Environmental Modelling & Software xxx (2009) 1-13

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

Contents lists available at ScienceDirect

A software framework for fine grain parallelization of cellular models
with OpenMP: Application to fire spread

Eric Innocenti?, Xavier Silvani?, Alexandre Muzy?, David R.C. Hill *

2 University of Corsica, SPE — UMR CNRS 6134, B.P. 52, Campus Grossetti 20250 Corti, France
b Blaise Pascal University, ISIMA/LIMOS UMR CNRS 6158, BP 10125, Campus des Cézeaux 63177Aubiére Cedex, France

ARTICLE INFO

ABSTRACT

Article history:

Received 10 November 2006
Received in revised form

13 November 2008
Accepted 18 November 2008
Available online xxx

Keywords:

Software framework

Fire spread physical model

DEVS

Open MultiProcessing (OpenMP)
Symmetric multiprocessors (SMP)

We are dealing here with the parallelization of fire spreading simulations following detailed physical
experiments. The proposal presented in this paper has been tested and evaluated in collaboration with
physicists to meet their requirements in terms of both performance and precision. For this purpose, an
object-oriented framework using two abstraction levels has been developed. A first level considers the
simulation as a global phenomenon which evolves in space and time. A local level describes the
phenomena occurring on elementary parts of the domain. In order to develop an extensible and modular
architecture, the cellular automata paradigm, the DEVS discrete event system formalism and design
patterns have been used. Simulation treatments are limited to a set of active elements to improve
execution times. A new kind of model, called Active-DEVS is then specified. The model is computed with
a fine grain parallelization very efficient for present day multi-core processors which are elementary
units of modern computing clusters and computing grids. In this paper, the parallelization with Open
MultiProcessing (OpenMP) standard directives on Symmetric MultiProcessing (SMP) architectures is

discussed and the efficiency of the retained solution is studied.

© 2008 Published by Elsevier Ltd.

Software availability

Name of software: The C++ code is freely available with a simple
request to Eric Innocenti ino@univ-corse.fr.

1. Introduction

Simulation is a powerful tool that enables a better under-
standing of real world problems. Among the various simulation
techniques, the simulation of discretized differential equations has
been used to describe complex systems and interpret many real
world problems. To deal with space, these simulation models are
usually represented as cell spaces (Wu et al.,, 2004; Langlois and
Phipps, 1997; Karafyllidis and Thanailakis, 1997).

Fire spreading is a good example of complex phenomena that
relies on differential equations and cellular models. In fire spread
modeling, discrete equations are written down from the conser-
vative laws for mass, momentum and energy that govern the
system. In this paper, the domain context is multi-scale, from small-
scale laboratory experiments to field scale experiments, hence, the

* Corresponding author. Tel.: +33 0 473 40 50 19.
E-mail address: drch@isima.fr (D.R.C. Hill).

1364-8152/$ - see front matter © 2008 Published by Elsevier Ltd.
doi:10.1016/j.envsoft.2008.11.014

physical complexity of the thermodynamic system under consid-
eration strongly increases. In actual fires, a set of new control
parameters and distributions appear in comparison with laboratory
fires. These are mainly governed by a multi-scale structured
vegetation (shrub or forest), the turbulent flow regime of the flame
front and its crossing wind flow and the fractal nature of the
topography. This enlargement in the range of scales (e.g. from few
centimeters of a leave to several kilometers) supposes huge
computing resources in order to capture each representative scale
governing the conservative laws. The numerical resolution of the
partial differential equations forming the system of conservative
laws for a reactive fluid flow is known as Computational Fluid
Dynamics (CFD), including multiphase flow simulations (Morvan
and Dupuy, 2004) and Large Eddy simulations (Mell et al., 2007).
An efficient alternative to CFD for fire simulation is the cellular
automata approach. Indeed, cellular automata appear to be
appropriate for modeling such complex spatial phenomena as
large-scale fires, because of their discrete nature and their suit-
ability for implementation on computers (Tian and Burrage, 2005;
Lay, 2000) The methods ensuing from this paradigm emphasize
local interactions as opposed to a global description. The generated
emergent behaviors are often surprisingly complex. Wolfram and
others have shown such emergent features of cellular automata
(Wolfram, 2002; Talia, 2000). In fire spread modeling, this was

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP....,

mailto:ino@univ-corse.fr
mailto:drch@isima.fr
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft

2 E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13

recently illustrated in (Porterie et al., 2007) comparing a cellular
automata approach to experiments performed at the labo-
ratory scale. At a field scale, in a strategy involving cellular
automata, the coupling with atmospheric models and topograph-
ical models (stored in a Geographical Information System) shall be
planned (Clark et al., 2004.) Furthermore, some new trends in
fire safety research include modern data assimilation techniques
(Cohen et al., 2007). All these new modular components of
a simulator for wildfire at a field scale necessitate using techniques
for high performance computing (the coarse-grained paralleliza-
tion for data assimilation or atmospheric models). At the end,
prediction tools of a wildfire behavior at fields scale require simu-
lation times shorter than real times for an optimal management of
firefighting.

Therefore, fire spreading modeling and simulation require
efficient models and very high performance computations. The
efficiency of discrete event simulators is beginning to receive
significant attention (Wainer and Giambiasi, 2001; Lee and Kim,
2003; Hu and Zeigler, 2004; Muzy and Nutaro, 2005). Concerning
cellular models, (Wainer and Giambiasi, 2001) show that the
simulation of cellular models can be improved by “flattening” the
hierarchy of coordinator objects which are used in the DEVS
(Discrete EVent System Specification) (Zeigler, 1976; Zeigler et al.,
2000a,b). In this flattened simulator, a single coordinator manages
all the atomic components of a model. This can significantly reduce
the cost of event routing, and it eliminates the need for multiple
coordinator objects. Lee and Kim (2003) describe a similar solution
that computes and stores possible event routes at compile time.
Hu and Zeigler (2004) describe an improved scheduling algorithm
for cellular models that are simulated using a hierarchy of coordi-
nators and simulators. Muzy and Nutaro (2005) proposed a new
simulation approach for DEVS models (Zeigler et al., 2000a,b) and
Parallel Dynamic Structure Discrete Event (DSDEVS) models
(Barros, 1997). The simulation architecture and communication
protocol have been designed to improve efficiency by: (i) elimi-
nating unnecessary simulator and coordinator objects, (ii) faster
event scheduling by only storing references to active models, (iii)
eliminating unnecessary internal synchronization messages, and
(iv) eliminating unnecessary event routing messages.

From a modeling point of view, three kinds of approach have
been developed so far through the DEVS formalism:

1. “Pure” DEVS models, in which cells are specified and simulated
as usual atomic models (see Ntaimo et al., 2004) for a good
example on fire spread),

2. A higher specification level has been developed through Cell-
DEVS (Wainer, 2002). Timing mechanisms abstractions and
geometrical sets have been added to usual DEVS structures,

3. Non-modular approaches to improve simulation efficiency
(Muzy et al., 2003; Shiginah, 2006). In the latter very sound
proofs of closure under coupling are provided. A simplified
specification level is provided to facilitate modeling and
improve simulation performances.

