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Abstract: This paper proposes a simulation linear model created in the MATLAB environment,
which provides a process for regulating blood sugar levels. The controller is built for the need
for any type of diabetes to control and normalize the blood sugar content of the patient in order
to eliminate the differences in the quality of life of a diabetic patient and a healthy person. The
linearization of the nonlinear model was performed, and the adequacy of the linearized model was
verified and confirmed using the MATLAB simulation. The choice of the PID controller and the CHR
method for its adjustment was justified and MATLAB tools were used to show the implementation
of these methods. The model of the patient with the controller has been built; the algorithm for
the automatic adjustment of the PID controller parameters has been developed and realized. The
directions for continuation of the work on this problem regarding regulation in the system under
study are proposed.

Keywords: diabetes mellitus; insulin pump; automatic control system; insulin–glucose interaction
models; PID controller; linearization; parameter setting

1. Introduction

Diabetes mellitus (DM) is a group of metabolic diseases characterized by chronic
hyperglycemia, which is the result of impaired insulin secretion, the action of insulin, or
both. Chronic hyperglycemia leads to damage and dysfunction of various organs, including
the eyes, kidneys, nerves, heart, and blood vessels. In any type of diabetes, the control and
normalization of blood sugar becomes one of the main tasks of the patient and his attending
physician. When the sugar level is closer to the normal limits, the risk of complications
is lower, and there are fewer symptoms of diabetes as well as fewer differences between
the quality of life of a patient with diabetes and a healthy person. The current state of
medicine and science in general allows the treatment of diabetes mellitus on an outpatient
basis, mainly through the use of an individual control system, that is, an insulin pump. The
algorithms of such a system can be implemented using a controller.

According to research published in the tenth edition of the Diabetes Atlas of the
International Diabetes Federation (IDF), 537 million people aged from 20 to 79 years have
diabetes, and this number is steadily increasing every year [1], including in the Russian
Federation [2]. This is why the topic of developing new and improving existing automatic
control systems for regulating blood sugar levels in patients with diabetes mellitus is
becoming increasingly relevant. The aim of the work is the practical implementation of a
simulation model in MATLAB for regulating blood sugar levels using an actuator, namely
an insulin pump, in order to be able to use this technique when such compact medical
devices are put into operation. To achieve this goal, the following tasks were set and solved:

1. Study and analysis of existing mathematical models of diabetes mellitus in terms of
applying the methods of the theory of linear automatic control systems to them [3–15].
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2. Analysis of the selected model for the possibility of its linearization [15].
3. Obtaining the transfer functions of the sugar level by food intake and insulin in-

jection, building a mathematical model of the control object (human) in the MAT-
LAB/Simulink environment.

4. Testing of transient graphs of a patient and a healthy person in the original and
linearized models during the transient time.

5. Evaluation of the suitability of a linearized model for the development of a PID
controller for an insulin pump control system.

6. Study of various engineering methods for the synthesis of controllers and the choice of
the most adequate method for the synthesis of the PID controller by the CHR method,
taking into account the features of the linearized system.

7. Synthesis of the PID controller by the CHR method.
8. Creation of a control system model with the PID controller in the MATLAB/Simulink

environment.
9. Development of an algorithm for determining controller parameters from the transient

curve in a model of a patient, with the possibility of automatically adjusting these
parameters to obtain a given blood sugar level.

10. Performing simulations with various parameters of the linearized mathematical model
to check the operability of this model.

2. Materials and Methods
Rationale for Choosing a Mathematical Model

After the possibility of an external control for blood glucose levels in patients with
type I diabetes mellitus by monitoring blood glucose levels and injecting insulin was
experimentally proven, it became necessary to develop a safe and effective algorithm for
controlling the devices that solve the problem of diabetes for patients. When developing
a mathematical model of the interaction between insulin and glucose in the human body,
pharmacokinetic and physiological models were considered. The main difference between
pharmacokinetic models and physiological ones is that they contain fewer parameters,
so they are easier to use for interpreting experimental data. Physiological models are
characterized, as a rule, by a large number of parameters. Therefore, Sorensen’s model [8]
has 21 states and 22 metabolic functions that describe the dynamics of glucose, insulin,
and glucagon. This model is widely used in glucose monitoring and has been criticized
for inaccurately representing the observed changes in glucose [9]. Another physiological
model, from Kobelli [10], is nonlinear and consists of glucose, insulin, and glucogenic
subsystems; it has nine states, 23 metabolic functions, and 46 parameters. Therefore, only
some pharmacokinetic models were considered as prototypes for modeling: the Bergman
model [11], the Hovorka model [12], and the simplest basic differential mathematical model.
The simplest basic differential mathematical model is of the following form:

