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Abstract: Building automation and the advancement of sustainability and safety in internal spaces
benefit significantly from occupancy sensing. While particular traditional Machine Learning (ML)
methods have succeeded at identifying occupancy patterns for specific datasets, achieving substantial
performance in other datasets is still challenging. This paper proposes an occupancy detection method
using non-intrusive ambient data and a Deep Learning (DL) model. An environmental sensing board
was used to gather temperature, humidity, pressure, light level, motion, sound, and Carbon Dioxide
(CO2) data. The detection approach was deployed on an edge device to enable low-cost computing
while increasing data security. The system was set up at a university office, which functioned as the
primary case study testing location. We analyzed two Convolutional Neural Network (CNN) models
to confirm the optimum alternative for edge deployment. A 2D-CNN technique was used for one day
to identify occupancy in real-time. The model proved robust and reliable, with a 99.75% real-time
prediction accuracy.

Keywords: edge computing; occupancy detection; environmental data; image transformation;
convolutional neural network

1. Introduction

Energy demand is rapidly growing as the population’s reliance on electrical equipment
increases. However, most energy usage patterns are unsustainable since energy resources
are becoming more scarce. Additionally, rising device usage is imposing a strain on the
present electrical infrastructure [1]. As a result, there is an increased need for energy
efficiency education and endorsement to motivate usage when essential. For instance,
home appliances that consume the most power, such as air conditioning and lights, should
only be operated once a person is occupying the space [2]. All of this invokes the concept
of occupancy detection, where a system is designed to determine whether people are
occupying a place and, in accordance with that information, the state of the appliance must
be adjusted. This information can be used for various purposes, such as improving energy
efficiency by turning off lights and Heating Ventilation Air Conditioning (HVAC) systems
in unoccupied rooms, or for security purposes by alerting authorities to unexpected or
suspicious movements.

Nonetheless, occupancy is not the only factor that determines power expenditure.
Physical variables, such as building attributes, equipment efficiency, and weather condi-
tions, can influence a building’s power consumption pattern [3]. However, people cannot
simply manage or modify these aspects during building use. Occupancy is an essential
component of human factors that characterize the presence of inhabitants, consumption
habits, and interior environmental conditions [4,5]. Occupancy detection systems are
primarily based on the deployment of various environmental sensors (e.g., Carbon Diox-
ide (CO2), Passive Infrared (PIR), temperature, humidity, and light sensors), specialized
devices (e.g., smart meters, wearable devices, and cameras), or wireless technologies [6]
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(e.g., Bluetooth, and Wi-Fi). However, cameras and wearable electronics are the most
prominent in detecting human presence. Unfortunately, these gadgets have privacy and in-
trusiveness problems. The development of occupancy monitoring methods poses research
challenges, such as how to protect tenant privacy. The design of an environmental-based sys-
tem should prevent occupant or activity identification. Therefore, developing non-intrusive
occupancy detection methods, or enhancing those already in place, is necessary [7].

The presence of humans influences their surroundings through heat or CO2 emission,
so environmental data are an ideal source of information for occupancy detection that
does not risk the privacy of residents in a specific area. Nonetheless, it is only possible to
quantify something with data. Machine Learning (ML) and Deep Learning (DL) approaches
examine data for patterns; using these patterns, it is feasible to confirm occupancy with a
certain degree of certainty [8]. Although some contributions have been made in this regard,
there is still potential for improvement, which is the emphasis of this study proposal [9–11].
The system is hosted locally to further protect the occupants’ information, and an edge
network implemented for data storage and analysis.

The approach proposed in this work employs non-intrusive ambient sensors and a
DL (i.e., Convolutional Neural Network (CNN)) framework to identify occupancy. An
environmental sensor board collected temperature, humidity, pressure, light level, motion,
sound, and CO2 data. The detection method was deployed on an edge device to enable
low-cost data computation while improving data security. The system was installed at a
university office, which served as the primary case study testing site. The data gathered at
the office was leveraged to train and test the detection system. Following the pre-processing
of the collected data, five days of data were used to train the DL model. The trained model
was exported so as to be employed on the edge device. The testing was carried out on the
edge device for one day. The occupancy detection system attained an accuracy of 99.75%.
Overall, the contributions of this paper can be summarized as follows:

• Introducing a novel approach for detecting occupancy in indoor spaces using non-
intrusive ambient data and a deep learning model. Using an environmental sensing
board to gather environmental data, including temperature, humidity, pressure, light
level, motion, sound, and CO2.