The third approach is definitely chosen from a modeling point
of view (using a non-modular approach) and a simulation point of
view, using simplified aggregated simulators: (Muzy et al., 2003).
Furthermore, our fire spread model has already been simulated
and modeled through the Cell-DEVS formalism (Muzy et al.,
2002a,b, 2005; Wainer, 2006). The implementation was per-
formed but we were not able to provide reasonable simulation
times compared to the physical propagation time. Indeed, this fire
spread model necessitates very small time and space discretiza-
tions leading to important computation overheads. Two reasons
can explain this:

1. As B.P. Zeigler (DEVS' father) says: “(...) rule-based model
specification (...) is achieved at some cost in execution time”
(Zeigler, 1990). Moreover, dealing with discrete event timing
mechanisms at a low level (here the cells), and for discrete-
time simulation, leads to data structure overheads due to
message exchanges. The next point justifies this overhead with
comments from Shiginah, one of Bernie Zeigler's students:

2. “Cell-DEVS formalism, since it represents each cell as an atomic
model, is considered as a conventional DEVS implementation
of cell space models which has the performance drawback that
is resulted by the huge volume of inter-cell communication
generated during simulation. In addition, expressing cellular
models in Cell-DEVS formalism is, to some extent, complex and
requires more efforts at the modeler level. On the other hand,
this dissertation introduces the multi-layer approach to
simplify the modeling process and make the cell space’s
extensive specifications transparent to the end user.” (Shiginah,
2006).

Hence, Active-DEVS aims to be an efficient model for simu-
lating large-scale propagation phenomena. The software tools
implemented have to keep pace with the rapid improvements of
processing power of SMP machines. To reach these objectives,
a cellular model (Worsch, 1997) and a simulation framework,
founded on both DEVS (Zeigler et al., 2000a,b) formalism and
object-oriented methodology, have been used.

An enhanced automaton models the propagation domain in
which elementary behaviors describe each node. The spatial
dynamics expression of the phenomena is thus facilitated. The
DEVS formalism simplifies the modeling at a higher level and
allows specifying components independently from automatically
generated simulation algorithms. Hence, descriptions of the
simulation treatments are facilitated.

The object-oriented architecture relies on design patterns and
thus keeps a modular, elegant and adaptable design (Gamma et al.,
1994.) A specific approach founded on an object container
integrating parallel directives for SMP machines is performed. The
implementation of this local parallelization allows improving
execution times and is reported as fine-grained parallelization. The
software simulation tool developed combines the experienced
features of cellular automata, object-oriented methodology (design
patterns), DEVS, and the efficiency of parallelization techniques
based on OpenMP parallel compiler directives (OpenMP, 2002.)
The presented approach is designed to evolve for predicting
wildfires at field scale. This study therefore attempts evaluating
the efficiency of the chosen fine-grained parallelization when
combined with a modern object-oriented architecture, with
cellular automata.

On the one hand, modeling is facilitated by the use of object-
oriented techniques and DEVS. This technique and this framework
have been used successfully in many different domains (for
a review on DEVS applications, please refer to Zeigler et al.,
2000a,b.) At the simulation level, design patterns are used to switch
easily between different data structure implementations depend-
ing on cellular modeling requirements (more details are provided
in sub-section 3.1) and parallelization techniques.

The main contributions of this approach can be summed-up as
follows:

- A physics-based model is implemented in a consistent and
adapted object-oriented and formal framework,

- The latest advances in the domain of discrete event modeling
and simulation are used for optimization (at both modeling
and implementation levels),

- SMP parallel implementations are included in a generic way,

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP:...,

E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13 3

- The whole framework can be used in a very efficient and easy
way by scientists for modeling and simulation on a single
personal computer.

This paper is organized as follows: in section 2, the backgrounds
for developing the simulation model are introduced; in section 3,
the model and simulator designs are described; section 4 presents
the parallelization technique conduced with the industry standard
OpenMP, in order to enhance performance; in section 5, the details
of the fire spreading implementation are explained and the simu-
lation results are analyzed; finally, conclusion and perspectives are
drawn in section 6.

2. Background

The cellular automata paradigm, the DEVS framework and
design patterns are merged to achieve a multi-level specification of
Active-DEVS.

2.1. Cellular automata

Cellular automata (CA) (Von Neuman, 1966; Wolfram, 2002)
have been reinvented numerous times under different names and
within diverse disciplines as counterpart to finite difference equa-
tions. Basically, a cellular automaton represents an array of identical
cells, i.e., the cell space. The cell space is composed of individual
cells. Each cell is a programmed automaton which interacts with
others according to a fixed set of deterministic rules. Basic elements
of a cellular automaton are: its state, the neighborhood of cells and
its transition rule. The state is a variable associated to each cell in
the cell space and represents the studied local data; the neigh-
borhood represents the nearest cells used in the automata rules for
calculating the behavior at the next time step; finally, the rules
define how the state of a cell evolves with respect to the current
state and the current states of its neighbors. At every time step
states of cells are simultaneously updated according to the transi-
tion rule.

A basic cellular automaton is a structure:

CA = (Zd,S,N,é),

where, Z¢ is the discrete lattice of d-tuples, S is the finite set of
states, N = {(nj = (Xyj,....Xgj)[j € {1,...,n}} is a finite ordered subset of
7% (the neighborhood), 6: S"*! — S is the transition rule of CA.

Although a variety of simulation models based on basic
automata have been performed, simulating ecological processes
require several evolutions of this fundamental computational
model. The basic homogeneous cellular structure is too rigid to
easily represent the diversity of processes interacting in an
ecosystem. Generalizations of cellular automata methodology are
then required (Bandini et al., 2001; Sipper, 1994). The combination
of object-oriented programming and cellular automata paradigm
offers the flexibility to include a large part of process description
met in ecological modeling.

2.2. Design patterns

Design patterns are described in the literature as good solutions
to common problems encountered when designing object-oriented
architectures. They appear as powerful tools useful for environ-
mental modeling. Nowadays, they are unavoidable when dealing
with object-oriented programming. A lot of studies were founded
on design patterns in the early 1990s, but the really famous ones are
those developed by the “Gang of Four” (Gamma et al., 1994). These
authors have identified and cataloged the design patterns from the

object-oriented developments recognized by the software
community in order to solve specific design problems. The key
people who introduced design patterns in the software engineering
community give this definition: patterns are “descriptions of
communicating objects and classes that are customized to solve
a general design problem in a particular context.” Appleton (2000)
gives a clear picture of design patterns and provides pertinent
information on their relevance to various programming problems
they may wish to solve in ecological modeling. In the software
design proposed in this paper, we aim at structuring reliable
simulation systems by allowing optimized models to be composed
in a flexible manner. A combination of design patterns, and
a comparison between two enhanced cellular models for propa-
gation phenomena were studied in a previous work (Innocenti
et al., 2004a,b). In the following we only retain what we found to be
best for fire propagation modeling.

2.3. Discrete EVent System Specification

Developed in the beginning of the 1970s, DEVS is an abstract
universal formalism used for discrete event modeling (Zeigler,
1976).

A basic DEVS atomic model is a structure:

DEVS = (XMv YM7S, 6int7 Av ta)-,

where, X is the set of ports and input values, Yy, is the set of ports
and output values, S is the set of system’s states, 0oy is the external
transition function, iy is the internal transition function, A is the
output function, ta is the time advance function.