dx
dt

= −a1xy + a2(x0 − x) + a3P(t)
dy
dt

= b1(x− x0)H(x− x0)− b2y + b3u(t)
(1)

where x(t) is the blood sugar level, y(t) is the level of insulin in the blood, and x0 is the
fasting blood sugar level. The constants a1, a2, and a3, as well as b1, b2, and b3, are positive
and are the sensitivities of the sugar and insulin gradients, respectively. The function H(x)
is a single step, P(t) describes changes in sugar levels from food intake, and u(t) describes
changes in insulin levels. The undoubted advantages of this model are its simplicity and
compactness, consisting in a minimum number of equations and parameters. The adequacy
of this model is proved in practice [14]. The model has two input variables, P(t) and
u(t), and two state variables, x(t) and y(t). The state variables are the main variables of
the model. They are quantities that uniquely determine the current state of the control
object. These variables can be changed (i.e., controlled) in clinical practice. As follows from
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the equations in (1), the mathematical model is nonlinear. The equations in (1) include
the product of the state variables; in both equations, the coefficients on the state variable
x depend on this variable, and this dependence is also nonlinear because one of the co-
multipliers is a step function. The deviations of the state variables from the initial value
(“starvation”) are commensurate with the value itself [14,15] and, therefore, cannot be
considered small. In this connection, the decomposition of nonlinear functions into a Taylor
series for the purpose of linearization of the object will be ineffective because, to achieve
acceptable accuracy, the account of a large number of row members will be required. The
attempt to linearize differential equations at steady-state constant values for “hunger” x0,
y0 via a Taylor series expansion is impossible because of the infinite derivatives of the
step functions H(x− x0) at point x0. As stated in [16], for this kind of linearization, the
derivatives must have a single and finite value; otherwise, the equation is nonlinearizable.
The application of I.A. Vyshnegradsky’s hypothesis for small deviations of all variables
from steady-state values seems to be an acceptable method of linearization [16]. The steady-
state value is logically considered to be the function of the state variables for a healthy
person. The model was linearized by entering a new variable—the deviation of the sugar
level from zero, corresponding to hunger:

z = x− x0

and the following matrices of the linear system in the state space were obtained

A =

(
−a2H(−z) −a1x0
b1H(−z) b2

)
; B =

(
a3 0
0 b3

)
; C =

(
1 0

)
; D =

(
x0
)
.

The transfer function with a second-order characteristic polynomial was derived from
the representation in the state space

Z(s) = − a1x0b3

s2 + b2s + a1x0b1
U(s) + a3

s + b2

s2 + b2s + a1x0b1
P(s)

The simulation showed a practical coincidence of the transition functions of the
linearized and the original system within two to three hours from the moment of eat-
ing (Figure 1), so, the linear model was accepted for further research provided that the
maximum of the transition function of the system with the controller is reached at the
specified time.

 Figure 1. Comparison of transients in the initial (z,y) and linearized (z1,y1) models. The control object
is a patient with diabetes mellitus (DM) [17].

When choosing the controller configuration method, the main preference was given
to engineering methods that allow for calculation of the controller parameters based on
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the characteristics of the transient process graph. To date, the most widespread use is
made of PID controllers. Practical experience shows that the use of PID controllers in
complex systems (devices) provides a sufficiently small control error and the transition
process required by the operating conditions of most control objects. Therefore, the PID
regulation will be the priority in the control task under study. Currently, there are quite
a lot of different methods for tuning the parameters of PID controllers; still, the most
common is the Ziegler–Nichols tuning method [18], proposed by its authors in 1942. This
method is simple in application but gives not very good results. As a rule, after setting the
regulator parameters, one has to make manual adjustments in order to improve the quality
of regulation. Nevertheless, this method is still often used in practice, although many more
accurate methods have become available. Ziegler and Nichols proposed two methods for
tuning PID regulators [19]. One of them is based on the response parameters of the object
to a single jump, and the other is based on the frequency characteristics of the control object.
To calculate the PID controller parameters according to the first Ziegler–Nichols method,
only two parameters are used: the negative coordinate “a” of the point of intersection of
the tangent to the transient curve with the maximum slope, and the coordinate “L” of the
point of intersection of the same tangent and the time axis. The formulas for calculating
PID controller coefficients are summarized in Table 1.