• Deploying the occupancy detection method on an edge device for low-cost processing
and increased data security.

• Investigating the performance of one-dimensional CNN (1D-CNN) and two-dimensional
CNN (2D-CNN) to find the best option for edge deployment.

• Demonstrating the superiority of the 2D-CNN technique in providing robust and
reliable results with 99.75% real-time prediction accuracy.

The remainder of the paper is organized as follows: Section 2 addresses the related
work in developing a real-time edge-based occupancy detection system. Section 3 intro-
duces the methodology adopted to detect real-time occupancy patterns. Section 4 details
the data collection setup and flow. Section 5 explains and analyzes the performance results
of the proposed approach. Finally, Section 6 summarizes the paper’s findings and suggests
new study directions.

2. Related Work

There are several taxonomies for occupancy detection systems; however, the most
prevalent is the intrusive versus non-intrusive distinction. Localization strategies [12–16]
and cameras [17–19] are used in intrusive occupancy detection systems. Non-intrusive
solutions include estimating occupancy based on smart meters [20] or interior ambient
data [21]. The sub-sections summarize the relevant research that employs edge-based
occupancy detection.

2.1. Intrusive Edge-Based Occupancy Detection Systems

Monti et al. [22] suggested a method for counting individuals that relies on cameras
and Raspberry Pi platforms. The technique seeks to be adopted in varied indoor contexts



Energies 2023, 16, 2388 3 of 14

without requiring a customized training phase. This was achieved using an edge-based
transfer learning architecture augmented with unique image processing strategies.

Kommey et al. [23] designed and implemented an automated ceiling fan speed
regulator utilizing a web camera and a temperature sensor. The occupancy detection model
extracted human characteristics from the video broadcast using a Histogram of Gradient
(HOG), which was then categorized using Support Vector Machines (SVM) to increase the
detection accuracy. The system was integrated into a Raspberry Pi, a resource-limited edge
computing platform.

Aszkowski et al. [24] presented an annotated collection of low-resolution thermal
pictures from several office spaces with varying numbers of people present. A performance
and energy consumption comparison of CNN architecture on low-power edge devices
was conducted. The results showed that the Raspberry Pi with the Coral USB Accelerator
produced the best performance in applications demanding minimal latency.

Metwaly et al. [25] developed a unique approach for people counting with significant
prediction performance. Since the suggested algorithms had minimal computational,
power, and memory needs, they were appropriate for resource-constrained devices utilized
in Internet of Things (IoT)-based applications. It was discovered that thermal imaging
technology is more successful and a better prospect for counting individuals than other
systems, like those relying on optical cameras. Among the studied algorithms, the Feed-
forward Neural Network (FNN) produced the best accuracy compared to the CNN and
Gated Recurrent Unit (GRU). Similarly, Gomez et al. [26] introduced a people-counting
CNN algorithm based on thermal imaging, compact enough to operate on a limited-
memory low-power edge device.

2.2. Non-Intrusive Occupancy Detection Systems

Below, we provide an overview of studies that used non-intrusive methods to detect
occupancy. Researchers frequently use ML tactics to uncover the association between
predictor variables and target categories, as demonstrated by the reviewed articles, all of
which addressed ML methodologies to detect occupancy patterns. Furthermore, we discuss
the studies deploying edge computing and real-time implementation, both of which were
limited, as is shown later.

2.2.1. Edge and ML-Based

In their study, Zemouri et al. [27,28] addressed the effectiveness of machine learning
algorithms used to predict human occupancy in closed office areas using temperature and
humidity data as occupancy predictors. They employed a Raspberry Pi as an edge device
to perform real-time occupancy detection. The findings revealed that k Nearest Neighbors
(kNN) outperformed the other algorithms in all performance measures.