Components of the model are presented via the descriptive
variables. S represents the set of state variables. X is the set of input
variables and Y is the set of output variables. An atomic model is
influenced by internal and external events. Atomic model activity is
described by the internal transition function djn¢, the output func-
tion A and the external transition function dex. External events are
generated on the input ports of the atomic model and generate the
model response to the outside. Internal events are programmed as
a result of external events occurrences. The reader interested in
more details will benefit from the following DEVS reference book
(Zeigler et al., 2000a,b).

3. Model and simulator design

Separating model specifications from simulation algorithms
improve productivity. Simulation algorithms are automatically
generated. Models can be easily modified without modifying the
corresponding simulators. The design of both models and simula-
tors are presented hereafter.

3.1. Cellular object model

The combination of discrete event simulation techniques and
the cellular automata paradigm enables us to reduce execution
times restricting computations to active cells (i.e., cells changing
state), a new kind of model, called Active-DEVS, is specified. The
execution time gain can thus be considerable and the total execu-
tion time is less dependent on the size of the propagation domains.
Indeed, only cells executing a state transition are considered for
computation. Simulator activity is then limited to this set of active
cells (or “active components”.)

In fire spreading simulations, this technique permits the
restriction of computations to fire fronts by indexing active
components in memory (Innocenti et al., 2004a,b). The computing
burden is thus limited to these components. To achieve this goal

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP....,

4 E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13

usual data structures are managed by the classical list algorithms
implemented in numerous libraries. Such data structures are called
containers thank to their ability to contain other objects. For the
C++ language, retained for performance reasons (Stroustrup,
2000), the best known library for container management is the
Standard Template Library, STL (Stephanov and Meng, 1995). A
performance comparison between different containers used in fire
spreading applications has been performed in (Innocenti et al.,
2004a,b).

The objective is to develop a modular model structure adaptable
to different execution contexts. Two design patterns are used in this
scope: (1) the strategy pattern and (2) the adapter pattern. The
Strategy Pattern is used to encapsulate the variants of algorithms
which manage the active components and swap them strategically
to optimize dynamically the management of active cells without
changing the global framework architecture. The Adapter design
pattern is used to adapt STL classes to our framework. Using this
design technique, it is easy to switch the container and also to
change between multiple algorithms which can be proposed in
order to manage the active elements.

(1) Using the strategy design pattern, the container and
the corresponding model management algorithm are separated and
encapsulated into two separate classes ‘ActiveVector’ and
‘Container’. This enables an easy switching of the container algo-
rithm according to simulation requirements. References to cells or
events require managing data structures and event lists. The effi-
ciency of a solution also depends on the application data. Some
applications require managing time through schedulers (Hu and
Zeigler, 2004), others do not and only require lists (Muzy et al.,
2003). Concerning schedulers many solutions exist (unsorted
arrays, binary heaps, trees, etc.) providing different algorithmic
complexities according to the operations which deal with the
elements of the scheduler (add, remove, get minimum time of the
scheduler, etc.). For a more precise review, please refer to (Shiginah,
2006). According to the number of operations that will be required

for a specific kind of model, there will be a best adequate solution.
The cooperation between the strategy design pattern and the classes
describing the active component transitions are illustrated in Fig. 1.

Whereas a classical derivation-based approach fixes the
container algorithm, the strategy solution developed enables us to
adjust it easily. The container algorithm can vary independently
from the interface (class ActiveVector) used to manage the active
components in the model. An abstract class is associated to the
different categories of containers, and a concrete class to each
specific container. The abstract class represents the common
interface for the different kinds of containers; each concrete class
uses this interface. The experimentation of different containers is
facilitated, and the choice of a container depends on the particular
simulation context. A configuration object indicates to the model
what kind of container to choose. The active-components
management thus defined is modular. The various STL containers
have been tested in different configurations. Indeed, the efficiency
of such object greatly influences the simulation performances.

(2) The Adapter design pattern is used to integrate the
containers of the STL in a modular way (Stroustrup, 2000.) It is
located between the container class, and the various possible
implementations offered by the STL. Thus, the interfaces of the
different containers available are converted into a generic interface
(ActiveVector class). Fig. 2 describes both strategy and adapter
design pattern cooperation. Intermediate classes (listContainer,
vectorContainer, dequeContainer, mapContainer, multiMapContainer)
delegate requests sent to them to the corresponding implementa-
tion (STL classes). The concrete container classes are derived from
the virtual container class, each one containing a container type
object. They are used to transmit the requests sent to the container
object to the corresponding object of the STL.

With the design choices made, the next step is to select how to
exploit this model on modern parallel computer architecture
(bi and quad-cores) to enhance execution times. The local paralle-
lization is performed into a Static Container (StaticContainer class),

What kind of strategy Configuration = - - S Configurationlobjlect is
. . used for reading in
for managing the active) L e
~ configuration files
elements ? ~
~o o
~N
Active elements
are managed with
this strategy
1.1 1.1] 1.1) .
<> Model Q > ActiveVector 0—) Container The Container class
1.1 1.1 AR represents the common
~| Interface for the different
kinds of containers
The propagation domain
in which elementary behaviors
describe each node
7
11 Vs Container A Container B Container C
Y / <
MU_Object i} \

Container algorithms used to manage
the active components in the model
are easily adjusted with the context of
the simulation

Fig. 1. Cooperation between the strategy design pattern and the ActiveVector object responsible for the transitions of the active components.

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP:...,

E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13 5

The StaticContainer
improves execution times
on parallel SMP architecture

StaticContainer

The Adaptator design pattern
is used to integrate the
containers of the C++ STL

ListContainer

VectorContainer

Strategy pattern eases
container change

Container

A

DequeContainer MapContainer MultiMapContainer

Fig. 2. UML collaboration diagram between the strategy design pattern and the adapter design pattern.

in which the OpenMP directives are implemented. Our own version
of the container is developed in order to avoid any latency in
element indexation which is dynamically performed in usual STL
containers. Indeed, dynamic memory allocations are efficient but
computationally expensive for fast simulations, alternative strate-
gies are available. The Static Container is free from such dynamical
memory management. A comparison between performances of
static and dynamic containers is presented in (Innocenti et al.,
2004a,b). The StaticContainer class is derived from the container
abstract class.

3.2. Simulation framework

The simulation elements allow the model to evolve over time.
The DEVS formalism facilitates the definition of the main objects of
the simulation. The hierarchical and modular structure of a DEVS
model is generally reflected in the specification of the model’s
simulator. The latter is automatically generated to activate the
elements of the model (described in section 2.3). Each atomic
model is associated with a simulator object. The simulator is
controlled by sending messages such as “compute next state” and
“compute next output”, and it makes requests such as “get time of
next event”. A coordinator object is associated with each network
model, and the coordinator can respond to the same types of
messages as the simulator objects. The coordinator, as its name
suggests, coordinates the execution of its component coordinators
and simulators.

Coordinators and simulators are created differently according to
a specified model. It is thus necessary to be able to build the same
tree structure, for different implementations. The issue here is to
make it possible for the root coordinator to choose a model,
a coordinator and a simulator, then to build the object architecture
of the simulation, using a simple interface. The solution relies
heavily on the abstract factory design pattern, which is used to get
round the limitations of inheritance as far as the programming
complexity. The structure obtained facilitates the creation of the
simulation models, as well as the simulators and coordinators
related to them. The first prototype is written in C++, and is fully
operational. Interfaces are developed using the factory design
pattern. Instantiations of related models and processors are
submitted to sub-classes. Three hierarchies of parallel classes are
inter-connected: the model class, the simulator class and the coor-
dinator class.

