoff of ports ’PRE’ and
’FLO’.

Box B corresponds to a basic model of a quantizer. The output quantizer
model sums the quantity of nitrogen received in its ’DayNitro’ port (here
outputted by the neural network). When the cumulated quantity of pollutant
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reaches a certain amount an output event is generated in the ’Nitro’ output
port. The amount of nitrogen to be reached before an event is outputted is
defined by the ’Quanta’ property of the quantizer model. The ’Nitro’ output
port is connected to the general output port of the model ’NitroE’.

For the simulation of this model, the daily data of rainfall and runoff for the
patch is loaded as data series in the JDEVS GUI using the simulation panel.
The output of the simulation is not the quantity of pollutant at every time
step (driven by the daily input data), but instead the model outputs events
each time a certain amount of nitrogen is reached. The information given by
the output of the model is carried by the time between two output events. If
the patch outputs a lot of nitrogen, the time between each output will be very
short. If the patch does not output much nitrogen, the event will be separated
by a longer time. The general output of the model is an ASCII file containing
a set of events that must be post processed in a spreadsheet or in a statistic
processing software.

5.3 Coupling the model of nitrogen concentration with the cellular pollution
infiltration model

Although the pollution infiltration model is a cellular model, and the nitro-
gen concentration model is a Neural Network model, once integrated in the
framework they both share the same port based interfaces. Thus it is possible
to couple these models and simulate the impact of a new land use for a patch
of land.

Before performing the coupling, the modeller has to verify that the data that
will pass from the a model corresponds with the data required by the model it
will be connected to. In this experiment the data are compatible, the nitrogen
concentration model will send a certain quantity of nitrogen at various time,
while the cellular model is propagating a certain quantity of pollutant.

Then a cell must be chosen for study, and the rainfall and runoff data for the
cell extracted from a GIS. As of the subject of the experiment is be to test
the impact of a new land use for the land patch represented by the cell, so
the variables FOR, AGR, URB, WET, OTH and ANI are given before the
simulation by the user.

The coupling between the two models is made in the hierarchical blocks inter-
face by loading the two coupled models (feedback and cellular) from the library
into a blank coupled model. The resulted XML tag specifying the coupling of
the nitrogen and pollution model is:

<IC><LINK>
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<PORT model="NitroModel.xml">NitroE</PORT>

<PORT model="cell.xml">in[40-83]</PORT>

</LINK></IC>

The file specifies an internal coupling between the port ’NitroE’ of the nitrogen
model with the port ’in’ of the chosen cell (here the cell at line 40 and row
83).

For the simulation, the nitrogen model is loaded first in the GUI, and the cellu-
lar pollution infiltration model is loaded in the cellular panel with the coupling
parameter file. The simulation being finally launched by the simulation panel
of the GUI. General outputs of the model are an ASCII file containing a set of
each output events that occurred during the simulation and a file containing
raster ASCII maps generated at fixed times during the simulation run.

A DEVS multi-model, combining neural-networks and cellular automata paradigms
has been presented in this section to illustrate the modelling process in JDEVS.
The next section concludes by briefly comparing JDEVS with other environ-
mental modelling tools and present the current perspectives of work.

6 Conclusion

A DEVS Based formal framework provides a well defined architecture to spec-
ify models of a wide variety of modelling paradigms. Moreover, as the gen-
eration of a simulator from a DEVS model is automatic, it is not necessary
to specify step by step instructions on how the model should be simulated.
JDEVS, the java implementation of the framework, help researchers to build
and simulate environmental models using the DEVS formalism. Compared
to other modelling softwares such as SWARM (2002), SELES (Fall and Fall,
2002) or ECLPSS (Woodbury et al., 2002), JDEVS is not limited to a single
modelling paradigm (multi agent or cellular automata) or to spatially explicit
models. The approach is similar in terms of objectives to IMA (Villa, 2001),
SME (Maxwell and Perestrello, 1997) or OME (Reed et al., 1999), as those
environments provide an integrated framework for models interoperability. Ac-
cording to the points outlined in the domain analysis of section two, JDEVS
compares with those environments as follow:

• Features: SWARM, SELES and ECLPSS are limited to spatially explicit
modelling paradigms while OME is non spatial. Like JDEVS a specific se-
mantic is used in IMA and SME to describe the behavior of models. Having
a higher level language permits to add new modelling paradigm to the envi-
ronment and still ensures compatibility between models. Nevertheless only
JDEVS use a high level formalism proven to be close under composition.
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Moreover it is necessary to use specific Application Programming Inter-
faces to add new modelling paradigms to SME or IMA, while JDEVS can
make the use of the wide variety of modelling paradigms that already ex-
tend DEVS. In particular the Feedback-DEVS and Vector-DEVS developed
in this paper are extending the features of JDEVS with the integration of
vector based models and supervised-learning modelling paradigms.