Table 1. Formulas for calculating regulator coefficients by the Ziegler–Nichols method.

Controller Step Response Frequency Parameters
Type K Ti Td K Ti Td

P 1/a 0.5/K180
PI 0.9/a 3L/K 0.4/K180 0.8T180/K
PID 1.2/a 0.9L/K 0.5L/K 0.6/K180 0.5T180/K 0.125T180/K

The Ziegler–Nichols method does not take into account in any way the requirements
for the stability margin of the system, which is its significant disadvantage. In addition, the
Ziegler–Nichols method gives parameters that are far from optimal. The second Ziegler–
Nichols method (the frequency method), as input data for calculations, uses the frequency
ω180, at which the phase shift in the open circuit reaches 180°, and the modulus of the
loop gain at this frequency is K180. Knowing the parameter ω180, first, find the period
of natural oscillations of the system, and then, from Table 1, determine the parameters
of the regulator. The accuracy of the controller tuning and the disadvantages of both
Ziegler–Nichols methods are the same. The CHR method, which uses a similar method
for calculating the parameters of the PID regulator, allows us to bypass the drawbacks
of the Ziegler–Nichols method. The authors of this method, Chien, Hrones, and Reswick
(CHR) [20], in contrast to Ziegler and Nichols, used the criterion for the maximum slew
rate in the absence of overshoot or with no more than 20% overshoot. This criterion gives
a larger stability margin than in the Ziegler–Nichols method. The CHR method gives
two different systems of regulator parameters. One is obtained by observing the response
to the setpoint change (Table 2), and the other is obtained by observing the response to
external disturbances (Table 3). Which parameter system to choose depends on what
is more important for a particular controller: the quality of control when changing the
setpoint or the attenuation of external disturbances. If both are important, it is necessary to
use regulators with two degrees of freedom [21].

Table 2. Formulas for calculating regulator coefficients by CHR method, by response to set point change.

Controller No Overshoot 20% Overshoot
Type K Ti Td K Ti Td

P 0.3/a 0.7/a
PI 0.35/a 1.2L/K 0.6/a 1.0L/K
PID 0.6/a 1.0L/K 0.5L/K 0.95/a 1.4L/K 0.47L/K
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Table 3. Formulas for calculating regulator coefficients by CHR method, by response to external
perturbations.

Controller No Overshoot 20% Overshoot
Type K Ti Td K Ti Td

P 0.3/a 0.7/a
PI 0.6/a 4L/K 0.7/a 2.3L/K
PID 0.95/a 2.4L/K 0.42L/K 1.2/a 2.0L/K 0.42L/K

The CHR method uses an approximation of the object by a first-order delayed model.
CHR uses the same initial parameters a and L as the Ziegler–Nichols method. Thus, each
system requires a different approach to adjust the controller parameters. A comparative
analysis of the methods was carried out, and the CHR method was adopted as providing
a better quality of the transient process and a greater margin of stability of the system
with a controller compared to the Ziegler–Nichols method. A method was developed for
determining the parameters of the PID controller based on a single input variable—the
angle of inclination of the tangent to the transient graph. The method was based on the
approximation of the transition process graph by a polynomial, followed by analytical
differentiation of this polynomial, in order to accurately determine the angle of the tangent.
The following algorithm of PID controller tuning was developed:

1. Obtaining a tabular function (graph) of the transient with zero controller settings,
with individual parameters ai and bi of the model.

2. Determination of the boundary value amax of the regulator.
3. Calculation of the regulator’s coefficients.
4. Calculation of the transient process with the regulator.
5. Comparison of the transient process of step 4 of the algorithm with the transient

process of a “healthy person”.
6. If the difference exceeds the admissible one, decrease by ”a” and pass to step 3.
7. Otherwise, the tuning is completed.