Rastogi et al. [29] developed a methodology for estimating indoor occupancy using
Linear Regression (LR) and Quantile Regression (QR) algorithms. The suggested approach
estimated the occupancy of an interior area using CO2, temperature, relative humidity, and
motion levels. Since the data generated by the setup is vast, sending it all to the cloud for
processing may result in delayed prediction; hence, the suggested models were designed to
be executed on an edge device.

2.2.2. ML-Based

Ali and Bouguila [3] proposed and thoroughly investigated a novel approach for
employing Hidden Markov Models (HMMs) in occupancy detection applications. They
utilized the prominent environmental dataset published in [30] for their analysis and the
analysis was considered a benchmark for the occupancy detection task.

Tan et al. [31] introduced a multimodal sensor fusion approach that integrates many data
sources, such as camera pictures, audio data, and interior environmental data, for occupancy
identification in residential buildings. They tested the framework’s performance using three
open-source datasets: the Electricity Consumption and Occupancy (ECO) dataset [32], the
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University of California Irvine (UCI) [30] building occupancy detection dataset, and the
HPDmobile dataset [33], which they gathered and made available. They showed that on the
aforementioned open-source datasets, a prediction accuracy of 90.00% was reached and a
prediction accuracy of 95.00% was reached with their own gathered dataset.

Dutta and Roy [34] developed the OccupancySense model, which detects human
presence and estimates interior occupancy count by combining IoT indoor air quality data
with static and dynamic context data. OccupancySense utilized the CatBoost algorithm for
detection purposes. A real-world case study using 91 continuous days of interior data with
33 distinct exterior factors verified the proposed model. The model had accuracy of 99.85%,
93.20%, and 95.60% in predicting the room’s binary occupancy, headcount, and occupancy
density, respectively.

Footstep-induced floor vibrations were employed as predictors by Drira and Smith [35]
to develop a comprehensive framework for occupant recognition, localization, and tracking.
The approach was successfully verified using full-scale case studies. Both model-free and
model-based techniques were used in the occupant detection, localization, and tracking
framework. SVM was used for occupancy detection and count.

The study by Tekler and Chong [36] anticipated occupancy based on a minimum
sensing strategy using a wide range of sensor data (i.e., indoor and outdoor ambient
factors, Wi-Fi devices, electricity consumption data, HVAC operations, and time-related
information). The most significant features were identified through a proposed feature
selection algorithm. Then, occupancy predictions were established in an office, library, and
lecture hall using several deep learning architectures, including Long Short-Term Memory
(LSTM), Bi-directional LSTM (Bi-LSTM), GRU, and Bi-directional GRU (Bi-GRU).

The study in [37] concentrated on determining whether a room is inhabited or empty
using thermal comfort indices, which may result in better resource management by effec-
tively controlling systems like lighting and HVAC, resulting in energy savings in buildings.
Data from fluctuations in light, CO2, and humidity levels were examined and evaluated
to determine the reliability of occupancy prediction. Furthermore, kNN, Artificial Neural
Networks (ANNs), and Decision Trees (DTs) were employed as classification techniques.
The findings showed that the kNN outperformed the DT and ANN classification models
with 99.50% accuracy. Similarly, in their study, Mohammadabadi et al. [38] suggested a
CNN–XGBoost model for occupancy detection in residential buildings with a balanced me-
chanical ventilation system and interior climate sensors. Measurements recorded included
CO2, relative humidity, and temperature for 13 days in December, 2021. CNN–XGBoost sur-
passed other algorithms in forecasting occupancy levels in all of the test building’s rooms.

A summary of the related works describing edge-based and ML-based occupancy
detection approaches is provided in Table 1. The table shows that most research employing
edge devices for occupancy detection mainly use intrusive techniques (i.e., optical and
thermal cameras). The utilization of edge devices for non-intrusive occupancy detection
systems is still quite limited and has not been extensively studied.
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Table 1. A summary of the studies discovered employing edge devices or ML methods for occupancy
detection.