Fig. 3 represents the object interfaces developed with a modular
design adaptable to different execution contexts.

This architecture is independent from the way of creating,
composing and representing models, simulators and coordinators.
The sequence diagram in Fig. 4 illustrates the instantiation proce-
dure of the modeling components.

The root coordinator builds the simulation tree using as starting
point the different families of cellular models and the available
algorithms. A library of simulation tools is then made up. The
parent root coordinator does not know the implementation classes
of the families of models and processors (simulators and coordi-
nators). The permutation between the latter becomes simple, and
the consistency inside models and processors is reinforced. In that
case, for addition or modification of the simulation encapsulated
tools, only the simFactory objects are modified.

4. Implementation with OpenMP

The classes and relationships constituting the simulation
framework have been presented. The design rules, which allow the
development of modular model components, adaptable to different
execution contexts, have also been detailed. This section describes
how this framework is used for parallelizing the computations of
active components using the OpenMP industry standard (OpenMP,
2002).

4.1. OpenMP

OpenMP is a portable standard for software parallelization on
homogeneous architectures with shared memory (SMP) (Lucka and
Sorevik, 2000). Thanks to a set of directives it is possible to give
a simple description of the parallelization. There are two different
kinds of parallel regions:

1 - Loops with independent iterations,
2 - Independent code blocks.

In this experiment, only a loop parallelization has been used.
The goal of the OpenMP standard is to increase portability of
parallel programs intended for shared memory architectures.
Specifications of OpenMP are decided by the “OpenMP Architecture
Review Board.” In OpenMP, the executions of parallel loops are
based on the fork-join programming model. In a parallel section the
thread running is divided into groups of threads, which are

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP-...,

6 E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13

+CreateCoordinator()
+CreateSimulator()
+CreateModel()

ﬁk

SimFactoryB
+CreateCoordinator() +CreateCoordinator()
= =| +CreateSimulator() r = =| +CreateSimulator()
+CreateModel() +CreateModel()

SimFactory [¢——— === —=—1 Root

1
[}
1
A4

Configuration
Q

AN
N
AN

A Configuration object is used
in order to choose a SimFactory
for the simulation

Coordinator |« == == == =@ = = = = = = = 1

ﬁk

- - - -

CoordinatorB

Simulator I

ﬁk

Model €« - - ——=—=—=-=-=-=-=---- !

1
1 I
1 1
|
| L
_——— SimulatorB - - -1 |
! I
! |
! |
! I
1

Fig. 3. The abstract factory design pattern in the simulation framework.

synchronized at the end of the section and finally joined into only
one thread (the original one). OpenMP makes it possible to specify
easily sharing and synchronization of tasks, providing directives
which have the same syntax. It should be noticed that currently,
OpenMP does not propose directives which distribute data (clus-
tering). However, with the increasing number of SMP architectures
in high performance clusters (HPC), the current tendency consists
in developing hybrid solutions mixing OpenMP and MPI. Thus,
cluster nodes correspond to SMP machines whose iteration loops
use OpenMP, and communications between nodes are performed
through MPI (He and Ding, 2002; Henty, 2000).

4.2. Fine grain parallelization of active-components
The object-oriented architecture developed allows focusing on

the computations of active components. This management is
centralized in containers. The latter are subdivided and their

treatments parallelized to improve the execution times (local
parallelization). However, the parallelization of the treatments
associated to the management of the active components requires
the use of a shared memory. Indeed, the strong coupling existing
between the list of active components and the cellular domain
components requires a common memory space to facilitate infor-
mation exchanges during computation. It is then mandatory to
choose parallelization methods based on the use of a shared
memory. Explicit environments of parallelization such as MPI (MPI,
1995), or PVM (Geist et al., 1994) are not adapted for this kind of
parallelization. In this case the model structure requires using
specific mechanisms for message exchanges. These mechanisms
slow down the simulation execution. Thus, it is preferable to
parallelize the container using lightweight processes which share
a common memory such as POSIX threads (ANSI, 1994), or implicit
parallelization environments founded on POSIX threads, as
OpenMP (OpenMP, 2002).

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al.,, A software framework for fine grain parallelization of cellular models with OpenMP-...,

E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13 7

riroot |

<<create>>

parser:Configuration

i
P A L Il
getSimulator() | |
I | || <<create>> I
| I | | fireSimulator:AcDEVSSimulator
|
T L L L LT | ----------------- I --
getCoordinator() . 1 I
]
<<create>> | I [

1 fireCoordinator:AcDEVSCoordinator

................. S —

Fig. 4. Coordination of modeling and simulation components with the abstract factory: instantiation procedure of the modeling components.

To improve the management of active components the
container is divided into components sub-sets. Then, every sub-set
is encapsulated in a lightweight process. Processes reference active
components. Every process is responsible for component state
transitions and the update of the domain part it represents. The
container division is illustrated in Fig. 5.

All the cellular components are updated in a synchronous way,
hence, it is crucial to define synchronization barriers to guarantee
the simulation consistency.

4.3. Application to fire spreading

Developing an efficient fire spread model which reproduces the
details remains a challenge for research. Models from physics are
currently used to improve the pertinence of fire spread models and
associated decision aid. The physical model in use (Eq. (1)) has been
validated in several laboratory experiments (Santoni et al., 1998;
Dupuys, 1995). The model is based on experimental data (evolution
of a flame front in a domain of 1 m? of pine needles, without slope,
nor wind). However, the model will be tested in much larger scale
areas. Hence, whatever the scale, the fire phenomenon is consid-
ered as a transport phenomenon expressed in a reaction-diffusion
equation. The current model can be extended to a higher scale
implying many other control parameters such as vegetation
structure and composition, ground topography, local wind, etc. The
laboratory fire first considered here enables us to evaluate without
difficulty the combination of: object-oriented techniques and fine
grain parallelization (from a computational point of view), as well
as physics-based modeling of fundamental propagation mecha-
nisms of fire spreading.

Extending the present laboratory fire simulation to field scale
requires the development of a more precise model incorporating

thermal, vegetal mass and wind velocity additional components.
Implementing more control parameters into the model to match
the experiment will necessitate prior validation of the simulation
tool developed. According to this scope, this experiment has been
carried out using laboratory scale fire data, allowing the calibration
and validation of the proposed framework. The flexibility and the
modularity of the architecture is a preliminary step before imple-
mentations of more precise model components. However, the
simulation architecture is validated here. Field scale modeling and
simulation will only necessitate adding supplementary details
preserving the whole structure of the simulator.