Step 2 of the algorithm—the task of tangent construction, or the task of numerical dif-
ferentiation of a tabularly defined function—requires detailed consideration. The simplest
solution to this problem is based on determining the derivative of the function:

y′ = lim
∆x→0

∆y
∆x

and uses various finite difference formulas [22]; however, the finite difference method is
associated with known difficulties in estimating the error of the result. As stated in [22],
the main components of the error of numerical differentiation are the approximation
error (also called the truncation error) and rounding errors in computer calculations. The
approximation error is determined by the magnitude of the residual term—the difference
between the approximated and actual values of the derivative. It is noted in [22] that
the analysis of the residual term is nontrivial and that the approximation error tends to
decrease as the step ∆x decreases. In contrast to the approximation error, the rounding error
increases as the step ∆x decreases. Therefore, the total error of numerical differentiation
can decrease as the step decreases only up to some limiting value, after which a further
decrease in the step will, at best, not improve the accuracy of the results. In addition,
finite difference formulas usually use a constant step, and the resulting simulation function
may be a variable step. Optimal accuracy can be achieved by regularizing the numerical
differentiation procedure. The simplest way to regularize is to choose a step ∆x such that
the inequality is as follows:

| f (x + h)− f (x)| > ε, (2)

where ε > 0 is some small number. When calculating the derivative, this eliminates the
subtraction of closely related numbers, which usually leads to an increase in errors. This
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is all the more dangerous when subsequently dividing the increment of a function by a
small number ∆x. This method cannot be applied to our problem for the reason mentioned
above for the variable step ∆x in the original table function.

Another method for regularization is to smooth the tabulated values of the function
by selecting some smooth approximating function, for example, a polynomial. Further
differentiation of the polynomial using the derivatives table does not present computational
difficulties and does not introduce additional errors. This method was used to solve
the problem.

The polynomial calculated by the built-in polyfit function will be used as the interpo-
lation polynomial. This choice among many variants [22]—Lagrange, Hermite, and other
polynomials—is dictated by the simplest implementation in the program. The transient
graph is a fairly smooth curve. By plotting the polynomial trend on this graph, the degree
of the polynomial that showed the best coincidence with the graph of the original function
was determined. It was found that the polynomial should be of degree 10. This does
not exclude a lower degree polynomial; the change in degrees was implemented in the
program. The following algorithm was developed to form a set of graph points to build the
approximating polynomial:

1. The first point of the set, obviously (0; 0), was marked as “extreme”; the current set
length is k = 1.

2. Since the maximum value of the transient function was about 400, we took the value
ε = 0.5, which is small enough in comparison with the maximum and simultaneously
much larger than the accuracy of calculations in MATLAB (it is equal to the system
constant eps = 2.2204 · 10−16); in this way, the gross rounding errors were leveled.

3. The “outermost” point of the set was assigned to the current point.
4. We proceed to the next point of the transient table function and check if condition (2)

holds.
5. If condition (2) is unfulfilled, then we proceed to item 4.
6. If condition (2) is satisfied, the point was added to the set—it becomes a “last” point,

and the length of the set increased by k = k + 1.
7. The condition k = (n + 1) was checked—for the uniqueness of the approximating

polynomial the set must contain at least (n + 1) points, where n is the degree of the
polynomial.

8. If the condition k = (n + 1) is unfulfilled, pass to item 3.
9. Otherwise, the set is formed—end.

After forming a vector of approximating polynomial coefficients by this set, this vector
was transformed into a vector of derivative coefficients according to the following scheme:

polynom
an

an−1
. . .
a1
a0

→


derivative
nan

(n− 1)an−1
. . .
1a1
0

→


derivative
nan

(n− 1)an−1
. . .
1a1


and the value of this derivative y′(0) at the point of food intake point was calculated. Since
the food intake point has the coordinates (0;0), the equations of the tangent are as follows:

y(x) = y′(0)− x

and
a = y′(0)− L

The parameter L has a clear biophysical meaning and is the average time elapsed
from the beginning of a meal to the feeling of fullness, which is the signal of an increase in
blood sugar level because of the digestion of nutrients. The study of this parameter and the
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scientific substantiation of its value is a topic for a separate study that is beyond the scope
of this work, so we took an a priori value of 15 min or

L = 0.25h.