Reference Sensors/Devices Used Edge Device Used Algorithm

[22] Optical cameras Raspberry Pi CNN
[23] Optical camera and a temperature sensor Raspberry Pi 3B+ HOG, SVM

[24] Thermal array sensor
Raspberry Pi 4B with a Coral
USB Accelerator CNN

[25] Thermal array sensor STM32F FNN
[26] Thermal array sensor ARM Cortex CNN
[27,28] Temperature and humidity sensors Raspberry Pi kNN
[29] Temperature, humidity, motion, and CO2 sensors Raspberry Pi LR, QR
[3] Temperature, humidity, light, and CO2 N/A HMM
[31] Environmental sensors, audio data, and cameras N/A Depends on input source
[34] Air quality N/A CatBoost
[35] Floor vibration measurements N/A SVM
[36] CO2 and Wi-Fi devices N/A LSTM, GRU
[37] Light, CO2, and humidity N/A kNN, DT, ANN
[38] CO2, relative humidity, and temperature N/A CNN-XGBoost

3. Proposed Edge-Based Deep Occupancy Detection System

The primary objective of this study was to improve occupancy detection accuracy
and reliability by using edge-based occupancy detection with a non-intrusive in-house
designed environmental board. This was achieved by designing and implementing a
system that utilizes an image transformation approach in a real-time environmental sensing
system to identify occupancy using a CNN model. Deploying edge devices also improves
the system’s dependability, enabling real-time occupancy monitoring and a high level of
privacy and security. Figure 1 depicts a high-level summary of the system. The system
collects data from environmental sensors that monitor temperature, humidity, pressure,
light, motion, sound, and CO2 levels. The measured data is then transmitted and stored
in the database. The edge device can access the stored data to analyze the factors and
determine occupancy patterns. The detected patterns are stored in the database to utilize
them in energy-saving applications.

MotionTemperature & 
humidity

Air qualityLuminosity

Running image-based DL for 
occupancy detection on the 

edge 

Collecting data from multiple 
sensors

Occupancy status classification

Area occupied
Area vacant

Sound

Pressure

Figure 1. High-level overview of the occupancy detection system using edge computing.

3.1. Environmental Factors Selection

The human body is like a machine, requiring energy to carry out operations. It is
impossible to produce energy from nothing, and a warm body transfers its energy to a cool
one, according to thermodynamics’ first and second principles. Therefore, these laws apply
to the human body. However, the presence of people, often in a warm region, may cause
the temperature to drop due to turning on an Air Conditioner (AC) [7]. As a result, the
quantity of people present affects the environment’s warmth. CO2, like heat, is a byproduct
of human presence. Although it is a necessary gas for life, it may be harmful at very high



Energies 2023, 16, 2388 6 of 14

doses (e.g., more than 5000 Parts Per Million (ppm)). Regular building CO2 concentrations
(i.e., 400–1000 ppm) should not pose a direct health threat, but they can be utilized as a sign
of occupancy.

As people affect their surroundings, pressure and humidity levels can also be linked to
their presence. People, for example, release moisture through perspiration and breathing,
raising the humidity level in a confined area. Human actions, such as opening and shutting
doors, using electrical devices, and changing temperatures can also affect the pressure
levels in a space. Monitoring these variables provides information about whether or not
people are present in a given region.

Likewise, the amount of light in a room may change when humans are present. By
switching the light on and off, one may observe this influence. This makes it possible to
associate occupancy in interior areas with light sources. Additionally, the noise level is
affected by the number of people in a room. As a result, it is reasonable to assume that as
the inhabitants of a place increase, so does the noise level. Indoor surroundings typically
feature background noise created by home appliances or other static sources of sound, an
essential element that should be considered. Moreover, humans are dynamic and move
frequently; thus, the justification for including the motion feature is straightforward.

Consequently, the following environmental parameters are recorded: temperature,
humidity, pressure, light, motion, sound level, and CO2.

3.2. Deployed Edge Device

Edge computing is distinct from conventional cloud computing. It is a novel paradigm
that executes computation at the edge of the network. The fundamental concept behind it is
to bring computation closer to the data source [39,40]. The edge computing premise is based
on storing and analyzing data on edge devices rather than uploading it to a cloud-based
server. Hence, edge computing provides clear advantages over cloud computing because of
this attribute [41,42]. Firstly, edge computing provides reaction time benefits in contrast to
conventional cloud computing. The need for intermediary data transmission is diminished
by edge computing since it is located closer to the data source, as storage and computing
operations are executed there. Secondly, conventional cloud computing employs uniform
processing, a centralized processing model, and requires all data to be uploaded to the
cloud [43,44]. Data loss and leakage are risks associated with this procedure, which cannot
ensure security and privacy preservation. Finally, less of the network’s bandwidth is
required because edge computing is performed locally. As a result, the demand on the
network’s bandwidth is minimized, and intelligent devices at the network’s edge consume
far less energy. The NVIDIA Jetson Nano Developed Kit was employed in this study, due
to the various benefits of edge computing [44].