In this scope, the physical mechanisms describing the propa-
gation, identified and modeled on laboratory scale, are supposed to
remain valid on large-scale areas. A preliminary numerical study
makes it possible to provide an approximated numerical solution of
the model, using both finite differences for spatial derivatives and
an explicit scheme for the time advancement of the solution. The
propagation domain is then subdivided into elementary compo-
nents which constitute the ground and the plants, each one being
described by the following algebraic:

k-1 .
AT
ij
(1)
where, Tj; represents the temperature of a node of the grid.
Coefficients a, b, c and d depend on the time step and the space step
considered (Santoni, 1996). Parameters of the model are given
starting from experimental statements of temperatures obtained
according to time. The cellular division of space generates problems

in extreme cases. In order to solve them a fixed value is given on the
edge cells (Coquillard and Hill, 1997.) Numerical results were

oo
ket 1 k k k K
T = aTiyj+aTqj+ by, + bTj. + cQ(g)

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP....,

8 E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13

Container of
actives components

— c1 c19
| c2 c20
c3 c21
1 — c4 c22
""""" — [o5 c23
c6 c24
c7 c25
___?_______—___ c8 c26 .
— c9 c27
c10 c28
3 cl11 c29
I O R I A V4 c30 I
— c13 c31
cl4 c32
c15 c33
4 c16 c34
c17 c35
N c18 c36 s

Processes

P4 5

Cellular Model

Fig. 5. Division of a container of active components.

compared with the experimental data for various ignitions and the
quality of predictions is remarkable (Santoni et al., 1998).
However, the precision of these models make them difficult to
be simulated under realtime constraints. Moreover, fire spread
complexity requires refining progressively model specifications
according to the simulation results. The corresponding simulation
code has to be modified easily to reduce both implementation and
testing phases. The object-oriented framework developed allows:

(1) To easily integrate model modifications as research advances
(new ground vegetation, influence of both slope and wind,
etc.),

(2) To obtain efficient execution times with a precise model
running faster than a real experiment,

(3) To optimally exploit the inherent parallelism of cellular models
(Jorba et al., 2002).

The simulation components designed support the evolutionary
nature of the structure. An example of fire spread simulation using
an Active-DEVS model is illustrated in Fig. 6.

4.4. OpenMP implementation

The OpenMP parallelization standard gives a set of directives,
which allow describing simply the local parallelization of the
container of active components (as illustrated in the extract of C++
code of Fig. 7). These directives are comments activated by the
compiler thanks to the use of an adequate option. A compiler which
does not support the OpenMP standard will not pay attention to
them. Hence, the code is portable and the maintenance is limited to
a unique version.

The schedule() clause defines the scheduling mode of processes
concerned with the For directive. The “runtime mode” is used to

differ the scheduling at runtime according to the value of the
environment variable OMP_SCHEDULE. No default scheduling
mode is proposed by OpenMP. The choice of the runtime mode
allows to balance the computing as referred by the OMP_SCHED-
ULE value chosen by the computing center. The interested reader
should refer to the OpenMP courses (Gondet and Lavallée, 2000.)
At the entry of a parallel area delimited with OpenMP directives,
the master process generates lightweight processes which execute

Fire Spread Simulation

100

50

Fig. 6. Overview of a fire spread simulation.

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al.,, A software framework for fine grain parallelization of cellular models with OpenMP-...,

E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13 9

//For Loop
#pragma omp parallel

#Pragma omp for schedule(runtime)
//Transitions of active components
for (cursor=deb; cursor<=fin; cursor++) {
activeCell=SetOfActiveCells->getActiveElt (cursor) ;
if (activeCells) {
updateCellNextTemperature (activeCell) ;
}

}
}

//Delete inactives cells
SetOfActiveCells -> removeActiveElt () ;

Fig. 7. Excerpt of C++ code implementing OpenMP directives.

a task in parallel. In this experience, parallelization consists in
executing the main loop of the container, distributing the iterations
between the different lightweight processes (loop level paral-
lelism). This parallel model has been simulated on a node of the
Zahir parallel architecture of the “Institut du Développement et des
Ressources en Informatique Scientifique (IDRIS).” This node has 32
processors Power4 P690 running at 1.3 Ghz, equipped with 256 Gb
of memory for a peak power announced at 166.4 Gflops/s. This
machine is exploited with AIX - version 5.1. Jobs are submitted in
batch mode to obtain exclusively the number of processors
required.

5. Simulation results

The Simulation results presented in this section concern
experimental fires conducted on Pinus Pinaster litter, in a closed
room without any air motion, at the INRA (Institut National de la
Recherche Agronomique) laboratory near Avignon, France. The
initial experiments were performed to observe fire spread for
point-ignition and line-ignition fires under no slope and no wind
conditions (Balbi et al., 1998). The experimental apparatus was
composed of a one square meter aluminum plate protected by sand.
A porous fuel bed was used, made up of pure oven dried pine
needles spread as evenly as possible on the total area. These
experiments are simulated here under various conditions. Various
simulation models have been designed first using sequential
programming (optimizing the simulator structure, the container
implementations and accounting only for active burning cells
during the simulation). Once the sequential simulation has been
optimized, parallel programming has been considered.

A first simulation is designed through the Cell-DEVS formalism
(Wainer and Giambiasi, 2001) and implemented in the CD++
environment (Wainer, 2002). The laboratory experiment consists of
a combustion table of 30 cm long and 60 cm wide for a line-ignition,
the prediction of spread rate (2.96 mmy/s) and the propagation are
in agreement with the experimental data for every approach (cf.
Fig. 8). The black lines represent the position of the experimental
isothermal line of 300 Celsius (ignition interface).

In Fig. 9, the execution times of the Cell-DEVS simulation are
plotted for different square cell domains and for a real propagation
of 3 s. CD++ execution times are definitely better than in a previous
JDEVS one (where the simulation of a 100 x 100 cells domain was
not possible). In both simulations, the discrete event cells
exchanging events embedded in messages compute their temper-
ature evolution at every time steps. Only cells changing state send
events activating their neighbors. Even if this modeling and simu-
lation experiment is elegant and grounded formally, the numerous
messages exchanged produce overhead because of data structure

Line ignition - Experimental and simulated fronts

03
a2s
02 Temperature (°C)
a15 649.0
5925
005 j 4194
— aLs
E o 366.3
> 309.7
-005 b 2832
196.6
i 0.1
-a15 835
02
t=0s t=30s t=80s
-025
031 1 1 1 1 1 1 1
03 02 01 0 01 a2 03 0.4
X (m)

Fig. 8. Simulated and experimented temperatures field representation of a line-
ignition.

management (of schedulers). This results in an execution time
much greater than the actual propagation time. Hence, a simulator
structure closer to the model structure and focusing directly on
active cells, has been designed (Muzy et al., 2003).

As depicted in Fig. 10, a point-ignition has been simulated by
initializing center cells with a temperature gradient. Fire spreads
circularly and symmetrically up to the plate borders. Fig. 11 depicts
the simulation time gain for different temperature gradients and
areal propagation of 200 s. With a basic simulation (which does not
focus on active elements), the 200 s of real propagation are simu-
lated in 160 s. A temperature gradient is progressively adjusted for
the detection of activity of cells. When the temperature of a cell
begins to increase, the temperature of the cell is compared to the
gradient. If the temperature is greater than the gradient, the cell is
considered to be active and added to the container tracking active
cells. If the temperature is less than the gradient, the cell is
considered to be inactive and ignored from the main simulation
loop. For a temperature gradient of only 1K, the performance
improves by 20s. From a temperature gradient of 10-30K, the
performance gain remains about 30 s. The simulation time drops to
100 s for temperature gradients greater than 40 K.

A new experiment has been designed to compare static
simulations (which do not account for active components) and

90

m JDEVS o Cel-DEVS
80

70
60
50

40

30

20

0 - |
N~ | |

20 50 80 100
Domain size (cells)

Execution time (minutes)

Fig. 9. Initial and hierarchical comparison.