Each control system requires its own approach for setting the controller parameters. In this
case, the setup process is hampered by some factors, namely:

1. Since the PID controller is an external device to the control object, it cannot be imple-
mented in the control object;

2. The food intake and insulin production (or injection) subsystems in the diabetic
patient are practically unrelated to each other;

3. The characteristics of each diabetic patient’s model are individual and can vary quite
widely.

Considering these factors, the MATLAB/Simulink software package was selected to
study the linearized insulin injection control system and test the PID controller tuning
algorithm. The development of the model in Simulink is characterized by relative simplicity
and clarity, and the management of this model from the Matlab script (m-file) allows for
automation of the process of setting model parameters and processing simulation results.
In the process of research, it was necessary to take into account a significant variation in the
transfer function coefficients of the model. Therefore, the model of diabetes mellitus itself
was selected in the mathematical modeling program. Its visual implementation was carried
out by means of Simulink. The model is shown in Figure 2. In accordance with the type of
transfer function, the model has two channels—one for nutrition and another for insulin
injection. The transfer function of each channel is recorded with parametrization through
the components of the coefficient vectors a(i) and b(i). The PID controller as a block from
the Simulink library is included in the feedback loop of the channel for insulin injection.
Physically, the PID controller is an insulin pump. The nutrition function according to [4]
has the form

P(t) =

{
0, t < t0

Qe−K(t−t0), t ≥ t0

where Q is the amount of food, K is a parameter that characterizes the type of sugar that
comes with food, and t0 is the meal time. This function is implemented in the MATLAB
function block. The signals from the channel outputs are summed according to the expres-
sion for the transfer function Z(s). The transfer to MATLAB of the following simulation
results is provided—the model time is represented as t, and the insulin level is represented
as y.

 
Figure 2. Development of a control object model in MATLAB/Simulink [17].
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The interaction algorithm between the model and the MATLAB script that calls it
includes the following steps:

1. Initialization of model parameters—assignment of the specific values for a(i) and b(i);
2. Modeling;
3. Processing of simulation results (vectors [t, y] returned by the model).

Then, steps 1–3 are repeated according to the purpose of the study; i.e., these items are
executed the required number of times or until another termination condition is met [17].

3. Results & Discussions

The criterion for completing the adjustment was the specified excess of the maximum
insulin level over the level of a healthy person, while the level of a healthy person was cal-
culated by a direct numerical solution of the original nonlinear differential in Equation (1).
A number of computational experiments were carried out on the model, as a result of which
the limits of changing the parameters of the PID controller were determined:

• Gain K = 12 . . . 24;
• Time constant of the integrator Ti = 0.01. . . 0.05 h;
• Derivation time constant Td = 0.004. . . 0.008 h.

A transient graph with the controller settings K = 18, Ti = 0.0333 h, and Td = 0.0058 h,
for a patient with an insulin pump (IP), is shown in Figure 3. For comparison, the same
graph shows the transition process in the “healthy” model.

As a result of the work completed, the prospects of applying the considered approach
to the development of controllers for insulin pumps can be considered confirmed. This
is evidenced by the results of modeling and comparing the parameters of the transition
process (see Figure 3). The advantage of using a linear model is the simplification of the
controller tuning procedure, and linearization allows you to automate this procedure. Thus,
it is possible to achieve the dynamics of the blood sugar level of the “patient” to those
characteristic of the “healthy”.

 Figure 3. Demonstration of transient modeling results [17].

4. Conclusions

To sum up, we can say that the goal of regulation set in the work has been achieved—a
simulation model has been created in MATLAB as a result of the following stages:

1. Based on the study and analysis of existing mathematical models of diabetes mellitus,
in terms of the application (to them) of methods of the theory of linear automatic
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control systems, a non-linear model was chosen that is consistent with the known
physiological facts while having a minimal set of equations and parameters.

2. The selected model, with some assumptions, has been modified and linearized.
3. A mathematical model of the control object (human) was built in the MATLAB/Simulink

environment, and, based on the simulation results, a conclusion about the suitability
of the linearized model for the development of the PID controller of the insulin pump
control system was formed.

4. In the MATLAB/Simulink environment, a model of a control system with a PID
controller was built; an algorithm, implemented as an m-file, was created to determine
the parameters of the controller; and the adequacy of the algorithm was experimentally
verified.

5. The impact of changing the model parameters during the control process was evalu-
ated due to the possible significant variation in these parameters when moving from
one patient (digital model) to another.

6. The insignificant influence of sufficiently large deviations of the model parameters
on the controller parameters was experimentally established, and a conclusion was
formed about the stability of the control object with a PID controller to changes in the
parameters of the control object model.

These results suggest the following directions for further research:

1. Improving regulation by introducing a relay element into the control loop that turns
off the insulin pump when a certain relatively low sugar level is reached in order to
prevent hypoglycemia [5];

2. Study of the system with a regulator with multiple periodic meals to study the effect
of breaks between meals;

3. Development of a more convenient interface for the controller parameter setting
program.
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