3.3. Deep Learning Classifiers

DL is regarded as one of the most recent advances in machine learning. Due to a
lack of data management and processing resources, it could not previously be deployed.
We employed 1D-CNN in this study to identify occupancy. 1D-CNN is specially built to
work with one-dimensional data. In addition, we compared the performance of 1D-CNN
with 2D-CNN. Employing a time-series to 2D image transformation technique enabled the
adoption of a 2D-CNN approach [11]. The image transformation approach is demonstrated
in Figure 2.

1. 1D-CNN: The model included three convolutional layers, one max-pooling layer with
a 2 × 2 pixel window, and one fully connected layer. The three convolutional layers
were padded to retain the input size. The learning rate was set at 0.001, and a Leaky
Rectified Linear Unit (ReLU) was used as an activation layer on all the hidden layers.
The SoftMax activation function was used on the output layer.

2. 2D-CNN: We adopted a basic model for the 2D-CNN. The model comprised five
convolutional layers, five max-pooling layers with a 2 × 2 pixel window, and one fully
connected layer. The five convolutional layers were padded to preserve the input size.
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The learning rate was set at 0.0008, and a ReLU was used as an activation layer on all
the hidden layers.Ecoding time-series data to 2D images

● ○ ● ● ● ■ □

Normalized 1D time-series instant 
with n features

● ○ ● ● ● ■ □

● ○ ● ● ● ■ □

● ○ ● ● ● ■ □

Data arranged in 3×n format Data resized to 32×32-pixel 
and saved as an image

Temperature Light level

Humidity CO2

Figure 2. Time-series data to images encoding approach.

Regarding the training iterations, we utilized 5-fold cross-validation and 50 epochs
along with early stopping to eliminate overfitting. To ensure adequate training samples,
and to fit and analyze the performance of the CNN techniques, a ratio of 80% for training
and 20% for testing was employed. The training was done locally on a personal computer,
and the trained model was exported and imported to the edge device to detect occupancy
in real-time.

4. Data Collection Setup
4.1. Board Description, Placement, and Ground Truth Method

The designed sensing board collects various environmental features, such as tempera-
ture, humidity, pressure, light, motion, sound level, and CO2. These features are collected
via various sensors, shown in Table 2. The selection of the recorded environmental features
was based on the reasons previously mentioned.

Table 2. Sensor used for data collection: types and measurement ranges.

Variable and Unit Sensor Type Measurement Range

Temperature (◦C) DHT22 −40–80 ◦C
Humidity (%) DHT22 0–100%
Pressure (hPa) BMP180 300–1100 hPa

Light level (Lux) VEML7700 0–120 kLux
Motion (on/off) AM312 3 m
Sound level (dB) KY-037 3–6 kHz

eCO2 (ppm) SGP30 400–60,000 ppm

After deciding on the relevant sensors that strongly correlate with occupancy labels,
we developed the environmental board, encompassing the sensors and the micro-controller.
The micro-controller deployed was the esp32 devkit v1. The esp32 is a dual-core processor
with low cost and power requirements with Wi-Fi and Bluetooth wireless capabilities. The
esp32’s primary function is to transmit environmental data to the database once every ten
seconds. Figure 3 depicts the final environmental board design, with the Printed Circuit
Board (PCB) and the 3D-printed cover. The board also includes a Liquid Crystal Display
(LCD) screen to enable real-time indoor environmental monitoring. The data collection,
in a single-occupant office at Qatar University, was carried out using the environmental
board deployed in the position seen in green in Figure 4. Several board placements will be
explored in future research to establish the optimal position, similar to [45]. In addition, we
plan to investigate the use of many boards and possibly perform data fusion. The office
occupant recorded ground truth data manually on an Excel sheet.
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(a) (b)
Figure 3. Environmental board showcasing the (a) PCB configuration, and (b) cover.