• Interfaces: In terms of database interfaces, most of the environmental mod-
elling softwares provides an interface with a GIS. Like SWARM, SELES
and ECLPSS, JDEVS is loosely coupling with the GIS, exchanging data
with input and output files. Only SME can provide a tight coupling with
GIS. JDEVS also provides an interface with a model library similar in con-
cept to the SME or IMA models libraries. In terms of component interfaces,
JDEVS uses port based interfaces that simplifies the coupling process with
other DEVS models. The other modelling environment are coupled with
references to models variables.

• Abstractions: SWARM, SELES and ECLPSS makes an abstraction of space
in terms of cells. Although it should be possible to specify models that makes
the use of a vector representation in IMA and SME only JDEVS provide a
technique to specify vector based models. Like SWARM and SELES, JDEVS
is using discrete events for the simulation, this provides the most general
description of time as discussed in section 2.2.

• Components: In terms of modelling components, SWARM, SELES and
ECLPSS are using agents and cells as basic components for the descrip-
tions of their models. Like in OME IMA and SME it is possible to specify
new kinds of components in JDEVS to implement the variety of approaches
in environmental modelling. In terms of software components, JDEVS like
SWARM makes an explicit separation between the experimental frame and
the model. It is possible to visualize a running simulation in 2d, 3d in a web
applet or directly store the result for post treatment in a GIS.

• Limitations: The quality of the simulation results of any modelling environ-
ment is limited by the quality of the data available. It also exists conceptual
limitations because computer models are limited by the assumptions made
in the modelling paradigm used. Only IMA, SME and JDEVS enable multi-
paradigm modelling and are not limited to a fixed knowledge representation
scheme.

The need of a formal framework in environmental modelling extend beyond
the choice of the DEVS formalism or the JDEVS implementation. Because
it is based on a DEVS based formal framework, JDEVS provides a differ-
ent approach than the existing tools. In terms of flexibility and genericity of
use it can provides the high level approach of a general formalism. In terms
of features, abstraction, components and interfaces, JDEVS provides the ad-
vantages of a domain specific modelling environment. With JDEVS it is also
possible to specify, store, retrieve, couple and simulate different kind of models
without having to specify how those models should be simulated. As further
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developments, we are extending the ’spatial manager’ to enable a tighter cou-
pling between the GIS and the simulated models as well as between vector and
cellular models. The next release of JDEVS will include a full integration of all
the modules into an unified tool with a single interface to simplifies coupling
procedures between different types of models.
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Fig. 1. A DEVS model (left) with corresponding simulation tree (right). Grey boxes
corresponds to the basic models and their simulators, white boxes to the coupled
models and their coordinators.
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Fig. 2. JDEVS toolkit architecture. Diamonds corresponds to human interactions,
squares corresponds to the modules and circles to the interchange formats.
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public class DevsAtom extends BasicModel {
Port i1 = new Port(this,"i1","IN");
Port f1 = new Port(this,"f1","FEEDBACK");
Port o1 = new Port(this,"o1","OUT");

public DevsAtom () {
super("DevsAtom");
states.setProperty("A",""); }

    EventVector outFunction(Message m) {
return new EventVector();}

    void intTransition() {}
    EventVector extTransition(Message m) {

return new EventVector();}
    EventVector react(Message m) {

return new EventVector();}
    int advanceTime(){return A;}

}
}

Fig. 3. Java skeleton code for DevsAtom

Fig. 4. JDEVS Hierarchical block M&S GUI.
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Fig. 5. Cellular models architecture.

Fig. 6. 3D and 2D interactive visualization panels

Fig. 7. Vector propagation, in its initial state (1), first collision(2), second collision
for point A2(3) and last collision (4)
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Fig. 8. Pollution model in the 3D panel

Fig. 9. Nitrogen ANN model in JDEVS, with the neural network model (A) and
the nitrogen quantizer(B)
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