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP....,

10 E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13

100

TS

949
905
862
819
776
732
689
646
603
559
516
473
430
386
343

100

Fig. 10. Fire spread simulation of a point-ignition.

simulations tracking active components through various STL
implementations. Punctual and linear ignitions with different
temperature gradients on heterogeneous domain of 40,000
components have been simulated. In static simulation, the
container saves the references of the fire front components in
a static array. The static container is declared before execution
in memory and its size remains fixed during the simulation. In the
case of the activity tracking approach the management of the fire
front components is done using STL containers. STL data structures
organize and manage dynamically the active components, i.e. the
size of the container change during the simulation. The static
container and STL containers used are compared in various exper-
iments which are depicted in Table 1. The containers of the
experiment can be divided into two categories, sequence
containers (list, vector and deque), and associative containers (map
and multimap). The list container allows fast insertions and dele-
tions anywhere in the container, but it is not possible to randomly
access an element. The vector cainer allows managing a sequence of
elements as a contiguous block of storage. Each block is imple-
mented as an array that grows on demand. The deque (double-
ended queue) container allows fast insertions and deletions at the
beginning and at the end of the container and allows to randomly
access any element quickly. The map container consists of a key/
value pair. The key is used to order the sequence, and the value is
associated with that key. The map only allows one instance of a key
or element to be inserted into the container. The multimap
container allows multiple instances of elements. For more

130

160 & & & —8 8
E 140
o 120 4 ¢
g Ry
"-;- 100 ~
: @ N
S 6.
l-ﬁ ao | —— Active simulation

20 J ——gg— Discrete simulation

0
D 10 20 30 40 20 60 70

Gradient (°K)

Fig. 11. Execution time gain over temperature gradient of the test for a real propa-
gation of 200 s.

information on the containers the reader will benefit from the
following reference (Nicolai, 1999).

The results in Fig. 12 show that the critical aspect of the algo-
rithm is mostly related to the management of the front fire
components. The simulation process spends a greater part of its
computation time in the fire front management, and the container
effectiveness improves simulation times. The List Container is not
exploitable because the simulation times obtained are up to a day.
Map container and multimap container are not effective; their
simulation times are twice the static container, vector container
and deque container simulation times. The comparison between
static approach and dynamic approach is made on the basis of the
static container and vector container, because deque container is
not adapted here. If the fire front is limited, i.e. if the number of
active component is limited, the static approach is faster than the
dynamic approach (experiment 1), in all other cases, the vector
container is slightly more effective (experiments 2-4). Static
container and vector container lend themselves particularly good
data structure to manage active elements of the fire front.

A final experiment has been designed to test the efficiency of the
parallelization of the last efficient sequential implementation. The
experiment presented in this section simulates a line ignition
through a homogeneous domain constituted by 50,000 (250 x 200)
components corresponding to a pine needle experiment.

Simulation results are reported onto the graph of Fig. 13, func-
tion of the number of processes, for a virtual time tsjmulation = 600 s.
Parallel simulations are carried out with 2, 4, and 8 processors, and
executed five times to obtain average execution times.

The next Fig. 14, presents the speedup S(P) obtained according to
the number of processes P, such as:
sy =+,

T(P)
where, T(P) represents the execution time obtained with P
processes.

Table 1

Description of the experiments.

Heterogeneous domain of Ignition type Number of
40,000 components front fire
Experiment 1 Point ignition 1
Experiment 2 Line ignition 1
Experiment 3 Point ignition 2
Experiment 4 Line ignition 2

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP:...,

E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13

4500 4

O StaticContainer
SS VectorContainer
4000 — § @ DequeContainer
MapContainer
E, 3500 — § Bl MultimapContainer
£
3 3000 — \
: .
@ 2500 %
.é 2000 | | §
= 1500 — 4
1000 | I
| N
500 I " %
0 _ .
T T T
Experiment 1 Experiment 2 Experiment 3 Experiment 4
Fig. 12. Comparison of containers effectiveness.
8 Rl
700 ——e—— Speedup L
- 7 — —e— Efficiency
2 600 * ------ Optimal speedup
3 \ 6
2 500
Y \ 5
_§ 400 .
§ 300 \ 4) -
é 200 \‘\‘ 3 /‘//0
@ 100 2 /
0 1 ,

0 1 2 3 4 5 6 7 8 9
Number of processes

10

Fig. 13. Execution times obtained for different numbers of OpenMP lightweight
processes.

The effectiveness of the simulation is also calculated. It is given by:

S(P)
E(P) = 5
Speedup and effectiveness curves corroborate the assumption
according to which the parallelization of the container of active
components allows to reduce execution times. This optimization is
directly efficient with bi-processors and quadri-processors, and this
is particularly interesting for recent cellular processors with duo or
quad-cores. With more than 8 processors, this approach quickly
reaches an asymptote. This predictable result according to our
design is dictated by the Amdhal Law (Jordan and Alaghband,
2002). Indeed, the addition of processors does not always produce
a linear factor of improvement for performance, particularly when
models require local communications.
As a conclusion, the OpenMP compilation directives allow to
reduce significantly execution times with a fine grain parallelization

—

0 1 2 3 4 5 6 7 8 9
Number of processes

10

Fig. 14. Execution curves of speedup and effectiveness obtained with OpenMP.

on a small number of processors. Furthermore, these results tend to
confirm that parallelization techniques must be used to provide
a decision tool able to help fire fighters during a forest fire. In that
case, a decision tool has to provide fire front positions faster than
the fire propagates in reality. The execution of this configuration on
only one processor requires an average time of texecution = 658 S,
which is, higher than the virtual time tyj;tya1 = 600 s which represent
the propagation time for a real fire. In this example, the use of
OpenMP directives allows us to decrease execution times under this
virtual time limit, in a simple and fast way.

6. Conclusion and perspectives

The theory of modeling and simulation and object-oriented
programming provides methods and techniques worth applying
when modeling complex spatial phenomena. More precisely,
cellular automata, design pattern and DEVS are used in this study.

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP-...,

12 E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13

Based on them, a new kind of model, called Active-DEVS, has been
specified and used in fire spreading simulations.

Modeling spatially complex systems from the fundamental
computational model of cellular automata (CA) improve the
simulation treatments. In fact, CA make it possible to express
the space dynamics of the phenomena and to apprehend the
complexity of some real systems. The concurrent execution of
the treatments of the simulation is facilitated with the association
of the techniques of parallel discrete events simulation. The DEVS
formalism helps for developing the Active-DEVS computing model.
The latter can be considered as an optimization which puts the
focus on the active cells of a CA. It is used in a simulation object-
based software framework in which the rules and the architecture
improve the process of development in terms of time, software
legibility, evolution, and portability. Besides, designing a reusable,
extensible, and adaptable framework is a difficult task and design
patterns were used to help achieving this goal.

OpenMP directives and SMP architectures provided a suitable,
evolutionary and powerful support. The object-oriented framework
has been designed to provide the basic components for the
construction of discrete event cellular simulations, to be flexible
and extensible, and to integrate the Active-DEVS model.