Office layout

Environmental 
sensing board

h: 120 cm

Figure 4. Schematic layout of the office and environmental board positioning.

4.2. Data Flow

The central back-end is housed on a single-board computer (i.e., Raspberry Pi 4B+)
that serves as a local server and an access point to which the sensing board and the edge
device may be synced, resulting in a private local network. CouchDB structured the central
database as a local server, producing a local store that various devices can communicate
with via “POST” or “GET” queries in a real-time manner. In our scenario, the sensing
board posted data every 10-seconds, and the edge device retrieved the data in order to
evaluate the data. The data flow between the system’s modules is shown in Figure 5.
Modules in the present architecture may directly access the database via HTTP requests,
decreasing latency and offering a local and secure network. Data stored in CouchDB are
in the JavaScript Object Notation (JSON) format. Wi-Fi communication was leveraged
to connect the micro-controller and gateway, utilizing the 802.11 protocol and a 2.4 GHz
frequency band. A bandwidth of 2.4 GHz was chosen because of its greater spectrum,
which allowed for greater coverage of the gateways (i.e., sensing board, edge device, and
the local server).
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Flow chart of the code

Micro-
controller CouchDB Edge device

Post request Get request

Post request

Figure 5. Data flow between the database, the environmental sensing board, and the edge device.

4.3. Data Pre-Processing

Over a period of five days, data from various sensors were gathered every 10-s for
observation. Data from many sensor devices, with varying settings, were aligned and
combined into a standard format with ground truth occupancy labels. The inhabitants’
reported ground truth data were the primary reference for analyzing the performance of
various sensors and the detection technique. To rectify the inaccuracies in the collected
data, an initial data cleansing was a crucial pre-processing step before performing data
analysis and occupancy detection.

Any missing data issues is addressed using one of the following approaches. The
first approach uses the MissForest method [46], which involves non-parametric imputation
using a random forest algorithm for mixed-type data. This approach can handle missing
values in both categorical and continuous variables, as well as in a combination of both,
making it a versatile method for imputing missing data. Alternatively, we may utilize the
generative adversarial multiple imputation network approach proposed by Low et al. [47].
This approach uses a deep learning method to impute missing data, specifically for predicting
commercial vehicle parking duration. This method has shown promise in handling complex
missing data patterns and producing accurate imputations.

4.4. Correlation Study

We performed a correlation study between the predictors and the response variables
to assess the significance of the collected environmental features on the occupancy status.
In Equation (1), the correlation formula is depicted with xi representing the ith x-value
and x indicating the mean of the x-values in the data sample. The y-values might also be
attributed in that way.

r = ∑ (xi − x)(yi − y)√
∑ (xi − x)2 ∑ (yi − y)2

(1)

The results obtained from the said correlation study are shown in Figure 6. It is clear
from the correlation matrix that the light features had the strongest positive correlation
with the occupancy status, with a value of 0.99. The temperature, humidity, and sound
elements also held high to moderate correlation values of −0.84, 0.56, and 0.33, respectively.

The motion data had a minimal correlation with the occupancy labels, attributable
to various factors. Motion sensors may not detect movement from individuals who are
moving slowly or remaining still, such as those sitting at workstations. This may result in
erroneous negative readings. Furthermore, interference from other electronic equipment
or electromagnetic radiation sources may cause the motion sensor to provide inaccurate
data. Lastly, occupancy detection is a complex process, and a motion sensor alone may
not be enough to identify occupancy in some situations, such as a room with numerous
individuals or a space with a high amount of ambient movement. Thus, more sophisticated
systems that use multiple sensors and deep learning algorithms can help improve the
accuracy of occupancy detection.

It was observed that eliminating predictors with poor correlation to the occupancy
labels resulted in reduced training time and, in most cases, reduced accuracy. Therefore, all
sensor variables were utilized in the following data processing phases.
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Figure 6. Correlation matrix considering all the variables.