The interest of OpenMP directives to speedup the simulation for
bi-processors and quadri-processors has been pinpointed here. It
enables the decreasing of execution times under the real time
deadlines of fire spreading. This speedup, based on a fine grain
parallelization, also shows its limits. It is not designed for a large
number of processors. Our approach is to consider this optimiza-
tion as part of a parallelizing methodology in which fine grain
parellizations can be applied on local nodes of computing clusters
or computing grids. A coarse grain parallelism can then divide
space and maps to handle large-scale landscape and assign parts of
a landscape to a large number of nodes, each node being capable of
local parallelism (duo or quad-core.) In this classical “divide and
conquer” strategy, this study has shown that local simulations are
able to benefit from our fine grain optimization.

We also plan to improve the capabilities of the framework and
to model new physical experiments. With the acceptance of
message passing standards such as MPI (MPI, 1995) it is well suited
to join both OpenMP and MP], i.e., to combine shared memory
programming on shared memory nodes with message passing
communications between these nodes (Sarkar et al., 2006; Henty,
2000; Badern and Jaja, 1999). In fact, these hybrid architectures
encourage a hybrid parallel programming paradigm. They rely on
Distributed Shared Memory (DSM) systems which implement
shared memory abstraction on a network of workstations (Lu et al.,
1998; Hess et al., 2002). This will be achieved using the Active-
DEVS model and supporting framework as the foundation for
a larger parallel and distributed simulation environment, which is
currently under development.

Acknowledgments

The authors would like to acknowledge the technical assistance
of the French National computing center (IDRIS), for their avail-
ability and their help. This project is supported by a research grant
from the Regional collectivity of Corsica.

References

ANSI, 1994. American National Standards Institute. IEEE standard for information
technology: Portable Operating System Interface (POSIX). Part 1, system
application program interface (API) - amendment 1 - realtime extension
[C language].

Appleton, B., 2000. Patterns and Software: Essential Concepts and Terminology
Available from: http://www.cmcrossroads.com/ bradapp/docs/patterns-intro.
html.

Badern, D.A,, Jaja,], 1999. Simple: a methodology for programming high perfor-
mance algorithms on clusters of symmetric multiprocessors (SMPs). Journal of
Parallel and Distributed Computing 58, 92-108.

Balbi, J.H., Santoni, P.A., Dupuy,].L., 1998. Dynamic modelling of fire spread across
a fuel bed. Int. J. Wildland Fire 1998, 275-284.

Bandini, S., Mauri, G., Serra, R, 2001. Cellular automata: from a theoretical
computational model to its application to complex systems. Parallel Computing
27, 539-553.

Barros, FJ., 1997. Modeling formalisms for dynamic structure systems. ACM Trans-
actions on Modeling and Computer Simulation 7 (4), 501-515.

Clark, T.L, Coen, J.L.,, Latham, D., 2004. Description of a coupled atmosphere-fire
model. International Journal of Wildland Fire 13, 49-63.

Cohen,].L., Beezley,].D., Bennethum, L.S., Douglas, C.C., Kim, M., Kremens, R,
Mandel, J., Quin, G. Vodacek, A., 2007. A Wildland Fire Dynamic Data Driven
Assimilation System. In: 11th Symposium on Integrated Observing and
Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-
AOLS).

Coquillard, P, Hill, D.R.C, 1997. Modélisation et Simulation d’Ecosystémes. Des
modéles déterministes aux simulations a événements discrets Masson.

Dupuys, J.L., 1995. Slope and fuel load effects on fire behavior: laboratory experi-
ments in pine needles fuel beds. International Journal of Wildland Fire 53,
153-164.

Gamma, E., Helm, R,, Johnson, R, Vlissides,]J., 1994. Design patterns. Elements of
Reusable Object-Oriented Software. Addison Wesley, ISBN 0-201-63361-2.
Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V., 1994.
PVM: Parallel Virtual Machine. A Users’ Guide and Tutorial for Networked
Parallel Computing. In: Kowalik, Janusz (Ed.), Scientific and Engineering
Computation. MIT Press Available from: http://www.netlib.org/pvm3/book/

pvm-book.html.

Gondet, E., Lavallée, P.F., 2000. OpenMP : concepts et présentations. Available from:
http://www.idris.fr/.

He, Y., Ding, C.H.Q., 2002. MPI and OpenMP Paradigms on Cluster of SMP Archi-
tectures: the Vacancy Tracking Algorithm for Multi-Dimensional Array Trans-
position. In: Conference on High Performance Networking and Computing.
Proceedings of the 2002 ACM/IEEE conference on Supercomputing. Baltimore,
Maryland, pp. 1-14.

Henty, D.S., 2000. Performance of Hybrid Message-Passing and Shared-Memory
Parallelism for Discrete Element Modeling. In: Proceedings Supercomputing
2000, November 4-10. IEEE Computer Society, Dallas, Texas, USA, ISBN 0-7803-
9802-5, pp. 1-9. CD-ROM.

Hess, M., Jost, G., Matthias, S.M., Riihle, R., 2002. Experiences using OpenMP based
on Compiler Directed Software DSM on a PC Cluster, WOMPAT2002: Workshop
on OpenMP Applications and Tools. Arctic Region Supercomputing Center,
University of Alaska, Fairbanks, August 5th-7th, pp. 211-226.

Hu, X.B.P. Zeigler, 2004. A high performance simulation engine for large-scale
cellular DEVS models. In: High Performance Computing Symposium
(HPC'04), Advanced Simulation Technologies Conference (ASTC), Arlington,
USA, pp. 3-8.

Innocenti, E., Muzy, A., Hill, D.R.C, Aiello, A., Santucci, J.F, 2004a. Active-DEVS:
a computational model for the simulation of fire propagation. In: Proceedings
IEEE, SMC 2004, International Conference on Systems, Man and Cybernetics,
October 10-13. The Hague, The Netherlands, pp. 1857-1863.

Innocenti, E., Muzy, A., Aiello, A., Santucci, J.F., 2004b. Discrete Event Simulation of
fire spread: a modular Approach for the Choice of a Strategy of Active Elements
Management. In: Dans Proceedings International Carpathian Control Confer-
ence ICCC'2004, Zakopane Poland, pp. 69-74.

Jorba, J., Margalef, T., Luque, E., Campos da Silva André, J., Viegas, D.X., 2002. Parallel
Approach to the Simulation of Forest Fire Propagation. In: Proceedings Envi-
ronmental Communication in the Information Society. 16th International
Conference “Informatics for Environmental Protection”. Vienna University of
Technology, pp. 69-81. September 25-27.

Jordan, H., Alaghband, G., 2002. Fundamentals of Parallel Processing. Pearson
Education. Prentice Hall.

Karafyllidis, I., Thanailakis, A., 1997. A model for predicting forest fire spreading
using cellular automata. Ecological Modeling 99, 87-97.

Langlois, A., Phipps, L., 1997. Automates cellulaires, application a la simulation
urbaine. Edition Hermes.

Lay, J.G., 2000. A Land Use Change Study using Cellular Automata. In: Proceedings of
21st Asian Conference on Remote Sensing, Taipei, Taiwan. Available from:http://
www.gisdevelopment.net/aars/acrs/2000/ts12/ts12003.shtml).

Lee, W.B., Kim, T.G., 2003. Simulation Speedup for DEVS Models by Composition-
Based Compilation. Summer Computer Simulation Conference, Montréal,
Canada, pp. 395-400.

Lucka, M., Sorevik, T., 2000. Parallel Wavelet-Based Compression of Two-
dimensional Data. In: Proceedings of Algorithmy 2000. Conference on Scientific
Computing, pp. 227-235.

Lu, H., Hy, Y.C,, Zwaenepoel, W., 1998. OpenMP on networks of workstations. In:
Supercomputing '98, pp. 1-15.

Mell, W.E., Jenkins, M.A., Gould, J., Cheney, P., 2007. A Physics-based approach to
modeling grassland fires. International Journal of Wildland Fire 16 (1), 1-22.

Forum, 1995. MPI: a Message-Passing Interface Standard. Technical report,
University of TennesseeMessage Passing Interface, Knoxville, TN. Version 1.1

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP:...,

http://www.cmcrossroads.com/%20bradapp/docs/patterns-intro.html
http://www.cmcrossroads.com/%20bradapp/docs/patterns-intro.html
http://www.netlib.org/pvm3/book/pvm-book.html
http://www.netlib.org/pvm3/book/pvm-book.html
http://www.idris.fr
http://www.gisdevelopment.net/aars/acrs/2000/ts12/ts12003.shtml
http://www.gisdevelopment.net/aars/acrs/2000/ts12/ts12003.shtml

E. Innocenti et al. / Environmental Modelling & Software xxx (2009) 1-13 13

Morvan, D., Dupuy, J.L., 2004. Modeling the propagation of a wildfire through
a Mediterranean shrub using a multiphase formulation, 2004. Combustion and
Flame 138 (3), 199-210.

Muzy, A., Nutaro, JJ., 2005. Algorithms for efficient implementation of the DEVS &
DSDEVS abstract simulators. In: First Open International Conference on
Modeling and Simulation (OICMS), Clermont-Ferrand, France.

Muzy, A. Innocenti, E., Wainer, G., Aiello, A., Santucci, J.F, 2002a. Cell-DEVS
Quantization Techniques in a Fire Spreading Application, Winter Simulation
Conference (WSC) - Exploring New Frontiers. IEEE/ACM/SIGSIM/SCS, San Diego,
USA, pp. 542-549.

Muzy, A., Wainer, G., Innocenti, E., Aiello, A., Santucci, J.F, 2002b. Comparing
simulation methods for fire spreading across a fuel bed, Simulation and plan-
ning in high autonomy systems conference (AIS), SCS, Lisbon, Portugal, pp.
219-224.

Muzy, A., Innocenti, E., Hill, D., Santucci, J.F,, 2003. Optimization of cell spaces
simulation for the modelling of fire spreading, 36th Annual Simulation
Symposium (ANSS). IEEE/SCS/ACM, Orlando, USA. 289-296.

Muzy, A., Innocenti, E., Wainer, G., Aiello, A., Santucci,].F,, 2005. Specification of
discrete event models for fire spreading, Simulation: transactions of the society
of modeling and simulation international. SCS 81, 103-117.

Ntaimo, Zeigler, B.P, et al., 2004. Forest fire spread and suppression in DEVS.
Simulation 80, 479-500.

Nicolai, M., 1999. The C++ Standard Library: a Tutorial and Reference. Addison-
Wesley Professional.

OpenMP, 2002. Official OpenMP Specifications. C/C++ Version 2.0 Available from:
http://www.openmp.org/.

Porterie, P., Zekri, N., Clerc, J.P., Loraud, J.P,, 2007. Modeling forest fire spread and
spotting process with small world networks. Combustion and Flame 149 (1-2),
63-78.

Santoni, P.A., Balbi, J.H., Dupuy, J.P,, 1998. Dynamic modeling of upslope fire growth.
International Journal of Wildland Fire 9 (4), 285-292.

Santoni, P.A., 1996. Propagation des feux de foréts : Modélisation dynamique et
résolution numeérique, validation sur des feux de litiére. PhD thesis, Universita
di Corsica - Pasquale Paoli.

Sarkar, A., Benabbou, N., Ghanem, R., 2006. Domain Decompostion of Stochastic
PDEs and its Parallel. In: 20th International Symposium on High-Perfor-
mance Computing in an Advanced Collaborative Environment (HPCS'06), pp.
17-21.

Shiginah, FA.S.B. 2006. Multi-Layer Cellular DEVS Formalism for Faster Model
Development and Simulator Efficiency. PhD thesis. Electrical and Computer
Engineering Dept., University of Arizona.

Sipper, M., 1994. Non-uniform cellular automata: evolution in rule space and
formation of complex structures. In: Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems\Artificial Life IV,
R.A., Brooks, Maes, P., (eds.), pp. 394-399.

Stephanov, A., Meng, L., 1995. The standard template library. HP Laboratories
Technical Report 95-11 (R.1), November 14.

Stroustrup, B., 2000. The C++ Language, Special Edition. Addison Wesley.

Talia, D., 2000. Cellular processing tools for high-performance simulation.
Computer, 44-52.

Tian, T., Burrage, K., 2005. Parallel Implementation of Stochastic Simulation for
Large-scale Cellular Processes. In: Proceedings of the Eighth International
Conference on High-Performance Computing in Asia-Pacific Region (HPCA-
SIA’05) 0-7695-2486-9/05.

Von Neuman, J., 1966. Theory of Self-Reproducing Automata. University of Illinois
Press.

Wainer, G., 2002. CD++: a toolkit to develop DEVS models. Software - Practice &
Experience 32 (13).

Wainer, G., 2006. Applying Cell-DEVS Methodology for Modeling the Environment.
Simulation, Transactions of the SCS 82 (10), 635-660.

Wainer, G., Giambiasi, N., 2001. Application of the Cell-DEVS paradigm for cell
spaces modeling and simulation. Simulation 76 (1), 22-39.

Wolfram, S., 2002. A New Kind of Science. Wolfram Media.

Worsch, T., 1997. Programming environments for cellular automata. In: Proceedings
Cellular Automata for Research and Industry (ACRI96), vol. 12. Springer, Berlin.

Wu, P, Wu, X, Wainer, G., 2004. Applying Cell-DEVS in 3D Free-Form Shape
Modeling. In: Lecture Notes in Computer Science. Springer-Verlag, Heidelberg.
81-90.

Zeigler, B.P,, 1976. Theory of Modeling and Simulation. Wiley, New York.

Zeigler, B.P., 1990. Object-Oriented Simulation with Hierarchical, Modular Models.
Academic Press.

Zeigler, B.P, Praehofer, H., et al, 2000a. Theory of Modeling and Simulation.
Academic Press.

Zeigler, B.P., Praehofer, H., Kim, T.G., 2000b. Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems.
Academic Press.

Environ. Model. Softw. (2009), doi:10.1016/j.envsoft.2008.11.014

Please cite this article in press as: Innocenti, E., et al., A software framework for fine grain parallelization of cellular models with OpenMP....,

http://www.openmp.org

	A software framework for fine grain parallelization of cellular models with OpenMP: Application to fire spread
	Introduction
	Background
	Cellular automata
	Design patterns
	Discrete EVent System Specification

	Model and simulator design
	Cellular object model
	Simulation framework

	Implementation with OpenMP
	OpenMP
	Fine grain parallelization of active-components
	Application to fire spreading
	OpenMP implementation

	Simulation results
	Conclusion and perspectives
	Acknowledgments
	References