5. Experimental Results and Discussion
5.1. Performance Assessment

Various performance measures were used to assess the deployment performance of ML
and DL algorithms. Overall, the performance metrics used were based on an understanding
of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) data.
If the test data match the correct label class, TP and TN indicate the proper categorization.
If an entry does not belong to either the negative or positive categories, it is labeled with FN
or FP. Accuracy is defined as the number of successfully classified data instances divided
by the total number of data instances, as shown in Equation (2).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

In addition to the accuracy metric, the precision in Equation (3), recall in Equation (4),
and F1-score in Equation (5) were employed as performance metrics.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 − score = 2 × Precision × Recall
Precision + Recall

(5)

We additionally compared the required time to train the models. The time it takes to
train a ML model can vary significantly depending on a number of factors, including the
model’s complexity and the dataset’s size. Training an ML model can generally take a few
minutes to several days or weeks, depending on the aforementioned factors.

5.2. Classifiers Performance

Table 3 summarizes the findings obtained from employing the aforementioned classifiers.
As seen in the table, 2D-CNN produced the most significant results across all performance
criteria, most notably with an accuracy of 99.76%. It is worth mentioning that the 1D-CNN
algorithm generated good results with an accuracy of 99.72% and required less training time.
This was anticipated, given that the 1D-CNN technique has fewer layers than the 2D-CNN
method. This might also have contributed to the other performance outcomes.
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Table 3. 1D-CNN and 2D-CNN models’ performance.

DL
Approach Accuracy (%) Precision

(%) Recall (%) F1-Score (%) Training
Time (s)

1D-CNN 99.72 99.33 99.78 99.55 52.37
2D-CNN 99.76 99.35 99.93 99.64 69.62

The confusion matrices produced by the models with the data obtained are shown in
Figure 7. In Figure 7a,b the false rates were quite minor, indicating that the models were
highly accurate. However, the 2D-CNN had fewer false rates, particularly for the false
positive class. Taking this into account, the 2D-CNN technique was selected to be deployed
on the edge device to perform real-time occupancy detection.
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Figure 7. Confusion matrix for the (a) 1D-CNN and (b) 2D-CNN.

5.3. Real-Time Occupancy Detection

The source model for occupancy estimation was trained with data collected from a
small office room at Qatar University between 7–14 November 2022. To make the dataset
more balanced to prevent overfitting, we eliminated entries from 9:00 p.m. to 6:00 a.m. since
the office would likely be unoccupied during those periods. After training the model locally,
the 2D-CNN was imported on the edge device, and real-time detection was conducted for
one day in the office. Figure 8 depicts the target model’s performance compared to the
measured ground truth occupancy data. It can be observed that the model was very robust
as the measured occupancy labels were in sync with the ground truth data. The real-time
testing achieved a prediction accuracy of 99.75%. The detection was done instantly at 1-min
intervals, and the recorded labels were transmitted to the database via a post request. The
environmental parameters were displayed on the LCD screen over a 10-s interval. However,
a 1-min detection was used, since the occupancy labels did not fluctuate quickly.
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Figure 8. Edge-based occupancy detection in real-time with one day of testing data.

The critical barrier to adopting such an approach is acquiring the ground truth data
for training ML models. This might be reduced by employing a transfer learning strategy.
The approach can achieve high occupancy detection accuracy with a previously trained
model on a huge dataset and a small quantity of ground truth data (e.g., two days) from a
target room.
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6. Conclusions

Reliable occupancy monitoring is essential to promote energy efficiency and optimize
building energy management systems. Hence, this work aimed to design an edge-based
occupancy detection system that utilizes non-intrusive ambient data as occupancy predic-
tors. An environmental sensing board collected temperature, humidity, pressure, light,
motion, sound level, and CO2 data. The detection was accomplished through an image
transformation approach and a custom CNN model. The data collection, detection, and
storage of occupancy labels occurred in real-time in an office. Five days’ worth of data were
gathered for training purposes. Following one day of testing, the edge-based detection
systems achieved a prediction accuracy of 99.75%.

The proposed study examined the feasibility of detecting occupancy patterns using
solely environmental factors. However, it is important to recognize certain constraints.
Specifically, the study’s outcomes may have limited applicability beyond the particular
context it examined, necessitating the utilization of transfer learning models on edge to
expand the scope of the results. In light of these limitations, future research should consider
these concerns and pursue alternative approaches to enhance the generalizability and
practicality of the conclusions.
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